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Abstract

Representation and modelling of an objects’ shape is critical in ob-

ject recognition, synthesis, tracking and many other applications in

computer vision. As a result, there is a wide range of approaches in

formulating representation space and quantifying the notion of simi-

larity between shapes. A similarity metric between shapes is a basic

building block in modelling shape categories, optimizing shape valued

functionals, and designing a classifier. Consequently, any subsequent

shape based computation is fundamentally dependent on the com-

putational efficiency, robustness, and invariance to shape preserving

transformations of the defined similarity metric.

In this thesis, we propose a novel finite dimensional shape representa-

tion framework that leads to a computationally efficient, closed form

solution, and noise tolerant similarity distance function. Several im-

portant characteristics of the proposed curved shape representation

approach are discussed in relation to earlier works. Subsequently, two

different solutions are proposed for optimal parameter estimation of

curved shapes. Hence, providing two possible solutions for the point

correspondence estimation problem between two curved shapes. Later

in the thesis, we show that several statistical models can readily be

adapted to the proposed shape representation framework for object

category modelling. The thesis finalizes by exploring potential ap-

plications of the proposed curved shape representation in 3D facial

surface and facial expression representation and modelling.
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Chapter 1

Introduction

1.1 Motivation

The study of shapes has a long mathematical history in differential geometry and

topology. The shapes studied in these fields, primarily in differential topology,

are those that can locally be approximated by smooth functions. In that sense,

the main goal of differential topology is to study properties of such shapes that

are invariant under diffeomorphism [Mil97].

In this thesis, however, the shapes that we are concerned with are curves

embedded in Rn and semantically associated with natural or man-made objects.

For instance, objects from an image can be represented by their outlines or sil-

houettes which are closed curves in R2. Meanwhile, three dimensional surfaces

can be decomposed into a set of curves in R3 for further characterization, see

Figure 1.1. Consequently, the properties we want to study are the ones that

convey similarity or dissimilarity in a way that agrees with an observed dataset.

Undeniably, such kind of properties exist in shape categories– mammals, humans

in particular, can recognize an object from its shape with remarkable ease, even

under occlusion or viewpoint variation. Nevertheless, mathematically formalizing

the concept of shape similarity or dissimilarity, in the way a human’s perceptual

system does, has proven to be a challenging task. To highlight the contrast, con-

sider the silhouette of a horse and the silhouette of an apple. For a human being,

these silhouettes are completely different from each other. From a differential

1



1. INTRODUCTION

(a)

(b)

Figure 1.1: Illustration of curved shapes in object representation: (a) exam-

ples of plane images from Caltech 101 data set [FFFP07] and their corresponding

silhouettes. (b) 3D facial surfaces decomposed into a set of curved shapes.

topology point of view, however, shapes that can smoothly deform from to an-

other are the same; hence a horse silhouette is the same as an apple’s silhouette.

As a result, a smooth deformation of one object’s silhouette to another is not

a strong enough criterion to characterize a given object category. Meanwhile,

shapes from the same object category can exhibit large variations which can also

be associated with smooth deformations. For instance, the shape of an object’s

silhouette might deform in some local region depending on our point of view or

how the object is posed. Hence, a given smooth shape deformation can char-

acterize both inner-category and inter-category shape variations. Consequently,

the main task of a shape based object recognition approach is to be able to dis-

tinguish between inner-category and inter-category shape deformations. To that

end, several and interrelated problems have to be addressed. First, a data struc-

ture has to be formulated to describe an observed object’s shape– in practical

applications, the observed object’s shape is no more than an approximation of its

trace. Subsequently, one has to prescribe a mathematical representation that can

be associated with the data structure. The mathematical representation has to

be, in some sense, invariant to inner-category shape variations or object identity
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1.1 Motivation

preserving transformations like occlusion. Additionally, the notion of similarity

and dissimilarity between shapes has to be quantified by a distance function that

is defined on the mathematical representation space. In most cases, the distance

function is further used to approximate the distribution of a shape category with

statistical models.

Considering the difficulty of the task, one might naturally ask: does a shape

contain enough information to be used as an input for object recognition and

analysis? We believe yes. Shape is one of the most informative features of an

object. Although highly important, colour and texture are susceptible to change

in time and vary regardless of the object’s identity. For instance, an orange fruit

is green when unripe and orange when ripe, while its shape is more or less stable

with respect to seasonal changes. Moreover, colour is sensitive to contrast and

lighting conditions. Alternatively, some objects can not adequately be described

either by texture or colour. This is further strengthened by the fact that, regard-

less of specialization, a general perceptual system in mammals has a dedicated

neural pathway for shape recognition [SW12]. Lastly, an argument can be made

in support of shapes from an application point of view; that is, for problem do-

mains where colour is not available, the most prominent feature of an object is

its shape. In medical imaging, shape analysis is one of the main tools used for

diseases diagnostics. In [WBR+07], deformation-based mathematical shape rep-

resentation, together with a statistical model called Principal Component Anal-

ysis (PCA), is used to study the progression of dementia caused by Alzheimer’s

disease. In [SLM+16], a shape similarity function, defined on a mathematical rep-

resentation called Square Root Velocity (SRV), is used to analyse protein struc-

tures as curves in R3–several more applications, inspired by biological problems,

are discussed in [DM98, Pen09]. Furthermore, SRV based shape representation

approaches, together with statistical models, have been used in leaf shape recog-

nition [LKSM14] and face recognition from 3D point cloud [DADS10]. In [AK10],

curves are used to study generic 3D surfaces. Meanwhile, a wide range of shape

representation approaches, general known as “shape descriptors”, are used for

object classification in computer vision [WFB+14, WBY+12, HJZG12].

In this thesis, we propose a novel deformation-based curved shape represen-

tation approach. The proposed approach leads to a similarity distance equation

3



1. INTRODUCTION

that has a closed-form solution unlike most infinite dimensional shape represen-

tation approaches [MM03, BBM16]. We further formulate a symmetric objective

functional to estimate the point correspondence between shapes and ensure a one-

to-one solution. On the contrary, in landmark-based approaches [Ken84], point

correspondence between shapes is established by manual annotation. Meanwhile,

infinite dimensional representations use a fixed template shape to estimate the

point correspondence between shapes which leads to asymmetric objective func-

tional and a potentially one-to-many solution [SKJJ11, BBM16]– the effectiveness

of the proposed representation and the point correspondence estimation are eval-

uated in several shape retrieval problems. Subsequently, we show the adaptation

of different statistical models to the proposed curved shape representation and

evaluate their performance in shape category modelling problems. Finally, we

discuss the application of the proposed curved shape representation approach in

face and facial expression analysis from a 3D point cloud data.

1.2 Challenges

In [Mum91, Mum87], the main challenges involved in formalizing a curved shape

representation are broadly categorized into two: Data structure and Represen-

tation. In this subsection, we will describe a general overview of the challenges

associated with shape representation from these two points of view.

1. Data structure: Contours of objects, either natural or man-made, are in-

finite dimensional, i.e., a contour has infinitely many degrees of freedom to

vary. On the other hand, existing computer systems have limited memory

and computing power. Consequently, negotiating computational limitation

with representational limitations has been one of the main challenges of

shape representation approaches. Essentially, there are two main schools of

approach to this problem. 1) finite dimensional : methods based on land-

mark points [Ken84] or shape descriptors [YKR+08]. Infinite dimensional :

methods based on piecewise differentiable functions (splines) [SKJJ11]. Ap-

proaches based on descriptors or a set of descriptors attempt to summarize

the shape with feature points extracted from the shape of the object. One

4



1.2 Challenges

of the main advantages of feature-based representations is that the fea-

tures usually define a linear and low dimensional feature space on which a

distance metric can be defined and statistical models can be built. How-

ever, the feature maps are not necessarily invertible and thus it is diffi-

cult to recover computational results in the original data space. Moreover,

in [SM06] it is argued that a feature vector can not uniquely represent

a shape, since the shapes themselves are infinite dimensional. There will

always be many shapes exhibiting a property summarized by a specific

feature. Meanwhile, in the infinite dimensional setting the representational

weakness of the descriptor-based approaches is tackled by approximating an

observed shape by an analytical function or by studying the deformation of

the shapes from one to another [You99]. In such cases, the space of shapes

is usually defined as a nonlinear submanifold of a Banach space. Contrary

to the descriptor-based approaches, the difficulty in this case is not the

power of the representation but the computationally demanding distance

equations, and in some cases intractable equations, that are associated with

the infinite dimensional space. Consequently, several and different types of

metrics are proposed and studied in the infinite dimensional setting [MM03].

2. Representation: Once an appropriate data structure is chosen, the next

challenge, and perhaps the most important, is designing/selecting a math-

ematical structure that can be associated with observed shapes, so that

statistical and geometric calculations can be done. To further clarify this

challenge, we will adapt Kendall’s [Ken84] definition of shape– we will refer

to this definition throughout this thesis– which reads as follows.

Definition 1. Shape is all the geometrical information that remains when

rotation, translation and scale are removed.

Although, one can add several additional requirements, according to Def-

inition 1, the most basic requirement for a shape representation is to be

invariant to similarity (symmetry) transformations. That is, either a pre

processing stage has to be developed to clear variations due to scale, trans-

lation and rotation or the constructed representation has to be inherently

5
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invariant to such transformations. Nevertheless, Kendall’s definition is re-

stricted only to global linear transformation of shape variations. However,

the notion of similarity between shapes is not only captured by global trans-

formations but through local variations as well. For instance, the shape of

an apple might exhibit nonlinear variations in some local regions due to

occlusion or a bite. Consequently, the family of symmetry transforma-

tions has to be expanded to include high dimensional transformations that

capture shape variations in local regions or has to include global nonlin-

ear transformations. In the shape representation literature, such kinds of

transformations are generally known as reparametrizations of the shape’s

parameter space or diffeomorphisms. The difficulty, however, is in practical

problems neither the parametrization of a shape nor its reparametrization

is known. As a result, optimal parametrizations of shapes have to be es-

timated with respect to one another, defining what is known as the point

correspondence estimation problem.

Moreover, in addition to invariance to symmetry transformations the rep-

resentation has to lead to a mathematical shape space that can at least be

linearised locally. This is mainly because in modelling a category of shapes

similarity metric alone is not sufficient to explain the data generating event,

hence statistical models are employed in a locally linearised region of the

shape space to model shape distributions.

The above two main categories of problems are often interrelated, hence dif-

ferent approaches in the data structuring will influence both the problem formu-

lation and solutions in the representation construction and the computation of

statistical quantities.

1.3 Contributions

The main contribution of this thesis is in the formulation of a computationally

efficient and descriptive curved shape representation that is based on a finite di-

mensional approximation of curves. The thesis proposes to approximate a given

continuous curved shape by a set of sampled points with respect to the curve’s
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arc length. The approximation of the curves by a discrete set of points is sim-

ilar to approximating a curve by piecewise linear function. For most practical

applications, a piecewise linear approximation is sufficient to describe a curve,

while the fitness of the approximation can be tailored to specific applications by

altering the number of discrete points. In a sense, a finite dimensional data struc-

ture might be considered similar to landmark or descriptor based data structure.

However, unlike descriptors we do not associate any special meaning to the points

except that they approximate the curve. Furthermore, we define the approxima-

tion in terms of optimal parameter estimation instead of relying on annotation

or feature extraction like landmark based approaches. Nevertheless, we benefit

from the finite dimensional data structure by avoiding some of the computational

difficulties of the infinite dimensional approach, while formalizing and providing

approximate solutions to the challenges posed in the infinite dimensional setting.

Subsequently, interrelated folds of contributions are made in the formulation of

the proposed curved shape representation, and its applications in shape based ob-

ject retrieval, object category classification, and facial expression analysis. The

following list summarizes the contributions of the thesis.

1. Representation: The thesis proposes a novel Lie group based representa-

tion that equates a given set of oriented points with a sequence of transfor-

mation matrices, such that their sequential action on a given fixed starting

point reconstructs the set. We show that this representation defines a dis-

tance function that has several interesting properties. Assuming the knowl-

edge of curve parametrizations, the main properties of the representation

and the distance it defines are listed below:

• Measuring the distance between two curves: In the proposed represen-

tation, measuring the deformation cost from one to another is equiva-

lent to measuring the distance between the curves. Hence, the formal-

ized distance function is similar to what is known as effort functional

in infinite dimensional setting [You98].

• Deformation between curves is defined as the difference between rela-

tive transformations of the curves. Consequently, unlike other metrics

7
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in shape representation, it is not the absolute displacement of each

point that is measured but the relative displacement of each point.

• In the proposed framework, the distance and optimal deformation be-

tween two curves are computed in a closed form; in the infinite di-

mensional setting most metric definitions do not lead to a closed form

distance measure.

• The defined distance function ultimately depends on the arc length

approximation of the curves, hence is more tolerant to local noise and

shape perturbation as opposed to metrics defined in the infinite di-

mensional setting, which usually are based on second or higher order

derivatives of the curves.

This work is discussed in detail in Chapter 3. The discussion is based on

the following publications :

- Demisse. GG, Aouada. D, Ottersten. B. “Deformation based curved

shape representation”, in IEEE Transcations on Pattern Analysis and

Machine Intelligence (TPAMI), 2017.

- Demisse. G, Aouada. D, Ottersten. B. “Similarity Metric For Curved

Shapes In Euclidean Space”, in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

2. Optimal parametrization: The landmark based approach usually de-

pends on a manual annotation of the landmark points. Consequently, two

potentially different sets of landmarks can be defined for the same observed

curved shape. Moreover, the problem of optimal point correspondence is

not defined, since the matching landmarks are assumed to be given. In

this thesis, contrary to landmark-based approaches, the points approximat-

ing a curve are selected based on arc length. Consequently, the sampling

can be made invariant to the curve parametrization if the parametriza-

tion is known a priori. In most computer vision applications, however, the

parametrization of curves is not known a priori; what is observed is only

the approximation of the curve’s trace. As a result, we formulate optimal
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parameter estimation under a linearity assumption and later extend it to

a general case. Optimal parameter estimation, in both cases, can be com-

puted in polynomial time and is consistent with the notion of deformation

minimizing distance function. We note that in most infinite dimensional set-

tings, an optimal parametrization of curves is estimated for a given curve

with respect to a selected template curve. As discussed in [BBM16], such

approach can lead to a one-to-many point correspondence solution. In our

case, we solve the optimal parameter estimation for two different cases:

1) optimal parameter estimation of a shape argument with respect to the

parametrization of a template shape, 2) optimal parameter estimation for

both curve arguments. In both cases, we ensure a one-to-one point cor-

respondence by restricting the family of parametrizations to injective and

monotonic functions with strictly positive derivatives with respect to the

curve’s arc length.

This work is discussed in detail in Chapter 4. The discussion is based on

the following publication:

- Demisse. GG, Aouada. D, Ottersten. B. “Deformation based curved

shape representation”, in IEEE Transcations on Pattern Analysis and

Machine Intelligence (TPAMI), 2017.

3. Statistical models: We discuss established statistical models and latent

variable estimation approaches for the modelling and simulation of shape

categories and shape deformations. Since the proposed representation can

locally be linearised, the adaptation of statistical models follows naturally.

We show the applicability of the statistical models in shape based object cat-

egory recognition. Results show that all of the statistical models performed

as well or better than several “shape descriptor” based object category

modelling approaches.

This work is discussed in detail in Chapter 5. The discussion is partly based

on the following publication:
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- Demisse. G, Aouada. D, Ottersten. B. “Template-based Statistical

Shape Modelling On Deformation Space”.in IEEE International Con-

ference on Image Processing (ICIP), 2015.

4. Application: Finally, we employ the proposed curved shape representa-

tion for 3D facial surface and expression representation. We extend the

optimal parameter estimation in curves to optimal parameter estimation in

facial surfaces. We evaluate the proposed approach on expression recog-

nition problem from a statistic 3D point cloud dataset. The approach

performed comparably with feature based 3D facial expression classifica-

tion techniques, when the curves are not optimally sampled. In case of

the optimal curve sampling, the approach outperformed the feature based

methods.

This work is discussed in detail in Chapter 6. The discussion is based on a

work that is under major revision:

- Demisse. GG, Aouada. D, Ottersten. B. Deformation Based Facial

Expression Representation, ACM Transactions on Multimedia Com-

puting, Communications, and Applications (TOMM), under review.

Other publications not included in this thesis:

- Oyedotun. O, Demisse. G, Shabayek. A, Aouada. D, Ottersten. B. “Facial

Expression Recognition via Joint Deep Learning of RGB-Depth Map Latent

Representations”. in IEEE International Conference on Computer Vision

Workshop (ICCVW), 2017.

- Antunes. M, Baptista. R, Demisse. G, Aouada. D, and Ottersten. B. “Vi-

sual and human-interpretable feedback for assisting physical activity”. in

European Conference on Computer Vision (ECCV) Workshop on Assistive

Computer Vision and Robotics, 2016.
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1.4 Outline

1.4 Outline

The thesis is organized as follows:

Chapter 2 describes earlier works in shape representation and metric defini-

tion. The discussion is mainly from the perspective of the shape spaces and the

metric that is defined on them.

In Chapter 3, we describe the proposed shape representation approach and the

distance metric defined on it. We will further discuss important properties and

relations of the proposed approach with what is known as effort functional. The

Chapter concludes with experimental evaluations of the proposed representation

and its metric in shape retrieval problems.

Chapter 4 builds on the proposed curved shape representation by extending

it to curves with unknown parametrization. Optimal curve parameter estimation

is solved for a special case, when reparametrization is assumed to be linear,

and for the general case, for reparametrizations that preserve a given geometric

property. Moreover, Chapter 4 discusses a dynamic programming-based solution

and introduces free parameters into the optimization problem.

In Chapter 5, we describe how to compute statistics of a shape dataset repre-

sented by the proposed curve representation. Later on, we present different para-

metric distribution models for estimating the distribution of shapes represented

by the proposed approach. Chapter 5 concludes by evaluating the statistical

models in shape based object category recognition.

In Chapter 6 we discuss an application of the proposed curve representation

in representing and analyzing face and facial expressions from 3D data. Subse-

quently, a restricted version of optimal parameter estimation, in 3D face repre-

sentation, and modelling facial expressions are discussed. The Chapter concludes

with an evaluation of the proposed approach for facial expression recognition.

The thesis ends with concluding remarks in Chapter 7. Furthermore, potential

extension directions of the proposed curve representation approach are discussed.
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Chapter 2

Curved shape representation

In this chapter, we discuss different curved shape representation approaches that

are closely related to what is proposed in this thesis.

In general, a curved shape representation can be understood as a function

that identifies a given shape with a mathematical quantity. In most cases, these

mathematical quantities aim to satisfy a general and/or application specific prop-

erties. There are several works that classify shape representation approaches

using different criteria (processing approach, problem domain of the representa-

tion, co-domain of the representation, etc), see [YKR+08, You12]. However, in

this chapter and throughout the thesis we discuss shape representations from two

fundamental points of view:

1. Completeness. A representation is called complete if it is one-to-one, that is

two distinct shapes can never have the same representation. Completeness

is fundamental to address invariance to symmetry transformations– trans-

formations that preserve the nature of the shape–and robustness–tolerance

to small transformations or perturbations. Completeness is also closely re-

lated with the data structuring of the curves.

2. Shape space and metrics. In broad terms, a shape space is the co-domain

of a shape representation with a distance metric. In most cases, it is fur-

ther endowed with additional mathematical structures, e.g., differential and

topological structures. Constructing a shape space and defining a metric is

13
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not always straightforward for all representations. Among the basic struc-

tures of a shape space, the most important ones are differential structures

and smoothly varying metrics. These two are fundamental to compute

geometric notions like distance, differential notions like derivatives, and to

tackle optimization problems in the constructed shape space [Men13]. Con-

sequently, statistical and machine learning algorithms can be designed to

explain a dataset of observations in the defined shape space. However,

the complexity and effectiveness of the algorithms will ultimately depend

on the shape representation and the metric defined on it. As discussed in

Section 2.2, in most infinite dimensional formulations the defined distance

metric is computed iteratively.

Consequently, Chapter 2 will only cover shape representations that are stud-

ied as shape spaces and discusses the completeness of the spaces and the metrics

defined on them. Nevertheless, there is a whole category of interesting shape rep-

resentations known as “shape descriptors” that are studied mainly from the com-

pleteness point of view. This type of shape representations will not be discussed

here, for further details refer to [BMP02, YKR+08].

2.1 Landmark based representation

Representing a shape with a set of landmarks (key-points extracted from the

outline of an object’s shape) has a long history in biology [BR+71, Boo94]. Most

of the early approaches use length or angle between landmarks to analyse varia-

tions due to growth or anatomical changes, while neglecting the general geomet-

ric information associated with the coordinates of the landmarks. Considering

landmarks along with the coordinates was developed, independently, by Book-

stein [Boo84, Boo86] and Kendall [Ken84, Sma96]. Bookstein’s representation1

is mainly motivated and developed form the point of view of biological applica-

tions. While Kendall’s representation, which is more theoretical, was developed

for astronomical and archaeological applications. In what follows, we will mainly

discuss Kendall’s representation.

1Sometimes referred to as Bookestein’s shape coordinates.
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2.1 Landmark based representation

Let (p1, · · · , pz) ∈ R2z, where pi ∈ R2, be a set of z landmarks extracted

from the outline of a planar shape1. Subsequently, following Kendall’s definition

of shape, Definition 1 in Chapter 1, transformations of landmark points due to

translation, scale and rotation are filtered out. To that end, location and scale

are removed from the contour using κ(·), which is defined as follows

κ(p1, · · · , pz) = (p∗1, · · · , p
∗
z) =

(

p1 − p̄

h
, · · · ,

pz − p̄

h

)

, (2.1)

where

p̄ =
1

z

z∑

i=1

pi ∈ R2, and h =

√
√
√
√

z∑

i=1

‖pi − p̄‖22 ∈ R. (2.2)

The function κ(·) removes location and scale by centering the landmarks to zero

mean and scaling them to unit norm. As a result, the dimensionality of the

landmarks is reduced. That is, centering the landmarks confines our observation

to a subspace which we denote with V and defined as

R2z ⊃ V2z−2 = {(p1, · · · , pz) :
1

z

z∑

i=1

pi = 0}. (2.3)

Further rescaling the landmarks to unit norm leads to a hypersphere in V2z−2.

Thus, κ can be defined as

κ : R2z → S2z−3. (2.4)

According to Kendall, the space S2z−3 is called pre-shape space. Note that,

rotational variation is not yet removed, hence the name pre-shape space. In

order to remove rotational variation, it is necessary to define the orientation of

the landmarks as a function of the points; this is similar to defining scale and

location as the norm and the mean of the landmarks, see (2.1). However, there

exists no such function for z > 2 landmark points [Sma96]. Consequently, in

1Note that, in biological and archaeological applications a landmark does not necessarily

have to be on the contour of the shape.
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Figure 2.1: Kendall’s shape space

Kendall’s formalism, an equivalence class is defined for the set of all possible

rotational variations of a given landmark set as follows

[κ(p∗1, · · · , p
∗
z)] = {(R(p

∗
1, θ), · · · , R(p

∗
1, θ)) : 0 ≤ θ ≤ 2π} ⊂ S2z−3, (2.5)

where R(p∗i , θ) defines rotation of the point p∗i by θ about the origin; we remind

the reader that the landmarks are on a plane. As a result, a shape is not identified

with an element of S2z−3 but with an equivalence class that is defined as (2.5).

Hence, the shape space of landmarks, using Kendall’s formalism, is the set of all

equivalent classes defined as

Σz
2 = {[κ(p

∗
1, · · · , p

∗
z)] : κ(p1, · · · , pz) ∈ S2z−3} = S2z−3/SO(2), (2.6)

the subscript on Σ shows the dimension of the landmark points, while the su-

perscript shows the number of the landmarks. In other words, Σz
2 is a quotient

space of the pre-shape space. The shape space given (2.6) is further shown to

be isometric to the complex projective space, CP2z−2. Intuitively, one can under-

stand the shape space Σz
2 as a Riemanninan submersion1 of S2z−3 to CP2z−2. In

effect, every orbit in S2z−3 (2.5) is identified with a line in CP2z−2. Next, we will

consider (2.6) as the shape space of landmarks and briefly discuss it from the two

main perspectives introduced in Chapter 2.

1Submersion is a differentiable map between two manifolds such that its differential at each

point is a linear surjective map between the tangent spaces.
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2.2 Immersion based representation

1. Completeness : Although elegant, Kendall’s shape space Σz
2, which is de-

veloped based on a set of landmarks, does not define how to select the

landmark points on a shape outline. Consequently, the landmark points

are selected either based on problem specific knowledge or defined to sat-

isfy a certain mathematical criteria. Hence it is entirely possible to have

two different sets of landmarks for a given shape which will be mapped to

different representations. Consequently, landmark-based representations do

not meet the criterion of completeness.

2. Metric: The geodesic distance between two shapes, in a pre-shape space,

can be defined in a closed form as follows

dS2z−3(κ(X1), κ(X2)) = cos−1〈κ(X1), κ(X2)〉 (2.7)

where 〈·, ·〉 is used to denote the inner product. The distance defined in the

pre-shape is further generalized to the shape space as

dΣz
2
(κ(X1), κ(X2)) = min

θ1,θ2
{dS2z−3(κ(X1, θ1), κ(X2, θ2))}. (2.8)

As we alluded earlier, Σz
2 is isometric to CP2z−2. Consequently, (2.8) can

be expressed in a closed form since orbits in S2z−3 correspond to set of

complex lines in a complex projective space. This leads to what is known as

the Fubini-Study metric [MM05, Hel62], in mathematics, and Procrustean

distance in Kendall’s shape space [Sma96].

2.2 Immersion based representation

In a direct contrast to landmark-based approaches, one can construct a shape

representation by starting from a general mathematical structure– the space of

all smooth functions which we denote by C∞(Rn,Rm). Such a space, however,

is not a Banach space1. Consequently, a much more general topological space is

considered for function based shape space construction; that is to consider curved

1A vector space with a distance function such that the distance defines a topology that is

complete. This is analogous to Rn except that it is infinite dimensional.
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shapes as an embedding or immersion of S1 to Rn [Men13, MM03, SKJJ11,

MM07, MMSY07]. As such, a curve is defined as

c : S1 → Rn, s.t. ċ 6= 0, (2.9)

where ċ represents the first derivative with respect to its parametrization. The

space of all possible curves, defined as (2.9), is denoted by Imm(S1,Rn), where

“Imm” stands for immersion; in [MM03], a detailed account is given on how

Imm(S1,Rn) can be made into a manifold.

Similar to the landmark-based approach, variation due to rotation and trans-

lation can be filtered out by filtering rotation, SO(n), and translation, Rn, from

Imm(S1,Rn). More importantly, however, in the immersion based approach vari-

ation in the parameter space S1 is also considered, unlike the landmark based ap-

proach which relies on a predefined point selection (parametrization). To further

explain, let c1(S
1) be the analytical representation of an observed curve. Intu-

itively, if we trace the path of c1(S
1), its shape does not change with respect to

how fast we travel, which direction we travel, or our starting point. To be more

precise, consider the immersion c1 defined below

c1 : S
1 ∋ θ →

(
cos 2θ cos θ, cos 2θ sin θ

)
∈ R2. (2.10)

Subsequently, let τ be a reparametrization that maps S1 to itself, defined as

τ : θ → (ϕ+ θ)mod(2π), (2.11)

for some ϕ ∈ [0, 2π]. Using (2.11) it is possible to select different starting points,

from which we can trace the shape of c1, by selecting different values for ϕ.

Regardless of the starting point, however, the curve’s shape remains the same with

respect to Kendall’s definition, see Figure 2.2. Nevertheless, the composition of c1

with τ is different from its original definition, that is, c1(S
1) 6= c1◦τ(S

1). This kind

of representational variations are referred to as variation due to reparametrization,

or as deformation of the parameter space.

Similar to location and rotation, variation due to reparametrization has to be

removed from the representation space to avoid redundancy. Consequently, we

denote all possible smooth and invertible reparametrizations of S1 as Diff(S1).
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2.2 Immersion based representation

(a) S1 (b) c1(S
1)

(c) τ(S1) (d) c1 ◦ τ(S
1)

Figure 2.2: Variation due to reparametrization: (a) and (c) show the parameter

space and its reparametrization along with the red dot to denote the starting point.

(b) and (d) show the curve trace defined on (a) and (c), respectively.

Note that Diff(S1) is a group under composition. As a result, the composition of

a given curve c1 ∈ Imm(S1,Rn) with τ ∈ Diff(S1) can be seen as a group action

from the right.

Similar to (2.5), we can use Diff(S1) to define an equivalence class of shapes

and consider the collection of these equivalent classes as a shape space. The

equivalence class of a given shape c1 under Diff(S1) is defined as follows

[ci] = {ci ◦ τ : ∀τ ∈ Diff(S1)}, (2.12)

Subsequently, the collection of all equivalent classes of type (2.12) are given by

taking the quotient space of Imm(S1,Rn), defined by Diff(S1) group, which is

written as

B(S1,Rn) = Imm(S1,Rn)/Diff(S1). (2.13)

Finally, by removing variations due to rotation and location, the space of im-

mersed function-based shape representation is given as

B(S1,Rn)/SO(n)⋉Rn. (2.14)
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In the literature, Imm(S1,Rn) is referred to as space of parametrized curves,

and B(S1,Rn) as space of unparametrized curves [BBMM14]. Subsequently, we

briefly comment on the completeness of the immersion-based shape space and

possible metrics that can be defined on it.

1. Completeness : Immersion based representations are complete. That is,

unlike landmark based representations, curved shapes are treated as infi-

nite dimensional objects and no prior point selection is imposed, mainly

in the space of parametrized curves. For practical purposes, however,

such representations are approximated with piecewise polynomial functions

which can potentially introduce redundancies in case of unparametrized

curves [BBM16].

2. Metric: Several metrics have been studied in the immersion based shape

representation [MM07, SKJJ11, MM03, SYM07]. Among them, the sim-

plest metric is the L2 metric, which is defined as

Gc(h, h) =

∫

〈h, h〉 ds, (2.15)

where h is a vector field along the curve c, and is integrated with respect

to arc length of the curve c, ds = ‖ċ(θ)‖ dθ. Note that Gc is a smoothly

varying metric in Imm(S1,Rn) and is invariant to reparametrization. In

general, the distance between two curves for a given metric, in our case

using (2.15), is given as

dImm(c1, c2) = min
γ(t)

∫ 1

0

√

Gc(γ̇(t), γ̇(t)) dt, (2.16)

where γ(t) is a given curve with the initial conditions of γ(0) = c1 and

γ(1) = c2, and γ̇ = dγ(t)/dt. Equation (2.16), which is a distance in

Imm(S1,Rn) space, can be generalized to B(S1,Rn) as

dB([c1], [c2]) = min
τ∈Diff(S1)

min
γ(t)

∫ 1

0

√

Gc(γ̇(t), γ̇(t)) dt, (2.17)

such that γ(0) = c1 and γ(1) = c2 ◦ τ , for some τ ∈ Diff(S1). Nevertheless,

there exists no closed form solution for the geodesic equation of the met-

ric (2.15). More importantly, the induced geodesic distance, using (2.15),
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2.2 Immersion based representation

between two given curves vanishes [MM05, MM03]. That is, for some ǫ > 0

there can always be a path between two given curves with length smaller

than ǫ. Consequently, to overcome the vanishing distance, several works

have considered what are called Sobolev type metrics [BBM16]. A typical

Sobolev metric, in a shape space, is the first-order Sobolev metric which

adds a weighted first derivative of the vector fields to (2.15) as follows

Hc(h, h) =

∫

〈h, h〉+ A〈Dsh,Dsh〉 ds, (2.18)

where A > 0 and Dsh is the derivative of the vector field with respect

to the arc length, i.e., Dsh = 1
‖ċ(θ)‖

ḣ(θ). The geodesic equation for (2.18)

involves second-order partial differential equations, which are numerically

difficult to solve [BBMM14]. Note that, we are referring to the geodesic

equation of parameterized curves. In a particular case [SKJJ11, MMSY07],

a closed form geodesic equation or numerically efficient solvers are provided.

In most cases, however, the geodesic equation for the Sobolev metric is

solved iteratively. In [BBMM14], the efficient solutions for Sobolev type

metrics, [SKJJ11, MMSY07, MSJ07], are all discussed as the pullback1

metric of a generalized isometric mapping2 that maps a shape space to a

simple constant metric. To further explain, let F be an isometric map of

type defined as follows

F : Imm(S1,Rn, Gc)→ C∞(S1,Rn, L2). (2.19)

Subsequently, the metric Gc can be defined using the much simpler L2 norm,

since (2.19) is isometric, as follows

Gc(h, h) = L2(DcF (h), DcF (h)), (2.20)

where Gc and L2 are the respective metrics of the spaces, and DcF is the

derivative of F at c ∈ Imm(S1,Rn) and h is a vector at c’s tangent space.

1The derivative of a function between one manifold and another defines a linear map be-

tween the tangent spaces of its domain and co-domain. These maps are known as pullback or

pushforward, depending on the mapping directions.
2A function is isometric if it preserves the distance function defined in its domain space.
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2. CURVED SHAPE REPRESENTATION

For example, the Square Root Velocity (SRV ) transform [SKJJ11], is a

mapping of the form (2.19) defined as

F (c) =
ċ

√

‖ċ‖
, (2.21)

which essentially describes an immersion c by its normalized tangent vector.

Subsequently, (2.21) induces the following metric

Gc(h, h) =

∫

S1

〈Dsh, ċ〉
2 +

1

4
〈Dsh, c̈〉

2 ds, (2.22)

note that ċ and c̈, represent tangential speed and curvature of the curve,

respectively. As a result, one can interpret (2.22) as measuring the curve’s

deformation, described by a tangent vector h, components in the tangen-

tial and curvature direction. The generalized form of (2.22) are known as

“elastic metrics” [SKJJ11, MSJ07].

2.3 Deformable-template based representation

An alternative to both immersion based and landmark based representations is

to represent curves based on their difference from a given template shape. In such

a scenario, one needs to define the template shape, and the type of deformations

allowed. The earliest work, in such direction is by D’Arcy Thompson, where

similarity transformations of animal body forms are studied [D92]. Particularly

with the work of Grenander and his collaborators [GM07, KMG98, Gre97, GM94],

advanced pattern theory was developed with an emphasis on the deformation and

similarity group of shapes. Following the work of Grenander, in [You98] a metric

defined on a shape deformation space is shown to induce a distance metric on

its shape space, given the deformation space is a group and acts transitively on

elements of the shape space. Subsequently, deformable-template based analysis

has been formulated to study deformation of landmark points, images, and curved

shapes [Tro95, You10b, You98, BMTY05].

Nevertheless, in this section, we will discuss deformable-template based rep-

resentations in the context of curved shape representation.
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2.3 Deformable-template based representation

2.3.1 Active shape representation

One of the main approaches in analysing shape variations from a template shape

is introduced in [CTCG95] as active shape representation. Active shape rep-

resentation is based on Principal Component Analysis (PCA), hence considers

only linear deformations of the shape. It starts by approximating a curve c by

a manually selected landmark points as c = (p1, · · · , pz). Note that, in active

shape representation, curve variation due to the deformation of the parameter

space is not considered since the landmark points are selected manually they are

considered to be matching points. Next, for a collection of such curved shapes,

M q = {c1, · · · , cq}, the mean shape c̄ is computed as

c̄ =
1

q

q
∑

i=1

ci. (2.23)

Subsequently, the mean shape is selected as a template shape and a linear defor-

mation model is defined as

c̄+
l∑

j=1

ajb
j, (2.24)

such that the bj=1,··· ,l are linearly independent l directional vectors in which the

template shape c̄ can vary– the aj are scalar weighting factors for each basis. The

basis and the scalar weights can be learned from M q using PCA. Consequently,

the pre-shape space of active shape representations is the vector space spanned by

the bj. However, similar to earlier approaches, variation due to rotation and/or

translation has to be cleared from the dataset.

1. Completness : According to our definition, active shape representations are

not complete. Since the landmark points are selected manually, there is no

criterion on how to select them.

2. Metric: Since the deformation space is a vector space, the metric used in

active shape representation is the L2 norm. As a result, the deformation of

a given shape c1 from the template shape c̄ is measured as

‖

l∑

i=1

(bi)T (c1 − c̄)‖2. (2.25)
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2. CURVED SHAPE REPRESENTATION

Subsequently, the geodesic deformation is a simple straight line given as

t

l∑

i=1

(bi)T (c1 − c̄) + (1− t)c̄ s.t. t ∈ [0, 1]. (2.26)

One of the main advantages of active shape models is that both the metric

and the deformation space are very simple and computationally appealing.

However, the model works based on the assumption that variations of a

given shape category, from a template shape, are small enough to be cap-

tured by a linear model. The difficulty, however, is when the variations in

a shape category are due to large nonlinear deformations, e.g., occlusion,

articulation, viewpoint variation. In such cases, an active shape model is

not adequate.

2.3.2 Nonlinear deformable-template representations

Mainly, with the work of Grenander et al. [GM94, GK93, AGP91], deformation

from a template shape is studied as a group action of piecewise linear or nonlinear

group.

There are two basic approaches in modelling nonlinear deformations from a

template shape: 1) modelling the deformation space as finite dimensional group,

which usually leads to a matrix group, and 2) modelling the deformation space

as an infinite dimensional group, which leads to a Hilbert space with function

composition as the group operator– note that, the choice of the deformation

space is highly correlated with the choice of the data structure, see Chapter 1.

In [You98, Tro95], the considered deformation space is a set of Cd functions, for

some d ≥ 0. Together with a composition operation, the space of Cd functions

is shown to be an infinite dimensional Lie group. In [GM94], a general pattern

theory that analyses configurations generated by geometric units (lines, points,

etc.) based on the deformation from a template configuration was presented.

In this case, the considered deformation space is a direct product of matrix Lie

groups, see [Gre97] for a brief overview. Although not discussed in detail here,

in [KMG98], the Frenet-Serret frame has been used to represent deformations of

a curved shape without referring to a template shape. However, the Frenet-Serret

frame is applicable only to curves with a non-vanishing curvature.
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2.4 Summary

1. Completeness : Apart from the data structure, the completeness of a given

deformable-template based shape representation depends on how the group

acts on the shape space. In the strictest sense, a deformation group Ψ of

a shape space can be considered complete if its action is regular. That is,

for every c1 and c2 in a given shape space there exists exactly one ψi ∈ Ψ

such that ψic1 = c2. Alternatively, completeness can be framed as an

optimization problem in cases where several possible deformations exist that

can map c1 to c2– the distance metric in deformation based representation

is mostly defined in terms of optimization.

2. Metric: The general distance framework for a group based shape defor-

mation analysis is formalized in [You98], for both finite or infinite dimen-

sional representations. Assuming the group action is transitive (there exists

ψi ∈ Ψ for every c1, c2 ∈ S such that ψic1 = c2), the similarity between two

shapes is measured by a deformation that minimizes an objective func-

tion called effort functional– the distance between the group’s identity and

the given deformation, see [You98, You10a]. Similar to the landmark and

immersion based approaches variation due to scale, location and rotation

are cleared from the considered shape space. Subsequently, the distance

between a template shape ct and a given shape c1 is formulated as

ds(c1, ct) = min
ψ∈Ψ
{dΨ(e, ψ) : c1 = ψ(ct)}, (2.27)

where dΨ is the metric in the deformation space. In the infinite dimensional

setting, distance in the deformation space is closely related with distance

in the original shape space. Moreover, (2.27) can further be formalized to

address optimal parameter estimation of shape representations. Computa-

tional cost of (2.27) is dependent on the type of deformation space, and

distance metric defined on it.

2.4 Summary

In Chapter 2, we have described three distinct types of curved shape representa-

tion approaches and discussed the advantages and challenges of each approach.
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2. CURVED SHAPE REPRESENTATION

Despite the apparent incompleteness of the landmark based approach, there are

several landmark based applications in medical image analysis problems mainly

because of its computational efficiency [DM98]. Meanwhile, the immersed func-

tion based representation has been used in specific classification problems in biol-

ogy [LSZ10, LKSM14], where human annotation of the landmark points are either

unavailable or are unreliable. Nevertheless, most immersion based representations

are solved with numerically intensive computational schemes, except for a few

special cases [SKJJ11, MMSY07]. Moreover, shapes are assumed to be locally

smooth thus the distance function is sensitive to local noise. Alternatively to

both landmark and immersion based representations, deformable-template mod-

els emphasize the deformation space, which usually is a group, for curve represen-

tations. Deformable-template models are generally good modelling approaches

to represent a class-specific shape variation. The hypothesis is, as in active shape

representation, that shape variations in a class-specific shape category are small

with respect to a template shape. Consequently, the deformation space can be

described with significantly fewer variables as opposed to the general deformation

space– we will discuss PCA, which can be treated as deformable-template model,

more specifically in Chapter 5. Nevertheless, deformable-template models are not

purely a shape representation framework, since the representation is conditioned

on the shapes category and has to refer to a template shape for distance compu-

tation. However, the general framework of quantifying distance as the minimum

of the effort functional (2.27) is independent of the template notion; in Chapter 3

we will show the relationship between the proposed metric and (2.27).

In this thesis, using a novel finite dimensional curved shape representation,

we address the high computational cost and noise sensitivity associated with

distance functions in immersed function-based representations. Furthermore, the

dependence of finite-dimensional representations, landmark-based approaches, on

manually annotated points is addressed.

26



Chapter 3

Deformation based curved shape

representation

3.1 Motivation

In this chapter, we present a novel curved shape representation framework that

draws its motivation from the three distinct shape representation approaches dis-

cussed in Chapter 2. The representation presented here aims to embody some of

the advantages of the landmark based, immersion based, and deformable-template

based representations in a single framework.

Similar to the landmark-based representation, we aim to develop a represen-

tation with a computationally efficient distance function that is based on the

approximation of a continuous curve by a finite set of points. Nevertheless, we do

not depend on annotated points for the approximation as is done in landmark-

based approaches. Instead, we use arc length based point sampling as an approxi-

mation of a continuous curve with a known curve parametrization. Consequently,

general questions which usually are framed in the immersed function based set-

ting, e.g., deformation transportation and optimal parameter estimation, can

be asked in the proposed curve representation, and approximate solutions can

be provided without incurring the mathematical and computational complexity

that comes along with infinite dimensional space representations. Finally, sim-

ilar to deformable-template based approaches our representation is based on a

deformation group. Hence, we exploit the advantages of the group structure in
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our proposed framework. Nevertheless, we do not refer to a template shape. As

a result, our framework can be used to address model-free problems like shape

retrieval from a given dataset. However, distinctively to our representation, the

notion of distance emphasizes the difference between intrinsic characteristics of

curved shapes. In most of the earlier approaches discussed in Chapter 2, distance

is measured by the absolute deformation of each point– the difference between the

two distance notions will be discussed in detail later. In that regard, what is pro-

posed in this chapter is similar to the Frenet-Serret frame presented in [KMG98].

In summary, the main goals of the proposed curved shape representation are: 1)

to develop a robust representation that leads to computationally efficient (closed

form) geodesic curve and geodesic distance equations, 2) to develop a framework

to handle optimal parameter estimation of curves and deformation analysis so

that the representation can be used to later develop statistical models of a shape

category.

The chapter is organized as follows: in Section 3.2, we present the proposed

curved shape representation by starting from the data structure in Section 3.2.1

leading to the proposed representation in Section 3.2.2. In Section 3.3, we discuss

distance metric and geodesic curves in the proposed curved shape representation

space. In Section 3.4, the properties and interpretation of the proposed distance

function is presented. Experimental results and comparisons are presented in

Section 3.5. The chapter concludes with final remarks in Section 3.6.

3.2 Deformation based representation

3.2.1 Data structure

We start by defining a continuous curve on a given parameter space as

c : I → Rn, (3.1)

where I is the parameter space such that I ⊂ R, e.g., [0, 1]. Subsequently, we

approximate the continuous curve c by defining a monotonic and injective map

from a discrete parameter space to the arc length parameter space as

ξ : [0, z]→ s(t), s.t. ξ(0) = s(0) and ξ(z) = s(1), (3.2)
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Figure 3.1: Illustration of an arc length based curve sampling. The blue curve

shows the continuous curve, and the points connected by the red lines are sampled

based on arc length.

where s(·) denotes the arc length function defined on I as s(t) =
∫ t

0
‖ċ(t)‖2 dt.

Note that [0, z] is a discrete set of points starting from 0 to z, unlike [0, 1] which

is a closed interval. Geometrically, ξ gives a polygon inscribed in c, see Fig-

ure 3.1. To simplify our discussion, we will always assume a continuous curve c

is parametrized by arc length, that is ‖ċ(t)‖2 = 1. Subsequently, for any given

sampler ξ, the following relation

‖c ◦ ξ(i+ 1)− c ◦ ξ(i)‖2 ≤

∫ ξ(i+1)

ξ(i)

‖ċ‖2 ds, (3.3)

is true, since a straight line is the shortest distance between any two points. If

we further impose the following constraint

‖c ◦ ξ(i+ 1)− c ◦ ξ(i)‖2 = k, ∀i ∈ [0, z] (3.4)

for some positive k > 0, we get a set of points sampled with a uniform Euclidean

distance. We denote samplers that satisfy (3.4) with ∗ as ξ∗. It is possible to

select different z points for the approximation. In fact, as z gets larger the limiting

case is the continuous curve c; the length, ℓ, of the approximated curve c ◦ ξ∗ is

bounded from above by the length of the curve c

ℓ(c ◦ ξ∗) =
z∑

i=1

‖c ◦ ξ∗(i+ 1)− c ◦ ξ∗(i)‖ ≤
z∑

i=1

∫ ξ(i+1)

ξ(i)

‖ċ‖ ds. (3.5)
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Subsequently, we will use ξ and ξ∗, alternatively, to approximate a continuous

curve c by c̃ = c ◦ ξ and c̃∗ = c ◦ ξ∗, respectively.

More importantly, since ξ is defined to partition the arc length parametriza-

tion space, it is invariant to reparametrization. To show this, we first define

reparametrization of a curve as a function from the parameter space to itself as

β : I → I, such that β is a diffeomorphism (bijective and smooth). Now the

sampling of the curve c under β is given as

ξ : [0, z]→ s ◦ β(t), s.t. t ∈ I. (3.6)

and

s(t) =

∫ t

t0

‖ċ‖ dt =

∫ β−1(t)

β−1(t0)

‖ċ ◦ β‖
dβ

dt
dt = s ◦ β(t). (3.7)

Hence, for some given β one can use the sampling ξ invariantly by correcting the

rate of change, and the starting and ending points of the integral to the original

parameter space β−1(I). Consequently, in cases where the parameter space and its

reparametrization is given, the sampling of a curve can be done invariantly with

respect to any reparametrization. Nevertheless, particularly in computer vision

problems, one often does not have explicit knowledge of the parametrization and

only observes the outline of an object’s shape. In such a case, additional criteria

are used to estimate an optimal parametrization of curves.

In contrast to landmark points that are discussed in Chapter 2, the data

structure obtained by a given sampler ξ associates no special meaning to the

points except that they approximate a curve c asymptotically as z → ∞. This

flexibility on the data structuring part will later be used to estimate optimal

curve parametrization by setting different geometric criteria on the sampler func-

tions ξ. Thereby, overcoming the main difficulty of using landmark based curve

representations in cases where parametrization of the curve is not known or hu-

man annotation is not provided.

In the next section, we present a deformation based curved shape representa-

tion that is based on the data structure obtained by ξ∗– throughout Chapter 3,

we assume the parametrization of the curves is given.
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3.2 Deformation based representation

3.2.2 Representation

Let C be the set of all possible continuous curved shapes in Rn approximated

by z points sampled with ξ∗, as discussed in Section 3.2.1. Subsequently, we

would like to study variations in C in a way that satisfies Kendall’s definition of

shape. Hence, we completely remove variations due to similarity transformations

from C. To achieve this, the main idea we employ here is to define a similarity

transformation as a function of c̃∗ such that the definition satisfies A(ac̃∗) =

aA(c̃∗) for some a ∈ R, which is needed to normalize its effect in C. The following

list shows how each of the similarity transformations are cleared from C.

1. Scale: We define a uniform scaling of a curve c̃∗ as

S(c̃∗) =

√
√
√
√

z∑

i=1

‖pi − p̄‖22 s.t p̄ =
1

z

z∑

i=1

pi, (3.8)

which computes the L2 norm of the points when considered as a vector in

Rnz. Note that (3.8) satisfies S(ac̃∗) = aS(c̃∗) for some a > 0. Further-

more, according to (3.8) the scale of a shape is characterized by a positive

scalar multiplication of the curve c̃∗. Similar to earlier approaches discussed

in Chapter 2, every curve c̃∗ ∈ C is normalized to unit norm as follows

c̃∗ = (p1/S(c̃
∗), · · · , pz/S(c̃

∗)). (3.9)

Note that, one can replace (3.8) with a much broader definition of scale,

e.g., non uniform scaling.

2. Translation: Translation of a given curve c̃∗ is defined with respect to a

fixed starting point ps as

T (c̃∗) = p1 − p
s. (3.10)

Using the above definition we filter translational variations from C as

c̃∗ = ((p1 − T (c̃
∗)), · · · , (pz − T (c̃

∗))). (3.11)

In effect, the translation of a curve is characterized by the vector differ-

ence between the starting point p1 and the fixed location ps. In this case,
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T (c̃∗ + b) = T (c̃∗) + b, where b is a z times concatenation of some pt ∈ Rn.

Consequently, (3.11) sets (3.10) to zero, thereby clearing effects of trans-

lation from a given curve. An alternative definition to (3.10) would be to

define translation as the mean of the points in c̃∗.

3. Rotation: Unlike the earlier transformations, rotation can not be defined

as a function of curve Θ(c̃∗) such that Θ(θc̃∗) = θΘ(c̃∗), see [Sma96] for

further details. As a result, it cannot be filtered out from C. Instead, we

define an equivalence class in C as

[c̃∗i ] = {c̃
∗
j ∈ C | ∃R ∈ SO(n) : Rc̃∗j = c̃∗i }. (3.12)

Subsequently, the family of all equivalent classes in C is denoted as

C = C/SO(n). (3.13)

Now, what is left in C is shape informative deformation of the curves that we

would like to study and quantify. To that end, consider the mapping function f

defined on C as follows

f : C→ SE(n)z−1

f(c̃∗1) = G = (g1, · · · , gz−1), (3.14)

such that

gi × pi = pi+1, (3.15)

where gi, i = 1, · · · , z − 1, are rigid transformation matrices that map one point

to the next point successively with respect to a reference coordinate frame. In-

tuitively, f(·) attempts to encode every curve c̃∗ ∈ C as the path of a travelling

particle by the rigid transformation matrices, see Figure. 3.2. Meanwhile, a rigid

transformation matrix gi is defined as

gi =

(
R v
0 1

)

s.t. R ∈ SO(n) and v ∈ Rn, (3.16)

where SO(n) is a group of rotation matrices in n-dimensional space, and v is

a translation vector. Consequently, the semi-direct product of the rotation and
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Figure 3.2: Illustration of the proposed representation. Given a fixed starting

point ps, the curve is reconstructed by the successive action of the (g1, · · · , gz−1).

translation groups define the group of rigid transformation matrices SE(n), de-

noted as

SE(n) = SO(n)⋉Rn. (3.17)

Ideally, we would like the representation f(·) to be complete, as discussed in

Chapter 2. Unfortunately, there is no unique rigid transformation matrix between

any two given points p1 and p2. For instance, there exists a translation vector v ∈

Rn for every R ∈ SO(n) such that p2 = Rp1 + v. To overcome this challenge, we

further restrict f to only consider optimal rotation, i.e., the closest rotation matrix

to the identity e, and optimal translation vector, the closest to zero vector. A

unique optimal rotation matrix between two points is computed, using Rodrigues’

rotation formula, as

R(θ) = e+ sin(θ)n+ (1− cos(θ))n2, (3.18)

where e is the group identity, θ = cos−1(〈p1, p2〉), and n is the axis of rotation

given by the cross product as n = p1 × p2. Note that (3.18) defines a geodesic

curve between the identity matrix e and R(θ), parametrized by θ. Such geodesic

curves in SO(n) are known as exponential maps, see Appendix A for details.

Subsequently, the optimal translation vector is given as

v = R(θ)p1 − p2. (3.19)
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The translation is optimal since the shortest distance between points is a straight

line. As a result of the restriction, the inverse of the mapping function f(·) can

be defined on the set of optimal rigid transformation matrices as follows

f−1 : SE(n)z−1 → C

= (ps, g1p
s, g2g1p

s, · · · , (
z−1∏

i=1

gi)p
s). (3.20)

As a result, f defines an injective map between C and SE(n)z−1. Moreover, the

equivalence relationship defined on the set C (3.12) is also carried over to the

representation space SE(n)z−1. That is, shapes that are defined as equivalent in

C are also equivalent in the representation space SE(n)z−1.

Proposition 1. If G1 and G2 are the representations of c̃∗1, c̃
∗
2 ∈ [c̃∗3] then G1 is

equivalent to G2 by conjugacy, G1 ∼ G2.

Proof. Let c̃∗1 = (ps, · · · , p1z) and c̃∗2 = (ps, · · · , p2z). Since, c̃∗1, c̃
∗
2 ∈ [c̃∗3] we can

write c̃∗2 = Rc̃∗1, where R ∈ SO(n), see (3.12). Rotation is an isometry, thus

Rc̃∗1 = (Rps, · · · , Rp1z). The representation f(c̃∗2) = (g21, · · · , g
2
z), such that

g2i × p
2
i = p2i+1

= R× p1i+1,

it can then be expressed in terms of f(c̃∗1) as follows

g2i ×R× p
1
i = R× g1i × p

1
i

g2i ×R = R× g1i .

Thus, f(c̃∗1) and f(c̃
∗
2) are equivalent by conjugacy, i.e., f(c̃∗2) = Rf(c̃∗1)R

−1. �

Consequently, the equivalence relationship defined in (3.12) can be written in

the representation space as

f([c̃∗i ]) = {f(c̃
∗
j) | ∃R ∈ SO(n)∗ : Rf(c̃∗j)R

−1 = f(c̃∗i )}, (3.21)

where SO(n)∗ is the subgroup of SO(n)z−1 defined as

SO(n)∗ = {∀i, j ∈ [0, z − 1] : RiR
T
j = e}. (3.22)
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Computationally, if two given shapes belong to the same equivalent class, i.e.,

f(c̃∗1), f(c̃
∗
2) ∈ f([c̃∗3]), then the corresponding eigenvalues of the transformation

matrices in f(c̃∗1) and f(c̃∗2) are the same. Finally, the representation space of

equivalent classes is written as

SE(n)z−1/SO(n)∗ = {f([c̃∗i ]) : c̃
∗
i ∈ C}. (3.23)

In what follows, we will describe deformation in the representation space and

enforcing constraints defined in C to the representation space.

Shape deformation in the representation space: Any given shape represen-

tation in SE(n)z−1/SO(n)∗ is deformable to any other curved shape representation

in SE(n)z−1/SO(n)∗. Let f([c̃∗1]) and f([c̃
∗
2]) be the representations of two differ-

ent equivalent classes of curves, c̃∗1 and c̃∗2. Given the knowledge of the curves’

parametrizations and rotational alignment, we can extract the equivalent defor-

mation class directly as

[GL] = Rf(c̃∗2)f(c̃
∗
1)

−1R−1 ∀R ∈ SO(n)∗, (3.24)

so that

[GL]f([c̃∗1]) = f([c̃∗2]). (3.25)

Note that f(c̃∗1)
−1 is an element wise inversion of the representation, unlike f−1(c̃∗1)

which is a map from the representation space to C. Since SE(n)z−1/SO(n)∗ is a

group, the deformation [GL] is an element of SE(n)z−1/SO(n)∗ acting from the

left. Alternatively, a deformation that acts from the right is defined as

[GR] = Rf(c̃∗1)
−1f(c̃∗2)R

−1 ∀R ∈ SO(n)∗. (3.26)

The above definitions are for a class of deformations that can map one equivalent

class of shapes to another. However, if we want to estimate the deformation

between two particular shapes f(c̃∗i ) ∈ f([c̃
∗
1]) and f(c̃

∗
j) ∈ f([c̃

∗
2]), the deformation

that acts from the left is given as

GL = Rf(c̃∗i )R
−1f(c̃∗j)

−1, (3.27)
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such that R = (R∗
1, · · · , R

∗
z) and

R∗ = argmin
Ri∈SO(n)

‖Ric̃
∗
i − c̃

∗
j‖2. (3.28)

The solution for (3.28) can be estimated in a closed form given the curve parametriza-

tions are known, see Appendix B on how to compute optimal rigid transformation

matrix between two points or set of points. Henceforth, we will use GL and GR

to describe deformation types of (3.27) that act from the left or from the right,

respectively.

Constraints on C: It is possible to enforce constraints defined in C into the

representation space. The main types of constrains we consider are based on

categorization of curves as either open curves or closed curves which are defined

as follows:

1. Open curves : a curve c̃∗ = (ps, · · · , pz) is an open curve if ps 6= pz. The

definition is translated into the representation space by including an addi-

tional transformation gz into the representation such that , gz × pz = ps

and gz 6= e.

2. Closed curves : a curve c̃∗ = (ps, · · · , pz) is a closed curve if ps = pz. Similar

to open curves, this condition is translated to the representation space by

forcing the last added transformation matrix to be identity, gz = e.

Hence, a representation space that handles both closed and open curves is given as

SE(n)z/SO(n)∗, which will be used to denote the proposed representation space

henceforth.

Moreover, it is possible to add additional and elaborate constraints on the

set of curves, e.g., consider only subset of C curves that preserve a specific geo-

metric moment. However, it might prove to be difficult to enforce complicated

constraints on the representation space directly without compromising computa-

tional effectiveness. This is because an enforced constraint will most likely define

a submanifold or a subset in the representation SE(n)z/SO(n)∗ where a closed

form geodesic equation might not be possible to define, see Chapter 7 for details.
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3.3 Metric and geodesic curves

3.3 Metric and geodesic curves

The proposed representation space is a matrix Lie group, which is not a Euclidean

space. As a result, the usual definition of distance as a straight line does not

generalize to SE(n)z. Alternatively, techniques from differential geometry can

be used to define distance in a curved space. In this section, we will overview

concepts from Lie theory and differential geometry to later develop a distance

function in SE(n), and its direct product group SE(n)z.

A Lie group is a smooth manifold with smooth group operations; that is, the

group’s binary operator (x, y) 7→ xy−1 is C∞. The tangent space at the identity

of the group e is an algebra called Lie algebra, which we will denote by g. The

smooth and invertible binary operator of a Lie group enables one to define a

diffeomorphism onto itself. For instance, consider a left translation of a Lie group

defined as La : G→ aG, a ∈ G, where G denotes the Lie group. Meanwhile, the

differential structure, due to Lie groups being smooth manifolds, enables one to

do calculus on a Lie group. To compute distance, volume and other geometric

notions, however, an additional structure called metric is needed. Consequently,

a Lie group G can be complemented with a smoothly varying metric tensor 〈·, ·〉,

making it a Riemannian manifold. The metric tensor 〈·, ·〉 is defined at the tangent

space TgG as 〈·, ·〉g : TgG× TgG→ R for every g ∈ G, see [MB93, dCV92] for a

detailed discussion.

Subsequently, the length of a given curve that is defined as

γ : [t0, t1]→ G, (3.29)

where [t0, t1] ⊂ R, is given as

ℓ(γ) =

∫ t1

t0

√

〈γ̇(t), γ̇(t)〉γ(t) dt. (3.30)

Note that γ̇(t) ∈ Tγ(t)G is the derivative of the curve with respect to t. There

are several possible curves that start γ(t0) ∈ G and end at γ(t1) ∈ G. Hence,

the shortest distance between two group elements g1 = γ(t0) and g2 = γ(t1) is

measured by the connecting curve that has the minimum length, defined as

d(γ(t0), γ(t1)) = min{ℓ(γ)}. (3.31)
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Equation (3.31) defines an objective functional in an infinite dimensional space

and its solution is estimated by solving for its critical point which is defined by

a second-order partial differential equation, generally known as Euler-Lagrangian

equation.

Alternatively, we can generalize the notation of a straight line as a shortest

distance in a vector spaces to the curved space of the group. Subsequently, a

curve that defines a parallel vector field along itself is defined to be similar to a

straight line in Euclidean space. Hence, such a curve has to satisfy the following

D

dt

(dγ

dt

)

= 0. (3.32)

Intuitively, (3.32) can be understood as a requirement for the second derivative

of the curve γ to be zero or orthogonal to the tangent space of Tγ(t)G. Such a

curve is known as a geodesic curve. Furthermore, if a curve satisfies (3.32) then

the length of γ̇(t) at each point γ(t) stays constant. That is

D

dt
〈γ̇, γ̇〉 = 2〈

D

dt

(dγ

dt

)

, γ̇〉 = 0. (3.33)

Consequently, a curve that satisfies (3.32) is a locally length minimizing curve.

Hence solving for (3.32) is equivalent to solving for (3.31).

In addition to the above definitions, in a Lie group, if a vector field γ̇(h) is

left invariant, i.e., if the following is true for h ∈ G

dLaγ̇(h) = γ̇(ah) ∈ TahG, (3.34)

then is defines a parallel vector filed with respect to the left translation action.

Consequently, the integral curve of a left invariant vector field defines a geodesic

curve as γ(t) = exp(tγ̇).

Metric in SE(n): A metric in a group is defined by a symmetric positive definite

matrix at each point of the group element which we denote by 〈·, ·〉gi . A smoothly

varying metric on a Lie group is said to be left invariant if the left translation

diffeomorphism is an isometery, i.e., if the following is true

〈x, y〉e = 〈dLax, dLay〉a, ∀x, y ∈ g, ∀a ∈ G, (3.35)
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where dLa is the derivative of the left translation La at the identity e. In other

words, a left invariant Riemannian metric can be identified with 〈·, ·〉e through

the pullback map, dL−1
a . One can define different types of metrics on SE(n),

however, having a left invariant metric (3.35) plays a crucial role in solving for

the geodesic curve objective functional (3.31) analytically. Consequently, in this

thesis, we will consider a constant product metric (a metric that remains the

same at every tangent space of the group element) of the form defined as follows

〈·, ·〉e =

(
w1In 0
0 w2In

)

, (3.36)

where w1 and w2 are scalar weighting constants.

Geodesics in SE(n): Geodesic curves are defined for each group, SO(n) and

Rn, as

ϕR(t) = R1(R
−1
1 R2)

t (3.37)

ϕv(t) = v1 + (v2 − v1)t. (3.38)

Equation (3.38) is clearly a geodesic curve, since it is just a straight line in R.

Meanwhile, (3.37) has been proven to be geodesic in SO(n) [Moa02, Bha09].

Subsequently, a geodesic curve in the semi-direct product space SE(n) is given as

ϕ(t) =

(
ϕR(t) ϕv(t)
0 1

)

, (3.39)

where t ∈ [0, 1]. The curve ϕ(t) defines a vector field along itself which is given

as

ϕ̇(t) =

(
R1(R

−1
1 R2)

t log(R−1
1 R2) (v2 − v1)

0 0

)

. (3.40)

The defined vector field (3.40) has been shown to be parallel along the curve

in [ZKC98, Par95]. Hence, the curve (3.39) is geodesic. Furthermore, the length of

the tangent vectors (3.40) remains constant under the metric (3.36). To that end,

one can consider (3.39) as a parametrized left translation of the group identity e

that is defined as

Lϕ(t) : e→ ϕ(t) (3.41)
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1

2

3

4

5

6

Figure 3.3: Shapes along the geodesic path between the initial shape (first col-

umn) and target shape (last column). The odd rows show results from our approach

while the even rows are results from infinite dimensional based approach called SRV

function [SKJJ11]. All shapes are represented by 100 uniformly sampled and nor-

malized points. We note that results from [SKJJ11] are smoothed and loses local

features of the shapes.
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Subsequently, to show that the lengths of the tangent vectors (3.40) remain con-

stant we need to show that the metric (3.36) is invariant. That is

〈ϕ̇(t), ϕ̇(t)〉ϕ(t) = 〈dL
−1
ϕ(t)ϕ̇(t), dL

−1
ϕ(t)ϕ̇(t)〉e (3.42)

= 〈ϕ(t)−1ϕ̇(t), ϕ(t)−1ϕ̇(t)〉e. (3.43)

Using matrix algebra we can simplify ϕ(t)−1ϕ̇(t) at any t as

ϕ(t)−1ϕ̇(t) =

(
log(R−1

1 R2) ϕR(t)
−1(v2 − v1)

0 0

)

. (3.44)

Note that ϕR(t)
−1 is a rotation matrix, hence it preserves the Euclidean distance.

As a result, (3.43) remains constant at any point in t which implies that the metric

is preserved. Subsequently, following the definition of geodesic distance (3.30),

the distance between g1, g2 ∈ SE(n) is given by

d(g1, g2) =

∫ 1

0

√

〈dL−1
ϕ(t)ϕ̇(t), dL

−1
ϕ(t)ϕ̇(t)〉edt, (3.45)

and since the lengths of the tangent vectors are preserved at each point we can

rewrite the distance function as

d(g1, g2) = (1− 0)×
√

〈dL−1
ϕ(t)ϕ̇(t), dL

−1
ϕ(t)ϕ̇(t)〉e, (3.46)

which is reduced to the following under (3.36)

d(g1, g2) = (w1‖ log(R
T
1R2)‖

2
F + w2‖v2 − v1‖

2
2)

1/2. (3.47)

Although one can define different metrics by weighting the rotation and trans-

lation distance differently, in this thesis we will set both w1 and w2 to 1. Even

though it is not particularly important for our discussion, fixing w1 and w2 to

unit makes sure that an orthonormal basis of the lie algebra g stays orthonor-

mal everywhere [Mil76]. Consequently, the distance in the representation space

SE(n)z is given by the product metric of (3.47) as follows

d(G1, G2) = (d(g11, g
2
1)

2 + · · ·+ d(g1z , g
2
z)

2)1/2. (3.48)

Similarly, the geodesic curve is given by taking the direct product of (3.39) as

ζ(G1, G2) = (ϕ(t)1, · · · , ϕ(t)z). (3.49)

Note that both (3.48) and (3.49) assume a known parametrization of the curves,

see Figure 3.3 to compare geodesic deformations of curves under (3.49) and the

SRV framework proposed in [SKJJ11].
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3.4 Characteristics and interpretation

In this section, we present some of the important properties of the proposed rep-

resentation and its distance metric followed by a discussion on its interpretation

and relationship with earlier works.

3.4.1 Properties

1. Left invariant metric and its application:. As described earlier, the

distance metric (3.36) is left invariant. The implication of this is that the

distance between two shapes is invariant to a deformation acting on both

shapes from the left. More concretely, let G′ ∈ SE(n)z be a deformation

acting on the representations of two distinct shapes, f(c̃1) and f(c̃2), then

d(f(c̃1), f(c̃2)) = d(G′f(c̃1), G
′f(c̃2)). This fact can be observed by insert-

ing the action of G′ into (3.48), in which case it will cancel itself out.

As discussed in [DAO16, DAO17], this property is particularly important

in transporting deformation between two similar shapes. To clarify fur-

ther, we consider below a deformation transportation problem discussed

in [SKJJ11]. Let c̃1 and c̃1∗ be shape contours representing exactly the

same real world object denoted by O1, except that c̃1∗ is deformed under

some unknown external factor. For instance, c̃1 and c̃1∗ can be contours

of O1 from a different viewpoint. Furthermore, let O2 denote a similar,

but not identical, object to O1 with c̃2 as its shape contour. Subsequently,

given c̃1, c̃1∗, and c̃2 the problem of estimating c̃2∗, a deformed c̃2 under

the same external factor, can be framed as a deformation transportation

problem. In [SKJJ11], the deformation is estimated by transporting the

vector field along the geodesic curve connecting c̃1 and c̃1∗. Alternatively

in our framework, the deformation due to an external factor can be fac-

tored out as GL = f(c̃1∗)f(c̃1)
−1. Consequently, since our metric is left

invariant, d(f(c̃1), f(c̃2)) = d(GLf(c̃1), GLf(c̃2)). Thus, f(c̃2∗) = GLf(c̃2),

see Figure 3.4.

2. No high order differential quantities: Most infinite dimensional rep-

resentations define a similarity metric between curved shapes based on high
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c̃1 c̃1∗

c̃2 c̃2∗

Figure 3.4: Deformation transport between curves with known parametrization.

The first set of shapes shows two examples where c̃1 deforms to c̃1∗. The sec-

ond set shows the transported deformation to their similar objects c̃2 to give c̃2∗,

respectively.

order differential quantities [SKJJ11, Men13]. However, differential quan-

tities are highly sensitive to noise and local perturbations. Consequently,

a pre-smoothing stage is necessary before analysing a shape. On the other

hand, pre-smoothing a shape can potentially filter legitimate features, see

Figure. 3.3. Although the proposed representation is based on the relative

transformation matrices between neighbouring points, it is not as sensi-

tive as curvature is, for example, to local perturbations [MCH+06]. Hence,

pre-smoothing is not required.

3. Relative vs absolute deformation of points: Let c̃1 = (ps, · · · , p1z)

and c̃2 = (ps, · · · , p2z) be two shapes that are scaled and aligned, see Fig-

ure. 3.5. Subsequently, we define absolute deformation of points (AD)

as the transformation of every p1i ∈ c̃1 to match its corresponding point

p2i ∈ c̃2. In earlier works, such deformations are modelled by displace-

ment vector fields [Ami94] and in some cases by the action of a matrix Lie

group [FB12, GM07]. If we formulate the matching of each point, from c̃1

43



3. DEFORMATION BASED CURVED SHAPE
REPRESENTATION

(a) (b)

Figure 3.5: Two pairs of curves. Under absolute deformation (AD), the curves in

(b) are more similar than the curves in (a), while under relative deformation (RD)

the curves in (a) are more similar than the curves in (b).

to c̃2, by the action of rigid transformation matrices then the AD is given

by G = (T1, · · · , Tz) ∈ SE(n)z such that

c̃2 = Gc̃1 = (T1p
s, · · · , Tzp

1
z). (3.50)

Alternatively, rather than aligning every matching point, as is done with

AD, one can align the intrinsic properties of the curves– these are properties

of a curve that are mainly invariant to displacement. In this thesis, intrinsic

properties of a given curve are approximated by the relative deformation of

the curves’ points, as defined in (3.14) by f(·). Hence, alignment of c̃1 and

c̃2 under relative deformation of points (RD) is given as f(c̃2) = f(c̃1)G
R,

where GR ∈ SE(n)z. Subsequently, using (3.48) the cost of deformation

under RD is given by

dr(c̃1, c̃2) = (
z∑

i=1

d(e, gRi ))
1/2 (3.51)

= (
z∑

i=1

‖ log((R1
i )
TR2

i )‖
2
F + ‖v2i − v

1
i ‖

2
2)

1/2.

While, the cost of deformation under AD is given as

da(c̃1, c̃2) = (
z∑

i=1

d(e, Ti))
1/2 (3.52)

= (
z∑

i=1

‖ log(Ri)‖
2
F + ‖vi‖

2
2)

1/2.
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c c ◦ ξ1 c ◦ ξ2 c ◦ ξ∗

Figure 3.6: Different samplings of a given continuous curve c. The red dots

denote sampled points. The last sampling ξ∗ is a uniform sampling. Note that ξ1

and ξ2 do not preserve shape.

Note that dr is the same as (3.48). The main difference between dr and

da is tolerance to displacement– dr emphasizes intrinsic differences between

curves, while da emphasizes cost of displacement per point, see Figure 3.5.

3.4.2 Interpretation

The proposed distance function, as derived in (3.48), has a direct relationship

to what is called effort functional [You98, Tro95, You10a]. In general, distance

between curved shapes based on effort functional is written as

ds(c1, c2) = min
ψ∈Ψ
{dΨ(e, ψ) : c1 = ψ(c2)}, (3.53)

where Ψ is the space of allowed deformations for matching c2 to c1, ds and dΨ are

distance metrics in the shape and deformation spaces, respectively. Such formu-

lation leads to a natural interpretation of distance as a measure of deformation

by least action, hence the term effort functional. see [MD10, Tro95] for further

mathematical details.

Similarly, a version of (3.53) under the proposed representation can be for-

mulated by explicitly defining the space of deformations Ψ for matching c1 and

c2. To define Ψ more precisely, we use the arc length sampler ξi defined in (3.2).

Given a fixed number of points z, the samplers have a similar effect as to what are

referred to as shape and orientation preserving diffeomorphisms [You10a]. In this

case, however, there is no guarantee for an arc length sampler to preserve shape,

see Figure 3.6. As such, the sampling of a shape determines the parametrization

and thus defines different deformations of a given shape. Subsequently, we define
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a set of possible deformations between continuous curves c1 and c2, for a given z,

as

Ψ = {GR | ∃ξi, ξj : f(c1 ◦ ξi)G
R = f(c2 ◦ ξj)}. (3.54)

Consequently, under the framework of the proposed representation, distance be-

tween two continuous curves is given as

ds(c1, c2) = min
GR∈Ψ

d(f(c̃i1), f(c̃
j
2)), (3.55)

where the i and j are indicators of the sampling functions ξ. Moreover, using

the left invariance property of the metric and the definition of Ψ, (3.55) can be

simplified as follows

ds(c1, c2) = min
GR∈Ψ

d(f(ci1), f(c
i
1)G

R)

= min
GR∈Ψ

d(e,GR). (3.56)

Hence (3.56) embodies a version of the effort functional (3.53) in the proposed

curve representation space. That is, it characterizes the distance between two

curves by the magnitude of the closest possible deformation to the identity, or by

the least right action. However, if the parametrizations of the two curves ξi and

ξj are given a priori, Ψ will be a singleton– since GR can be computed directly,

as described in (3.26). For instance, we have so far assumed a perfect point-to-

point correspondence between shapes. Thus, ξi and ξj are assumed to be known.

Consequently, the proposed metric (3.48) can be viewed as measuring the optimal

deformation between two shapes given the parametrizations.

3.5 Evaluation

In this section we present evaluation of the proposed shape representation and

the distance metric. As discussed in Chapter 1, however, the parametrization of

shapes is generally not known in practical applications. Consequently, to eval-

uate the proposed distance metric we used uniform sampling based parameter

estimation which will be discussed later in Chapter 4, Section 4.3. Subsequently,
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Figure 3.7: Example leaves from different categories of the Flavia leaf

dataset [WBX+07].

in Section 3.5.1 we evaluate the representativeness of the approach on two differ-

ent datasets. Later in Section 4.5.2, we evaluate the robustness of the proposed

approach with respect to local noise.

3.5.1 Shape retrieval

Given a query shape, a shape retrieval system tries to rank shapes in a given

database according to their similarity to the query. Usually, such systems are

solely based on a distance metric rather than a mathematical model of shape cat-

egories. Hence, the performance of a shape retrieval system highlights the repre-

sentativeness of the used distance metric. As a result, we present the evaluation

of a shape retrieval system that is based on the proposed distance metric (3.48)

on different datasets.

Flavia leaf dataset [WBX+07]: The dataset contains 32 types of leaf species

with a total of 1907 examples, see Figure. 3.7. In [LKSM14] a leave-one-out test

scenario was performed on the dataset to evaluate an the elastic similarity metric

derived from SRV-framework [SKJJ11]. Leave-one-out is a setup where every leaf

is used as a query against the rest of the dataset. To compare our approach with

other methods, we also replicate the leave-one-out scenario with Mean Average

Precision (MAP) used as a performance measure. For this experiment, every

leaf shape is represented by z = 200 points that are uniformly sampled from its

contour. Table 3.1 summarizes the result of our approach and results reported

in [LKSM14] and [MYVB13]. Although our method achieved high MAP, it is not

necessarily inclusive of all relevant information; precision drops as recall goes to
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Methods MAP

Angle function [KSMJ04] 45.87

Shape context [BMP02] 47.00

TSLA [MYVB13] 69.93

Elastic metric with 200 points [LKSM14] 81.86

Gaussian elastic metric with 200 points [LKSM14] 92.37

Our method with 200 points 94.11

Table 3.1: Mean average precision (MAP) on the Flavia leaf dataset. Our result

is highlighted at the bottom.

1, see Figure 3.9. Nonetheless, it outperformed the elastic shape metric and the

Gaussian elastic metric, discussed in [LKSM14], in terms of MAP. One possible

reason for this is that we do not pre-smooth the data and thus local details are

more likely to be captured with our method.

Swedish leaf [Söd01]: The Swedish leaf dataset contains 1125 example leaves

from 15 leaf types. The example shapes are distributed uniformly; there are 75

example leaves from each species. To compare our approach with other methods,

we follow the same experimental scenario discussed in [MYVB13, LKSM14] ,

which is nearest neighbour classification. We randomly select 25 leaf shapes from

each type and use the left out 50 for testing. We repeat the experiment 100 times

and take the average classification rate. In all of the 100 experiments, the shapes

are represented by z = 200 uniformly sampled points. Our method achieved an

average classification rate of 99.50 with 0.01287 standard deviation. Table 3.2

shows the comparison of our result with other shape matching methods. We note

that performance of a nearest neighbour classifier is not an explicit measure of

a distance metric’s performance, as the classification is based on the best result

among elements of a group. Consequently, in Figure 3.9 we show the precision-

recall (PR) curve of a retrieval result obtained by performing the leave-one-out

experimental scenario on the data set. Note that, the area under the PR curve is

smaller in the Swedish leaf case as compared to the area under the PR curve for

the Flavia leaf data set. In general, we observe that the inter-class similarity in

the Flavia leaf data set is high as compared to the Swedish leaf data set making
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Figure 3.8: Examples from different categories of the Swedish leaf dataset [Söd01].
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Figure 3.9: Precision-Recall curves on the Flavia and the Swedish leaf dataset.

discrimination in Flavia difficult, see Figure 3.7 and Figure 3.8. However, the

intra-class variation in the Swedish data set is mainly due to nonlinear elastic

deformations, whereas in the Flavia it is mainly due to a combination of rotation

and scaling. Hence, distance metric based on uniform sampling, (4.9), does not

perform well in the Swedish leaf data set as compared to the Flavia leaf data set,

in terms of precision and recall.

3.5.2 Robustness

In this section, we test the robustness of the proposed similarity metric to local

noise. To that end, we use shapes from the fighter jets dataset [TGJ07],

Local shape perturbations: In general, local perturbation of a curved shape
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Methods Recognition rate

Fourier descriptors [LJ07] 89.60

Shape-Tree [FS07] 96.28

TSLA [MYVB13] 96.53

Elastic metric with 200 points [LKSM14] 99.18

Our approach with 200 points 99.50

Table 3.2: Nearest-neighbour recognition rate on the Swedish leaf dataset. Our

result is highlighted at the bottom.

σ 0 0.5 1.5 2.5

MAP 97.11 96.72 89.95 83.27

Table 3.3: MAP on the fighter jets dataset with a Gaussian noise of different

standard deviations.

with a noise that does not alter the shape degrades the performance of a shape

alignment and retrieval system. Consequently, we evaluate the tolerance of the

proposed approach to local perturbations on fighter jets dataset [TGJ07]. The

dataset contains 7 types of fighter jets each with 30 examples. The main cause

of intra-class variation is deforming parts of the plane and rotation. We begin

our experiment by introducing an additive white Gaussian noise to the shapes

of the fighter jets. We denote the standard deviation of the noise by σ. For all

subsequent experiments, the contour of each shape is approximated by uniformly

sampled z = 200 points. Next, we do a leave-one-out test scenario where the

original (noise free) dataset is queried by every shape from datasets corrupted

Figure 3.10: The first row shows the 7 types of fighter jets from [TGJ07]. The

second row shows examples from the corrupted shapes with σ = 2.5.
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Figure 3.11: Precision-Recall curves on the fighter jets dataset for different noise

magnitudes quantified by the standard deviation (σ).

by noise with different distributions, see Figure 3.10. Table 3.3 summarizes the

computed MAP values and Figure 3.11 shows their respective precision-recall

curve. In general, the proposed similarity metric is tolerant to local perturbations

that do not alter the shape significantly.

3.5.3 Computational cost

The proposed approach is implemented in MATLAB, R2017a version, running on

an Intel core i7-3540M with 3.0 GHz×4 processing speed and 7.7 GB RAM with

Ubuntu 14.04 64-bit operating system. Henceforth, the reported computational

cost is for shapes approximated by z = 100 sampled points. Subsequently, com-

puting the geodesic distance (3.48), assuming the preprocessing is already per-

formed and a known point correspondence is established, takes 0.028397 seconds.

Meanwhile, geodesic distance computation in SRV framework [SKJJ11, LKSM14],

with a similar preprocessing assumption, takes 0.002974 seconds, running on the

same machine. Since the SRV framework is the most widely used infinite dimen-

sional curved shape representations, we have only provided a comparison with

it; except the SRV framework, most of the methods reported in Table 3.2 and
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Table 3.1 are based on “shape descriptors”. We observe that, in this particular

case, the geodesic computation is slower than SRV.

3.6 Conclusion

We have introduced a shape representation framework that leads to closed form

geodesic distance and curve equations. Distinctively, the defined geodesic distance

emphasizes intrinsic deformation rather than per point displacement. Although

the distance function is computed in a closed form similar to landmark-based rep-

resentations, the data structuring of the curves is different from landmark-based

approaches. The proposed representation neither assigns special meaning to the

discrete points nor assumes manually annotated points. Instead, the points are

treated as a discrete approximations of the continuous curve which ultimately de-

termine optimal curve deformation between two given curves. Nevertheless, if the

parametrization of the curves is known a priori the distance metric measures the

optimal deformation between two given points. As a result, geodesic deformation

between two curves in the representation space can be interpreted as the solution

to what is defined as effort functional, given the priori knowledge of the curve

parametrizations. This formulation makes the representation flexible enough to

estimate optimal curve parametrization for a given point set size, z, whenever

the parametrizations of the curves are not given; we will cover optimal parameter

estimation in Chapter 4. Moreover, the proposed metric depends only on the

first derivative of the curves. This is different from distance metrics in infinite di-

mensional space which are generally defined using higher order derivatives of the

curves and often require piecewise differentiability, hence tend to be sensitive to

local shape perturbations. On the contrary, the proposed approach is relatively

tolerant to small local shape variations. Additionally, the group structure and the

defined left translation invariant metric are used to define deformation transport-

ing between two curved shapes in a closed form for a known parametrizations.

The representativeness of the proposed similarity metric is tested on leaf shape

retrieval problems and outperformed both infinite dimensional representation and

other shape descriptor approaches.
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Chapter 4

Optimal parametrization

4.1 Motivation

The proposed curved shape representation framework, Chapter 3, developed a

distance metric and geodesic deformation based on an assumed knowledge of

the curve parametrizations. In such a case, the curve sampling can be done

consistently by correcting the rate of change and starting and ending points, see

Section 3.7. In most computer vision problems, however, the parametrization of

curves is not known a priori, and has to be estimated– in computer vision, the

problem of parameter estimation is known as point correspondence estimation,

henceforth we will use these terms interchangeably. In this chapter, we will

develop two basic approaches for point correspondence estimation:

1. Linear reparametrizations: Given two curves c1 and c2, we assume the

parametrization of c2 is a linear reparametrization of c1’s parameter space.

2. Geometric moment preserving reparametrizations: In this case, we expand

the linear reparametrization notion to a larger class of reparametrizations;

reparametrizations that preserve a predefined geometric moment of the

shape arguments.

Subsequently, we will compare the computational cost and performance of each

approach in estimating point correspondence in cases of occlusion, missing parts

or nonlinear deformations.
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The chapter is organized as follows: in Section 4.2, we present related works

and formulate the problem of optimal parameter estimation. In Section 4.3, a

solution to special case of the parameter estimation problem is presented. Later in

Section 4.4, a solution to the general case is discussed. Experimental results and

comparisons are presented in Section 4.5. Finally, Section 4.6 presents conclusion

of the chapter.

4.2 Problem definition

In general, point correspondence estimation is given by the solution of the fol-

lowing

argmin
ψ∈Ψ

{ds(ψ(c1), c2) + E(ψ)}, (4.1)

where Ψ denotes a deformation space, ds is a dissimilarity metric, and E(·) is an

energy term that measures the cost of the deformation. The objective of (4.1)

is to solve not only for optimal point matching but for smooth deformations as

well. There are several works in the formulation and optimization of both ds

and E(·). In the deformation based approaches, the energy term is usually de-

scribed in terms of the effort functional given in (3.53) [You98]. However, there

are several elaborate formulations of the energy term based on elasticity the-

ory [You10a, MD10]. Similarly, extensive work has been done in formulating the

dissimilarity function ds. Particular to shape matching, in [CAS92] a dissimilarity

function that is based on curvature is formulated. Later, in [Tag99] and [SKK03],

a symmetric version of what was proposed in [CAS92] was presented and solved

with dynamic programming. Regardless of the dissimilarity function, in [SN06]

it is shown that restricting the matching solutions to those that preserve order of

points leads to a more accurate result than the unrestricted case.

The general form of shape matching cost (4.1) is given as a measure of

shape similarity and deformation cost. However, as shown in (3.56), the pro-

posed similarity metric is equivalent to effort functional. Hence, it measures

the cost of deformation as a dissimilarity between shapes. Subsequently, since
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GR = f(c1 ◦ ξi)
−1f(c2 ◦ ξj), we describe (3.56) in terms of the sampling functions

as

argmin
ξi,ξj

d(f(c1 ◦ ξi), f(c2 ◦ ξj)) = argmin
ξi,ξj

d(e,GR), (4.2)

where ξi and ξj are as defined in (3.2). Hence, we will consider the point corre-

spondence estimation problem as the estimation of the sampling functions ξi and

ξj. In Section 4.3 and Section 4.4, we will first address a specialized case of (4.2)

and later we will provide a solution for the general case.

4.3 Special case: linear reparametrizations

Let I be the parameter space of all continuous curves, and let all possible reparametriza-

tions of I take the following form

β = Kt+ a t ∈ I, (4.3)

where K = ±1 and a is any real number. Now, consider two continuous curves

c1 and c2 with unknown parametrization of type (4.3) and approximated by a

uniform sampler, as defined in (3.4). In such a case, the optimization problem

defined in (4.2) is rewritten as

argmin
β1,β2

d(f(c1 ◦ ξ
∗
1), f(c2 ◦ ξ

∗
2)), (4.4)

where the ∗ is used to identify a uniform sampler. The samplers are related

with parametrizations of type (4.3) through the arc length function which can be

defined for each curve as

si(t) =

∫ t

t0

‖ċi‖ dt =

∫ β−1

i (t)

β−1

i (t0)

‖ċi ◦ βi‖
dβi
dt

dt = si ◦ βi(t), (4.5)

where the index i is used as a variable to identify the curves along with their

parametrizations. However, since βi is assumed to be of the form of (4.3), the

above formulation is reduced to

si ◦ βi(t) = ±

∫ β−1

i (t)

β−1

i (t0)

‖ċi ◦ βi‖ dt. (4.6)
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Figure 4.1: Point correspondence estimation based on linear parametrization

assumption: The first and second columns show the curves to be matched, the

last column shows the matching result. Note that in the case of the first row, the

estimated point correspondence are reasonably accurate than the second row where

a nonlinear local deformation is observed.

Hence, reparametrizations of the form (4.3) define a family of uniform samplers

that vary from one to another by orientation, sign of (4.6), and starting and

ending points, boundaries of (4.6). We formalize this by defining a family of all

possible samplers for a uniformly sampled curve c̃∗i as follows

Ξ∗ = {ξ∗j | ∀i ∈ [0, z] : c̃∗i ∋ pk = p(k+j)mod z ∈ c̃
∗
j}, (4.7)

where mod represents the modulo operation. Subsequently, let f(c̃∗i ) = (g1, · · · , gz),

then f(c̃∗i ) under ξ
∗
j sampler is given as (g(z+j)mod z, · · · , g(z+j−1)mod z) in case of

closed curves. Thus, one can understand (4.3) as defining a z-cyclic permutations

of a curve’s representation. Consequently, the cost of estimating an optimal, ori-

entation preserving, parametrization of c̃∗2 with respect to c̃∗1 is given as

I(f(c̃∗1), f(c̃
∗
2)) = min

ξ∗j∈Ξ
∗

d(f(c̃∗1), f(c2 ◦ ξ
∗
j )). (4.8)

Meanwhile, orientation reversing parametrizations are estimated by generaliz-

ing (4.8) to the following objective functional

argmin(I(f(c̃∗1), f(
−→
c̃∗2 )), I(f(c̃

∗
1), f(

←−
c̃∗2 ))), (4.9)
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where −→ and ←−, represent ordering of points in clock-wise and anti-clockwise

direction, respectively. Note that if the curves are open curves, then optimal

parametrization can be estimated by testing only the different end points as a

staring point. In this thesis, we estimate the solution of (4.9) by iteratively testing

every starting point in a nested loop. Thus, the time complexity of aligning closed

curves is O(z2). Moreover, it is worth noting that if f(
−→
c̃∗2 ) = (g1, · · · , gz) then

f(
←−
c̃∗2 ) = (g−1

z , · · · , g−1
1 ).

Nevertheless, (4.9) is based on the assumption that the unknown parametriza-

tions of the curves are of the type (4.3). However, occlusion and large nonlinear

deformation of curved shapes can not be captured by linear reparametrizations

alone, see Figure 4.1. Subsection 4.4 discusses a generalization of (4.9) to non-

linear reparametrizations.

4.4 General case

Contrary to (4.3), consider parametrization of I by any nonlinear parametrization

β. In general, the family of unrestricted nonlinear parametrizations is inclusive

of the ones that define curve samplers that do not preserve shape, see Figure 3.6.

Consequently, in this thesis, instead of carefully defining nonlinear parametriza-

tions that will lead to samplers that preserve shape, we indirectly enforce a con-

straint by defining the family of samplers due to nonlinear parametrizations as

ΞA = {ξi | A(ci ◦ ξi) = A(ci ◦ ξ
∗)}, (4.10)

where A(·) is function that computes the area of a given curve in R2. In general,

the area of a closed region c1 is described, using Green’s theorem, as

∫∫

c1

dxdy =

∮

c1

P dx+Qdy, (4.11)

such that ∂Q
∂x
− ∂P

∂y
= 1. Hence, for a continuous curve ci approximated by

c̃i = (p1, · · · , pz) we define its area, by setting ∂P
∂y

= 0, as

∮

c1

x dy ∼ A(c̃i) =
1

2

z∑

j=1

(pyj − p
y
(i+1)modz)(p

x
j − p

x
(j+1)modz), (4.12)
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where pxj and p
y
j denote the x and y coordinate components of the point pj. Note

that, to be invariant to the orientation of the curve we will always consider the

absolute value of (4.12). In case of curves inRn>2, alternative geometric moments

can be adopted to define (4.10) instead of area, e.g., length of the curves. However,

preserving length of a curve is not as strong of a constraint as preserving area of

a curve to enforce shape preservation.

Subsequently, the alteration of a given shape c1, when sampled by ξi, from a

uniformly sampled one is quantified as

ρc1(ξ
∗, ξi) = |A(c1 ◦ ξ

∗)− A(c1 ◦ ξ
i)|

= |
z∑

j=2

Ac1(p
∗
j−1, p

∗
j)−

z∑

j=2

Ac1(p
i
j−1, p

i
j)|, (4.13)

where | · | denotes the absolute value. Note that Ac1(p
∗
j−1, p

∗
j) is evaluating (4.12)

per sequential points. Hence ρc1(·, ·) defines a curve specific function that takes a

given sampler ξ and computes its corresponding penalty term. In other words, (4.13)

measures the deviation of a given sampler ξ from the set ΞA for a specific curve.

Finally, we redefine (4.2) with the penalty term as follows

min
ξi,ξj
{α× d(e, f(c1 ◦ ξi)

−1f(c2 ◦ ξj)) + λ× (ρc1(ξ∗, ξi) + ρc2(ξ∗, ξj))}. (4.14)

We have added weighting factors α and λ to emphasize the effect of one over the

other– assigning a large value for λ leads to an objective functional that favours

samplers that preserve area even with a high deformation cost and vice versa for a

small λ value, see Figure 4.2. The objective functional given in (4.14) is symmet-

ric. That is, if we switch the arguments (c1 and c2) the solution will not change.

Moreover, its solution can be estimated via dynamic programming in polynomial

time, since it can be decomposed into linearly sequential sub-problems [BD15].

In the next Subsection, we will discuss the optimization of (4.14) with dynamic

programming.

4.4.1 Optimal sampling

We herein describe a dynamic programming based solution for estimating orien-

tation preserving shape parameter for open curves. Later, we will address the

case of closed curves.
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Parameter values Deformations

α = 10, λ = 1

α = 1, λ = 1

α = 1, λ = 10

Figure 4.2: Geodesic paths for different values of α and λ. Note the impact of a

large λ value on the deformation (geodesic) and the final result.

As indicated earlier, the objective functional given in (4.14) can be solved

with dynamic programming in a polynomial time. To show this fact, we first

describe z sample points of a continuous shape in a more general form as

ck ◦ ξj = (x1, x2, · · · , xz) : xi ∈ Ui, (4.15)

where xi=1,··· ,z are variables that can take points as a value from their respective

domain Ui=1,··· ,z, while the Ui ⊂ ck are compatible charts1 of the curve ck. Hence,

the size (cardinality) of Ui introduces a restriction on the search space of the

corresponding xi. In this work, we define the charts Ui=1,··· ,z by sliding a pre-

defined window size to cover the whole curve, see Figure 4.3a. The ratio of

the window sizes, defined on two given shapes, determines the constraint on the

elasticity of a deformation from one to another, we denote this ratio by η. For

instance, if w1 and w2 are the window sizes defined for c1 and c2, respectively,

then we approximate the elasticity constraint by η = w2/w1, see Figure. 4.4.

Subsequently, we first formulate the problem of optimal parameter estimation for

one of the argument curves, c2, while fixing the sampling of c1 to uniform point

sampling; later, we will described solving (4.14) in its entirety. Although fixing

one of the samplings converts what was a symmetric objective functional (4.14)

to an asymmetric one, it has its own advantages. The advantages are:

1Sets with smooth intersection maps.
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Index of sampled points: [1,z]
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(c) α = 1, λ = 10
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(d) α = 1, λ = 1
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(e) α = 10, λ = 1

Figure 4.3: Intermediate values of dynamic programming. (a) shows two input

shapes. c̃∗1, coloured in green, is uniformly sampled and c2, coloured in red, is to

be sampled optimally. (b) shows the search space, defined by the charts Ui, and

the cost of selecting a point from c2 for the ith position with the color coding. (c-e)

shows three optimal sampling paths based on (4.16) for different values of α and

λ. The green path is an optimal for α = 1 and λ = 0, the red path is an optimal

for α = 0 and λ = 1, and finally the yellow path is an optimal sampling for α and

λ values shown below the figures.
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α λ η Geodesic

20.9151

1 0 3.6601

2.0915

20.9151

1 10 3.6601

2.0915

Figure 4.4: Geodesic paths between two shapes under different elasticity con-

straint η. Note that an objective functional with an appropriate λ value gives a

consistent result regardless of the elasticity constraint.
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• Computational efficiency: Solving (4.14) as it is requires O(b4z) time, while

fixing one of the arguments require O(b2z) time, where b is the cardinality

of the charts denoted as b = |Ui|.

• Computational efficiency in processing a group of shapes: When aligning a

set of shapes, one often fixes a template shape to which the rest is going

to be aligned. In such a case, aligning n shapes to a fixed reference shape

requires n− 1 alignment operations, whereas a direct one-to-one alignment

requires (n− 1)! alignment operations.

Subsequently, let the representation of a uniformly sampled reference curve c̃∗1 be

f(c̃∗1) = (g∗1, · · · , g
∗
z). The estimate of the optimal sampler for a given curve c2,

with respect to c̃∗1, is give by optimizing (4.14), which is rewritten as

argmin
ξj

z∑

i=2

φi(xi−1, xi), (4.16)

where φi is defined as

φi(xi−1, xi) = α× d(g∗i , gi)
2

+ λ× |(Ac2(p
∗
i−1, p

∗
i )− Ac2(xi−1, xi))|, (4.17)

where xi−1 and xi are sampled points of c2 using a candidate sampler for the

(i − 1)th and ith position, such that gixi−1 = xi, and p∗i−1, p
∗
i are the sampled

points of c2 for the (i− 1)th and ith position when a uniform sampler ξ∗ is used.

Moreover, only the penalty term of c2 is added in (4.17). Since the sampling of c1

is fixed to uniform sampling, its penalty is zero. Subsequently, (4.16) is identified

as the composition of linearly sequential sub-problems. As a result, its solution is

estimated by computing the minimum and the minimizer of (4.16). Nevertheless,

the solution due to (4.16) is based on the assumption that the starting point and

orientation of the curve is already estimated. In case, where neither the starting

point nor the orientation of the points are available one can adopt either one of

the two possibilities:

1. Solve (4.16) for every possible starting point in both orientations (clockwise

and anti-clockwise direction)– in case of open curves possible starting points
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are only the two end points, while in closed curves every point is a candidate

starting point. Similarly to (4.9) the final solution will be the one that

minimizes the cost. The main advantage of this approach is that it gives

an optimal result upto the weighting parameters and the size of the search

space (feasibility set). However, it is computationally expensive. For z

points it requires O(2s2z2) for a curve with a fixed template.

2. Estimate the starting point and orientation with linear parametrization

assumption (4.9). Once the staring point and orientation of points are

estimated, nonlinear parametrizations can be estimated using (4.16). One

of the main advantages of this approach is that it is computationally efficient

in comparison to the earlier one, requires O(2z + s2z) time. However, the

solution will be highly dependent on the optimality of the starting point and

orientation estimation. In this thesis, we will mainly follow this approach to

estimate nonlinear parametrization of curves with respect to one another.

4.4.2 Dynamic programming

In dynamic programming, a solution for a given cost functional is computed by

solving for the minimum and the minimizer of the cost functional’s sub-problems,

sequentially. In our case, the algorithm begins by initializing the cost of match-

ing the starting points to zero; since we have assumed the starting point and

orientation to be already estimated. We denote this as

C1(x1 = ps) = 0. (4.18)

In other words, the above initialization forces the starting point of the sampling

to be fixed to ps. Subsequently, the solution space of the cost functional, given

in (4.16), is traversed sequentially by exploiting the linearly separable substruc-

ture as follows

Cj(xj) = min
x2,··· ,xj

j
∑

i=2

φi(xi−1, xi), ∀xj ∈ Uj

= min
xj−1

Cj−1(xj−1) + φj(xj−1, xj), j = 2, · · · , z
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Algorithm 1: Fixing one curve and optimally sampling another

Data: c1 ◦ ξ
∗, c2

Initialization: s = |U |, z = |c1 ◦ ξ
∗|, m = |c2|, i = 2,

O1(1) = p1, Oz(z) = pz;

for i ≤ z do

for xj ⊂ Uj do

Uj−1 = {pk | ∀pk : (ℓ|[0,k] < ℓ|[0,j])};

for xj−1 ⊂ Uj−1 do

Cj(xj) = φi(xj−1, xj) + Cj−1(xj−1);

end

end

Ci(xj) = minUj
Cj(xj);

Oi(xj) = argminUj
Cj(xj);

end

k = z − 1;

for k > 1 do

xk = Ok+1(xk+1);

end

Result: c2 ◦ ξj = {x1, · · · , xz}

where φi(·, ·) is as defined in (4.17). Subsequently, the optimizers of the cost

functional are given as

Oj(xj) = argmin
xj

Cj(xj). (4.19)

Furthermore, in order to get a monotonic and injective mapping, we impose the

following restriction on the solution space.

• Let ℓ|[0,n] denote the length of a curve segment up to pn. Subsequently, if

xj = pn then we will only consider xj−1 = pk : ℓ|[0,k] < ℓ|[0,n].

As a result, the solution space is restricted to samplings that are monotonic with

a strictly positive derivative with respect to the arc length. Hence the condition

ensures an injective mapping. In effect, the point matching is always one-to-

one. Note that, in most infinite dimensional optimal parameter estimation there
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is a possibility of getting a one-to-many point correspondence, especially if the

matching is based on L2 metric and if there is a high nonlinear local deforma-

tion [BBM16]. Moreover, continuity can be formalized in topological terms using

the charts of the curve to be sampled. In this work, however, we simply bound the

search space of xj by a predefined window size. Subsequently, by traversing the

solution space and saving the cost of selecting all possible points for the positions

along with the optimizers it is possible to build the landscape of the optimization

problem, see Figure 4.5. The Final optimal solution, however, is estimated by

backtracking the optimal path from the solution of xz to the beginning position

x1, see Algorithm 1.

The pseudocode given in Algorithm 1 can directly be generalized to solve the

symmetric version of (4.16) which is given in (4.14). The main advantage of

solving (4.16) over (4.14) is that it is a symmetric objective functional, which, in

practical terms, means there is no need for the user to choose a shape argument

to fix to a uniform sampling. In fact, as described in (4.14) the resulting solution

is a pair of optimal samplings for both shape arguments, see Figure. 4.5– to

the best of our knowledge, joint optimal parameter estimation is only discussed

in [LRK15]. On the contrary, the time complexity of (4.14) is O(s4z) while (4.16)

has a O(s2z) time complexity.

4.5 Evaluation

In this section, we will describe the evaluation of the proposed parameter esti-

mation techniques and compare optimal parameter estimation based on linearity

assumption with parameter estimation based on area preserving reparametriza-

tions.

4.5.1 Shape retrieval

In Chapter 3, we have evaluated the distance metric on a fairly simple dataset

where occlusion and nonlinear deformations are minimal. Here, we replicate the

shape retrieval experimental scenario with datasets that are composed of shapes

with large occlusion, missing parts and nonlinear deformations.
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Figure 4.5: Illustration of the symmetric and the asymmetric solutions. Each row

shows the solution sampling along with the problem space and the solution paths.

The first row shows the solution due to (4.16) where the blue curve is uniformly

sampled with z = 100. The second row shows the optimal sampling of both curves

with (4.14) where z = 50.
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Kimia99, Kimia216, and MPEG-7 [SKK04, LLE00]: Kimia99 is composed of

9 shape classes with 11 examples each, Kimia216 contains 18 class of shapes with

12 examples, and the MPEG-7 dataset contains 70 shape classes each containing

20 elements. All datasets are composed of shape categories with variations due

to different viewpoints, occlusions, and/or large deformations. As a result, these

datasets pose a significantly more challenging problem than either the Flavia

or the Swedish leaf datasets do. We evaluate our approach, on all datasets, by

replicating the experimental scenario described in [BL08] and [WBY+12], which

is similar to the leave-one-out. In the case of Kimia99 and Kimia216 retrieval

accuracy is measured by counting the overall results of the top 10 (in Kimia99)

and top 11 (in Kimia216) retrievals from the same class, excluding the query

shape [WBY+12]. Meanwhile, retrieval accuracy on the MPEG-7 dataset is mea-

sured based on what is called “Bull’s eye score”– Bull’s eye score takes the overall

percentage of retrieval results, among the first 40, that belong to the same class

as the query [WBY+12]. In all datasets, we evaluate our approach for z = 100

using both linear and area preserving parameter estimations. More importantly,

in both cases, matching starting points and shape orientation are estimated based

on the linear parameter space estimation (4.9). Furthermore, λ = 0.1, α = 1,

and η = 20 in all of the area preserving parameter estimations. In Table 4.1 and

Table 4.2 we compare our result with other approaches evaluated on Kimia99

and Kimia216. On MPEG-7, retrieval based on the uniform sampling approach

achieved a bull’s eye score of 68.02%, while retrieval based on the optimal sam-

pling approach achieved 84.17%.

We note that retrieval results based on area preserving reparametrizations

achieve a better score than results based on linear parameter estimations, in

all three data sets. In general, given a large η and a small λ (relative to α)

retrieval results based on area preserving parameter estimation should perform

better than retrieval based on a uniform sampling. Nevertheless, in this case

the reported area-preserving parameter estimations are based on estimates of

the starting point and the shape orientation alignment using (4.9). In most

cases, e.g., Kimia99 and Kimia216, such an approach is adequate for reasonable

point matching. However, in cases where the inter and inner class variations are

both due to large nonlinear deformations the linear parameter estimation is not
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Methods 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [BMP02] 97 91 88 85 84 77 75 66 56 37

Shock graph [SKK04] 99 99 99 98 98 97 96 95 93 82

Height functions [WBY+12] 99 99 99 99 98 99 99 96 95 88

Symbolic representation [DT08] 99 99 99 98 99 98 98 95 96 94

Our method with optimal sampling 99 99 97 97 97 98 93 90 79 53

Our method with uniform sampling 91 81 73 75 63 57 51 44 35 30

Table 4.1: Retrieval results on Kimia99 shape dataset.

adequate for starting point and orientation estimation, e.g., MPEG-7 data set.

Hence, the area preserving parametrization inherits misalignment errors from the

linear parameter estimation, especially in cases of large deformations, which lead

to performance degradation.

The estimation of both linear and area preserving curve parameters is per-

formed using MATLAB, on a hardware platform as described in Section 3.5.3.

Subsequently, for curved shapes that are approximated by z = 100, the lin-

ear parameter estimation takes 3.579600 seconds. Meanwhile the area preserv-

ing computation, including the starting point estimation, takes 6.946829 seconds

when one curve is fixed as a template and the other is sampled– sampling both

curves, simultaneously, takes 3.4480 minutes. In both cases of the area preserving

sampling sampling η = 10. Note that, in all of the above cases, the computa-

tional time includes rotational alignment but excludes the computation involved

with representation of the curves, (3.10). The same matching problem is esti-

mated with a C++ implementation of SRV framework [SKJJ11] running on the

same machine in 6.894110 seconds. Hence, the matching speed of the SRV based

framework is comparable with the linear parameter estimation, while the area

preserving sampling is computational expensive in comparison with both SRV

framework and linear parameter estimation.

4.5.2 Robustness

In this subsection, we compare the linear parameter estimation presented in Sec-

tion 4.3, and the area preserving parametrizations given in Section 4.4, quali-

tatively. To that end, in addition to the already mentioned datasets, we use
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Methods 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

SC [BMP02] 214 209 205 197 191 178 161 144 131 101 78

Shock graph [SKK04] 216 216 216 215 210 210 207 204 200 187 163

Skeleton graph matching [BL08] 216 216 215 216 213 210 210 207 205 191 177

Our method with optimal sampling 216 216 208 205 203 193 192 178 169 162 123

Our method with uniform sampling 212 210 188 181 174 165 159 151 141 132 120

Table 4.2: Retrieval results on Kimia216 shape dataset.

Mythological creatures [BBBK08], and 1070-Shape dataset [K10].

Occlusion: Shapes can exhibit partial similarity due to occlusions or nonlin-

ear local deformations, see Figure. 4.9. Thus, a point correspondence estimation

method has to be able to handle nonlinear local deformations. For instance,

the linear parametrization, discussed in Subsection 4.3, is constrained to linear

reparametrization, thus fails to match shapes that exhibit nonlinear local defor-

mations, see Figure 4.6. Alternatively, the area preserving parametrization can

be tuned to perform well by adjusting λ in (4.16). To illustrate this, we select ex-

ample shapes with partial similarity from Mythological creatures and 1070-shape

datasets. Subsequently, in Figure. 4.9 we show matching results for different val-

ues of λ. In all the matching scenarios, the elasticity constraint η is held constant

to 37.46. Hence, the solution search space is fixed. Nevertheless, in case of oc-

clusion or partial matching, we note that forcing the sampler to preserve area

when that is clearly not the case leads to point mismatching, hence, a small value

should be assigned to λ.

Effects of sampling size: The proposed approach casts the point correspon-

dence estimation problem as a sampling function estimation problem, hence the

sampling function is optimized and not given. However, the number of points z

is selected a priori. Here, we investigate the impact of having different values of

z on the optimal point correspondence estimation and its accuracy. In general,

approximating a shape, especially one with intricate structure, by a small num-

ber of points leads to a less detailed result. Nevertheless, it is desirable to have a

consistent distance for different sample sizes. To that end, Figure 4.7 shows how

the distance between two open curves, shown in Figure 4.8, varies under differ-
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Linear sampling Area preserving sampling

Figure 4.6: Linear vs area preserving sampling. For the area preserving case,

the green curve is sampled uniformly, and the curve in red is sampled with area

preserving parametrization. Note that the area preserving sampling adjusts the

sampling rate while the linear parameter sampling does not.
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Figure 4.7: Impact of sampling size under the optimal and the uniform sampling

based point correspondence estimation.

ent sampling sizes for both the linear and area preserving parameter estimations.

The result is obtained by varying z while the rest of the parameters are fixed

α = 1, λ = 10. We observe that the distance under the optimal sampling is more

consistent relative to the uniform sampling based distance.

4.6 Conclusion

In Chapter 4, we proposed two approaches for the estimation of curved shape

parametrization or point correspondence. The first approach assumes a linear

reparametrization of a given curve with respect to another. As a result, the family

of possible parametrizations is defined as z-cyclic permutation of the curved shape
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Figure 4.8: A geodesic path from the first to the last curve. These curves are

used in estimating the effects of sample size.

representations. Although computationally appealing, linear reparametrizations

are inadequate when it comes to nonlinear reparametrizations which are mani-

fested as occlusion or local elastic deformation of curved shapes. As a result, we

proposed an optimal parameter estimation approach that considers a larger fam-

ily of reparametrizations than linear– area preserving reparametrizations. Sub-

sequently, we have shown, both qualitatively and quantitatively, that area pre-

serving reparametrizations provide as good or better solution in most cases than

linear reparametrizations. Furthermore, the estimated point correspondence are

one-to-one in both cases mainly because of the data structuring which insists on

the samplers to be injective and monotonic with strictly positive derivative.
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Figure 4.9: Impact of λ on partial shape matching. In all of the above examples,

η = 37.46. Each row shows optimal sampling of a shape, shown in red, to match

the uniformly sampled shape shown in green. Note that, a large value of λ leads

to a matching that favours area preservation.
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Based on linear parameter estimation

Based on area preserving parameter estimation

Figure 4.10: Illustration of deformation transporting in linear vs area preserving

parameter estimation.
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Chapter 5

Statistical curved shape analysis

5.1 Motivation

One of the main advantages of a stable and efficient representation is that it lays

the foundation to explain a shape dataset with statistical models. In particular,

a computationally efficient distance function is very important to compute sta-

tistical moments of a shape distribution. In Chapter 5, we will adapt different

statistical models to estimate distributions of a shape dataset represented with

the proposed approach (3.14) in Chapter 3.

We start by formalizing the notion of a random variable and a probability

distribution in SE(n) and its product group SE(n)z in Section 5.2. In Section 5.3,

we formalize the notion of expectation and covariance of a shape distribution.

Section 5.4 presents different parametric models for estimating the distribution

of a shape dataset represented with the proposed approach. In Section 5.5 models

with latent variables are discussed. Several of the discussed parametric models

with or with out latent variables are evaluated for object in object category

recognition in Section 5.6. The chapter concludes with a summary in Section 5.7.

5.2 Background

In general, a random variable can be defined as a function on some data generating

space Ω that takes its values from a sample space M , which formally is defined
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5. STATISTICAL CURVED SHAPE ANALYSIS

as

X : Ω→M. (5.1)

Different random variables can be defined on the same data generating space with

potentially different sample spaces. Such random variables can be aggregated,

using direct product, into a single function known as random vector which we

denote with a bold font X. A z-dimensional random vector is defined as

X : Ω→
z∏

i=1

Mi. (5.2)

The notion of measure (distance, volume, area, probability, etc.) on both Ω and

M can be formalized by defining an admissible subsets of both spaces; such a

subset is known as σ-field [Dur10]. Consequently, a given space with a σ-field

(Ω,F) is called measurable space. In this thesis, we are interested in random

variables and vectors that take value in SE(n) and SE(n)z, respectively. As a

result, we define our σ-field based on the topology of SE(n), and we use (3.47) as

a measure on the σ-field of SE(n)– if a give measure in (Ω,F) is finite then it can

be made into probability measure by normalizing it. In such a case, (Ω,F), with

the probability measure, is called probability measure space and elements of F

are called events. Subsequently, the probability distribution of a random variable

that take its value in SE(n) is defined as follows.

Definition 2. Let (Ω,F, ε) be a data generating probability measure space, let X

be a random variable taking its value from a measure space (SE(n),B,m), then

the probability distribution of X is defined as PX(x ∈ B) = ε(X−1(x)).

Note that m represents the distance function we defined earlier on the tangent

space (3.47). Furthermore, if PX is absolutely continuous with respect to m, i.e.,

PX ≪ m, then there exists an integrable function p such that

PX(x ∈ B) =

∫

x

p dm. (5.3)

We will refer to p as a probability density function (pdf) of the random variable

X– it is sometimes referred to as Radon-Nikodym derivative of PX with respect

to m. Now that we have defined random variables and vectors, we can interpret
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the representation of a given curve f(c̃1) as an instance of a random vector X

defined as

X : (Ω,F, ε)→
z∏

i=1

(SE(n),B,m)i, (5.4)

where ε is a probability measure in the data generating space. The distribution

of (5.4) is given as

∫

· · ·

∫

x

p(x) dm · · · dm. (5.5)

Chapter 5 is dedicated to the modelling and estimation of (5.5) type probability

distributions from sample shape data set {f(c̃1), · · · , f(c̃q)}. In thesis, the sample

shapes are assumed to be identically distributed and independently generated

(i.i.d). Although we do not discuss interpretation and modelling philosophy, most

of our modelling approaches are based on what is called frequentist interpretation,

for alternative modelling approach see [Jay03].

5.3 Statistics of shapes

Let X be a random vector of the type defined in (5.4). We can then compute

what we expect to see from X as

E(X) =

∫

Xdε =

∫

Xp dm, (5.6)

where p is the pdf of X. The degree of variations from the expected value is

quantified by the covariance matrix, which is written as

cov(X) = E(X− E(X))2. (5.7)

However, in most cases there is no way to know the analytical form of X, hence

both (5.6) and (5.7) are estimated from sampled data points of X. To that end,

consider a set of q sample shape representations {f(c̃1), · · · , f(c̃q)} that are i.i.d

and generated by X, where f(·) is as defined in (3.14) in Chapter 3. Below we

define the mean and covariance of a shape distribution.
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Mean shape: Given the above sample shape points, we can estimate (5.6) as

the sample mean

E(X) ∼

q
∑

i=1

1

q
f(c̃i) (5.8)

The estimator (5.8) is unbiased since it converges to the true expectation as

the number of sample shape points goes to infinity, due to law of large num-

bers [Dur10]. However, we can not directly use (5.8) since our representation

space SE(n)z is not a vector space and is not closed under addition. Instead, we

replace (5.8) by what is known as Fréchet mean [Pen06, Kar77]. Fréchet mean is

a generalization of a distribution’s centroid in any metric space U; it is defined

as

min
x̃∈U

∑

y∈U

δ(x̃, y)2, (5.9)

Equation (5.9) translates to our representation space as

f̄(c̃) = argmin
f̄(c̃)

q
∑

i=1

d(f(c̃i), f̄(c̃))
2 (5.10)

= argmin
f̄(c̃)

q
∑

i=1

z∑

j=1

‖ log(R̄T
j Rji)‖

2
F +

q
∑

i=1

z∑

j=1

‖vji − v̄j‖
2
2, (5.11)

where f̄(c̃) denotes the mean shape representation. The second term of (5.11)

can be satisfied by taking the arithmetic mean of the translation vectors since

the vectors are elements of a linear space. The first term, however, involves an

optimization in the SO(n) group which is not a linear space. Consequently, over

the past years, considerable work has been done on characterizing the mean of

several matrices [ALM04, BMP10, HCSV13]. In this thesis, we will consider

the local optimizers of rotation matrices known as Karcher mean [Kar77]. The

Karcher mean R̄ of a given q rotation matrices is characterized by a zero gradient

of (5.9) with respect to R̄– it is written as

q
∑

i=1

wiR̄ log(RT
i R̄) = 0, (5.12)
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where wi are probabilities of each observation. Since we do not know the ana-

lytical form of the data generator we will assign 1/q for each wi. The gradient

given by (5.12) is locally well defined and is unique for localized enough sample

points, see [Ken90]. Hence, given an initial guess of the Karcher mean we can

iteratively follow the opposite direction of (5.12) until we reach a critical point.

For alternative optimization approaches see [AMS09]. To that end, we initialize

the iterative process using the approach described in [HCSV13], which in given

by the following iterative equations

R̄1 = R1

R̄i+1 = R̄i(R̄
−1
i Ri+1)

1/(i+1). (5.13)

Subsequently, the final estimate of the mean rotation matrix, for i.i.d. sam-

Algorithm 2: Estimation of the Karcher mean in SO(n)

Data: {R1, · · · , Rm}

Initialization: thresh = val1,Lrate = val2, R̄ = (5.13),

∇R̄ =
∑m

i=1wiR̄ log(RT
i R̄);

while ‖∇R̄‖ > thresh do

R̄ = R̄ exp(−Lrate×∇R̄)

∇R̄ =
∑m

i=1wiR̄ log(RT
i R̄)

end

ple points of a random variable, is estimated iteratively from the initial esti-

mate (5.13). Algorithm 2 summarizes the procedure. Subsequently, a simple

generalization, a direct product of Algorithm 2, is used to estimate the mean

shape representation of a given shape sample dataset {f(c̃1), · · · , f(c̃q)}. Note

that the mean shape estimate is based on the assumption that variation due to

rotation, translation, and parametrization are filtered out from the shape data

set. See Figure 5.1.

Covariance: Similar to the mean shape estimation, we can estimate the covari-
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Figure 5.1: Mean computation of shapes visualized using Multidimensional scal-

ing [BG05]. The shapes depicted in red are the computed mean of each dataset.

(a) and (c) are mean shapes when the point correspondence estimation is based

on linear parameter estimation. (b) and (d) are the mean shapes computed from

shapes dataset with area preserving parameter estimation, respectively.
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Figure 5.2: Illustration of the tangent space at the mean shape, where the co-

variance matrix of a linearized data points are computed.

ance of a shape representation dataset as

cov(X) ∼
1

q

z∑

i=1

(f̄(c̃)− f(c̃i)
2

1

q

z∑

i=1

d(f̄(c̃), f(c̃i)
2, (5.14)

where f(·) is as given in (3.14) and d(·, ·) as (3.48) in Chapter 3. The above

equation for the covariance matrix is the same as the (5.11) except that in (5.14)

the mean is already estimated. Figure (5.2) shows an illustration of the covariance

matrix computation at the tangent space of the mean.

5.4 Modelling shape distribution

There are several ways one could approach the estimation of a probability distri-

bution for a random vector of type (5.4). The approaches are mainly guided by

the assumptions imposed on the distributions:

1. Parametric: Given a sample dataset, parametric approach assumes the dis-

tribution of a random vector X to take the form of a parametrized function,

e.g., exponential distribution families. As such, in parametric distribution

the effort is to correctly estimate the parameters of the chosen distribution

form. We herein explore Gaussian and mixture of Gaussians for modelling

shape distributions.
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2. Non-parametric: An alternative to parametric modelling is to directly at-

tempt to estimate the analytical form of the distribution from the dataset

points. Such kind of approaches are called non-parametric estimation, e.g.,

histograms, Parzen-window (Kernel) density estimation, neural networks,

etc. Non-parametric approaches are usually effective when the available

dataset is large.

In this section, we will mainly cover parametric density estimation approaches

for a data set of shape samples represented with the proposed method (3.14).

5.4.1 Parametric density estimation

Most existing statistical shape analysis approaches are based on parametric den-

sity estimation or latent variable modelling [DM98]. In particular, in [DAO15]

an inhomogeneous time Markov process is used to capture the statistical proper-

ties of a deformable shape represented in a matrix Lie group. Similarly, here we

consider a curve representation f(c̃) as a realization of a random vector X.

Gaussian distribution: A Gaussian distribution of a random vector X is com-

pletely determined by two parameters, mean µ and covariance Σ. Hence the

evaluation of a D-dimensional observation X = x with Gaussian pdf is written

as

N(x;µ,Σ) =
1

(2π)D/2|Σ|1/2
exp(−

1

2
(x− µ)TΣ−1(x− µ)). (5.15)

Refer to [GN99] for further details in matrix valued Gaussian random variables. In

our case, however, if we assume that our shape dataset follows (5.15), the density

estimation simply means the correct estimation of (5.11) and (5.14). Hence (5.15)

amounts to the following in the defined representation space

1

(2π)D/2|Σ|1/2
exp(−

1

2
vTΣ−1v), (5.16)

where v is the vectorized form of an observation at tangent space of the mean.

We write v, using vec(·) operator to vectorize a matrix, as follows

v =
z∏

i=1

vec

(
log(R̄T

i Ri) R̄T v̄i − vi
0 0

)

. (5.17)
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Figure 5.3: Example dataset of dogs from Kimia 1070-shape dataset.

(a) (b)

(c) (d)

Figure 5.4: Mean shapes of the dogs dataset along with a randomly sampled

shapes. (a) Mean shape based on area preserving parameter estimation, (b) ran-

domly sampled shapes from a Gaussian distribution of shapes with area preserving

parameter estimation. (c) Mean shape based on linear parameter estimation, (d)

randomly sampled shapes from a Gaussian distribution of shapes with linear pa-

rameter estimation.

One can further sample the estimated distribution using one of the well studied

random samplers [Mad02]. However, since the sampled vector is going to be

an element of the tangent vector it requires exponentiation to finally get the

randomly sampled shape representation, see Appendix A. Hence, for a given

Gaussian distribution sampler S(µ,Σ), we can generate a random shape as

fr = f̄(c̃) expf̄(c̃)(S(0,Σ)), (5.18)

where fr represents the randomly sampled representation, see Figure 5.4.

Shape as a stochastic process: In cases where a spatial relationship among
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random variables exists, a much more natural approach is to consider graphical

models for modelling a distribution [Bes75]. As such, a given random vector X

can be seen as spatially ordered set of random variables. Let the probability of a

given random vector X = {X1, · · · , Xz} to take the value f(c̃) = {g1, · · · , gz} to

be expressed as

p(X1 = g1, · · · , Xz = gz), (5.19)

Regardless of what form p(·) takes, one can factor (5.19) using the chain rule,

which follows directly from the axioms of a probability measure, as follows

p(g1, · · · , gz) = p(gz|gz−1, · · · , g1) · · · p(g2|g1)p(g1). (5.20)

Since the observed transformation matrices are indexed in an order, one can inter-

pret (5.20) as a model of a stochastic process. Moreover, additional assumptions

can be imposed on the dependency of the sequential transformation matrices. For

instance, assume that (5.20) is a Markov chain1 then (5.20) is simplified as

p(g1, · · · , gz) =
z−1∏

i=1

p(gi+1|gi). (5.21)

In such a case, we model (5.21) as a non-stationary Markov process with the

following transition rule

gi+1 = ĝi+1 × gi. (5.22)

Note that theˆdenotes the observed transition matrix. Hence, the probability of

a given shape representation f(c̃j) = {g1, · · · , gz} is as follows

p(g1, · · · , gz) =
z−1∏

i=1

p(gi+1|gi) =
z−1∏

i=1

p(ĝi) (5.23)

Subsequently, it is possible to model the distribution of the transition matrices

with a Gaussian distribution.

1A stochastic process that depends only on the current state to predict the future.
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5.5 Latent variable estimation

5.5 Latent variable estimation

As described in Section 5.4, one can estimate the distribution of a random vec-

tor X that takes a shape representation as its value. However, in cases where

the distribution of the dataset can not be adequately explained with simple dis-

tribution forms, it is practical to estimate the distribution by introducing un-

observed variable, which is referred as latent variable in the machine learning

literature [Bis06, ZJ09, TB99]. Section 5.5 details different latent variable mod-

els in the proposed shape representation space.

5.5.1 Dimension reduction

Consider a class specific shape representation dataset Q = {f(c̃1), · · · , f(c̃q)}. As

described in Chapter 3, the deformation space is the whole group SE(n)z/SO(n).

However, we expect the admissible variations in Q to be a submanifold of the

original space if not a subgroup, since the shapes in Q are from the same cate-

gory. In such a case, we estimate the unobserved submanifold or subspace from

Q by estimating the latent variables that describe the subspace or submanifold.

In the last two decades, several methods that employ both linear and nonlinear

dimension reduction have been introduced [TDSL00, RS00, HSH14]. In this sub-

section, we will depend on the geodesic curves (3.49) to linearize the dataset and

estimate a linear subspace using Principal Component Analysis (PCA) [Jol86].

PCA model: The main idea behind PCA is to describe an observed dataset

with a linear combination of uncorrelated vectors such that the variance of the

dataset in each of the vector direction is maximized. More concretely, we are

optimizing the following objective function

max
v

E(Qv − E(Qv))2, (5.24)

where Q is the dataset and v is the sought after vector direction that maximizes

the variation of the dataset. If we assume the dataset has zero as its mean

then (5.24) becomes

max
v

E(Qv)2. (5.25)
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mean shape σ = 0.01 σ = 0.03 σ = 0.05

Figure 5.5: Shapes in two principal directions on the dogs dataset. The first col-

umn shows the mean shape, computed from the dataset with parameter estimation

based on linearity assumption and area preserving assumption, respectively. The

last three columns show the shapes in the first two principal directions with scal-

ing factor given by σ when the dataset is aligned with linear and area preserving

parameter estimations, respectively.
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5.5 Latent variable estimation

In our case, a centred dataset is computed as (5.17) at the tangent space of the

estimated mean. Hence, the geodesic connection (3.49) is used to linearise the

data setQ to its vector formQ. The solution for (5.25) is estimated using Singular

Value Decomposition (SVD), since the objective function can be represented as

follows

max
v

E(Qv)2

max
v

vTQTQvT . (5.26)

Hence, v is maximized by setting it to the eigenvector of the covariance ma-

trix with the highest eigenvalue. Note that QTQ is the covariance matrix of

the dataset. Subsequently, one can select as many eigenvectors sequentially as

needed to reduce the dimensionality of the representation, the selected vectors are

referred as principal components. The results in the reduced dimensional space

can be exponentiated to the group representation as follows, with P representing

the selected eigenvectors

f̄(c̃) expf̄(c̃)(Q
r
iP

−1), (5.27)

where Qr represents some data point in the estimated subspace defined by P, see

Figure 5.5.

5.5.2 Clustering

Grouping a collection of data into distinct clusters is an alternative data anal-

ysis technique that is extensively studied in a wide range of problems. Apart

from the well known k-means algorithm, there are several clustering algorithms

emphasizing different aspects of the problem [NJW+02, WS06]. However, the

performance of a clustering algorithm depends on a goal specific similarity met-

ric, among other factors. In that regard, we propose (4.9) or (4.14), depending

on the reparametrization assumption, as a similarity metric to cluster shapes.

To that end, we discuss modelling of a shape class, represented in SE(n)z, by

k-means clustering.

In k-means clustering, the central idea is to estimate k points such that the

data points around these k centroids are more similar with each other under
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Figure 5.6: Examples of clustering results for k=2. Two different clustering

results for different point correspondence estimations. (a) Point correspondence

estimation based on linear parametrization. (b) Point correspondence estimation

based on area preserving parametrization.

the metric being considered. Moreover, the k points are thought of as the mean

points of the clusters [M+67]. However, the number of k is not known prior to the

modelling task. Let us assume that we have selected the number of clusters k to

categorize the data into. In such a case, k-means of shape clusters are estimated

by optimizing the following

min

q
∑

j=1

k∑

i=1

rijd(f̄(c̃i), f(c̃j))
2, (5.28)

where f̄(c̃i) is the representation of the estimated mean shape of the ith cluster,

and rij is 1 if and only if the jth shape is assigned to the ith cluster otherwise is 0.

Note that the latent variables in (5.28) are the rij. Subsequently, the optimization

of (5.28) can be done through Expectation-Maximization (EM) algorithm [NH98].

The general concept of an EM algorithm is to alternate between the following two

steps:

1. E-step: Estimate the distribution of the latent variable from an initial

parameter guess.
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5.5 Latent variable estimation

2. M-step: Estimate the parameters, which are the means in k-means, that

maximize the likelihood of the dataset based on the latent variable distri-

bution estimate.

Subsequently, in k-means clustering the E-step would be to estimate the rij for

each data point, given initial mean guesses. In the M-step we minimize (5.28)

with respect to the mean by setting its gradient to zero

∂
∑q

i=1 rijd(f̄(c̃i), f(c̃j))
2

∂f̄(c̃i)
= 0. (5.29)

Note that the gradient of (5.29) is exactly the same as what is called the Karcher

equation given in (5.12), since minimizing (5.28) for a given mean is equivalent to

solving for Karcher mean. Consequently, it can be optimized using Algorithm 2,

only in this case, we do not assign equal weights for the whole dataset, we have

an estimate of the parameters rij as

rij =
rij

∑q
i=1 rij

. (5.30)

See Figure 5.6 for an illustration of a k-means result.

In addition to estimating the k clusters, the algorithm can be extended to

guess the optimal number of k by introducing an additional assumption on the

data distribution. In [HE04], each cluster is assumed to have a Gaussian distribu-

tion and clusters that do not satisfy the statistical test of a Gaussian distribution,

which is based on Anderson-Darling test, are further split into two clusters. The

procedure continues until all clusters confirm to Gaussian distribution. Neverthe-

less, note that as k → q, the model becomes more like a non-parametric model.

In fact, if k = q the model is memorization of the whole dataset.

5.5.3 Mixture of Gaussians

Mixture of Gaussians is a model based on Gaussian components in a superposition

as described below

p(X) =
k∑

i=1

πiN(X|µi,Σi), (5.31)
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where the πi quantify the prior of each component while satisfying
∑k

i=1 πi = 1.

Each component is parametrized with its own covariance Σi and mean µi. Given

the number of components k is known, we will introduce a random latent variable

δ = {l1 · · · lk} such that li ∈ {0, 1} and
∑k

i=1 li = 1. The introduction of the latent

variable enables us to workout the responsibility of each Gaussian component in

explaining the dataset. For instance, the posterior of component li for data point

xj is given as

p(li = 1|xj) =
p(li)p(xj|li)
∫

l
p(xj, l)

=
πiN(xj|µi,Σi)

∑k
i=1 πiN(xj|µi,Σi)

. (5.32)

Following the above formulation, the set of parameters for the mixture of Gaus-

sians is defined (π,µ,Σ) = {(π1, µ1,Σ1), · · · , (πk, µ1,Σk)}. The parameters are

estimated from a given dataset Q = {x1 · · · xq}. Assuming the dataset Q is i.i.d

and the number of components k is known, parameter estimation is done by

maximizing the log-likelihood which is given as

ln p(Q|π,µ,Σ) =

q
∑

j=1

ln{
k∑

j=1

πiN(xj|µi,Σi)}. (5.33)

Mixture of Gaussian in SE(n): Given a dataset x ∈ Rn, fitting a Gaussian

mixture is a direct implementation of EM-algorithm as given in [Bis06]. Con-

sequently, we need to derive a procedure to maximize the log-likelihood for the

contribution parameters, the means and covariance matrices for (5.33). Partic-

ular to our case, which involves rotation matrices R and translation vector v,

an observation xj =

(
Rj vj
0 1

)

is represented at the tangent space of the mean

transformation matrix ḡi =

(
R̄ v̄
0 1

)

as (5.17), which we write again in what

follows.

v =

(
log R̄T R̄j R̄T (v̄ − vj)

0 0

)
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5.5 Latent variable estimation

Subsequently, the derivative of (5.33) with respect to one of its means, µi, is as

follows

∂ ln p(x|π,µ,Σ)

∂µi
= −

q
∑

j=1

πiN(xj|µi,Σi)
∑k

i=1 πiN(xj|µi,Σi)
︸ ︷︷ ︸

αi

×
∂vTΣ−1

i v

∂µi
. (5.34)

Since Σ−1
i is not a function of the mean µi, using rules of matrix derivative [Ber05],

we can simplify (5.34) as follows

−

q
∑

j=1

αi ×
∂vT

∂µi
vΣ−1

i . (5.35)

The optimizer of (5.35) is the solution of

0 = −

q
∑

j=1

αi ×
∂vT

∂µi
vΣ−1

i . (5.36)

Subsequently, we can eliminate the negative sign from (5.36) and turn the max-

imization problem into minimization. In that case, (5.36) is the same as the

Karcher equation (5.12). Although we can safely eliminate the constant covari-

ance matrix by multiplying both sides with Σi, the weights αi do not add up to

one. Since we are treating the mean as an expectation we multiply both sides by

1/
∑q

j=1 αij; the parameters do not depend on the mean that is being optimized,

thus will not affect our result. Hence, equation (5.36) can be optimized by solving

for

0 =

q
∑

j=1

αi
∑q

j=1 αij
×
∂vT

∂µi
v. (5.37)

Consequently, we can use Algorithm 2 to solve for (5.37) while weighting each

term by αi/
∑q

j=1 αij.

Meanwhile, the covariance matrix can be estimated on the tangent space of

the estimated mean with a closed form. Consequently, the optimal covariance

matrix, as described in [MN95], is given as follows by using vec(·) operation to

vectorize a matrix.

Σ̂i =

q
∑

j=1

αi
∑q

j=1 αij
vec(v)vec(v)T . (5.38)
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Figure 5.7: Mixture of Gaussian result on the dogs dataset with (k = 3), for visu-

alization the dataset is plotted with coordinates estimated with Multidimensional

scaling. The diamond shapes show the position of the means. The color of each

data point is assigned to the Gaussian that maximizes its posterior (5.32). (d)

Shows the Log-likelihood after each iteration.
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Figure 5.8: Mixture of Gaussians (k = 2) result on a car dataset [LS03] where

shape variation is only due to change of viewpoint.
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Figure 5.9: Examples from ETH80 dataset [LS03].

Similarly, the composition weights πi are estimated as given in [Bis06].

π̂i =
αi
q

(5.39)

Finally, the EM-algorithm for estimating the mixture of Gaussians parameters

for random variables that take their value in SE(n) is given as follows:

E-step: Compute equation (5.32), given the parameter estimates, λ.

M-step: Given the estimate of equation (5.32), maximize for the parameters.

That is solve (5.37), (5.38), and (5.39). Note that, if the estimated mean µ̂

happens to be one of the data points one has to reinitialize and look for alternative

estimate. Otherwise, the log-likelihood will increase exponentially by collapsing

on to a single data regardless of the other data points contribution, see [Bis06]

for a details.

5.6 Evaluation

Section 5.6 details the evaluation of the statistical shape models discussed earlier.

Dataset: The ETH80 dataset [LS03] contains 8 object categories with 10 differ-

ent object instances per category. Each object instance of the category is captured

from 41 different viewpoints or poses. Moreover, each image of an object instance
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Algorithms Recognition accuracy (%)

PCA mask [LS03] 83.41%

Shape context + DP [LS03] 86.40%

IDSC + DP [LJ07] 88.11%

IDSC + Morphological strategy [HJZG12] 88.04%

Height function [WBY+12] 88.72%

Robust symbolic [DT08] 90.28%

Kernel-edit [DT10] 91.33%

Bag of contour fragments [WFB+14] 91.49%

Our approach

Gaussian 90.67%

Mixture of Gaussians (k=2) 93.18%

k-means (k=2) 95.06%

k-means (k=3) 94.33%

k-means (k=4) 94.42%

Table 5.1: Average accuracy comparison between models based on the proposed

approach and earlier shape feature based classifiers on ETH80 dataset. The best

performing algorithm is highlighted with bold font.

is labelled with its pose, and the silhouette of the objects are given to enable the

evaluation of shape based approaches. In total, the dataset contains 410 images

per category, see Figure 5.9 for illustrative examples of the dataset. Since our

approach is based on shape, we only consider the contour of the objects.

Data processing and experimental scenario: To compare our approach with

methods based on shape features we replicate the leave-one-out scenario [LS03].

Consequently, out of the 80 object sets (10 object instance per 8 object categories)

we use 79 to train a model for each object category and use the last one for

testing. The procedure is repeated 80 times, thus each object instance is used

once as a test set. Note that an object instance has 41 images from different

viewpoint. Subsequently, the overall average accuracy is used as an evaluation

metric for a given modelling procedure. A model for each object category is

trained on shapes that are rotational aligned and optimal parameter estimated

with respect to a template shape; template shape for every shape category is

selected as the one viewed from an azimuth and elevation value (0◦, 90◦). This
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is mainly because in (0◦, 90◦) most of the object’s distinctive features are visible.

For optimal parameter estimation we set α = 1, and λ = 0.2. Subsequently, the

aligned training dataset is used for estimating a statistical model for each shape

category.

Classification: We train three different kinds of models for the recognition task,

k-means clustering, Gaussian, and mixture of Gaussians. In the k-means cluster-

ing, a given shape is assigned to a cluster if the cluster is the closest to the query

shape than the others. note that, each query shape has to be rotationally aligned

and its optimal parameter has to be estimated with respect to the mean shape

using α = 1 and λ = 0.2. Subsequently, for a given query shape f(c̃q) its label is

estimated as

ŷ = argmin
y∈Y

{argmin
k∈K

d(f(c̃kl), f(c̃q))}, (5.40)

where Y denotes the set of possible data labels. Similar to the k-means, in the

Gaussian and mixture of Gaussians models a query shape is categorised into a

given label if it maximizes the posterior or equivalently the likelihood function.

That is, for a Gaussian model the posterior is given as

p(y|v) ∼ p(v|y)p(y), (5.41)

where v is a tangent vector at the estimated mean shape. Since we do not have

any prior over the models, maximizing the posterior is equivalent to maximizing

the likelihood. Hence, the final label is given as

ŷ = argmax
y∈Y

p(v|y). (5.42)

In this particular dataset, the best performance is achieved using k-means

clustering with k=2, see Table 5.1. Naturally, one would expect the mixture of

Gaussians to perform as well or better than k-means clustering. However, the log-

likelihood (5.33) objective function is not convex and has many local minima and

potential saddle points. Consequently, one has to start the optimization with

appropriate initializations or at least iterate for a sufficiently enough time to

escape a potential saddle point [LSJR16]. Here, we have iterated for ten times to
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optimize the log-likelihood in all training scenarios. As a result, in practice, if the

dataset’s distribution resemble clusters of Gaussian distributions with diagonal

covariance matrix then k-means clustering is the computationally cheapest model

with reasonable performance. Nevertheless, all the models (Gaussian, Mixture

of Gaussians, and k-means) performed comparably or better with respect to the

other shape descriptor based classifiers.

5.7 Conclusion

In Chapter 5, we discussed the computation of basic statistics from a collection

of shapes that are represented with the proposed curved shape representation in

Chapter 3. Furthermore, we have presented the adaptation of several conven-

tional statistical models to the proposed shape representation space. The statis-

tical models are adapted to the proposed representation by linearising observed

shape variations to the tangent space of the mean shape. Such models are par-

ticularly useful for classification and simulation of class specific shape categories.

We have shown that for a shape based classification problem statistical models,

built on the proposed representation, perform as well or better when compared

to a shape descriptor based object recognition algorithms. Although all of the

discussed models are based on frequentist approach, Bayesian statistical models

can also be applied to the proposed curved shape representation by defining an

a priori distribution over the parameters. For parameters that take value in Rn,

one can define a priori distribution as is done conventionally, e.g., conjugate pri-

ori. Meanwhile, for parameters that take value in SE(n), e.g., mean shape, the

priori distribution can be defined in the Lie algebra of the representation space.

Subsequently, a given observation can be evaluated at the Lie algebra using the

exponential maps, see Appendix A.

97



5. STATISTICAL CURVED SHAPE ANALYSIS

98



Chapter 6

3D facial expression analysis

6.1 Motivation

Chapter 6 presents an application of the proposed curved shape representation

and modelling approaches for facial expression analysis from 3D point cloud.

Representing facial expressions is an integral part of what is called affective com-

puting [Pan09, ZPRH09]. Facial representations are used in combination with a

classifier to recognize facial expressions and infer affect. Many other disciplines

such as human computer interaction, computer graphics, health monitoring ben-

efit from the ability to model facial expressions for the purpose of analysis, ani-

mation, and recognition.

The chapter is organized as follows: in Section 6.2 we present earlier works

in facial expression representation and modelling. In Section 6.3, we present

preprocessing approaches that are used to decompose 3D facial surface into a set

of 3D curved shapes referred to as facial curves. Subsequently, a direct product

of the proposed curved shape representation, Chpater 3, is used to capture facial

surface and their deformations. Section 6.4 formulates the problem of curve

correspondence estimation and proposes a dynamic programming based solution.

In Section 6.5, we presents a general modelling approach using exponential maps.

Experimental results and comparisons with earlier approaches are presented in

Section 6.6. The chapter ends with concluding remarks in Section 6.7.
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6.2 Related works

Over the last decades, several methods were proposed for facial expression repre-

sentation. In general, these methods can be categorized into two main categories;

1) methods based on feature descriptors, and 2) methods based on a generic

expression space learning.

In the first category, features are labelled, according to their type, as either

geometric or appearance. Subsequently, both feature types are further labelled,

according to their construction, as predefined [PB07], directly learned from a

training data [RSMH11, LHMT14], or a hybrid thereof [ZJ05]. Approaches based

on predefined features aim to detect facial action units (AU) defined in [EF77],

and defer the task of expression labelling to a higher level processing, while in

learned features, the attempt is to learn a descriptive representation directly from

a training data set. In [Pan09, BVS+96], methods that detect facial AU are argued

to be comprehensive and robust to subjective labelling of expressions – since the

detection of AU is decoupled from expression detection, a new facial expression

can be discovered by combining AUs. On the other hand, systems that inte-

grate feature learning with expression labelling have been shown to benefit from

the supervised learning of strong discriminative features [LHMT14, TYRW14].

In general, mapping functions from the raw data space to the feature space

are not necessarily bijective, hence inversion of features is numerically approx-

imated [MV15, VKMT13]. Consequently, it is not straightforward to translate

a linear combination or scalar multiplication of features to the raw data space.

Moreover, most feature based approaches depend on pre-annotated/estimated

landmark points [FZO+11]. In the second category of facial expression represen-

tations, a general space of faces and their expressions is estimated. In [HL07],

an L2 norm is defined on the displacement field of faces to learn an embedding

of the expression space. In [CVTV05], a 3D template face is used to match all

faces and learn a generalized expression space rather than a per subject learn-

ing. However, empirically estimating the space of facial expressions from a small

data set in high dimensional space is difficult and most of the time only a small

portion of the space ends up being estimated, e.g., expression space of a given
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Figure 6.1: Proposed 3D facial expression representation. A smile is captured by

the deformation DE and applied to two different subjects, preserving their specific

shapes.

subject. As such, the estimated expression space is not guaranteed to be com-

plete or connected [BCV13]. One consequence of this is the need for search based

computational schemes, e.g., the geodesic distance between expressions is com-

puted using graph-based shortest path algorithms [CHFT06, HL07]. Meanwhile,

in [MMS08, TF00, AOBM09], a linearity prior is introduced in the estimation of

the expression space. In [TF00, MMS08], an observed facial data is formulated

as a bilinear function of face and expression. Thus, expressions are modelled as

linearly separable objects. In a similar spirit to our approach, in [AOBM09] the

point-to-point difference between a neutral face and a face with an expression

is taken as expression residue and the expression space is estimated with PCA

(principal component analysis). However, expression space is a nonlinear space

and linear models fail to discover the underlying non-linear manifold [WHL+04].

Alternatively, in [DBAS+13, SSD06, SSDK09, DADS10] the full facial surface

is consider as a geometric object and analysed by decomposing it into a set of

curves called facial curves. Face and facial expression is analysed using the SRV

framework [SKJJ11] on this curves.

Here, we propose a similar surface decomposition except instead of SRV frame-

work we will use the proposed curve representation to represent facial curves.

Subsequently, by taking a direct product of the facial curve representations, a

mapping function that identifies a set of facial curves with an element of a high

dimensional matrix Lie group is defined. Given such a mapping function, facial
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(a) Parametrization (b) Set of facial curves

Figure 6.2: Facial curve extraction.

expressions are then represented by a left action of the group on a neutral face

representation, see Figure 6.1. Although the idea of decoupling facial expression

from a neutral face is presented in [AOBM09], the representation space presented

here, Lie group, models expression space as a nonlinear space. Consequently,

captures nonlinear variation of facial expressions. Meanwhile, the proposed fa-

cial expression representation can be locally linearised by mapping the expression

representations from the Lie group to the Lie algebra. Hence, conventional lin-

ear models, like SVM (support vector machine), can directly be trained on the

representation.

6.3 Surface representation

We decompose a segmented, hole-free, facial surface into a family of curves that

start from a given reference point, see Figure. 6.2b. This decomposition allows

to view a facial surface as an ordered set of curves and a facial expression as

its deformation. In what follows, we cover the data preprocessing and facial

curve extraction stage. As discussed earlier, the main causes of variation in a

shape data set, with respect to a given fixed coordinate system, are deformation,

scaling, translation and rotation. Among those, the most informative variation

is the one due to deformation as the rest does not change the nature of the

shape. Consequently, in the preprocessing stage we filter out shape preserving

transformations with respect to a given fixed world coordinate system.
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6.3 Surface representation

Removing location and scale: A given facial point cloud Γ = {p1, · · · , pn},

with pi ∈ R
3, is centred to zero mean and unit norm as follows:

Γ =

{
p1 − p̄

h
, · · · ,

pn − p̄

h

}

, (6.1)

where p̄ = 1
n

∑n
i pi, and h =

√∑n
i ‖pi − p̄‖

2
2.

Filtering rotation: The head orientation of a normalized facial point cloud Γ

is aligned with an arbitrarily selected reference face, using the Iterative Closest

Point (ICP) algorithm. We note that ICP gives a reasonable result only when

the point cloud is a segmented and hole free facial data. Subsequently, singular

value decomposition (SVD) is used for estimating the coordinate orientation of

the reference face and the given face to further refine the alignment. We again

stress that the data should be described from a fixed reference coordinate system

for the representation to be meaningful.

Facial surface decomposition: We first select the staring point of the facial

curves ps as the tip of the nose; this is mainly because it is relatively easer

to estimate. The estimation is done by selecting the point with a maximum

component in the direction of the eigenvector with the smallest eigenvalue. As

such the estimated nose tip point is given as

ps = argmax
∀p∈Γ

〈Pj, p〉, (6.2)

where Pj denotes the eigenvector with the smallest eigenvalue while; the eigen-

vectors and eigenvalues are computed using SVD on the normalized facial data.

Subsequently, let Pt be the tangent plane at p
s with b1 and b2 as its orthonormal

basis, see Figure 6.2a. Then for some θ ∈ [0, 2π], a facial curve on the surface Γ

is given as follows

Γ(θ) = {p ∈ Γ |(R(θ)× b1) · (p− p
s) = 0

∧ ((R(θ)× b2) · (p− p
s) > 0)}, (6.3)

where R is a rotation matrix about the normal vector of Pt, see Figure 6.2a.

Furthermore, a given facial curve can be parametrized by r ∈ [0, h], where h
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is the mean radius of the surface projection on to the rotation plane. Conse-

quently, the parametrization of the full facial surface is given by Γ(r, θ) such that

Γ(0, θ) = pr, ∀θ. Note that we can further define, ξ on r to further approximate

each curve by a set of z discrete points, see Chapter 3. The parametrization can

then be used to extract a set of curves by defining the values of θ and ξ.

In Subsection 6.3.1, we propose to represent face and facial expressions as a

set of curves represented with the proposed method, and facial expression as the

left action of a direct product Lie group on the surface.

6.3.1 Face representation

Let Υi = {c̃1, · · · , c̃k} be a set of k facial curves sampled from a facial surface Γ

as described in Section 6.3. Let (Cz)
k be the set of all possible k facial curves

approximated z points. Subsequently, given the curve representation discussed

in Chapter 3, a straightforward representation of Υi is to take the direct product

of the proposed representation (3.14) which defines the following mapping from

(Cz)
k to a high dimensional Lie group as

F : (Cz)
k → (SE(3)z)k (6.4)

such that

D = F(Ψi) = (f(c̃1), · · · , f(c̃k)) = (G1, · · · , Gk). (6.5)

The inverse of the mapping function is given as

F
−1(D) = {f−1(G1), f

−1(G2), · · · , f
−1(Gk)}, (6.6)

where f−1(·) is as defined in (3.20). The geodesic path Λ(t) and distance dF

between two facial representations, F(Υ1) and F(Υ2), are given by direct products

using (3.48) and (3.49), respectively. Specifically,

Λ(t) = (ζ1(t), · · · , ζk(t)), (6.7)

see Figure 6.4, and the distance dF is defined as

dF (F(Υ
1),F(Υ2)) = (d(G1

1, G
2
1)

2 + · · ·+ d(G1
k, G

2
k)

2)1/2. (6.8)
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6.3 Surface representation

6.3.2 Expression representation

Similar to the single curve deformation, a deformation between two facial rep-

resentations F(Υ1) and F(Υ2) is given by the action of the group on itself. A

deformation that acts from the left is

D
L = F(Υ2)F(Υ1)−1. (6.9)

Alternatively, a deformation that acts from the right is

D
R = F(Υ1)−1

F(Υ2), (6.10)

where F(Υ)−1 = (f(c̃1)
−1, · · · , f(c̃k)

−1), f(·)−1 is element wise matrix inversion

as is given in (3.20) in Chapter 3.

In general, a left action of a given group G on a set Y is given as G× Y 7→ Y .

The action is said to be regular if for every x, y ∈ Y there exists exactly one

g ∈ G such that gx = y. In our case, Y is the group G itself, hence (6.9) is a

regular action. To see this fact, consider F(Υ1),F(Υ2) ∈ (SE(3)z)k such that

D
L
F(Υ1) = F(Υ2). (6.11)

Subsequently, let us assume that there is another DL
2 6= DL that satisfies the

condition DL
2F(Υ

1) = F(Υ2). In that case,

D
L
F(Υ1) = D

L
2F(Υ

1), (6.12)

since (SE(3)z)k is a group it implies DL = DL
2 . Hence, given representation of

a face with a neutral expression F(ΥN) and a non-neutral expression F(ΥE), we

can uniquely identify a deformation due to the non-neutral expression as

DE = F(ΥE)F(ΥN)
−1. (6.13)

Thus, we use DE to represent a facial expression irrespective of subject specific

facial shapes. Consequently, the proposed facial expression representation is com-

plete, i.e., a given facial deformation can only be identified by a unique group

element, see Chapter 2. However, the uniqueness of the facial expression is con-

ditioned on the knowledge of the surface parameters, (ξ, θ). Nevertheless, similar

to curved shapes the parametrization of a facial surface is not usually known a

priori, unless there exists manually annotation of the facial points. As a result, in

Section 6.4 we discuss a restricted version of the parameter estimation problem

for facial surfaces.
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6. 3D FACIAL EXPRESSION ANALYSIS

Figure 6.3: Commutative diagram. Deformation between two curves is rep-

resented in terms of the deformation between previously selected curves. This

formulation is used to estimate curve correspondence via dynamic programming.

6.4 Curve correspondence

The proposed facial expression representation assumes the parametrization of

two different faces to be optimal when factoring deformations (6.13). In practical

terms, this means the index of a curve that passes through a particular region

of the mouth in F(ΥN) is assumed to correspond with the index of a curve that

covers the same mouth region in F(ΥE). In such a case, the factored expres-

sion reflects the deformation of a curve due to the observed expression. Such

an assumption, however, is violated when there is a significantly large nonlinear

deformation between faces, see Figure 6.4. Consequently, in case of large nonlin-

ear deformations, the factored expression includes deformations that reflect the

curve mismatch rather than the observed expression. In this section, we present

a cost functional that emulates the area preserving curve parametrization (4.16)

for matching facial curves optimally and discuss a dynamic programming based

solution.

6.4.1 Cost of mismatching curves

Let θ : [0, k] → [0, 2π], where k is the number of curves. Similar to the curve

sampling functions ξ, see Chapter 3, we insist on the angular sampling θ to be

injective, monotonic, and we restrict its initial and last values to θ(0) = 0 and

θ(k) = 2π. Consequently, θ will define the angles used to sample facial curves

from a facial surface Γ. That is, for a given facial surface Γ, different families of
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Figure 6.4: Curve matching between two different faces with “surprise”, on the far

left, and “happy”, on the far right, expressions. The first row shows the geodesic

deformation between the faces when both faces are represented by 50 uniformly

sampled curves. The red curves are tracked along the deformation to illustrate

the mismatch. In the second row, the “surprise” face is represented by 50 uni-

formly sampled curves while the “happy” faces is optimally sampled via dynamic

programming, see Section 6.4. The cost matrix shows three solutions for different

weighting factors–the blue region is the feasible set defined by the sectors size. The

red curve is the optimal solution for α = 0 and λ = 1, the green path is optimal

for α = 1 and λ = 0, finally the yellow path is optimal for α = 1 and λ = 1, the

second deformation is based on the yellow path.

107



6. 3D FACIAL EXPRESSION ANALYSIS

curves Γ(ξj, θi) are obtained for different values of i and j. Subsequently, for a

fixed arc length based uniform curve parametrization ξ∗, we define the space of

deformations between two facial surfaces Γ1 and Γ2 as

Ω = {DR|∃θi, θj : F(Γ
1(ξ∗, θi))D

R = F(Γ2(ξ∗, θj))}. (6.14)

Subsequently, the distance between two facial surface representations can be writ-

ten in terms of the parameters (θi, θj) as

min
θi,θj

dF (F(Γ
1(ξ∗, θi)),F(Γ

2(ξ∗, θj))). (6.15)

Next, using the left invariance property of the distance metric between curves,

see Section 3.4, we write (6.15) as

min
θi,θj

dF (F(Γ
1(ξ∗, θi)),F(Γ

2(ξ∗, θj))D
R) = min

θi,θj
dF (e,D

R), (6.16)

where DR = F(Γ1(ξ∗, θi))
−1F(Γ2(ξ∗, θj)) and e is the identity in (SE(3)z)k. Intu-

itively, the functional given in (6.16) attempts to find the least costly deformation

from Ω, see (6.14). In effect, optimal curve parametrizations of the faces, θi and

θj. However, our definition of Ω permits angular samplings that does not pre-

serve geometric properties, e.g., volume of the face with respect to its support

plane. Thus, a solution parametrization might give the least costly deformation,

according to (6.16), but can deviate from the target shape, see Figure 6.4. To

address this problem, we add a term that penalizes parametrizations that do not

preserve a particular geometric property; in our case volume.

The enclosed volume of a face Γ, parametrized with r and θ, with respect to

the rotation plane is given as

Vol(Γ(r, θ)) =

∫ 2π

0

∫ h

0

rΓ(r, θ) dr dθ. (6.17)

Subsequently, for a given θ and uniform sampler ξ∗ the volume is approximated

as

Vol(Γ(ξ∗, θ)) ≈
k−1∑

j=1

∆θ(j)
z−1∑

i=1

h∆Γ(θ(j), ξ∗(r(i)))∆r(i), (6.18)
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where ∆ denotes the forward difference. As a result, the approximate volume

given in (6.18) depends on θ, since ξ∗ is fixed for simplicity, see (6.14). Assuming

a uniform angular sampler θ∗ preserves volume, the objective functional given

in (6.16) is penalized by the difference between the volume of the face due to a

candidate solution sampler and a uniform sampler, which is formulated as

argmin
θi,θj

{α× dF (e,D
R)

+ λ× |(Vol(Γ1(r, θi))− Vol(Γ1(r, θ∗)))|

+ λ× |(Vol(Γ2(r, θj))− Vol(Γ2(r, θ∗)))|}, (6.19)

with λ and α as scalar weighting terms. Thus, a large value of λ encourages

volume preserving solutions, while a large value of α encourages deformation

optimizing solutions.

6.4.2 Dynamic programming based solution

In Subection 6.4.2, we reformulate (6.19) as a dynamic optimization problem. To

simplify the computational cost, we fix the angular sampler θ of the surface Γ1

to a uniform sampler and optimize for the sampler of the other surface Γ2. As a

result, (6.19) is simplified to

argmin
θj

{α× dF (e,D
R)

+ λ× (Vol(Γ2(ξ∗, θj))− Vol(Γ2(ξ∗, θ∗)))}, (6.20)

Next, we write (6.20) as a recursive function to estimate its solution via dynamic

programming. To elaborate, we first write a general form of a facial surface

decomposition as

Γ2(ξ∗, θ) = {x1, · · · , xk} : xj ⊂ Uj. (6.21)

The Uj ⊂ Γ2 are sectors of the face, i.e., subsets of the facial surface from which

xj can take its values. Hence, the sector size introduces a constraint in the

search space of each xj. In this work, we approximate the sectors Uj by a fixed

109



6. 3D FACIAL EXPRESSION ANALYSIS

size sliding window. Subsequently, we can rewrite the first term of (6.20) as a

dynamic optimization problem as

dF (e,D
R)2 = α×

k−1∑

j=1

φj(xj, xj+1). (6.22)

Given two successive uniformly sampled curves of Γ, c̃∗j and c̃∗j+1, we define φj

in (6.22) as

φj(xj, xj+1) = d(e,m−1(DR
j )m

∗)2, (6.23)

such that

m−1 = f(c̃∗j+1)
−1f(c̃∗j), (6.24)

and

m∗ = f(xj)
−1f(xj+1). (6.25)

Hence, DR
j+1 = m−1(DR

j )m
∗, see Figure 6.3. Similarly, the remaining term

of (6.20) can be written as a recursive function with optimal substructure as

λ×

k−1∑

j=1

(Vol(Γ2(ξ∗, θ))
∣
∣
xj+1

xj
− Vol(Γ2(ξ∗, θ∗))

∣
∣
c̃∗j+1

c̃∗j
). (6.26)

Consequently, by writing (6.20) in terms of (6.22) and (6.26) we formulate the

objective functional as a dynamic optimization problem and estimate the solution

via dynamic programming, see Figure 6.4. To that end, we assume that Γ1

is approximated by k uniformly sampled curves, while Γ2 is approximated by

K ≫ k curves. In effect, the goal is to sample k curves from Γ2 such that the

deformation from Γ1 to Γ2 is least costly, according to (6.20) , while preserving

the volume of Γ2. In order to get a monotonic and injective sampler, we impose

further restriction on the values xj can take. As such, let Vol|[0,n] be the volume

of the facial surface sector up to c̃2n, where c̃
2
n is a facial curve of Γ2. Subsequently,

if xj+1 = c̃2n then we will only consider xj = c̃2a ∈ Uj : Vol|[0,a] < Vol|[0,n]. The

proposed curve correspondence estimation is summarized in Algorithm 3. Note

that the cost of selecting a curve for the jth position and its optimizer are denoted
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Algorithm 3: Optimal sampling of curves from Γ2

Data: Γ(θ∗),Γ
2

Initialization: s = |U |, k = |Γ(θ∗)|, j = 1, O1(1) = c̃21;

for j < k do

for xj+1 ⊂ Uj+1 do

U = {c̃∗a ∈ Uj : (Vol|[0,a] < Vol|[0,j+1])};

for xj ⊂ U do

Cj+1(xj+1) = ρi(xj, xj+1) + Cj(xj);

end

Cj+1(xj+1) = minxj∈Uj
Cj+1(xj+1);

Oj+1(xj+1) = argminxj∈Uj
Cj+1(xj+1);

end

end

q = k − 1;

for q > 1 do

c̃2q = Oq+1(xq+1);

end

Result: Γ∗ = {c̃21, · · · , c̃
2
k}
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by Cj(xj) and Oj(xj) as is discussed in Subsection 4.4.2 in Chapter 4. For a fixed

sector size s, the time complexity of the estimation is O(s2k).

Limitations: The proposed curve correspondence estimation is done in a re-

stricted way, i.e., we are optimally sampling curves and leaving the point sam-

pling to uniform sampling, ξ∗. Hence the solution to the objective functional is a

curve in the search space. We believe a conjugate optimization of both curve and

point sampling is more reliable and complete than optimal curve sampling, which

would give a surface as a solution. However, it is highly taxing in computational

time, see Figure 6.5b. Moreover, the weighting term λ on the constraint of the ob-

jective functional is tuned and not estimated, see Figure 6.6 and Figure 6.7. One

possible solution for this is to consider a combination of dynamic programming

and Lagrangian multiplier methods [Bel56].

6.5 Modelling expressions

The presented approach represents facial expressions in a nonlinear space, a ma-

trix Lie group. However, one can easily linearize a representation of a given ex-

pression DE by projecting it to the group’s Lie algebra, which is a vector space.

To define the projection we first define the mapping of a matrix g ∈ SE(3) to its

Lie algebra se(3) by a matrix logarithm as

log : SE(3) 7→ se(3), (6.27)

see Appendix A for further details. Subsequently, by taking the direct prod-

uct of (6.27) we define the mapping of an expression DE to the Lie algebra

as L(DE) = ((log)z)k(DE). Under such linearization, an expression will be

(3 + 3) × (#points − 1) × (#curves) dimensional vector, where the threes are

counts of the independent components of the skew-symmetric matrix and the

translation. Alternatively, an expression represented on the Lie algebra can be

mapped back to the Lie group using a direct product of matrix exponentials

defined as

exp : se(3) 7→ SE(3), (6.28)
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6.5 Modelling expressions

(a) Cost Matrix

(b) Geodesic deformation

Figure 6.5: Curve matching. In (a) a cost matrix with three solutions is shown

that correspond to the three deformations in (b). In all the deformations, the first

faces are approximated by 50 uniformly sampled curves, i.e., they are Γ, while

the last faces are sampled optimally, i.e., they are Γ∗. Pair of facial curves are

highlighted in red in all of the deformations to illustrate the impact of the matching.

The deformation in the first row is according to the red path in the cost matrix

which is the solution when α = 0 and λ = 1, that is when both faces are sampled

uniformly. The deformation in the second row is based on the green path which

is the solution when α = 1 and λ = 0, that is when there is no volume based

constraint. The last deformation is based on the yellow path which is computed

for α = 1 and λ = 4. In this particular example, regardless of the good curve

matching solution given by the yellow path, the deformation of the lower lip is not

smooth. This is mainly because we are only matching curves and disregarding point

matching.
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α = 1,

λ = 1

α = 1,

λ = 2

α = 1,

λ = 4

Figure 6.6: Curve matching for a relatively small deformation under three differ-

ent λ values. Note that, the impact of λ is minimal on the matching results since

the deformation is relatively small.

α = 1,

λ = 1

α = 1,

λ = 2

α = 1,

λ = 4

Figure 6.7: Curve matching for a relatively large deformation under three different

λ values. Contrary to Figure 6.6, the value of λ has a significant impact on the

matching result since the deformation is relatively large.
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(a) S = 0 (b) S = 0.5 (c) S = 1 (d) S = 2

Figure 6.8: Given a vector form of an expression L(DE), the figure shows the

action of E(S ×L(DE)) on two different neutral faces for different scales S. In (a)

the scale S = 0, thus the face remains neutral.

we use E to denote the direct product of (6.28). Thus E(L(DE)) = DE. Conse-

quently, using L one can train linear discriminate models, e.g., SVM, on the Lie

algebra. Alternatively, a linear combination or scaling of a linearized expression

can be mapped back to the Lie group using E, see Figure. 6.8.

6.6 Experiments

In Section 6.6, we evaluate the proposed approach on the BU-3DFE dataset [YWS+06]

for facial expression recognition. The dataset contains a neutral face and 6 differ-

ent expressions, anger (AN), happiness (HA), surprise (SU), fear (FE), sadness

(SA), and disgust (DI). The expressions are collected from 100 subjects (56 fe-

male and 44 male) of different race and age. Each expression has different levels

of intensity, ranging from 1 to 4; the most intense one is labelled 4. In what

follows, we detail the experimental setup along with results and comparisons.
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6.6.1 Experimental setup

There are usually three main experimental scenarios that are performed using

BU-3DFE dataset for evaluating a modelling approach in expression recognition.

The scenarios are summarized as follows:

i. Select 60 subjects, split the dataset into 10 sections and use the 54 out of

60 for training and the remaining 6 for testing.

ii. Select 60 subjects, split the dataset into 10 sections and use the 54 out of

60 for training and the remaining 6 for testing. Repeat the experiment 100

times.

iii. Randomly select 60 subjects, split the dataset into 10 sections and use

the 54 out of 60 for training and the remaining 6 for testing. Repeat the

experiment 100 times. Except in this case the subjects are randomly select

in each round.

In this thesis, we are conducting experiment type (iii) 20 times instead of 100.

Consequently, we will mainly compare our approach with methods evaluated with

experimental type (ii) and experimental type (iii).

Given neutral faces of subjects, we duplicate the experimental scenario dis-

cussed in [BADDB11], experimental scenario (iii). We select 60 subjects randomly

with all the 6 expressions in two intensities (3 and 4). Out of the 60 subjects 54

subjects are selected as a training data and the left out 6 are reserved for test-

ing. The process is repeated 10 times by dissecting the 60 subjects into different

training and testing groups, similar to 10 fold cross validation. Next, the overall

process is repeated 100 times. In our case, we repeat the overall process 20 times.

Hence, we perform, in total, 200 times training and testing.

Once we randomly select 60 subjects for 20 times, we prepare the selected

dataset under different parameters and curve sampling settings. In all facial sur-

face representations, we fix the number of points representing curves z = 50.

However, we prepare all facial surfaces for two different numbers of curve values,

i.e., for k = 50 and k = 100. We call these datasets D-1 and D-2, respectively.

Subsequently, for both datasets, D-1 and D-2, we select the k curves optimally,
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(a) Expression residue (b) Our approach

Figure 6.9: Two-dimensional expression space computed from three expressions

with PCA. (a) PCA on expressions extracted as expression residues. (b) PCA on

the Lie algebra of expressions extracted with our approach.

as described in Section 6.4, and uniformly as described in Section 6.3. Hence in

total, we prepare 4 datasets, i.e., D-1-U, and D-1-O (D-1 with uniform and opti-

mal curve sampling, respectively), and D-2-U and D-2-O (D-2 with uniform and

optimal curve sampling, respectively). In the optimal sampling case, all neutral

faces are optimally sampled to k curves with respect to a randomly selected and

uniformly sampled neutral reference face. Next, faces with expression are opti-

mally sampled with respect to their respective optimally sampled neutral faces.

In all of the optimal sampling α = 1 and λ = 0.7. For every training and test-

ing phase, SVM with linear kernel is trained on the Lie algebra, see Section 6.5.

Classification is done on the Lie algebra in one-vs-all classification scenario.

6.6.2 Linear versus the proposed expression space

Most methods, evaluated on the BU-3DFE dataset, are based on features that are

extracted from annotated/estimated landmark regions. As a result, to demon-

strate the representativeness of our approach, in comparison with landmark-free

linear expression representation, we replicate a simple PCA based expression rep-

resentation as described in [AOBM09]. To build a PCA based expression space,
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we take facial surfaces that are aligned and parametrized as described in Sec-

tion 6.3. Facial expressions are then decoupled from neutral faces by taking the

point-to-point difference, which gives the expression residue. That is for a neutral

face ΓN and a face with an expression ΓE, the expression residue Eres = ΓE−ΓN .

Subsequently, the expression space is estimated with a subspace spanned by 30

principal components computed from the expression residues with PCA. All ex-

pression residues are then projected on to the expression space where SVM is

used, with linear kernel, to train and classify expressions in a experimental sce-

nario (iii) which is described in Subsection 6.6.1. Note that the expression space

estimation is done in each training and testing phase. Recognition based on ex-

pression residue scored 43.79 % average accuracy. In comparison, our approach

performs much better, see Table 6.1. The main reason for such a large difference

in performance is the Lie group based expression representation which disentan-

gles different expressions when mapped to the Lie algebra. To illustrate this, we

compute a two-dimensional, with PCA, expression space of anger, happiness, and

sadness from the whole BU-3DFE dataset with 3 and 4 intensities. As shown

in Figure. 6.9, expressions extracted with our approach are more separately clus-

tered as compared to expression residues.

6.6.3 Results

In Subsection 6.6.3, we present results of our approach and existing expression

recognition methods that follow the same experimental scenario as [BADDB11].

As shown in Table 6.1, our approach outperformed state of the art method [BADDB11],

when an SVM is trained on expressions extracted from D-2-O dataset, see Subsec-

tion 6.6.1. The lowest accuracy rate of our approach is on expressions extracted

from D-1-U. However, accuracy rate improves as the number of curves is in-

creased, see Table 6.2 and Table 6.4. This is mainly because a dense set of curves

approximate the facial surface more closely. Consequently, subtle details of an

expression are more likely to be captured from a dense set of curves than sparse.

Additionally, optimal sampling of the curves improves performance, regardless of

the curve number, see Table 6.3 and Table 6.5. As argued in Section 6.4, ex-

pressions extracted from optimally sampled curves are more representative than
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Methods Landmarks Expression features Classifier
Performance

i ii iii

[WYWS06] Yes Primitive surface features LDA 83.60% 61.79% -

[SD07] Yes Distance of landmarks MLP 91.30% 67.52% -

[GWLT09] No Region based depth difference SVM - 76.22% -

[BDBP+10] Yes SIFT features SVM - - 77.54%

[BADDB11] Yes SIFT features SVM - - 78.43%

[ZLC+13] Yes Mean curvature + Conformal factor SRC - - 70.93%

Ours on D-1-U No No features SVM - - 76.45%

Ours on D-1-O No No features SVM - - 77.91%

Ours on D-2-U No No features SVM - - 78.14%

Ours on D-2-O No No features SVM - - 79.16%

Table 6.1: Comparison between performances of the proposed approach and re-

cent results. We highlight the top score at the bottom.

uniformly sampled ones. Compare Table 6.2 against Table 6.3, and Table 6.4

against Table 6.5. Nevertheless, in all our experiments, fear is largely confused

with hapiness.

6.7 Conclusion

In Chapter 6, we introduced a new deformation-based facial expression represen-

tation. The representation is based on a mapping function that identifies a set of

facial curves with an element of a high dimensional matrix Lie group. Further-

more, an algorithm for facial curve correspondence estimation is proposed. To

validate the proposed representation, SVM is trained on the Lie algebra of the

expression representation space. The results outperformed state of the art meth-

ods evaluated on the BU-3DFE dataset. Nevertheless, there are areas where the

approach can be improved. First, accurate estimation of world coordinate sys-

tem (alignment) impacts the performance of the proposed representation, hence

improving the coordinate alignment of a dataset is important, e.g., semi-rigid

ICP. Second, improving the time complexity of the correspondence estimation

algorithm is very important so that correspondence between faces can be com-

puted without restriction, i.e., correspondence estimation for both curves and

points. Such a solution can, theoretically, lead to a dense point correspondence
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% AN HA SU FE SA DI

AN 67.96 1.17 0.58 1.50 18.67 10.12

HA 0.04 95.92 1.08 2.71 0.00 0.25

SU 0.00 1.04 95.83 1.25 1.42 0.46

FE 5.42 22.21 10.25 47.75 8.21 6.17

SA 12.21 2.04 2.58 3.79 78.83 0.54

DI 6.58 6.21 6.46 4.92 3.42 72.42

Average= 76.45%

Table 6.2: Confusion matrix on expressions extracted from faces with

uniformly sampled 50 curves (D-1-U).

% AN HA SU FE SA DI

AN 65.83 0.83 0.00 3.33 19.17 10.83

HA 0.00 95.00 2.50 0.83 0.00 1.67

SU 0.00 0.83 95.00 1.67 1.67 0.83

FE 3.33 15.00 10.83 56.67 9.17 5.00

SA 13.33 0.83 2.50 3.33 80.00 0.00

DI 5.00 8.33 6.67 3.33 1.67 75.00

Average= 77.91%

Table 6.3: Confusion matrix on expressions extracted from faces with

optimally sampled 50 curves (D-1-O).
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% AN HA SU FE SA DI

AN 65.83 0.83 0.00 0.83 22.50 10.00

HA 0.00 97.50 1.67 0.83 0.00 0.00

SU 0.00 0.83 94.17 1.67 2.50 0.83

FE 5.83 19.24 10.83 54.64 4.17 5.00

SA 15.83 0.83 1.67 3.33 77.50 0.83

DI 4.17 7.50 3.33 3.33 2.50 79.17

Average= 78,14%

Table 6.4: Confusion matrix on expressions extracted from faces with

uniformly sampled 100 curves (D-2-U).

% AN HA SU FE SA DI

AN 72.50 0.00 0.83 4.17 16.67 5.83

HA 0 93.33 0.83 5.00 0.00 0.83

SU 0.00 0.83 95.83 2.50 0.83 0.00

FE 5.00 23.33 5.83 50.83 7.50 7.50

SA 13.33 1.67 2.50 1.67 80.83 0.00

DI 3.33 5.00 5.83 1.67 2.50 81.67

Average= 79,16%

Table 6.5: Confusion matrix on expressions extracted from faces with

optimally sampled 100 curves (D-2-O).
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estimation between faces without the need for training dataset.

122



Chapter 7

Conclusion and outlook

7.1 Conclusion

In this thesis, we have introduced a novel shape representation framework that

leads to closed form geodesic distance and geodesic deformation equations, see

Chapter 3. We have formalized optimal parameter estimation in terms of op-

timal point sampling. Subsequently, we have introduced a linearity assumption

into the possible reparameterization functions and estimated the optimal param-

eters using a nested loop brute force search. Later on, a more general class of

reparameterizations are introduced by insisting on the preservation of a geometric

quantity, area, and the solutions are estimated using dynamic programming. In

both cases, we ensure a one-to-one point correspondence by restricting the search

space of optimal parameters to only injective and monotonic functions, which

is not the case in other infinite dimensional settings. Furthermore, we have in-

troduced a symmetric optimal parameter estimation by optimally sampling both

curve arguments with respect to one another instead of fixing one curve and

sampling the other, see Chapter 4.

In addition to providing a similarity measure between curved shapes, in Chap-

ter 5 we have shown that several parametric statistical models can readily be

adopted to the introduced curved shape representation space. Thereby, open-

ing the possibility of modelling the distribution of shape categories with a wide

range of variability. Such models can be used to explicitly model a specific shape
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category to later be used for recognition and simulation tasks. Finally, an appli-

cation of the introduced curved shape representation, apart from contour based

object recognition, is presented in face and facial expression analysis from 3D

point cloud data in Chapter 6.

Nevertheless, there are several potential directions to improve and generalize

the proposed curved shape representation approach and its application domains.

In Section 7.2, we present possible future work directions. Although several

application domains can be suggested without a substantial extension of what is

proposed here, we focus on those that we believe will have a significant impact

and require additional research.

7.2 Outlook

Although the proposed representation demonstrates reasonable accuracy in most

contour based object recognition problems, one can potentially generalize the

approach to handle a wide range of problems that are defined by a given objective

functional or by a given mathematical condition. Herein, we describe potential

directions to extend the proposed approach and provide a general sketch on how

the extension ideas can be incorporated with the proposed curve representation.

Constrained shape space and deformation: As indicated in Chapter 3,

constraints can be introduced into the curve representation space SE(n)z/SO∗(n).

For instance, consider a set of closed curves that have a constant enclosed area,

i.e. CA = {c̃ ∈ C : A(c̃) = K}, where K is a given scalar constant and A(·) is

an area function as defined in (4.12) in Chapter 4. Subsequently, one would like

to study the geodesic deformation and distance between shapes in CA in such a

way that the geodesic deformation preserves the defined constant area constraint.

Since CA is a subset of the set C, a geodesic equation and distance that preserve

the constraint are assumed to be more descriptive of the subset as opposed to a

the geodesic equation and distance functions defined in C.

In effect, the representation of the shapes in CA is a subset of the original

representation space SE(n)z/SO∗(n), if not a subgroup. As a result, solving for a
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geodesic curve and geodesic distance in the newly defined constrained represen-

tation space might not be as simple as it was in SE(n)z/SO∗(n). Even worse, the

constrained representation space might not be connected. However, transferring

constraints defined in C to the proposed curve representation space opens up the

possibility of studying different shape sets, defined by different constraints, exclu-

sively. Hence, the introduction of a constrained representation and deformation

are desirable properties, even if they might introduce computational overhead

and theoretical difficulties. Although the existence of a geodesic curve depends

on the particular structure of the constrained representation space, we can devise

an optimization problem to approximate the characteristics of a geodesic curve in

a constrained representation space. To that end, consider the following objective

functional for a constrained representation space defined by CA,

argmin
Φ

∫ √

〈Φ̇(t), Φ̇(t)〉Φ(t) + λ
∣
∣
∣
dA(f−1(Φ(t)))

dt

∣
∣
∣ dt, (7.1)

where λ is a scalar regularisation term, and f−1(·) is as defined in (3.20) in

Chapter 3. The sought after deformation equation is denoted by Φ(·) such that

f−1(Φ(0)) = c̃1 and f
−1(Φ(t)) = c̃2 for some c̃1, c̃2 ∈ CA. Note that, A(f−1(Φ(t)))

might not be equal to K, ∀t ∈ [0, 1], since the solution is an approximation. The

first term of (7.1) penalizes the cost of the deformation which is the same as the

optimization problem defined in (3.31), while the second term insists on keeping

the area of the curve c̃1 fixed while deforming. The solution for (7.1) can be

estimated iteratively, unlike the geodesic equation in SE(n)z/SO∗(n) which has

a closed form solution. Nevertheless, since (7.1) is being solved in the original

representation space SE(n)z/SO∗(n) we can initialize its optimization by (3.49).

In summary, one of the main potential future directions of the proposed ap-

proach is to study its generalization to various kinds of constrained shape sets

and their constrained representation space. Although computational taxing, we

expect a constrained representation to be geometrically true and descriptive of

the shape category in contrast to using a general representation space for describ-

ing a constrained family of curves. To the best of our knowledge, the problem of

representing and deforming constrained shapes has not been explored in any of

the earlier works.
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Optimal metric: The cost function for estimating optimal parameters, which is

defined in (4.14) in Chapter 4, is controlled by three parameters α, λ, and η. In

all of the experimental evaluations, the values of these free parameters are esti-

mated manually. However, one would assume that for different shape categories

the values of the parameters are different. For instance, one could interpret the

parameter η as elasticity constraint and since different shape categories exhibit

different elasticity characteristic, η can be seen as a category specific parame-

ter. Hence, these parameters should be estimated per shape category instead

of manual tuning. One possible solution for the estimation of category specific

parameters is to discretize the possible values of the parameters and estimate

the optimal value by a brute force searching. Since the free parameters are only

three, a discrete a brute force might not be as computationally taxing as in high

dimensional space. Alternatively, one can see (4.14) as defining a family of met-

rics that vary by their parameter values. Subsequently, the problem of parameter

estimation can be framed in terms of category specific metric learning.

In general, we believe that estimating the free parameters from a dataset will

lead to a performance boost in shape based object modelling and object recog-

nition. Furthermore, given the estimation of the free parameters, a semantic

association can be made between shapes that fail to achieve optimality under the

learned parameter values and unnatural deformations of the shape category. For

instance, one could associate suboptimal solutions to be caused by unnatural de-

formations of the shape category there by detecting a natural shape deformation,

e.g., articulation, from a deformation due to artefacts, e.g. occlusion. This, of

course, is assuming that the free parameters are estimated from an occlusion free

dataset.

Segmentation: Most of the applications discussed in this thesis are concerned

with object recognition from its contour or silhouette. However, the most ubiqui-

tous visual data is in the form of an image. Hence, one assumes a prior segmen-

tation or object contour detection procedure while designing a learning algorithm

based on the proposed representation framework. Nevertheless, the problem of

detecting the object’s silhouette from an image, which is broadly known as seg-

mentation, can potentially be framed as a problem of estimating an evolution
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equation of a curve represented by the proposed framework. Consequently, one

possible future research direction is to consider the segmentation of a given im-

age into two connected regions using the defined curved shape representation. To

that end, it is possible to adapt an optimization based approach that evolves a

given curve representation such that the curve divides an image into two con-

nected regions that exhibit a smooth color variation. In fact, there are several

kinds of energy functionals that are designed to estimate an image segmentation

into different regions, e.g., Geometric/Sobolev active contour models [You10a].

Nevertheless, an evolution equation of a curve, represented by the proposed

approach, has to allow global linear transformations as well as local. That is,

the starting point of a curve should not necessarily be fixed; it should be able to

translate and rotate. For instance, a potential evolution equations can take the

following form

f(c̃)i+1 = (GL
i ·Gi)f(c̃)i, (7.2)

where G ∈ SE(n)z such that GiG
−1
j = e, ∀i, j ∈ [1, z]. In other words, G repre-

sents the global linear transformation of the shape. Subsequently, it is possible to

design a functional, that takes a solution of the form (7.2), such that a suitable

energy functional, e.g., Mumford-Shah functional [TYW01, MS89], is minimized.

Pose estimation: Apart from deformation transporting and facial expression

representation, a factored deformation can be used to model one of the main

important variations of objects; variation due to pose. Although there is no reason

to expect object variation, due to pose, to form a subgroup in the representation

space, given a template shape it is possible to linearize its variations and model

it as a subspace or set of subspaces at the tangent space of the template shape.

For example, PCA can be used to model such variations, see Chapter 5. Such

a subspace can be used to simulate and recognize object variation due to pose

using subspace clustering algorithms [Vid11].

More interestingly, however, a linear predictor can be learned to estimate the

pose of an object, given its deformation from a template shape, and vice-versa,

estimate its deformation given a pose. To that end, let Tf(c̃t)V be the estimated
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subspace from a dataset that contains variation of the template shape f(c̃t) due to

different poses. Subsequently, if each of the template shape variations are labelled

with azimuth and elevation (θ, φ) then the label space is a sphere S2. Furthermore,

the labels can be linearized using the exponential maps, see Appendix A, to the

tangent space of the template label T(θt,φt)S
2. Finally, if we assume that the data

generating function, the function that maps pose to a shape deformation, is an

immersion defined as

F : S2 → SE(n)z/SO∗(n), (7.3)

then its Jacobian at (θt, φt) is an injective linear map defined as

D(θt,φt)F : T(θt,φt)S
2 → Tf(c̃t)V. (7.4)

Hence, the problem of deformation estimation from the pose of the object is for-

mulated as estimation of (7.4) from the linearized dataset and pose labels. Addi-

tionally, the estimation of (7.4) can be tied with the subspace Tf(c̃t)V estimation

using what are known as supervised dimension reduction methods [RGC+08].

Furthermore, we believe (7.4) can provide a reasonably accurate result, assum-

ing the deformations of the template shape are factored from a dataset that is

optimally matched. Such optimal matching is often difficult in application do-

mains where an image might be composed of more than one object often with

occlusion. Consequently, the main work, here, is to consider simple object pose

models like (7.4) in conjugation with additional information like colour.
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Appendix A

Exponential maps

Here we briefly cover the notion of exponential map in Lie groups. In all sub-

sequent discussions G denotes a given matrix Lie group and g denotes its Lie

algebra.

Consider a given vector V that is an element of a Lie algebra g. Subsequently,

we want to compute a geodesic curve that goes through the group identity, e, and

follows the direction of V ; the scale of V determines the length of the geodesic

curve with its respective metric. Such a curve is given by what is know as expo-

nential map and is written as

exp(tV ) = g(t), s.t g(t) ∈ G, (A.1)

where t ∈ R denotes the scale of the vector V . The exponential map is not

necessarily defined over all of the Lie algebra, unless the group is compact or the

algebra is metrically complete. Moreover, the notion of exponential maps is not

limited to Lie groups, it can be defined in any Riemannian manifold with a given

connection. However, in case of matrix Lie groups we can use the left or right

translation invariance as a connection. For instance, a left translation invariant

vector filed is defined as

dg(t)

dt
= DeLg(t)V, (A.2)

where DeLg(t) denotes the derivative of the left translation map at e– the left

translation is defined as Lg(t) : g 7→ g(t)g, ∀g ∈ G. As a result, exponential
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maps defined using left translation invariance also define what are known as 1-

parameter subgroups. That is

exp((t1 + t2)V ) = exp(t1V ) exp(t2V ). (A.3)

Note that exp(−tV ) = exp(tV )−1. In a matrix Lie group, maps of the form (A.1)

coincide with the exponentiation of a matrix defined as

exp(V ) =
∞∑

i=0

V i

i!
. (A.4)

Furthermore, since matrix exponentiation is an invertible map one can define a

map from the 1-parameter subgroups back to the Lie algebra g as follows

log(exp(tV )) = tV. (A.5)

Lie bracket: Most matrix Lie groups do not commute, i.e. gh 6= hg. A measure

of the noncommutativity is defined by what is known as commutator: [g1, g2] =

g−1
1 g−1

2 g1g2, for some g1, g2 ∈ G. A similar notion can be defined for vector fields

X, Y that are defined as

X : G→
⊔

∀g∈G

TgG, (A.6)

where
⊔

denotes a disjoint union. In general, vector fields can be understood

as differential operators that takes a smooth function f , defined on G and takes

values in R, and gives its derivative. In such a case, the measure of the commu-

tativity is given as

[X, Y ](f) = X(Y (f))− Y (X(f)), (A.7)

and is known as Lie bracket of the vector fields evaluated for f . For instance,

consider the vector field defined by exp(tX) and exp(tY ). The Lie bracket of the

vector fields is defined by the following at t = 0 or at the identity.

[X, Y ] =
d2

dt2
exp(tX) exp(tY ) exp(−tX) exp(−tY ), (A.8)

observe the striking similarity of the Lie brackets with how the commutator is

defined.
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Computing optimal rigid

transformation

The optimal rotation matrix, i.e., the one closest to the identity amongst all pos-

sible rotations, between two vectors p1, p2 ∈ R2 can be computed by minimizing

min
R∈SO(2)

‖Rp1 − p2‖
2
2. (B.1)

The solution for (B.1) is unique unless the points are collinear [Kab76]. Fur-

thermore, in R2 the rotation plane is known and is fixed. Subsequently, the

solution of (B.1) is given as R = V UT such that the covariance of the points is

C = pT1 p2= UΣV T . However, the solution might include a reflection and needs

to be rectified, see [Kab76, Kan94]. Nevertheless, in a high dimensional space,

rotation is not the same as coordinate orientation. Moreover, the rotation plane

between two points is not known. As a result, (B.1) does not necessarily give a

high-dimensional optimal rotation matrix that preserves the coordinate orienta-

tion.

Alternatively, we can compute the rotation between pn1 , p
n
2 ∈ Rn by estimating

the rotation plane first and then using (B.1). The rotation plane is estimated

by computing the main principal components, denoted by B, of the data set

(pn1 and pn2 ) using SVD (singular value decomposition)– the plane spanned by

the two eigenvectors with the largest eigenvalues is taken as the rotation plane.

Next, using (B.1) optimal rotation R from p1 to p2– these are the orthogonal
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projections of pn1 and pn2 onto the estimated rotation plane– is computed. Finally,

we represent the computed R ∈ SO(2) in homogeneous coordinates as Rh ∈

SO(n) and conjugate it with the basis transformation to get its equivalent in

our original coordinate frame as R = BRhB
T . Hence, R gives us coordinate

preserving optimal rotation matrix.

Once the optimal rotation matrix from pn1 to pn2 is computed, the optimal

translation vector is computed directly as

t = pn2 − Rpn1 . (B.2)
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Computing large deformation metric mappings via geodesic flows

of diffeomorphisms. International journal of computer vision,

61(2):139–157, 2005. 22

[Boo84] Fred L Bookstein. A statistical method for biological shape com-

parisons. Journal of Theoretical Biology, 107(3):475–520, 1984. 14

[Boo86] Fred L Bookstein. Size and shape spaces for landmark data in two

dimensions. Statistical Science, pages 181–222, 1986. 14

[Boo94] Fred L Bookstein. The morphometric synthesis: a brief intellectual

history. Frontiers in Mathematical Biology, pages 212–237, 1994. 14

135



BIBLIOGRAPHY

[BR+71] Robert E Blackith, Richard Arthur Reyment, et al. Multivariate

morphometrics. 1971. 14

[BVS+96] Marian Stewart Bartlett, Paul A Viola, Terrence J Sejnowski, Beat-

rice A Golomb, Jan Larsen, Joseph C Hager, and Paul Ekman.

Classifying facial action. Advances in neural information processing

systems, pages 823–829, 1996. 100

[CAS92] Isaac Cohen, Nicholas Ayache, and Patrick Sulger. Tracking points

on deformable objects using curvature information. In Computer

Vision ECCV’92, pages 458–466. Springer, 1992. 54

[CHFT06] Ya Chang, Changbo Hu, Rogerio Feris, and Matthew Turk. Mani-

fold based analysis of facial expression. Image and Vision Comput-

ing, 24(6):605–614, 2006. 101

[CTCG95] Timothy F Cootes, Christopher J Taylor, David H Cooper, and

Jim Graham. Active shape models-their training and application.

Computer vision and image understanding, 61(1):38–59, 1995. 23

[CVTV05] Ya Chang, Marcelo Vieira, Matthew Turk, and Luiz Velho. Au-

tomatic 3D facial expression analysis in videos. In International

Workshop on Analysis and Modeling of Faces and Gestures, pages

293–307. Springer, 2005. 100

[DADS10] Hassen Drira, Boulbaba Ben Amor, Mohamed Daoudi, and Anuj

Srivastava. Pose and expression-invariant 3D face recognition using

elastic radial curves. In British machine vision conference, pages

1–11, 2010. 3, 101

[DAO15] Girum Demisse, Djamila Aouada, and Björn Ottersten. Template-

based statistical shape modelling on deformation space. In 22nd

IEEE International Conference on Image Processing, 2015. 82

136



BIBLIOGRAPHY

[DAO16] Girum Demisse, Djamila Aouada, and Björn Ottersten. Similarity

metric for curved shapes in Euclidean space. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), June

2016. 42

[DAO17] Girum G Demisse, Djamila Aouada, and Bjorn Ottersten. Defor-

mation based curved shape representation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2017. 42

[DBAS+13] Hassen Drira, Boulbaba Ben Amor, Anurag Srivastava, Meroua

Daoudi, and Rim Slama. 3D face recognition under expressions,

occlusions, and pose variations. Pattern Analysis and Machine In-

telligence, IEEE Transactions on, 35(9):2270–2283, 2013. 101

[dCV92] Manfredo Perdigao do Carmo Valero. Riemannian geometry. 1992.

37

[DM98] Ian L Dryden and Kanti V Mardia. Statistical shape analysis, vol-

ume 4. Wiley Chichester, 1998. 3, 26, 82

[DT08] Mohammad Reza Daliri and Vincent Torre. Robust symbolic repre-

sentation for shape recognition and retrieval. Pattern Recognition,

41(5):1782–1798, 2008. 68, 95

[DT10] Mohammad Reza Daliri and Vincent Torre. Shape recognition based

on kernel-edit distance. Computer Vision and Image Understanding,

114(10):1097–1103, 2010. 95

[Dur10] Rick Durrett. Probability: theory and examples. Cambridge univer-

sity press, 2010. 76, 78

[D92] W Thomspon DArcy. On growth and form: The complete revised

edition, 1992. 22

[EF77] Paul Ekman and Wallace V Friesen. Facial action coding system.

1977. 100

137



BIBLIOGRAPHY

[FB12] Oren Freifeld and Michael J Black. Lie bodies: A manifold repre-

sentation of 3D human shape. In Computer Vision–ECCV 2012,

pages 1–14. Springer, 2012. 43

[FFFP07] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative vi-

sual models from few training examples: An incremental Bayesian

approach tested on 101 object categories. Computer vision and Im-

age understanding, 106(1):59–70, 2007. ix, 2

[FS07] Pedro F Felzenszwalb and Joshua D Schwartz. Hierarchical match-

ing of deformable shapes. In Computer Vision and Pattern Recogni-

tion, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

50

[FZO+11] Tianhong Fang, Xi Zhao, Omar Ocegueda, Shishir K Shah, and

Ioannis A Kakadiaris. 3D facial expression recognition: A per-

spective on promises and challenges. In Automatic Face & Gesture

Recognition and Workshops (FG 2011), 2011 IEEE International

Conference on, pages 603–610. IEEE, 2011. 100

[GK93] Ulf Grenander and Daniel Macrae Keenan. On the shape of plane

images. SIAM Journal on Applied Mathematics, 53(4):1072–1094,

1993. 24

[GM94] Ulf Grenander and Michael I Miller. Representations of knowledge

in complex systems. Journal of the Royal Statistical Society. Series

B (Methodological), pages 549–603, 1994. 22, 24

[GM07] Ulf Grenander and Michael I Miller. Pattern theory: from represen-

tation to inference. Oxford University Press, 2007. 22, 43

[GN99] Arjun K Gupta and Daya K Nagar. Matrix variate distributions,

volume 104. CRC Press, 1999. 82

[Gre97] Ulf Grenander. Geometries of knowledge. Proceedings of the Na-

tional Academy of Sciences, 94(3):783–789, 1997. 22, 24

138



BIBLIOGRAPHY

[GWLT09] Boqing Gong, Yueming Wang, Jianzhuang Liu, and Xiaoou Tang.

Automatic facial expression recognition on a single 3D face by ex-

ploring shape deformation. In Proceedings of the 17th ACM inter-

national conference on Multimedia, pages 569–572. ACM, 2009. 119

[HCSV13] Jeffrey Ho, Guang Cheng, Hesamoddin Salehian, and Baba Vemuri.

Recursive Karcher expectation estimators and geometric law of large

numbers. In Proceedings of the Sixteenth International Conference

on Artificial Intelligence and Statistics, pages 325–332, 2013. 78, 79

[HE04] Greg Hamerly and Charles Elkan. Learning the k in k means. Ad-

vances in neural information processing systems, 16:281, 2004. 89

[Hel62] Sigurdur Helgason. Differential geometry and symmetric spaces, vol-

ume 12. Academic press, 1962. 17

[HJZG12] Rong-Xiang Hu, Wei Jia, Yang Zhao, and Jie Gui. Perceptually mo-

tivated morphological strategies for shape retrieval. Pattern Recog-

nition, 45(9):3222–3230, 2012. 3, 95

[HL07] Jihun Ham and Daniel D Lee. Separating pose and expression in

face images: a manifold learning approach. Neural Information

Processing-Letters and Reviews, 11(4):91–100, 2007. 100, 101

[HSH14] Mehrtash T Harandi, Mathieu Salzmann, and Richard Hartley.

From manifold to manifold: Geometry-aware dimensionality reduc-

tion for SPD matrices. In European conference on computer vision,

pages 17–32. Springer, 2014. 85

[Jay03] Edwin T Jaynes. Probability theory: The logic of science. Cambridge

university press, 2003. 77

[Jol86] Ian T Jolliffe. Principal component analysis and factor analysis. In

Principal component analysis, pages 115–128. Springer, 1986. 85

[K10] Kimia 1070-dataset. http://vision.lems.brown.edu/content/

available-software-and-databases. Accessed: 2017-09-30. 69

139

http://vision.lems.brown.edu/content/available-software-and-databases
http://vision.lems.brown.edu/content/available-software-and-databases


BIBLIOGRAPHY

[Kab76] Wolfgang Kabsch. A solution for the best rotation to relate two

sets of vectors. Acta Crystallographica Section A: Crystal Physics,

Diffraction, Theoretical and General Crystallography, 32(5):922–

923, 1976. 131

[Kan94] Ken-ichi Kanatani. Analysis of 3-d rotation fitting. IEEE Transac-

tions on pattern analysis and machine intelligence, 16(5):543–549,

1994. 131

[Kar77] Hermann Karcher. Riemannian center of mass and mollifier smooth-

ing. Communications on pure and applied mathematics, 30(5):509–

541, 1977. 78

[Ken84] David G Kendall. Shape manifolds, procrustean metrics, and com-

plex projective spaces. Bulletin of the London Mathematical Society,

16(2):81–121, 1984. 4, 5, 14

[Ken90] Wilfrid S Kendall. Probability, convexity, and harmonic maps with

small image I: uniqueness and fine existence. Proceedings of the

London Mathematical Society, 3(2):371–406, 1990. 79

[KMG98] N Khaneja, Michael I. Miller, and Ulf Grenander. Dynamic pro-

gramming generation of curves on brain surfaces. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 20(11):1260–

1265, 1998. 22, 24, 28

[KSMJ04] Eric Klassen, Anuj Srivastava, Washington Mio, and Shantanu H

Joshi. Analysis of planar shapes using geodesic paths on shape

spaces. Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 26(3):372–383, 2004. 48

[LHMT14] Ping Liu, Shizhong Han, Zibo Meng, and Yan Tong. Facial expres-

sion recognition via a boosted deep belief network. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition,

pages 1805–1812, 2014. 100

140



BIBLIOGRAPHY

[LJ07] Haibin Ling and David W Jacobs. Shape classification using the

inner-distance. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 29(2):286–299, 2007. 50, 95

[LKSM14] Hamid Laga, Sebastian Kurtek, Anuj Srivastava, and Stanley J

Miklavcic. Landmark-free statistical analysis of the shape of plant

leaves. Journal of theoretical biology, 363:41–52, 2014. 3, 26, 47, 48,

50, 51

[LLE00] Longin Jan Latecki, Rolf Lakamper, and T Eckhardt. Shape descrip-

tors for non-rigid shapes with a single closed contour. In Computer

Vision and Pattern Recognition, 2000. Proceedings. IEEE Confer-

ence on, volume 1, pages 424–429. IEEE, 2000. 67

[LRK15] Sayani Lahiri, Daniel Robinson, and Eric Klassen. Precise matching

of PL curves in RN in the square root velocity framework. arXiv

preprint arXiv:1501.00577, 2015. 65

[LS03] Bastian Leibe and Bernt Schiele. Analyzing appearance and con-

tour based methods for object categorization. In Computer Vision

and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer

Society Conference on, volume 2, pages II–409. IEEE, 2003. xiii, 93,

94, 95

[LSJR16] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin

Recht. Gradient descent only converges to minimizers. In Conference

on Learning Theory, pages 1246–1257, 2016. 96

[LSZ10] Wei Liu, Anuj Srivastava, and Jinfeng Zhang. Protein structure

alignment using elastic shape analysis. In Proceedings of the First

ACM International Conference on Bioinformatics and Computa-

tional Biology, pages 62–70. ACM, 2010. 26

[M+67] James MacQueen et al. Some methods for classification and anal-

ysis of multivariate observations. In Proceedings of the fifth Berke-

ley symposium on mathematical statistics and probability, volume 1,

pages 281–297. Oakland, CA, USA., 1967. 88

141



BIBLIOGRAPHY

[Mad02] Neal Noah Madras. Lectures on monte carlo methods, volume 16.

American Mathematical Soc., 2002. 83

[MB93] Frank Morgan and James F Bredt. Riemannian geometry: a begin-

ner’s guide. Jones and Bartlett, 1993. 37

[MCH+06] Siddharth Manay, Daniel Cremers, Byung-Woo Hong, Anthony J

Yezzi, and Stefano Soatto. Integral invariants for shape matching.

Pattern Analysis and Machine Intelligence, IEEE Transactions on,

28(10):1602–1618, 2006. 43

[MD10] David Mumford and Agnès Desolneux. Pattern theory: the stochas-

tic analysis of real-world signals. CRC Press, 2010. 45, 54

[Men13] Andrea CG Mennucci. Metrics of curves in shape optimization and

analysis. In Level Set and PDE Based Reconstruction Methods in

Imaging, pages 205–319. Springer, 2013. 14, 18, 43

[Mil76] John Milnor. Curvatures of left invariant metrics on lie groups.

Advances in mathematics, 21(3):293–329, 1976. 41

[Mil97] John Willard Milnor. Topology from the differentiable viewpoint.

Princeton University Press, 1997. 1

[MM03] Peter W Michor and David Mumford. Riemannian geometries on

spaces of plane curves. arXiv preprint math/0312384, 2003. 4, 5,

18, 20, 21

[MM05] Peter W Michor and David Mumford. Vanishing geodesic distance

on spaces of submanifolds and diffeomorphisms. Doc. Math, 10:217–

245, 2005. 17, 21

[MM07] Peter W Michor and David Mumford. An overview of the Rieman-

nian metrics on spaces of curves using the Hamiltonian approach.

Applied and Computational Harmonic Analysis, 23(1):74–113, 2007.

18, 20

142



BIBLIOGRAPHY

[MMS08] Iordanis Mpiperis, Sotiris Malassiotis, and Michael G Strintzis. Bi-

linear elastically deformable models with application to 3D face and

facial expression recognition. In Automatic Face & Gesture Recog-

nition, 2008. FG’08. 8th IEEE International Conference on, pages

1–8. IEEE, 2008. 101

[MMSY07] Peter W Michor, David Mumford, Jayant Shah, and Laurent

Younes. A metric on shape space with explicit geodesics. arXiv

preprint arXiv:0706.4299, 2007. 18, 21, 26

[MN95] Jan R Magnus and Heinz Neudecker. Matrix differential calculus

with applications in statistics and econometrics. 1995. 91

[Moa02] Maher Moakher. Means and averaging in the group of rotations.

SIAM journal on matrix analysis and applications, 24(1):1–16, 2002.

39

[MS89] David Mumford and Jayant Shah. Optimal approximations by piece-

wise smooth functions and associated variational problems. Com-

munications on pure and applied mathematics, 42(5):577–685, 1989.

127

[MSJ07] Washington Mio, Anuj Srivastava, and Shantanu Joshi. On shape

of plane elastic curves. International Journal of Computer Vision,

73(3):307–324, 2007. 21, 22

[Mum87] David Mumford. The problem of robust shape descriptors. Center

for Intelligent Control Systems, 1987. 4

[Mum91] David Mumford. Mathematical theories of shape: Do they model

perception? In San Diego,’91, San Diego, CA, pages 2–10. Interna-

tional Society for Optics and Photonics, 1991. 4

[MV15] Aravindh Mahendran and Andrea Vedaldi. Understanding deep im-

age representations by inverting them. In 2015 IEEE conference on

computer vision and pattern recognition (CVPR), pages 5188–5196.

IEEE, 2015. 100

143



BIBLIOGRAPHY

[MYVB13] Sofiene Mouine, Itheri Yahiaoui, and Anne Verroust-Blondet. A

shape-based approach for leaf classification using multiscaletrian-

gular representation. In Proceedings of the 3rd ACM conference

on International conference on multimedia retrieval, pages 127–134.

ACM, 2013. 47, 48, 50

[NH98] Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm

that justifies incremental, sparse, and other variants. In Learning in

graphical models, pages 355–368. Springer, 1998. 88

[NJW+02] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clus-

tering: Analysis and an algorithm. Advances in neural information

processing systems, 2:849–856, 2002. 87

[Pan09] Maja Pantic. Machine analysis of facial behaviour: Naturalistic and

dynamic behaviour. Philosophical Transactions of the Royal Society

of London B: Biological Sciences, 364(1535):3505–3513, 2009. 99,

100

[Par95] Frank C Park. Distance metrics on the rigid-body motions with

applications to mechanism design. Journal of Mechanical Design,

117(1):48–54, 1995. 39

[PB07] Maja Pantic and Marian Stewart Bartlett. Machine analysis of

facial expressions. I-Tech Education and Publishing, 2007. 100

[Pen06] Xavier Pennec. Intrinsic statistics on Riemannian manifolds: Basic

tools for geometric measurements. Journal of Mathematical Imaging

and Vision, 25(1):127–154, 2006. 78

[Pen09] Xavier Pennec. Statistical computing on manifolds: from Rieman-

nian geometry to computational anatomy. In Emerging Trends in

Visual Computing, pages 347–386. Springer, 2009. 3

[RGC+08] Irina Rish, Genady Grabarnik, Guillermo Cecchi, Francisco Pereira,

and Geoffrey J Gordon. Closed-form supervised dimensionality re-

duction with generalized linear models. In Proceedings of the 25th

144



BIBLIOGRAPHY

international conference on Machine learning, pages 832–839. ACM,

2008. 128

[RS00] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality re-

duction by locally linear embedding. Science, 290(5500):2323–2326,

2000. 85

[RSMH11] Marc Aurelio Ranzato, Joshua Susskind, Volodymyr Mnih, and Ge-

offrey Hinton. On deep generative models with applications to recog-

nition. In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 2857–2864. IEEE, 2011. 100

[SD07] Hamit Soyel and Hasan Demirel. Facial expression recognition us-

ing 3D facial feature distances. In International Conference Image

Analysis and Recognition, pages 831–838. Springer, 2007. 119

[SKJJ11] Anuj Srivastava, Eric Klassen, Shantanu H Joshi, and Ian H Jermyn.

Shape analysis of elastic curves in euclidean spaces. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 33(7):1415–1428,

2011. ix, 4, 18, 20, 21, 22, 26, 40, 41, 42, 43, 47, 51, 68, 101

[SKK03] Thomas B Sebastian, Philip N Klein, and Benjamin B Kimia. On

aligning curves. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 25(1):116–125, 2003. 54

[SKK04] Thomas B Sebastian, Philip N Klein, and Benjamin B Kimia. Recog-

nition of shapes by editing their shock graphs. IEEE Transactions

on pattern analysis and machine intelligence, 26(5):550–571, 2004.

67, 68, 69

[SLM+16] Sumit Srivastava, Shashi Bhushan Lal, DC Mishra, UB Angadi,

KK Chaturvedi, Shesh N Rai, and Anil Rai. An efficient algorithm

for protein structure comparison using elastic shape analysis. Algo-

rithms for Molecular Biology, 11(1):27, 2016. 3

145



BIBLIOGRAPHY

[SM06] Eitan Sharon and David Mumford. 2d-shape analysis using confor-

mal mapping. International Journal of Computer Vision, 70(1):55–

75, 2006. 5

[Sma96] Christopher G Small. The Statistical Theory of Shape, Springer

Series in Statistics. New York: Springer-Verlag, 1996. 14, 15, 17,

32

[SN06] Clayton Scott and Robert Nowak. Robust contour matching via the

order-preserving assignment problem. IEEE Transactions on Image

Processing, 15(7):1831–1838, 2006. 54
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