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Abstract. This paper presents a novel method for creating an unbi-
ased and geometrically centered average from a group of images. The
morphological variability of the group is modeled as a set of deformation
fields which encode differences between the group average and individual
members. We demonstrate the algorithm on a group of 27 MR images of
mouse brains. The average image is highly resolved as a result of excellent
groupwise registration. Local and global groupwise variability estimates
are discussed.

1 Introduction

Brain atlases together with warping algorithms represent an important tool for
the analysis of medical images. For example, an annotated atlas is typically used
as a deformable template. Image registration enables warping of the atlas image
onto other brain images. Subsequently, the anatomical knowledge about the at-
las image is transfered and customized for arbitrary subjects [3,9,11]. Experience
shows, however, that the choice of an individual brain as a template leads to bias-
ing. This is because the registration errors are large for brains with morphology
that is significantly different from the template. For such brains, the accuracy of
the anatomical knowledge obtained through the registration with the template
is less accurate. To somewhat alleviate this problem, the authors in [5] have
proposed a method for optimizing an individual template brain with respect to
a group of subjects. Other methods reduce the dependence on a particular sub-
ject by creating a template as an average across a group of subjects (MNI305
- an average of 305 affinely registered brains, [4]). Existing averaging methods
can be considered according to two criteria: (i) the number of degrees of free-
dom in inter-subject registrations and (ii) the dependence on a particular group
member. On one end of the spectrum, methods based on affine registrations
only, with up to 12 degrees of freedom, give rise to an unbiased common average
space [13]. In this case, the average image is blurry because its constituents are
matched in terms of the global size and shape only, while residual morphological
differences remain. On the opposite end, methods based on a maximum num-
ber of degrees of freedom, with an unique deformation vector per image voxel,
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Fig. 1. Atlas creation algorithm

depend on the choice of a single group member as a target for registrations of
the remaining images [4]. In this case the average image is crisp as a result of
highly resolved morphological matching, but the common space is biased to-
ward the target brain. To this end, an excellent advancement in reducing the
impact of such biasing is proposed in [4]. The work of [7] is an interesting com-
promise between these two extremes, because they derive an optimal common
representation using knotpoint based registration (“medium” number of degrees
of freedom). A template-free image alignment using the joint image intensity
histogram across a group of images was proposed in [8]. This method is best
suited for group-wise registration of low-noise, multi-modality images.

In this paper we describe a method for groupwise registration which creates
both a high-dimensional and unbiased common representation. The output of
the algorithm consists of: (i) the average image, as a group average in terms
of both image intensities and geometry, and (ii) the variational component, as
a set of individual deformation fields that encode the morphological differences
between the group average and the individual brains. The variational component
captures the distribution of anatomical locations across the group. By making
an analogy with one-dimensional measurements, we can say that the average
image represents an estimate of the sample mean, while magnitudes of the de-
formation vectors in the variational component can be used to estimate “error
bars” (spheres) for anatomical locations. We demonstrate the algorithm on a set
of 27 high resolution mouse brain MR images.
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2 Atlas Creation Algorithm

The input to the algorithm is a set of n images denoted I1, . . . , In. The algorithm
consists of seven steps which are outlined in Fig. 1. In Step A we define a
common affine space. Subsequently, individual images are resampled into this
common space and intensity normalized. At the end of Step A, only extrinsic and
anatomically insignificant differences are removed. The following five steps (N1-
N5) assume nonlinear registration models with increasing levels of resolution.
Each nonlinear registration step uses the average image of the previous step as
the source. The common average nonlinear space evolves iteratively until a fully
resolved groupwise alignment is reached. Finally, in Step C, the common space
is geometrically centered with respect to the affinely normalized images. The
details are given next.
Step A (Affine spatial normalization). We start by performing all pairwise
affine registrations among the input images. We use a full affine (12 parameter)
model with Levenberg-Marquardt minimization of the ratio image uniformity
cost function [12]. The unbiased common affine space is defined by matrix aver-
aging and reconciliation [13]. Each individual image Ik is transformed into this
common space and is denoted Jk.

In order to ensure unbiased intensity averaging, we first perform intensity
normalization of images J1, . . . , Jn. We begin by correcting image intensity non-
uniformity using the method of [10]. We then apply the method of [6] to esti-
mate the mean gray matter intensity in all images. The images are subsequently
normalized to the average mean gray matter intensity using linear intensity
rescaling. Images thus produced represent spatially (via an affine transforma-
tion model) and intensity normalized versions of the initial raw images and are
denoted P 0

1 , . . . , P 0
n . The initial average image P0 is created as their voxel-by-

voxel intensity average.
Steps N1-N5 (Nonlinear spatial normalization). The structure of all non-
linear steps is the same: in Step Ni, the output individual images from the
previous step, P i−1

1 , . . . , P i−1
n , are registered with the most recent average im-

age Pi−1 (the intensity average of P i−1
1 , . . . , P i−1

n ). The nonlinear registration
optimizes a similarity function based on a cross-correlation statistic within local
neighborhoods which are centered on a regular grid [2]. The nonlinear steps of
the algorithm are scheduled in a multi-resolution/multi-scale fashion. The reso-
lution refers to the grid resolution measured by nodal distances. In conjunction
with grid resolution, the similarity function is evaluated for extracted image fea-
tures at appropriate scales (gaussian blur and/or gradient magnitude). Step N1,
for example, uses two levels of resolution, first based on 12-voxel grid (nodal
distance = 12 voxels in each direction) and second on a 10-voxel grid. The fi-
nal resolution in Step N5 is maximal, i.e., the grid density equals the image
resolution (nodal distance = 1 voxel). The parameters of the multi-resolution
schedule have been initially selected similarly as in [2], and then experimentally
optimized for maximum registration accuracy and robustness. Full details are
given in Table 1.
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Step C (Centering). A desirable property of any common space is to be
minimally distanced from all group members [5]. If gk denotes the cumulative
transform of Steps N1-N5 so that P 5

k = gk(P 0
k ) then the corresponding inverse

transforms g−1
k are vector fields originating in the same space, that of P5. The

average inverse transform G is defined as

G(x) =
1
n

∑

k

g−1
k (x), x ∈ P5. (1)

By composing transforms we define Fk = G ◦ gk and corresponding images
Pk = Fk(P 0

k ), k = 1, . . . , n. Their voxel-by-voxel intensity average image P is
our final average image. By construction, the space of P is at the centroid po-
sition with respect to P 0

1 , . . . , P 0
n . The set of inverse transforms F−1

k represents
the variational component; as vector fields, they originate in the P-space and
transform into affinely normalized individual images. For any anatomical loca-
tion x ∈ P, the distribution of the homologous locations across individual images
is given by {F−1

k (x)}k=1,...,n.

Table 1. Schedule of nonlinear registrations in Steps N1-N5. The middle column rep-
resents grid resolutions in terms of the nodal distance. The right column lists feature
extracted images used in each step; the feature scales are measured by the size of the
convolving Gaussian kernels, measured in voxels

Grid resolution Gaussian fwhm/feature

Step N1.1 12 4/blur
Step N1.2 10 4/gradient magnitude
Step N2.1 8 3/blur
Step N2.2 6 3/gradient magnitude
Step N3.1 4 3/blur
Step N3.2 3 3/gradient magnitude
Step N4.1 3 2/blur
Step N4.2 2 2/gradient magnitude
Step N5.1 2 2/blur
Step N5.2 1 2/gradient magnitude

3 Experimental Validation

We demonstrate the algorithm on the set of n = 27 MR images of excised mouse
brains with different genetic backgrounds. The animals were selected from three
well established mouse strains, 129SV, C57BL6 and CD1, with 9 animals per
strain. In vitro imaging was performed using a 7.0-T, 40-cm bore magnet with
modified electronics for parallel imaging [1]. The parameters used were as follows:
T2-weighted, 3D spin-echo sequence, with TR/TE = 1,600/35 ms, single average,
FOV = 24 × 12 × 12 mm and matrix size = 400 × 200 × 200 giving an image
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with (60 µm)3 isotropic voxels. The total imaging time was 18.5 hrs. The atlas
creation algorithm has been applied to the entire data set.

The progression of the algorithm can be observed in gradual sharpening of
the average image updates (Fig. 2). This shows how groupwise consensus has
been achieved with an increasing level of detail. In fact, the final average image
is so well delineated in all major structures (e.g., corpus callosum, fimbria of the
hippocampus, anterior commissure) that it surpasses any of the individual im-
ages. This effect is similar to the improvement in signal-to-noise ratio in the case
when several images of the same subject are averaged together. In this experi-
ment, however, the input images have significantly different morphologies, which
means that a high level of delineation in the average image is due to excellent
groupwise registration. Two exceptions to this rule are: small and highly variable
internal structures (diameter < 120 µm = 2 voxels, e.g., blood vessels, striatal
white matter tracks) and the outer brain surface where unresolved differences
remain due to inconsistencies in sample preparation and imaging.

Fig. 2. Examples of individual and average images. Top row: images of 3 different
individual mouse brains after global affine normalization. Bottom row: average image
updates at different stages of the algorithm.)

The variability of the group in terms of the local morphological differences
is captured by the variational component: for each P -voxel, there are n = 27
deformation vectors, each consisting of 3 spatial components. In order to sum-
marize and visualize this vast amount of data (∼ 5 GB, assuming floating point



620 N. Kovacevic et al.

representation) we estimate the standard deviation of deformation magnitudes
(SDDM) within the average space:

SDDM(x) =

√
1

n − 1

∑

k

||x − F−1
k (x)||2, x ∈ P. (2)

In other words, SDDM can be treated as an “image” in the same spatial do-
main as P , such that the voxel intensities represent distances. By displaying
the SDDM image in conjunction with the average image, we are able to classify
anatomical regions according to the spatial variability (Fig. 3). The highest vari-
ability (SDDM values up to ∼ 900 µm) is found in the olfactory bulbs and at
the posterior end of the brain stem. This is expected because these regions are
most affected by the inconsistencies in sample preparation. For the rest of the
brain, the average SDDM value is 183 µm. Among interior regions, the most
variability is found in the ventricles, corpus callosum, fimbria of the hippocampus
and far branches of arbor vita.

Fig. 3. Morphological variability of the group. Average image (left), SDDM image
(middle) and overlay (right)

While the full validation of the methodology is outside the scope of this paper,
we present two experiments in this direction. The first one is a cross-validation
for the average SDDM , based on the a priori known genetic background of the
samples. For this purpose we created six sub-atlases, each based on 9 images. A
sub-atlas is obtained by running the algorithm on the selected image subset only.
Each sub-atlas has its own geometrically centered average image and variability
component. The first 3 sub-atlases were created to represent a single mouse
strain. The other 3 sub-atlases were created by randomly selecting 3 subjects
from each of the three strains, totaling to 9 subjects. The variability of the sub-
atlases is evaluated using the average SDDM measure. The results are given in
Table 2. They confirm the expectation that pure strain atlases have significantly
smaller variability than any of the mixed ones. Also, the variability of the mixed
sub-atlases is approximately the same as the variability of the full mixed atlas, as
it should, since the weights of the three strains within each mixed sub-atlas are
the same as in the full atlas. These result indicate that the variabilty estimate
is sensitive to group hetreogenity and inter-group differences.

In the second validation experiment we examined atlas bias, rather than reg-
istration accuracy. We started with a single brain image, resampled to (120 µm)3



Deformation Based Representation of Groupwise Average and Variability 621

Table 2. Average SDDM value of the full atlas and 6 sub-atlases (in µm)

Full mixed 129SV C57BL6 CD1 mixed1 mixed2 mixed3

183 158 145 127 173 180 184

resolution, and 70 regularly spaced landmarks. We used a Gaussian random noise
model to displace the landmarks and deform the image in 40 different ways, us-
ing thin-plate splines. In addition, we applied random Gaussian noise (8% of the
mean brain signal) to image intensities of the 40 deformed images. The resulting
images represent a sample with a known mean shape and a known shape vari-
ation (with ∼ 5 voxels mean displacement over all landmarks and brains). We
applied our algorithm to these 40 images in order to measure how accurately it
calculates the average shape. For each landmark and each synthetic image we
calculated the distance between the known deformation into the space of the
sample mean to the calculated deformation into the average space produced by
the algorithm. The average distance between the two target positions, across
all landmarks and all brains, was found to be 110 µm. This means that the
true mean shape and the one recovered by the algorithm are identical, up to a
subvoxel distortion on average.

4 Conclusions

We have developed a methodology for creating an unbiased nonlinear average
model from a group of images. There is no dependence on a particular member
of the group, and at the same time, the groupwise registration is highly resolved,
as demonstrated in the Experimental Validation. The novelty of our approach
lies in using an evolving intensity average image as the source for nonlinear
registrations with the individual images. In this way we avoid problems associ-
ated with attempts to fully localize anatomical differences of the group members
with respect to a single individual. Instead, we use a multi-resolution strategy
to gradually refine the group-wide consensus.

The space of the average image is constructed so that every anatomical loca-
tion lies at the centroid of the homologous locations across the individual group
members. Therefore, the SDDM of deformation magnitudes can be used as a
measure of local spatial variability. We have shown that the average SDDM
value across the brain can be used as a robust global variability estimate.

The methodology presented here has several implications within the gen-
eral context of deformation based morphometry. For example, atlases based on
normal populations can be used for the detection and characterization of abnor-
mal/pathological deviations. Such questions are particularly interesting in the
context of mouse phenotyping, where the power of detection becomes greatly
amplified through the use of strictly controlled, genetically uniform populations.
Furthermore, there is a clear potential for inter-group comparisons. To this end,
population or disease specific atlases can be constructed and compared using
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registration. The deformation field that warps one atlas onto another can then
be parsed for significant deformations, i.e., those that surpass the variational
components of the two atlases.
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