Journal of Glaciology, Vol. 29, No. 103, 1983

DEFORMATION IN THE VICINITY OF ICE DIVIDES

By CHARLES F. RAYMOND
(Geophysics Program, AK-50, University of Washington, Seattle, Washington 98195, U.S.A)

ABSTRACT. Numerical calculations by finite clements show that the variation of horizontal velocity with depth
in the vicinity of a symmetric, isothermal, non-slipping ice ridge deforming on a flat bed is approximately
consistent with prediction from laminar flow theory except in a zone within about four ice thicknesses of the
divide. Within this near-divide zone horizontal shear strain-rate is less concentrated near the bottom and
downward velocity is less rapid in comparison to the flanks. The profiles over depth of horizontal and vertical
velocity approach being linear and parabolic respectively. Calculations for various surface clevation profiles show
these velocity profile shapes are insensitive to the ice-sheet geometry.

RESUME, Déformation au voisinage des diffluences glaciaires. Des calculs numeériques aux éléements finis
montrent que la variation de la vitesse horizontale avec le profondeur au voisinage d’une diffluence de glace
symétrique isotherme et sans glissement sur un lit plat est a peu prés cohérente avec les prévisions de la théorie de
I’écoulement laminaire sauf dans une zone ¢loignée de la diffluence de moins de quatre fois 'épaisseur de la glace.
A lintérieur de cette zone la déformation visqueuse horizontale est moins concentrée vers le fond et la vitesse vers
le bas est moins rapide que vers les rives. Les profils selon la profondeur des vitesses horizontales et verticales sont
approximativement I'une linéaire, I'autre parabolique. Les calculs pour différents profils d'altitude superficielle
montrent que les formes des profils de vitesse sont indépendants de la forme géométrique de I'appareil glaciaire.

ZUSAMMENFASSUNG. Verformung in der Nachbarschaft von Eisscheiden. Berechnungen mit finiten
Elementen zeigen, dass die Anderung der horizontalen Geschwindigkeit mit der Tiefe in der Nachbarschaft einer
symmetrischen, isothermen, nicht-gleitenden Eisscheide, die sich auf einem flachen Bett deformiert, mit den
Vorhersagen der laminaren Fliesstheorie annihernd iibereinstimmt, mit Ausnahme einer Zone innerhalb von etwa
vier Eisdicken um die Eisscheide. Innerhalb dieser Nahzone ist die horizontale Scherspannungsrate weniger nahe
dem Untergrund konzentriert und die Abwirtsbewegung ist im Vergleich zu den Flanken weniger schnell. Die
Tiefenprofile der horizontalen bzw. vertikalen Geschwindigkeit nihern sich einem linearen bzw. parabolischen
Verlauf. Rechnungen fiir verschiedene Oberflichenprofile zeigen, dass die Geschwindigkeitsprofilformen
unabhingig von der Geometrie des Eisschildes sind.

INTRODUCTION

Analytical treatments of the ice flow and surface profiles of ice caps and ice sheets have
involved assumptions that break down near an ice divide (Vyalov, 1958; Nye, 1959). The
principal difficulties arise from an effect on the non-linear effective viscosity of ice from
longitudinal stress and an effect on surface-parallel shear stress from longitudinal stress gradients
(Paterson, 1981). Weertman (1961) attempted to take the first of these difficulties into account.
A recent analysis by Morland and Johnson (1980) provides a more rigorous mathematical
underpinning to the analytical treatment of both of these difficulties, but in the presentation of
their results they do not discuss special features of divide regions.

The localized region in the vicinity of an ice divide is of special interest because such
locations are thought to be particularly suitable as coring sites to obtain minimally disturbed
stratigraphic sequences for paleo-environmental interpretation (Dansgaard and others, 1973). Of
particular interest is the variation with depth of the vertical component of velocity, which
determines age versus depth, thinning of stratigraphic layers by vertical strain, and vertical
advection of heat (Dansgaard and Johnsen, 1969). Closely associated with this is the depth
variation of horizontal component of velocity (Hammer and others, 1978). Numerical
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calculations presented here show that the profiles of velocity versus depth have different shapes
at ice divides compared to flank positions and indicate the horizontal scale over which a divide-
like pattern prevails.

The purpose of this paper is limited to the question of how deformation at divide and flank
positions differ in general pattern and we will not be concerned with the details of any particular
situation. To this end, we consider flow of ice in an idealized symmetric ice ridge over a rigid flat
bed on which there is no slip. The ice is assumed to obey a power-type flow law. Some of the
features of the deformation pattern at divides are found to be insensitive to geometry and
therefore may be broadly applicable at more complexly shaped divides. The ice is also assumed
to be isothermal. This may be reasonable for temperate glacier divides or thin cold ice caps, but it
will be unrealistic for many ice cap and ice sheet divides. It is this assumption which will most
restrict the applicability of the results to specific situations.

DESCRIPTION OF THE PROBLEM

Geometry

The geometry of the idealized ice divide is shown schematically in Figure 1. The height of the
right-hand edge of the solution region was taken as one unit. It was placed horizontally 19 units
from the divide, which turned out to be far enough that assumptions about the details of
variation of velocity with depth on the right-hand boundary did not affect the solution near the
divide at the left. The specific dimensions are not critical to the results which are described below
in dimensionless quantities. Several surface elevation profiles were considered (Fig. 2).

With reference to the axes in Figure 1 (x horizontal, y vertical upward), it is assumed that the
geometry and corresponding flow do not vary with z. More specifically, x and y components of
velocity # and v may be non-zero but velocity in the z-direction is zero. Under these conditions
the non-zero deformation rate components are:

2 8 i fau &
o Gy, =t = (” U). (1)
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Following Nye (1957) an effective shear strain-rate may be defined as
.4 a1
6—(-2—+T+dxy | (2)
y
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l as in text
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Fig. 1. Idealized cross-section of two-dimensional symmetric ice divide.
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Flow law assumptions

It is assumed that the components of deviatoric stress and deformation rate are related by a
power law (Glen’s law). Restricting attention to non-zero components this is expressed as

=20 1, =2nd,,, T, =T,=2nd, (3a)
where
n=RBg-1/m, (3b)

In Equation (3b), n was chosen to be 3 and B to be constant. In a later section some
consequences of variations of B resulting from non-isothermal conditions will be discussed.
An effective shear stress r corresponding to ¢ may be defined as

TZ TZ 1/2
r=Ons= %+é£+‘t§y (4)

The assumed flow law implies viscous incompressibility which for the two-dimensional flow
is expressed as

d.=—d and 7, =—T,. (5)

»
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Densification of snow and firn near the surface is not considered in these calculations.
Components of stress are given by
Oxx =Txx — P Oy =Ty —Ps Oy =0y =Ty (6)
where p is the mean compressive stress and is not determined by the deformation rate and flow

law.

Equations of motion

It is assumed that the flow is quasi-static, in which case,

8 8
Ofe  Oby 0D

= 7

2x | @y ox %)
ot, dt, op

% 7b

it R (7b)

where pg is density times gravitational acceleration and is assumed constant.

Boundary conditions

Boundary conditions are illustrated in Figure 1. The upper surface was assumed to be stress
free, the lower surface not to slip or melt, and the left-hand edge (x=0) to be a plane of
symmetry, which requires horizontal motion (1) and surface-parallel shear stress (7 ) to be zero.

At the right-hand edge (x=19/) the depth profile of horizontal velocity was chosen to have

the form
h—- n+1
H(Xs.V)INs[l_( hy) ]

where u,(x) represents horizontal velocity along the upper surface. The shape of this profile
corresponds to that for “laminar flow™ of isothermal ice assuming Glen’s law with exponent n
(Nye, 1952). The boundary condition on u given by Equation (8) imposes a flux per unit width
across the right-hand edge of

(8)

x=191

q(19!):n+;ush 9)

n+ x=191

u,(19/) was chosen to give g(19/) equal to 19/b, where by continuity & is the average downward
velocity of the surface ice over the distance between the divide and the edge. This value of u, (19/)
is 23.75b for n=3.

To establish a profile of vertical velocity at x= 19/, it is assumed that the profile shape given
by Equation (8) also holds for x incrementally close to 19/, in which case differentiation of
Equation (8) with respect to x gives

u du h—yp\nt!

— (19, N=—|1—-|—

B IR, [ ( h ) ]
Equation (10) neglects small terms involving 8h/&x. These terms could be included and

expressed in terms of du/éx if one were to assume a dependence of u, on A. Such a dependence,
being a priori unknown, was not assumed. Integration of 8v/8y upward from the motionless base

(10)

x=19]
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using Equations (1), (5), and (10) gives

E—p\ a2 1 [H—api
yYV)=v| 1 — = 1la
U(Xy) ul: ( h )(n+1 ﬂ+1( h ) x=191 ( )
where
1@
vs(19[)=—n+ ,"5 : (11b)
n+2 ox  |z=yor

v,(19/) was chosen to be —b to correspond to the average vertical velocity over the surface
between the divide and 19/ imposed by the choice of u,(19/).

Choice of parameters

To further specify the problem it is necessary to choose /, b, B, and p, which set the
geometrical scale, mass transport, ice viscosity, and body-force density from gravity. In this case
these were chosen as: /=1km, b=0.1 ma~', B=3.0 bar a"/*, p=0.9 Mg m 3. These are not
intended to represent any particular ice sheet, but are chosen to fall within the range of these
parameters for ice caps and ice sheets.

In order to examine how a solution for a particular choice of parameters can be scaled,
consider dimensionless quantities (%, )=(x, p)/l, (@, D)=, v)/b, (dy. Jyy, E,y, d’;,x)z
(dyxs dyys Aoy Ay )/(B/D)y (Taxs Tyys Ty Ty ) = (Tees Tpys Tys T )/(pgI). This non-dimensionalization
employs [ as a unit of length and b as a unit of velocity. Units of deformation rate (b//) and stress
(pgl) are derived from these. If the non-dimensional quantities are introduced into the governing
equations and boundary conditions (Equations (1) through (11b)), the equations are identical for
different choices of / and b as long as the resulting dimensionless flow-law parameter

~{als)”

is the same. This guarantees complete geometrical and dynamic similarity of solutions. These
calculations consider one case (B=1.6x10"%) from which solutions for equivalent
combinations of /, b, B, and p can be derived. The actual range for thin ice caps with high
accumulation and large ice sheets with low accumulation runs from about 0.3 to 14 x 1073, A
second case of substantially different scale is examined below.

Caleulation method

The velocity distribution was calculated using quadrilateral finite elements for incompressible
two-dimensional flow. The velocity within an element is determined in terms of the velocity at the
four corner nodes based on subdivision along diagonals into four constant strain-rate triangles
with velocity at the virtual center node chosen to give constant dilatation throughout the element.
Pressure is assumed constant in an element. A solution region is divided up into elements and
nodal velocities and element pressures are found to satisfy the equations of motion,
incompressibility, and the boundary conditions cast in variational form. Non-linearity arising
from the flow law is treated using a Newton-Raphson iterative solution technique. More
information about the numerical method is given by Raymond (unpublished) and Hooke and
others (1979).

https://doi.org/10.3189/50022143000030288 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000030288

362 JOURNAL OF GLACIOLOGY

Calculations were done using several grids in order to gain some idea of the grid dependence
of the solution. Grids of 6 x 20 and 11 x 20 were used. First they were applied to the full 19/
length of the solution region. In order to obtain a closer longitudinal spacing of nodes, the same
grids were used over the distance 0 to 9.5/ using results from the full profile to define boundary
conditions on the right-hand edge at 9.5/. Solutions for surface velocity from the different grids
show agreement to two significant figures or better.

Choice of surface-elevation profile

A number of surface profiles between the divide and 19/ were considered (Fig. 2).

The heavy solid line in Figure 2a represents the surface topographic profile chosen for
principal attention in the following analysis. It will be called the reference surface profile. It is
represented by

N 1 [xV
h(x)zl[hn—&o ;-5,60(;) ] (12)

where /iy = 1.150, & =4.095 x 1073, and £, =0.400 x 103, The parameters /,, &, and £,
represent dimensionless divide thickness, limiting surface slope approaching the divide, and slope
gradient of the surface. This particular surface-elevation profile was singled out because it gives a
relatively uniform vertical velocity v, along the surface (Fig. 2¢), which would be approximately
in local balance with a uniform distribution of annual net accumulation of . No attempt was
made to find a profile which would give a perfectly uniform distribution of v;.

One interesting feature of the profile given by Equation (12) is a non-zero slope as the divide
is approached. Apparently any rounding of a divide crest happens on a scale smaller than one ice
depth, which is the resolution limit of the numerical calculation grid. From the calculation
results, this seems essential to match uniform balance distribution. If the slope were flatter (or
zero) on a scale of one ice depth, then the outward flow from the divide and the corresponding
downward motion there would be too small (Fig. 2b and ¢). This feature of a rather sharp divide
crest seems to be characterisic of real ice divides (see e.g. Paterson, 1980, fig. 6; Budd, 1969,
fig. 6.4; Weertman, 1961, fig. 2), although they must be rounded on some small scale.

Although the profile given by Equation (12) was selected from a number of more or less
arbitrary trials, it turns out to be represented well by one derived theoretically assuming ice
transport is related to thickness and surface slope through laminar flow theory (Vyalov, 1958)
(see Fig. 2a).

Other choices of profiles in the range shown in Figure 2a gave velocity distributions which
would require rather bizarre distributions of accumulation rate to produce steady geometry (Fig.
2¢). Even though these other profiles are unrealistic, the results from them are of interest. Below
they are examined to test the sensitivity of the pattern of variation of deformation with depth
near the divide to differences in geometry and surface velocity pattern.

RESULTS FOR THE REFERENCE SURFACE PROFILE

Velocity versus depth

The finite-element solution assumes that velocity varies linearly within subtriangles of the
quadrilateral elements. Figure 3 shows computed profiles as the computation method actually
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Fig. 3. Normalized velocity vesus normalized depth for various distances from the divide. Distances are in units of
(approximately ice depth). Heavy lines show finite-element results from the reference surface-elevation profile
(solid line of Fig. 2a). Bars in (b) indicate the range found at the divide and positions x/I> 4 for all surface
profiles shown in Figure 2a. Light lines show approximate analytical descriptions of depth profiles at and distant
from the divide. Dotted light lines show depth profiles for flow of a linear fluid in the reference geometry with
viscosity chosen to give nearly uniform vertical velocity at the upper surface. For n=1 the profile shapes are not
sensitive to distance from the divide.

sees them. Profiles of velocity versus depth are normalized to allow comparison of profile shape
at different longitudinal positions x. The shapes do not depend on x except within a zone near the
divide having a width of several ice depths. Profiles for horizontal velocity u (Fig. 3a)
approximate that predicted by laminar flow theory except near the divide, where shearing is more
uniformly distributed over depth.

The corresponding profiles of vertical velocity v (Fig. 3b) show downward velocity, which is
significantly less at all depths than expected from a linear depth variation and approaches a
parabolic depth variation at the divide.

Deformation rate and deviatoric stress versus depth

The finite-element calculation assumes deformation rate and stress are constant in
subtriangles of the quadrilaterial elements; therefore, the solutions for these quantities are step
functions along any profile through the body. Results are here plotted as smooth curves through
points evaluated at the mid-points of segments traversing elements. Figure 4a and b shows
profiles over depth at the divide and 10/ from the divide. This latter position was chosen to be
both remote from the divide so to be characteristic of a flank position (Fig. 3) and also remote
from the right-hand edge, so to be free from details about the assumed boundary condition there.
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The results for deformation rate are shown in units of
" =2|v,(0)|/h(0) (13a)

which is close to the vertical strain-rate at the divide surface. Deviatoric stress is shown in
corresponding units of

P =2 R (13b)

defined by the flow law represented in Equations (3) and (4).

At the divide the vertical strain-rate d,, =—d,, varies approximately linearly with depth
(Fig. 4a) with a consequent fairly simple distribution of deviatoric stress which decreases toward
the bed (Fig. 4b).

Remote from the divide, d,, =—d,, tends to be nearly constant near the surface with the
principal decrease to zero at the bed occurring in the lower half of the depth (Fig. 4a). As a result
& and t are also roughly constant near the surface. At greater depth they increase strongly under
the influence of d,, and t,, which are the principal contribution near the bed. A simple feature is
that 7,, increases linearly with depth. In response to Ty, dyy increases with depth. A linear
increase of d,, near the surface is similar to what would be expected for a linear fluid of constant
viscosity. In this case it occurs in response to a nearly constant effective viscosity near the
surface controlled by the nearly depth-independent vertical strain-rate there as explained by Nye

(1957).
1.0 | : : , 1.0
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Fig. 4. Deformation rate and stress versus depth. Heavy lines show finite-element results from solid-line surface
elevation profile of Figure 2a. In (a) and (b) light lines show possible analytical descriptions discussed in text.
Equations (13) define €* and t*, Numbers indicate distance from divide in units of I, which is approximately ice
depth.
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At the divide 7,, =0 by symmetry, and distant from the divide it varies linearly with depth.
Figure 4c shows the evolution of the depth profile of 7,, as the divide is approached. Within 2/ of
the divide, there is a distinct deviation from a linear variation versus depth.

Approximate analytical description of velocity, deformation rate, and deviatoric stress at the
divide.

At the divide, the vertical variation of v is close to being parabolic (Fig. 3b), and may be
represented approximately as

]
v(o,y)—vs(m(%) . (14)

Symmetry at the divide and Equations (14), (1), (2), (5), and (13a) indicate the relevant
deformation-rate components would be

dy=—d,, =8* % sgn(v, ), (15a)
dy =i, =0, (15b)

d.EJ: d2 1/2 y
s=(7+%+dxy) =" 7 (15¢)

These are plotted in Figure 4a as light lines where they differ perceptibly from the numerical
results. The deviations are small.

From symmetry at the divide and Equations (1) and (15a), it follows that
Xy
W sgn(v,) (16)
to first order in x. Therefore Equation (14) implies that the depth profile of u approaches being
linear as the divide is approached (x— 0), which seems compatible with Figure 3a.

Deviatoric stress components corresponding to Equations (15) may be calculated from
Equations (3), (4), and (13) to find

u(x, y)=—¢e*

¥ 1/3
Ty =—Tw = T*(I) sgn(v,), (17a)
‘rxy :fyxzo’ (l?b)

1/3
T= r*(%) - (17¢)

These do not differ perceptibly from the numerical results on the plotting scale of Figure 4b.
Although Equations (13) to (17) appear to be reasonable approximations, it is important to
recognize that they apply only in the limit x—0 and even then are not exact. This is apparent
from the free upper-surface boundary condition which requires ,,, d,,, and du/&y to be small at
y=h when dv/éx and dh/éx are small. In fact Figure 3b shows that v(0, y)/v,(0) determined
numerically is larger than given by Equation (14) near the upper surface; correspondingly the
profile of u(x, y)/u,(x) would maintain some upward concavity near the surface right up to the
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divide. At the base, an expansion of the stress to first order in x shows that Equations (14) and
(16) lead to an unrealistic stress singularity at #=0. To avoid this du(x, 0)/dy must be zero to
first order in x. This would imply the profile u(y) would become concave downward near the
base as the divide is approached. This tendency seems to show up in the numerical results one
half depth from the divide. Apparently the precise profile of u versus y as x—0 has an inflection.

Approximate analytical description of velocity, deformation rate, and deviatoric stress distant
from divide

Figure 3a and b shows that the vertical profiles of ¥ and v have shapes approximating those
given by Equations (8) and (11), when x =>4/ These may then be used to estimate deformation
rate and deviatoric stress.

The x-differentiated form of Equation (8) given by Equations (10) and (11b) indicate

[ h—y n+1
d,, =—d, =—¢, I"(T) sgn(v,) (18a)
where
n+2\|v
£ = —|.
n+1/)|h

Differentiation of Equation (8) with respect to y and the assumption that dv/dx is negligible gives

1f{éu dov h—y\"
g == 18b
dxy_dyx_2(6y+3x) eb( p ) (18b)

where
n+1\|u
& = —|.
’ 2 )| &
The corresponding effective strain-rate is
h— n+1] 2 h— 2n
é2=£§[l—(—h{) +s§( hy) ; (18¢)

From this is seen that &, is the value of £ at the upper surface (y=h) where ¢ is dominated by
d =—d,,, and g, is the value of ¢ at the bed y =0 where ¢ is dominated by d,,,

The deviatoric stress components and effective stress are easily calcutated from Equations
(18a), (18b), and (18c¢) and the flow law (3a), (3b), and (4).

The resulting deformation rate and deviatoric stress components are plotted in Figure 4a
and b as light lines where they are distinguishable from the numerical results. The major
deviation occurs near the surface where d,, from Equation (18b) is distinctly less than calculated
numerically. This is apparent also in Figure 3a where it is seen that the numerically determined
velocity profiles show shearing more evenly distributed over depth than for the laminar flow
profile on which Equation (18a) is based. This discrepancy exists because the laminar flow profile
neglects near-surface softening by the contribution of vertical strain-rate to the effective viscosity

(Nye, 1957).
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Longitudinal variation of surface velocity and basal shear stress

The longitudinal variation of u; (Fig. 2b) and 7, (Fig. 4c) are shown in Figure 5a and b for
comparison with predictions from standard “laminar-flow” theory (Nye, 1952). Distant from the
divide the agreement is good, but within 4/ distinct deviations are apparent. This is consistent
with expectations from consideration of the depth profile shapes for u and 7, considered
previously (Figs. 3 and 4).

Of particular interest is the rather sharp drop in basal shear stress in the near-divide zone. At
an intuitive level it may be understood as the result of two constraints: first, basal shear stress
must go to zero at the divide by symmetry; second, it must maintain a high value to allow

significant flow to take place because of the non-linear dependence of flow velocity on basal
shear stress.

(GENERALIZATION OF THE RESULTS

The results of the previous section refer to a single example involving specific shape, size, and
rheology of the ice mass. What results apply to more general circumstances?

Dependence of velocity at the divide on geometry, scale, and mass balance

A number of different symmetric surface elevation profiles were examined (Fig. 2a). Some of
these yielded rather complex distributions of surface velocity (Fig. 2b and c). For all of these, the
shape of the depth profile of v at the divide is closely the same as indicated by the range bars in
Figure 3b.

To test the consequences of a more extreme variation in divide geometry and also to consider
a different scale, calculations were made for the geometry shown in Figure 6. This geometry
approximates a flow-line profile across the divide of the Devon Island ice cap in the vicinity of
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Fig. 6. Geometry and finite-element grid simulating a flow-line profile of the Devon Island ice cap. Curves show
stream lines determined from finite-element calculated velocity field. Temperature was allowed to vary with depth
and temperature-dependent flow law was used as explained in text. Spacing of vertical grid lines is 400 m. The
finite-element grid extended over a 6.8 km length of the profile approximately centered on the surface divide.
Edges of the calculation region are omitted in the figure. Vertical exaggeration x 2.

the Devon Island core-hole sites (Paterson, 1976), where ice depth is about 300 m and balance
rate is about 0.2 m a~'. The flow-line profile is based on surface and bed elevation maps from
radio echo-sounding (personal communication from W. S. B. Paterson).

For the calculation, B in the flow law (Equations (3)) was chosen in several ways. First, it
was chosen to be constant B=2.06 bar a'/" so that the solution matched the surface horizontal
velocity measured at the core-hole sites. In the divide region of the Devon Island ice cap, the
temperature varies from —23 °C near the surface to about —18 °C at the bed. To account for
this, B was chosen to vary with temperature as

B(T)=B ¢ 1! T.—-T 19
()wrexan TrT(r ) (19)
with B, =2.06 bar a'/", T, =253 K (—20°C), Q=59 kJ mol~' (14 x 10 kcal mol~"), and R is
the universal gas constant, which with the measured variation of temperature with depth gives
results distinguishable but not dramatically different from the case of B constant. Figure 6 shows
the flow pattern for the non-isothermal case.

Here we will not consider how well calculated results can be fit to the full range of measured
flow and deformation data on the Devon Island ice cap, which are complicated by compaction of
firn at the surface and transverse strain-rates. Attention is focused on the theoretical depth
variation of v at the flow divide. This particular divide geometry shows considerable complexity
in comparison to the isothermal symmetric flat-bedded case considered in the previous section.
Foremost are the uneven bed, a shift of the surface topographic divide from the bed divide, and a
shift of the flow divide from the surface topographic divide showing some features suggested by
Haefeli (1963). Also the scale is different; the parameter B=7x10"? (in comparison to
B=1.6 x 10~ for the reference symmetric divide). Even with these major differences in divide
shape and scale, the shape of the calculated depth profile of v at the flow divide is consistent with
Figure 3b, with results for both isothermal and non-isothermal variations of B falling in the range
bars shown.

Dependence of velocity distant from the divide on geometry

The shapes of depth profiles of u and v away from the various divides shown in Figure 2a
were fairly consistent and held to the patterns shown in Figure 3a and b. However, the deviations
were larger than at the divide, as shown by the range bars in Figure 3b.
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Deviations are expected from two sources: first, a wide range of longitudinal strain-rates,
which will result in some differences in the depth distributions of effective viscosity (Nye, 1957),
and second, a wide range of longitudinal strain-rate gradient and associated longitudinal stress
gradient (Budd, 1968), which will result in differences in stress distribution and may affect the
depth variation of the shear strain-rate parallel to the surface. Some effect from the first of these
has already been noted. The second appears to be the more significant, because the largest
deviations of profile shape occurred in cases where |9?u/6x?| was largest. In this regard, the
results show that when d%u/éx? > 0, the depth profile of u is modified such that shear becomes
more evenly distributed over depth and the depth profile of v becomes more concave downward,
that is, such that vertical motion is more confined to near the upper surface. Opposite effects on
profile shapes are found for 82u/8x* < 0. These are interesting systematic effects of longitudinal
stress gradients, which are simply noted here but will not be considered in detail. Based on the
fact that ¢%u/6x* =0 at the flow divide by symmetry and the predominant effect on velocity
depth profile shape from #2u/éx?, we also see a partial explanation of why the profile shapes at
divides are so uniform.

Effect of ice rheology

To test what role the non-linear flow law of ice plays in the special pattern of deformation
near the divide, calculations were done for n= 1, which corresponds to a linear Newtonian fluid.

When the viscosity, surface topographic profile, and right-hand boundary condition are
matched, so that v and du/éx are nearly uniform along the upper surface, then the variation of u
over depth shows a parabolic depth variation consistent with a Poiseuille flow profile.
Furthermore, this shape persists up to the divide at least within the longitudinal resolution of the
numerical calculations. This x-independent profile shape for u and the corresponding one for v
are shown in Figure 3.

When viscosity, surface topographic profile, and right-hand boundary conditions are such
that large variations in v and du/dx occur along the surface, then deviations from these Poiseuille
profile shapes over depth are perceptible and show the same systematics depending on the sign of
&*u/éx* as in the non-linear case. This shows that the changes in profile shape associated with
&?u/dx* being non-zero arise principally from a redistribution of the depth variation of shear
stress 7, associated with longitudinal stress gradients and only secondarily from rheological
non-linearity. A simple explanation will be considered separately in a paper in preparation.

Width of the divide zone

Since there is no distinguishable near-divide zone for n=1, a special stress distribution
pattern imposed by the divide geometry alone is not the principal factor. In contrast to the case
for n=1, in which viscosity is constant, when n=3 the effective viscosity varies with depth. At
the divide effective viscosity increases downward. Distant from the divide, it increases upward.
These facts are seen from the distribution of ¢ in each case (Figure 4a and b) and the flow law
(Equation 3b). The principal cause of the near-divide zone must be this difference in effective
viscosity arising from the non-linearity. The difference arises from general constraints. At the
divide, ¢ is small and correspondingly viscosity is large at depth because du/dy=0 by symmetry
and du/dx—0 at the bed because of its frozen condition. Away from the divide, du/cy becomes
large at depth yielding relatively low viscosity there.

To examine the width of the divide zone, one is led to compare longitudinal strain-rate
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du/dx to horizontal shearing rate du/dy. Averaged over depth, these are: {|du/dx|>=|v,/h|,
{Ou/dyy=uy/h. Thus du/dx is larger than du/dy on average only when |v;| > u,. Assuming
steady-state geometry such that v, is adjusted to a uniform mass balance and horizontal velocity
averaged over depth is proportional to u, with a constant factor k, volume conservation implies
—v x=kugh. For a laminar flow profile shape, & is (n + 1)/(n + 2), and for the shapes close to the
divide it approaches 1/2, so it is not precisely constant. However, for the present argument, it is
sufficient that it is nearly constant and close to one. That implies |vg| > &, when x < h. From this
argument, the width of the near-divide zone is scaled to one ice depth independent of divide
thickness A and divide balance. The one ice depth represents a scaling of a transition zone and it
is not inconsistent with discernible effects out to several ice depths as occurs for n=3 (Figs 3,
4, and 5).

Effect of non-isothermal conditions

The example based on the Devon Island ice cap geometry showed that if the temperature
variation over depth is not large (e.g. 5 deg), then the results derived above can still be reasonably
applied. However, with larger temperature variations over depth they become invalid. Table I
shows examples of the effect on vertical velocity at the divide for the reference surface profile
caused by several assumed temperature distributions. For this purpose, temperature versus depth
was parametrized as

2 Yy
Ny)=T,+—Ghl 1 —cos—= (20)
T 2 h

where 7, is surface temperature and G is geothermal gradient. This profile form approximates
expected theoretical and measured shapes of temperature profiles. For a typical geothermal
gradient of 0.025 deg m~!, the temperature difference over a 10° m thick ice sheet would be
about 16 deg and this gives results which fall distinctly out of the range of variation caused by
geometrical and kinematic effects considered previously.

TABLE I. COMPARISON OF NORMALIZED VERTICAL VELOCITY v(o, y)/v(o, h) FOR VARIOUS TEMPERATURE PROFILES
GIVEN BY EQUATION (20). ICE SHEET SURFACE PROFILE IS GIVEN BY EQUATION (12) witH /= 10° m. RESULTS ARE
BASED ON 6 x 20 GRID

/o 4 T y/h

°C degm™! °C 0.7009 0.4970 0.3183 0.154 1
—20 0 —20 0.531 0.272 0.109 0.023
49 0.025 —14 0.574 0.318 0.139 0.032
- 40 0.06 —i 0.615 0.365 0.173 0.042

SUMMARY AND DISCUSSION

Summary

The salient features of the flow pattern for the reference isothermal symmetric ice sheet are:

(i) depth profile shapes at the divide such that v is approximately parabolic and u approaches
being linear;

(i) depth profile shapes distant from the divide such that u is approximately consistent with
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predictions for laminar flow of isothermal ice with a corresponding v derivable from
incompressibility.

(i) the transition from near-divide to divide-distant patterns occurring over several ice
depths.
Based on calculations from the different geometries: (i) holds relatively independent of divide
geometry and corresponding surface motion pattern; deviations from (ii) exist for geometries
such that surface longitudinal strain-rate gradient is large. Theoretically, the width of the near-
divide zone relative to thickness is insensitive to thickness and surface velocity. By comparison
with calculations for a linear fluid (n= 1), which shows no similar near-divide zone, (i) depends
on the assumed non-linearity of the ice rheology and specifically that n=3. The principal factor
preventing general applicability of (i) for ice divides is variation of temperature with depth.

Age versus depth

Figure 7 shows age versus depth. At the divide, particles move vertically downward and age
versus depth is found from

o d_]l
y)=| — 1)
Jy
An approximation can be calculated from Equation 14 to find
h 2 d(y/h) —h[h
o | ——— = (22)
M=), Oy (.v )

when it is assumed that /# and v, are independent of time.

1.0

T T I 1 I

AGE VERSUS DEPTH |

0.9

0.8

0.7

0.6

0.5

y/h

0 and using Eq.(14)

0.4+ =
0.3 192
0.2 Fi ., . §
ig. 7. Age versus depth for the reference surface-elevation
profile at divide (x=0) and at x= 19! determined from
0.1~ using Eq. (I1) integration along particle paths (solid lines) and from
local vertical velocity (light line). Unit of time T* is
00 : 2' g ‘I; 5' A |vg(Q)|/h(0), which is the time that would be required for a
particle deposited at the divide to reach the bed if it were
i 0 to maintain its initial downward veloeity.
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Away from the divide, age versus depth is properly calculated by integration along particle
paths, which allows for the initial elevation of a particle and changes in vertical velocity pattern
during its horizontal displacement. Particles near the bottom originated near the divide and
experienced much of their vertical displacement near the divide. As a result, age at a given depth
near the bottom is greater than would be calculated from Equation (21) using the local variation
of v with depth (Fig. 7).

Relative advantages of divide and flank positions for coring

Ice divides have a number of advantages for coring: the oldest ice will be thickest there
(Fig. 7): the profile shape of vertical velocity with depth and the corresponding pattern of vertical
straining should remain unchanged with changes in thickness and mass balance (Fig. 3b); there
is no horizontal displacement resulting in a complicated history of vertical straining associated
with motion over irregular bed topography. Against these advantages must be balanced possible
drawbacks arising from the narrowness of the divide-like pattern. Shifts of divide position of only
several ice depths could result in a complex history of vertical displacement as a particle
experienced alternately divide-like and flank-like patterns of vertical movement. Based on the
results found here, ice divide positions appear to be best for the deepest ice, but flank positions
may be more simple for shallow and intermediate-depth ice.
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