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ABSTRACT--This paper outlines the procedure for refining 
the digital image correlation (DIC) method by implementing 
a second-order approximation of the displacement gradients. 
The second-order approximation allows the DIC method to di- 
rectly measure both the first- and second-order displacement 
gradients resulting from nonlinear deformation. Thirteen un- 
known parameters, consisting of the components of displace- 
ment, the first- and second-order displacement gradients and 
the gray-scale value offset, are determined through optimiza- 
tion of a correlation coefficient. The previous DIC method 
assumes that the local deformation in a subset of pixels is rep- 
resented by a first-order Taylor series approximation for the 
displacement gradient terms, so actual deformations consist- 
ing of higher order displacement gradients tend to distort the 
infinitesimal strain measurements. By refining the method to 
measure both the first- and second-order displacement gra- 
dients, more accurate strain measurements can be achieved 
in large-deformation situations where second-order deforma- 
tions are also present. In most cases, the new refinements 
allow the DIC method to maintain an accuracy of 4-0.0002 for 
the first-order displacement gradients and to reach 4-0.0002 
per pixel for the second-order displacement gradients. 

KEY WORDS--Computer vision/digital image processing, 
data reductions, electronic recording interferometry 

Introduction 

Digital image correlation (DIC) has become an accepted 
method for measuring the surface displacements and dis- 
placement gradients in materials under deformation. Orig- 
inally proposed by a group of researchers at the University 
of South Carolina, 1-5 this method has been refined and ex- 
tended by others. Vendroux and Knauss 6-8 and Vendroux 9 
refined and optimized the basic algorithms used for two- 
dimensional DIC. These refinements were made primarily 
in three different areas. A large-deformation description 
was used to improve the accuracy of the measurements of 
infinitesimal strains by eliminating the effects of rigid defor- 
mations. A least squares correlation coefficient was proposed 
in place of the commonly used cross-correlation coefficient 
for measuring the correlation of the deformation mapping 
of the reference image to the deformed image. An approxi- 
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mated Hessian matrix was used in the Newton-Raphson min- 
imization algorithm to speed up the optimization looping and 
provided for more robust convergence characteristics. 

The DIC method relies on the existence of a distinct gray- 
scale pattern in a region composed of a subset of pixels around 
a location where deformations are computed. DIC is per- 
formed between a subset in the reference configuration and 
its image in the deformed configuration. The size of a typi- 
cal subset region is somewhere between 10 • 10 pixels and 
41 • 41 pixels. Previous algorithms 1-9 assumed a first-order, 
linear approximation of the deformation mapping. This ap- 
proximation holds reasonably well when the size of the subset 
is small, on the order of a few pixels at each side of a square; 
however, a distinct gray-scale pattern might not exist in this 
small region, and thus it is difficult to perform image correla- 
tion to find the deformations. A subset region of a relatively 
large size, on the order of tens of pixels at each side of a 
square, could possess a distinct gray-scale pattern necessary 
for image correlation; however, linear deformation mapping 
in the relatively large subset region might not be appropriate, 
and instead the researcher must use higher order deformation 
mapping. 

In this paper, we use the DIC method to study relatively 
large two-dimensional deformation. In general, as the size of 
the subset region becomes larger and the magnitudes of the 
displacement gradients increase, the likelihood of the dis- 
placement field in the subset region remaining linear can be 
reduced. Therefore, the variations induced by these higher 
order displacement gradients must be taken into account. 
Accounting for these higher order gradients prevents them 
from clouding the infinitesimal strain measurements, which 
depend only on the first-order partial derivatives of displace- 
ments. In cases of relatively large deformation where second- 
order deformations are also present, previous algorithms 1-9 
at best tended to average in the higher order deformation 
and at worst would not satisfactorily converge because of 
the inability to map the deformation. The new implemen- 
tation presented in this paper incorporates a second-order 
approximation of the deformation mapping. This will allow 
a more accurate determination of the deformation parame- 
ters directly related to the strain components by determining 
and accounting for the effect of the second-order mapping 
parameters. The second-order Taylor series approximation 
of the displacement field will allow the DIC method to di- 
rectly measure displacements, first-order displacement gra- 
dients and second-order displacement gradients present in the 
subset region. While this higher order approximation does 
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provide a better measurement of infinitesimal strain in large- 
deformation situations, it still does not measure exactly all 
the nonlinear characteristics present in large deformations. 

Digital  Image  Corre la t ion Us ing  Second-order  
Approx imat ion  

In general, the DIC method is performed between two im- 
ages. One is the reference or undeformed image, and the 
other is the deformed image. Typically, a grid of nodes is 
located in the reference image, and the deformation map- 
ping is calculated at each of these nodes. The fundamental 
level of the calculation is at the node level, so the following 
development of the algorithm is for each node. 

Displacement Mapping 

Consider a two-dimensional deformation. A subset of 
points around a node is mapped from the reference image to 
the deformed image. Each of these subset points is located in 
the reference image at (x, y) and is mapped to the deformed 
image at location ('~, ~ using 

E =  x + U(x,  y) 

"~ = y + V(x ,  y), 
(1) 

with U and V being the displacement components of each 
subset point. The new assumption that U and V can be ap- 
proximated by a second-order Taylor series expansion around 
point (x0, Y0) leads to the mapping functions 

1 
"x = xo + UO + UxAx  + UyAy  + -~UxxAx 2 

Z .  

n t- ~ U y y A y  2 + U x y A x A y  

1 
"y = yo + Vo + VxAx  + VyAy  + -4VxxAX 2 

1 
+ -gVyyAy 2 + V x y A x A y ,  

A .  

(2) 

where Ax = x - x0 and Ay = y - Y0. 
Twelve mapping parameters are introduced in eq (2): /30 

and V0, the components of the displacement at (x0, Y0); Ux, 
Vx, Uy and Vy, the components of the first-order displacement 
gradient; and Uxx, Vxx, Uyy, Vyy, Uxy and Vxy, the compo- 
nents of the second-order displacement gradient. Figure 1 
shows the effects of the first- and second-order derivatives of 
the displacements on the subset of points around the node be- 
ing analyzed. From Fig. 1, it can be seen that a much broader 
range of deformation can be accurately represented from the 
combination of these 12 parameters. 

Bicubic Spline Interpolation 

Figure 2 shows an example of a bicubic spline surface [~ 
that has been interpolated through a set of image pixel gray- 
scale values. The bicubic spline interpolation implements a 
third-order polynomial that allows both gray-scale values and 
C 2 continuous gradients to be determined at any location in 
the gray-scale image fields. Bicubic spline interpolation is a 
piecewise interpolation scheme in which a set of coefficients 
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Fig. 1--Effect of displacement gradients on subset points 

Fig. 2--Bicubic spline interpolation of image gray-scale data 

are determined for each rectangular patch. Both the refer- 
ence and the deformed images are interpolated to allow the 
nodes to be located anywhere in the image fields. The gray- 
scale value at any location in the interpolated region of the 
reference image can be calculated using the bicubic equation 

3 3 

g(x,  y) = E E etmnxmyn" 
m----0n=0 

(3) 

Following Vendroux and Knauss, 7 we introduce the 13th 
mapping parameter w in the form of a gray-scale value offset 
of the bicubic spline interpolation for the deformed image. 
This parameter is introduced to allow us to make the assump- 
tion that the gray-scale values g in the reference image are 
approximately the same as the gray-scale values h in the de- 
formed image. Differences in the brightness of the images 
could result due to lighting changes between the acquisitions 
of the two images. The equation for the interpolated de- 
formed image is then 
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3 3 

h('x, y,P) = Z Z ~mn'~rn'~n "~- tO. 
m=0 n=0 

(4) 
02 C 

v v  c = 

For later simplification, let P represent a vector with all 13 
mapping parameters as its components. 

Correlation 

A least square correlation coefficient 7'11 is used to deter- 
mine the optimum values for the mapping parameters. Let 
S represent all the points in the subset, and let Sp represent 
any single point in the subset. This correlation coefficient is 
defined as 

E {g(Sp) - h(Sp,P)} 2 
SpeS 

c =  (5) 
E g2(Sp) 
SpeS 

The summations are performed over all the points in the sub- 
set region. From the equation, the range of values for C is 
[0, ~ ) ,  where the minimum is reached when the differences 
between g and h are minimized. The set of P that minimizes 
the correlation coefficient C is in fact the parameters of the 
mapping caused by the deformation. 

To find the minimum C, the gradient of C must converge 
to zero, that is, 

-2  

SpES 
spas 

02h (Sp, P) 
-h(Sp, P)) OPiOPj 

(8) 

2 X-" Oh(Sp, P) Oh(Sp, P) 
~_, g2(Sp) SpL~S OPi OPj 
SpeS i=1,13 

j=l,13 

Based on the approach proposed by Vendroux and Knauss, 7 
we can make an approximation to the Hessian matrix. Be- 
cause we have included the term w to account for any bright- 
ness offsets between the two images being correlated, we can 
assume that at the solution, g(x, y) ,~ h(x, y, P). The as- 
sumption that the initial trial solution for P is close to the 
solution leads to the following term: 

E (g(Sp) - h(Sp, P)) 02h(Sp' P) 
SpeS OPiOPj ~, O. 

(9) 

VC = 
i=1,13 

-2  

E g2(Sp) 
Spas 

(g(Sp) - h(Sp, e)) OPi 
i=l,13 

(6) 

= 0 .  

This leads to an approximate Hessian matrix of the correlation 
coefficient: 

02C 2 X-" Oh(Sp, P) Oh(Sp, P) 

E g2(Sp) spZ-~S OPi ~Pj 
S~eS 

(10) 

The Newton-Raphson 11 method is used to solve for the roots 
of eq (6). This method uses an approximate value for the 
root of a function, then iterates until it converges to the actual 
roots. In the DIC algorithm, the roots of the gradient of the 
correlation coefficient VC must be found. Therefore, the 
Newton-Raphson equation would be 

[VVC(Po)(P - PO)] = - [VC(Po)] ,  (7) 

where P0 is an initial guess of the solution and P is the 
next iterative approximate solution of eq (6). VVC(P) is 
the second-order gradient of the correlation coefficient, also 
known as the Hessian matrix. The Hessian matrix of the 
correlation coefficient can be computed by 

The derivatives of the gray-scale values with respect to the 
mapping parameters are functions of both the displacement 
mapping and the bicubic interpolation of the deformed image 
pixel data. These partial derivatives can be evaluated using 
the chain rule 

Oh(Sp, P) Oh('~, "~, P) a'~(Sp) Oh(~', ~', P) 
= - - q -  

O Pi O'~ O Pi Oy 

Oy(Sp) Oh('~, ~, P) - - +  
OP~ OP~ 

(11) 

The equations for calculating the 13 gradient terms for 
ah(Sp,P) 

~e~ for each point Sp are as follows: 
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Oh Oh Oh Oh 

o u  0"~ o v  oy 
Oh Oh Oh Oh 

- -  - -  A x  - -  Ax 
ov,  0".~ o vx oy 

Oh Oh Oh Oh 
OUy - -  O-'E Ay OVy -- Oy Ay 

Oh 1 Oh Oh I Oh 2 
OUx----x - 2 0"] Ax2 OVxx - 2 - ~ A y  (12) 

Oh 1 O h  2 Oh 1 Oh 2 
OUyy -- 2 - ~  a y  OVyy - 20-~ Ay 

ah Oh Oh Oh Oh 
1. aVxy 07 A x A y  Ow OUxy -- 0"~ A x A y  

Th-e ~-~0h and ~ah terms of these partial derivatives are the gradi- 

ents of the bicubic spline interpolating polynomial from the 
deformed image, where 

Oh 
= I~10 -'l- ~117-[" ~12Y 2 q- ~13Y '3 

-q- 21320~' -t- 2~21~'Y q- 2~22~'7 2 -t- 2~23x'7 3 

+ 31330 ~'2 + 31831.~'27 + 3~32x'2y 2 --t- 3~33x'2y '3 
(13) 

and 

Oh 
0--~ = [~01 + 218027 + 3[3037 2 

-k ~11~' -1- 218m~'Y + 3~13~7 2 

a t- ~21 ~'2 Jr- 2~22x'ZY-t- 3~23X'2y z 

(14) 

-t- ~31 ~'3 Jr- 2~32~3~-t - 3[~33~37 2. 

the mapping parameters Uo, Vo, Ux, Vx, Uy and Vy, as well 
as the rigid-body rotation 0. Table 1 shows the results of 
DIC using these images. In the "percentage error" column, a 
blank space indicates that the percentage error is meaningless 
when the "exact value" is zero. 

From these results, it can be seen that the new refinements 
to the algorithm maintain the accuracy of the previous method 
for purely linear displacement functions. Conservatively, the 
translation terms can be resolved to within 4-0.005 pixels and 
the rigid-body rotations to within +0.005 deg. The first-order 
displacement gradients can be determined to within -t-0.0002 
and, so far, the second-order terms to within 4-0.0002 per 
pixel. 

Second-order Deformation Test 

Theoretical images with second-order deformations were 
created with a program that generates a new "reference" im- 
age from a sample image. The sample image would be the 
deformed image of the new image set and the prescribed 
deformation from the generated reference image. The pro- 
gram used the second-order displacement functions to map 
the pixel locations in the reference image to a location in the 
deformed image. The gray-scale value for each pixet in the 
generated reference image was then determined using bicubic 
spline interpolation from the mapped location in the sample 
image. Figure 4 shows the images used for the two second- 
order deformation tests. These images were analyzed, and 
the results are summarized in Table 2. 

Again, the new refinements were able to measure the 
second-order displacement gradients conservatively to within 
4-0.0002 per pixel. The exact theoretical principal strains for 
case 1 should be El = 0.050 and ~2 = 0.025, and for case 2 
should be el = 0.050 and s2 = -0.025. The corresponding 
principal strains for this displacement field at the origin were 
calculated to be el = 0.04999 and e2 = 0.02501 for case 
1 and ~1 = 0.04966 and ~2 = -0.02466 for case 2. These 
tests show that the new refinements in the DIC can accurately 
measure the displacements and the displacement gradients of 
a prescribed second-order deformation field. 

Evaluation and Results 

After implementing these new refinements into a DIC soft- 
ware algorithm, the method was tested. The purpose of the 
initial tests was to determine the algorithm's capability to ex- 
tract known deformation parameters from a set of images. 
All the images used for evaluating the method were eight-bit 
gray-scale bitmap images. The subset region used in the eval- 
uations consisted of a square 41 x 41 pixel area centered about 
the node being analyzed. Theoretical images were generated 
to eliminate having to assess the instrumentation errors that 
could vary from one setup to another. 

Linear Deformation Test 

To evaluate the usefulness and accuracy of these new re- 
finements, several test images were prepared. For the first 
test, a simple paint program was used to translate and rotate 
a typical random, speckle pattern image. Figure 3 shows 
the reference image, the translated image and the rotated im- 
age. These translated and rotated images were used to test 

Fig. 3--Speckle pattern image translated U = V = 12.5 
pixels and rotated 23.45 deg counterclockwise 

Case 1 Reference Image Case 2 Reference Image 

Fig. 4--Images used for higher order tests 

Deformed Image 

396 �9 VoI. 40, No. 4, December 2000 



TABLE 1--RESULTS OF FIRST-ORDER DISPLACEMENT FUNCTION 
Exact Measured 

Parameter Value Value 
Percentage 

Difference Error 
Translated Image 

Uo (pixel) 12.5 12.497 
Vo (pixel) 12.5 12.499 

Ux 0.0 0.00001 
Vx 0.0 -0.00002 
Uy 0.0 0.00006 
Vy 0.0 0.00001 

Uxx (1/pixel) 0.0 0.00001 
Vxx (1/pixel) 0.0 -0~00001 
Uyy (1/pixel) 0.0 0.00001 
Vyy (1/pixel) 0.0 0.00001 
Uxy (1/pixel) 0.0 0.00001 
Vxy (1/pixel) 0.0 0.00000 

0 0.0 0.0006 
Rotated Image 

ux -0.08259 -0.08268 
Vx 0.39795 0.39793 
Uy -0.39795 -0.39799 
Vy -0.08259 -0.08262 

Uxx (1/pixel) 0.0 -0.00001 
Vxx (1/pixel) 0.0 0.00001 
Uyy(1/pixel) 0.0 0.00001 
Vyy(1/pixel) 0.0 0.00002 
Uxy(1/pixel) 0.0 0.00000 

Vxy 0.0 0.00000 
0 23.450 23.452 

TABLE 2--RESULTS OF SECOND-ORDER DEFORMATION FUNCTION 
Exact Measured 

Parameter Value Value 

0.003 0.02 
0.001 0.008 
0.00001 
0.00002 
0.00006 
0.00001 
0.00001 
0.00001 
0.00001 
0.00001 
0.00001 
0.00000 
0.0006 

0.00009 0.01 
0.00002 0.005 
0.00004 0.01 
0.00003 0.04 
0.00001 
0.00001 
0.00001 
0.00002 
0.00000 
0.00000 
0.002 .009 

Percentage 
Diffe~nce Error 

Case 1 
Uo (pixel) 0.0 0.001 
Vo (pixel) 0.0 -0.0004 

Ux 0.05 0.04999 
Vx 0.0 0.00002 
Uy 0.0 0.00000 
Vy 0.025 0.02501 

Uxx (1/pixel) 0.0075 0.00749 
Vxx (1/pixel) 0.0 0.00000 
Uy x (1/pixel) 0.015 0.01499 
Vyy (1/pixel) 0.0 0.00000 
Uxy (1/pixel) 0.0 0.00000 
Vxy (1/pixel) 0.005 0.00500 

Case 2 
Uo (pixel) 0.0 0.00031 
Vo (pixel) 3.5 3.5005 

Ux 0.0 -0.00004 
Vx 0.04 0.04001 
Uy 0.03 0.02997 
Vy 0.025 0.02501 

Uxx (1/pixel) 0.0 0.00000 
Vxx (1/pixel) 0.01 0.01000 
Uyy(1/pixel) 0.0 0.00000 
Vyy(1/pixel) 0.008 0.00799 
Uxy(1/pixel) 0.0075 0.00750 
Vxy(1/pixel) 0.0045 0.00450 

0.001 
0.0004 
0.00001 0.02 
0.00002 
0.00000 
0.00001 0.04 
0.00001 0.13 
0.00000 
0.00001 0.07 
0.00000 
0.00000 
0.00000 0 

0.00031 
0.0005 0.014 
0.00004 
0.00001 0.025 
0.00003 0.1 
0.00001 0.04 
0.00000 
0.00000 0 
0.00000 
0.00001 0.13 
0.00000 0 
0.00000 0 

As a comparison, the results of these second-order dis- 
placement field cases without accounting for the second- 
order displacement gradients are shown in Table 3. 

The calculated principal strains are el = 0.03734 and e2 = 
0.00198 for case 1 and el = 0.00110 and e2 = -0.01154 for 
case 2. Without the refinements in the correlation method, 

the first-order displacement gradients are clouded by the 
higher order gradients. These test results show that by mea- 
suring and accounting for the higher order gradients, the 
first-order gradients can be measured more accurately. The 
strains are calculated directly from these first-order gradients 
exclusively. 
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TABLE 3--RESULTS OF SECOND-ORDER DISPLACEMENTS WITHOUT REFINEMENTS 
I II I i i  II i I i i i  

Exact Measured 
Parameter Value Value Difference 

Percentage 
Error 

Case 1 
Uo (pixel) 0.0 1.244 1.244 
Vo (pixel) 0.0 -0.196 0.196 

Ux 0.05 0.03728 0.01272 
Vx 0,0 -0.00702 0.00702 
Uy 0.0 0.00448 0.00448 
Vy 0.025 0.00201 0.02299 

Case 2 
Uo (pixel) 0.0 -0.3330 0.3330 
Vo (pixel) 3.5 4.5895 1.0895 

Ux 0.0 -0.00986 0.00986 
Vx 0.04 0.00259 0.03741 
Uy 0.03 0.00601 0.02399 
Vy 0.025 -0.00058 0.02558 

25 

92 

31 

94 
80 
102 

Simulated Second-order Deformation 

In the next test case, second-order deformation was sim- 
ulated by acquiring images of a 22.23 mm diameter cylin- 
der as it is rotated around its axis. This part of simulation 
was performed to validate the refined technique when mea- 
suring the second-order deformations only; the simulation 
presented here is not designed as an approach for the mea- 
surement of surface deformations of a cylindrical specimen. 
For measurements of surface strains on a cylindrical speci- 
men, other methods, such as the one developed by Lu, Knauss 
and Vendroux, 12 can be used. 

In this test, the cylinder sample was mounted vertically 
in an indexing head that had graduations every 3 deg. The 
image acquisition system uses a Kodak Mega Plus II digital 
CCD camera possessing a spatial resolution of 1000 • 1000 
pixels and 10-bit gray-scale. The CCD camera was placed 
approximately five feet from the sample, and images were 
acquired at various rotation angles. The images can be con- 
sidered as the projection of the cylinder onto an observation 
plane (imaging plane). Figure 5 shows a diagram of the pro- 
jection of the curved cylindrical surface onto the flat imaging 
plane. The values for the theoretical displacement gradients 

ted Point 

Initial Point 

Imaging Plane 
Fig. 5--Cylinder image projected onto the plane 

are derived under the condition that the initial point is lo- 
cated at the center of the image and lined up on the cylinder 
axis. The derivation of Ux and Uxx is based on two additional 
points located some angle tp on each side of the initial point. 
The distance as projected onto the imaging plane between 
the two points in the initial position is do = 2rsin~0 and in 
the rotated position is dr = rsin(0 + ~0) - rsin(0 - ~p). Ux 
is then found by taking the limit as ~0 approaches zero in the 
equation 

d~-d0 
Ux= lim - -  - - c o s 0 - 1 .  (15 )  

~ 0  do 

The distance, as projected onto the imaging plane, of each 
of the two points from the initial point is dl = rsin9 and 
from the rotated position is d2 = rsin0 - rsin(0 - qg) and 
d3 = rsin (0 + 9) - rsin0. The deformation Uxx is then found 
by taking the limit as ~p approaches zero in the equation 

d3-d,1 _ d~-d  1 
Uxx = lim dl dl rising, (16) 

~p~0 dl r 

where r is the radius of the cylinder and 0 is the angle of 
rotation. One set of images comparing a 21 deg rotation is 
shown in Fig. 6. Eight different rotation angles were ana- 
lyzed in this test. These angles ranged from 5.5 deg to 27 
deg. Because these are actual images, other errors could 
be introduced, such as lighting differences around the rod, 

Initial Rod Point After 
Axis 21 o Rotation 

Fig. 6--Images of a cylinder rotated 21 deg 
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TABLE 4--RESULTS OF ROTATED CYLINDER TEST 

Parameter Theoretical Measured 
Percentage 

Difference Error 
New refined method 

Ux -0.06642 -0.06656 
Uxx (1/pixel) -0.00167 -0.00172 

Previous method 
Ux -0.06642 -0.06458 

Uxx (1/pixel) -0.00167 0 

0.00014 0.21 
0.00005 3.0 

0.00184 2.8 
0.00167 100 

measurement tolerances of the rotation angle and the camera 
alignment. The errors in measuring the radius of the cylinder, 
the prescribed rotations and the established accuracy of the 
new DIC method all affect the accuracy of the final measure- 
ments. The radius of the cylinder in the images was found to 
be 215 pixels 4-2 pixels. The indexing head used to rotate the 
cylinder had an accuracy of + 3 deg. The errors resulting 
from the accuracy of the prescribed angle are not constant but 
vary with the prescribed angle. At a nominal rotation angle of 
21 deg and a cylinder radius value of 215 pixels, the expected 
Ux measurement would be approximately -0 .066 4- 0.0009 
and the expected Uxx measurement would be approximately 
-0.00167 per pixel 4-0.00003 per pixel. The established ac- 
curacy of the new DIC method is 4-0.0002 for the first-order 
deformation gradients and 4-0.0002 per pixel for the second- 
order deformation gradients. The total error band expected in 
the measurement of Ux is 4-0.0011 and for the measurement 
of Uxx is 4-0.00023 per pixel. Figure 7 shows the exact the- 
oretical solution as the solid diagonal line and the expected 
error band between the two dashed lines. The solid circles are 
the results of the new refined method, and the open circles 
are the results of the previous, linear deformation method. 
On the Ux results plot, Fig. 7 shows that the new method 
does give a more accurate measurement of the first-order 
displacement gradients. The maximum error for Ux using 
the previous method is 9.7 percent, whereas, incorporating 
the new refinements, the maximum error is only 1.7 per- 
cent. On the plot showing the Uxx results, the new method 

gives accurate measurements of the second-order displace- 
ment gradients whereas the previous method gave no results 
at all. Table 4 compares the results of the measurements at 
a rotation of 21 deg with the new refined DIC method and 
the previous method. Again, these results show the validity 
and accuracy of the new DIC refinements for higher order 
deformation. 

Conclusions 

The refinements to the DIC method outlined in this paper 
allow for the measurement of second-order displacement gra- 
dients, which provides a more accurate method of measuring 
the strains of materials undergoing relatively large deforma- 
tion. These second-order displacement gradients can be mea- 
sured by assuming a second-order approximating function 
for the displacement fields of the material. Measuring and 
isolating the higher order displacement gradients Uxx, Vxx, 
Uyy, Vyy, Uxy and Vxy allows for the displacement gradient 
components Ux, Vx, Uy and Vy, which directly contribute 
to the strains, to be more accurately measured in situations 
where higher order deformation occurs. The actual values 
measured for the higher order terms are not used for any of 
our current research on simple materials in which stress does 
not depend on second- or higher order displacement gradi- 
ents, but could be used directly in new fields of study that 
depend on these higher order displacement gradients, such 
as gradient plasticity. The new refinements provide the same 
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accuracy as the previous DIC method of about -4-0.0002 for 
the first-order displacement gradients in small-deformation 
conditions. These new refinements maintain that same ac- 
curacy as the deformations in the material increase, whereas 
the previous method would begin to lose accuracy as the 
higher order displacement gradients begin to cloud its mea- 
surements. More research can be done to determine whether 
even higher order displacement functions provide any added 
benefits to the method with respect to the additional compu- 
tational requirements. 

The DIC method for strain measurement has already been 
established as an effective noncontact measurement method 
for determining strains in a specimen. These refinements al- 
low the DIC method to be accurately used for a more general 
class ot~deformation situations. 
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