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Deformation Mechanisms of the Zr4(Ti;4Ni;(Cu,Besy Bulk Metallic Glass
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‘We have studied the mechanical behavior of ZrsoTi14NijoCujpBeys through uniaxial compression and nanoindentation experiments.
Quantitative measurements of the serrated plastic flow observed during uniaxial compression are reported. These data are used to predict tem-
perature increases in single shear bands due to local adiabatic heating caused by the work done on the sample as shear propagates progressively
across the sample. Since the predicted lemperature increases are insufficient to reach the glass transition temperature, it is unlikely that localized
heating is the primary cause of flow localization. Instead, localization of shear is more likely caused by changes in viscosity associated with
increased free volume in the shear bands. The orientation of the shear bands in compression tests and an indentation size effect for the onset of
plastic flow in nanoindentation both point to increased free volume as the cause of localization.
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1. Introduction

Prior to the development of bulk metallic glasses, speci-
mens for mechanical testing of amorphous metals were avail-
able only in ribbon form. Investigations of mechanical be-
havior were thus confined to tension and bend testing. Be-
cause metallic glasses cannot sustain plastic strain in tension,
limited information about their flow properties was available.
The development of bulk metallic glasses*? enabled a wider
range of mechanical tests including compression, torsion,
fracture toughness, and fatigue testing.>”” Consequently, the
bulk macroscopic mechanical properties of metallic glasses
have now been thoroughly investigated. Nonetheless, the pre-
cise nature of the deformation mechanisms in these amor-
phous materials remains unclear.

Flow in metallic glasses is extremely inhomogeneous at
high stresses and low temperatures. Deformation is localized
in thin shear bands near planes of maximum shear and ap-
pears to be related to a local change in viscosity within these
bands. There are two hypotheses as to why this may be the
case. The first suggests that, during deformation, the viscos-
ity within the shear bands decreases due to the formation of
free volume, which in turn decreases the density of the glass.
This hypothesis originated in the work of Spaepen, who de-
rived an expression for steady-state inhomogeneous flow in
metallic glasses based on a competition between stress-driven
creation and diffusional annihilation of free volume.®) Argon
then demonstrated that flow localizes in a band of material in
which the strain rate has been perturbed due to the creation of
free volume.” Subsequently, Steif, Spaepen, and Hutchinson
extended Spaepen’s model by deriving an expression for the
stress at which catastrophic softening due to free volume cre-
ation occurs during uniform shearing of a homogeneous body
under constant applied strain rate.” This expression agrees
well with their numerical solution for the stress at strain local-
ization in a shear band, based on the mechanics of an infinite
body containing a band of slightly weaker material.

The second hypothesis to explain reductions in shear band
viscosity contends that local adiabatic heating beyond the
glass transition temperature, or even the melting temperature,

occurs, decreasing the viscosity by several orders of magni-
tude. This idea was proposed by Leamy, Chen, and Wang
who attributed the vein pattern morphology of fracture sur-
faces to adiabatic heating of the deformed region.!? Later, Liu
et al. detected sparking from tension samples during the mo-
ment of fracture and observed liquid droplets at major cracks
adjacent to the fracture surfaces of these samples.!? By as-
suming that all of the elastic strain energy stored in a sam-
ple at the moment of tensile fracture was dissipated as heat
on the fracture plane, they estimated temperature increases of
900 K. This hypothesis gained further support based on the
results of dynamic compression testing by Bruck, Rosakis,
and Johnson.!® Temperature increases of nearly 775 K were
observed using high-speed infrared detection; it should be
noted, however, that the strain rates imposed in these tests
were more than six orders of magnitude higher than those im-
posed during quasi-static uniaxial compression testing. The
calculated or measured temperature increases cited here are
applicable only to fracture events and do not apply to the in-
homogeneous deformation that occurs prior to failure.
Although the cause of the viscosity reduction is disputed, it
is clear that it localizes the deformation and leads to inhomo-
geneous flow in metallic glasses. In this paper, we present the
results of uniaxial compression testing and nanoindentation
that support the free volume theory of deformation. Quan-
titative measurements of serrated flow during compression
testing are reported. These data are used to predict temper-
ature increases in single shear bands due to local adiabatic
heating caused by the work done on the sample during plas-
tic deformation. Since the predicted temperature increases
are insufficient to reach the glass transition temperature, it
seerns unlikely that localized heating is the primary cause of

flow localization. A Mohr-Coulomb analysis of the orienta-

tion of shear bands formed in uniaxial compression indicates
that normal stresses affect shear band propagation; a normal
stress dependence is expected with the free volume theory.
Finally, nanoindentation results demonstrate a dependence of
the shear strength on indentation size that is also consistent
with the free volume theory.
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2. Serrated Flow and Shear Band Formation

The inhomogeneous nature of the deformation in metallic
glasses is manifested in serrated plastic flow. During uniaxial
compression testing, metallic glass samples load elastically
to the yield stress, at which point serrated plastic flow begins.
Serrated flow is characterized by repeating cycles of a sudden
stress drop followed by elastic reloading.!¥ While the origin
of serrated flow in metallic glasses is uncertain, it is surely
related to the formation of shear bands. The aim of this work
was to better understand deformation in metallic glasses and
its underlying mechanisms by studying serrated flow in detail.

2.1 Experimental procedures

Samples were prepared from the Zr4oTi;4NijoCuy;Beoy
metallic glass alloy that was provided by Howmet Research
Corporation (Whitehall, MI) in plate form. Rectangular sam-
ples with 2:1 and 3:1 aspect ratios (4 mm long and 2 mm on
each side and 6 mm long and 2 mm on each side) were elec-
trode discharge machined from the cast material. Since these
samples were to be tested in compression, the square faces
were ground parallel. The rectangular faces were mechani-
cally polished with a dispersion of 0.05 wm alumina particles.

An Instron model 1125 screw-driven mechanical test sys-
tem was used to perform uniaxial compression tests at a con-
stant displacement rate. A 5000kg load cell measured the
applied load, and two linear variable differential transform-
ers (LVDTs) measured sample displacements. The LVDT
conditioners were equipped with 400 Hz active low-pass fil-
ters. The LVDTs were connected directly to the platens. This
arrangement allowed for direct measurement of sample dis-
placements, eliminating the need to account for machine or
load cell stiffness. The axially symmetric arrangement of the
LVDTs compensated for any bending of the sample during
deformation. The tests were performed with a nominal strain
rate of 10™*s~!. The data acquisition system permitted col-
lection rates of up to 100 measurements per second.

2.2 Experimental results

Figure 1 shows the stress-strain curve for ZragTi;4Nijo-
Cu;,Bey, tested in uniaxial compression. The yield stress
and elastic modulus of ZrsTi14NijqCupnBesy were 1.9 and
97 GPa, respectively. These values are similar to those re-
ported by others for nearly identical alloys.>

Multiple serrations were observed in each of the compres-
sion tests. As these represent an important contribution to
the plasticity of the material, the magnitude of the load drop,
the displacements (total, elastic, and plastic), and the time
elapsed during unloading were analyzed for individual ser-
rations. Figure 2 is a plot of load versus time during serrated
flow in ZryoTi;4NijgCuyyBesy, from which the magnitude of
the load drop of each serration is determined. Figure 3 is a
plot of the total displacement versus time for the serrations in
Fig. 2, from which the total displacement during the unload-
ing of each serration is determined. Using these data and the
stiffness of the material, the elastic and plastic components
of the displacement during unloading were determined. The
time elapsed during the load drop of each serration is also
determined from Fig. 3; however, we note that greater tempo-
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Fig. 2 Load as a function of time in serrated flow region of
Zr4gTi14NijgCuipBeyy tested in uniaxial compression.
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Fig. 3 Total displacement as a function of time in serrated flow region of
Z140Ti4NijpCuj;Beyy tested in unjaxial compression. Data is for the same
serrations as shown in Figure 2.

ral resolution is required to definitively measure this quantity.
Results with an additional data point during each unloading
segment have been reported elsewhere for a different alloy.!>
Our present investigations indicate that the time elapsed dur-
ing the unloading segment is approximately 5 ms.

Figure 4 is a scanning electron micrograph of the surface
of the offset of a shear band formed during quasi-static com-
pression of ZrsyTi;4NijgCupBess. There is no evidence of
melting on this surface. Figure 5 is a scanning electron micro-
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Fig. 4 Scanning electron micrograph of the surface of the offset of
a shear band formed during quasi-static uniaxial compression of
ZraoTijsNijgCujoBeps. There is no evidence of melting on this surface.

Fig. 5 Scanning electron micrograph of three shear bands formed during
uniaxial compression of Zr49TijaNijgCu;2Beys. The arrows indicate the
loading axis. In the foreground, the shear bands are perpendicular to the
edge of the sample; on the adjacent side, the shear bands form an angle of
42° with the loading axis.

graph of three shear bands, also formed during compression.
The arrows indicate the loading axis. In the foreground, the
shear bands are perpendicular to the edge of the sample; on
the adjacent side, the shear bands form an angle of 42° with
the loading axis. Because the shear bands are perpendicular
to the edge of the sample on one side, the orientation of the
bands is unambiguous.

2.3 Discussion and analysis

In an earlier analysis, we considered possible local adia-
batic heating in a single shear band due to the work done on
the sample during plastic deformation.!> It was assumed that
the formation of each shear band is manifested in a single ser-
ration and that all of the work done in producing the shear
band is dissipated as heat. It was also assumed that shear oc-

120 e — .
100 [
8o |
60 |

40

Temperature Change (K)

0l ]

2 0 2 4 6 8 10
Normalized Distance x/a

Fig. 6 Temperature change in the plane of a shear band in ZroTi 4Nijp-
CuypBeyq as a function of distance from the heat source based on mea-
surements of serrated plastic flow and eq. (3).

curred simultaneously over the entire band. Using the data
described above, these assumptions led to an estimate of the
local temperature rise on the plane of the shear band accord-
ing to an expression derived by Carslaw and Jaeger'® and
applied to shear band heating by Eshelby and Pratt.!” The
predicted temperature increases were on the order of a few
degrees Kelvin. It is likely, however, that rather than occur-
ring simultaneously over the entire shear band, shear initiates
at one point in the band and then propagates. If this is indeed
the case, the previous model would overestimate the area be-
ing heated, thereby underestimating the temperature increase.
For this reason, we now consider a second model in which
heating occurs over a more localized area as shear propagates
progressively across the sample.

In this model, we again assume that the formation of each
shear band is manifested in a single serration and that all of
the work done in producing the shear band is dissipated as
heat. We consider the boundary between the sheared and
unsheared material to be a macroscopic defect and treat the
core of this defect as a process zone in which heat is gener-
ated. The heat source is modeled as a planar slit with width
2a as illustrated in Fig. 6. Heat is generated at the rate Q
per unit time per unit length over the slit. Q is given by
Q = TUplasic Y, where 7 is the applied shear stress, ipasiic
is the plastic displacement in the plane of the shear band,
and V is the velocity of the heat source as it propagates
across the sample. The shear bands occur in uniaxial com-
pression at an angle ¢ with respect to the loading axis such
that upasic = Adplastic/ €0s @, where Adpagic is the plastic
displacement that occurs in the direction of the loading axis
during the unloading of a single serration. The total displace-
ment during unloading Ad, is the sum of elastic and plastic
components, such that the plastic component is given by

AP

0 @

where AP is the change of load during unloading, k is the
sample stiffness, and the ratio of AP to k is the elastic com-
ponent of the displacement that occurs during the unloading
of a single serration. Since A P is negative during unloading,
the elastic component of the displacement is also negative,
and the plastic displacement is larger than the total displace-

Adplastic = Adtotal .
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ment. The velocity of the heat source is given by V = [/ Az,
where [ is the length of the shear band and Atz is the time
elapsed during the unloading segment of a single serration.
The half-width of the slit, a, is a measure of the width of the
process zone. We estimate a according to the equation for the
radius of the core of a screw dislocation, a = b/(2my), where
b is the effective Burgers vector of the macroscopic disloca-
tion under consideration and y is the elastic strain that may
be supported by the glass. The elastic strain y is given by
Y = Tyie/ G, where Tyielq is the shear yield strength of the
material and G is the shear modulus. We estimate the length
of the Burgers vector as the plastic displacement that occurs
during the unloading segment of a single serration and find
the size of the process zone to be

uplasticG

= — (2)
27 Tyiela

The plastic displacement as determined from the serrated flow
data is consistent with the length of the step formed by a shear
band at the edge of a sample as observed with scanning elec-
tron microscopy.

Using the parameters defined above, the temperature
change at a point for a planar heat source moving in the
direction of the negative x-axis, as derived by Carslaw and

Jaeger,'® is given by
01 / . Vix —x')
—— X S
47K a J_, P 2k

AT (x, z2) =

2K

where z is the position coordinate along the direction per-
pendicular to the plane of the shear band, K is the thermal
conductivity, « is the thermal diffusivity, and K is the mod-
ified Bessel function of the second kind of order zero. The
prediction of this model for the temperature profile in the
plane of a shear band, based on the data for a single ser-
ration and the thermal constants for this alloy, is shown in
Fig. 6. The predicted maximum temperature increase gen-
erated by the heat source as each shear band propagates in
Z140Ti14Ni;gCuynBesyy ranges from 90 to 120K, and the pre-
dicted maximum temperature increase for the data shown in
Fig. 6 is 102 K. The heat source is moving in the negative x-
direction, and there is a negligible temperature change in front
of the heat source because that material has not yet sheared.
The temperature profile is sharply peaked within the process
zone region. There is a residual temperature increase behind
the heat source because the material there has just sheared,
and the heat has not yet fully dissipated.

Evidence of melting on the fracture surfaces of metallic
glass samples is often observed. Since the magnitude of the
load drop during failure is much larger than the magnitude of
the load drops that occur during serrated flow, a larger tem-
perature increase is expected for the failure event.!> There
is, however, no evidence of melting on the surfaces of the
steps formed by the shear bands at the edges of the samples
as shown in Fig. 4; this is consistent with the prediction of the
model.

The maximum temperature increase predicted by this
model is insufficient to reach the glass transition temperature
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of 625K:;Y thus, it is not a likely source of serrated flow. We
note that the finite thickness of shear bands has not been used
in this model; if it were, the predicted temperature increase
would be even smaller. This thermal analysis, however, is
sensitive to the time elapsed during the unloading segment of
a single serration. If shear bands propagate faster than these
experiments indicate, the temperature rise in a shear band
might be large enough to significantly reduce the viscosity
and possibly lead to flow localization.

In an amorphous material, it is expected that shear bands
will form on planes of maximum resolved shear stress; these
planes are oriented at an angle of 45° to the loading axis in
uniaxial compression. As Fig. 5 reveals, shear bands formed
during uniaxial compression of Zr4oTi;4NijoCui2Beay are ori-
ented at an angle of 42° to the loading axis. In uniaxial tension
experiments of other Zr-based bulk metallic glasses, shear
bands formed at an angle of 56° to the loading axis.!” These
deviations from the plane of maximum resolved shear suggest
that the normal stress which acts across the shear plane influ-
ences shear band propagation. Donovan made a similar ob-
servation for shear band orientation in PdsoNisoP20.>* Con-
sequently, she proposed that metallic glasses follow the Mohr-
Coulomb yield criterion. The Mohr-Coulomb criterion is
based on an empirical approach that accounts for an increased
shear resistance caused by compressive normal stresses; con-
versely, it predicts a decreased shear resistance for tensile nor-
mal stresses. Such a law might be applicable to amorphous
materials because normal displacements are expected to oc-
cur as atoms are forced to slide past each other. The Mohr-
Coulomb criterion can be expressed as

@

where T.iica iS the critical resolved shear stress at which
yielding occurs, kg is the yield strength of the material when
subjected to pure shear, « is the normal stress coefficient, and
Onomal 18 the component of the applied stress which acts nor-
mal to the shear plane. An analytical expression for ¢ is deter-
mined by expressing Terigea and Oyomma in terms of the applied
stress and the angle of inclination of the shear plane and then
solving eq. (4) for the value of « at which the applied stress
is a minimum. A numerical value for « is found by using the
angle defining the orientation of the shear plane as determined
by experiment. For ZrsoTi14aNijgCujaBegs, @ = 0.105.

Teritical = Ko — O/Onormals

3. Nanoindentation

We now consider the plastic flow properties of ZryoTijs-
NijpCu;,Beyy as determined by nanoindentation. This testing
technique permits the study of plasticity at microstructural
length scales in crystalline materials. Our objective in this
work was to determine if mechanical testing on the scale of
shear bands or, perhaps, on the scale of distributed free vol-
ume would reveal useful information about the mechanism of
plasticity in this glass.

3.1 Experimental procedures

The mechanical properties of ZryoTi4NijoCuj2Beas were
characterized using a Nano II™ (MTS Nano Innovation
Center, Oak Ridge, TN) operated in the continuous stiffness
mode. The system has load and displacement resolutions
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of 0.25uN and 0.16 nm, respectively. Diamond Berkovich
and conical indenters were used to perform three different

experiments. The Berkovich indenter is a three-sided pyra- -

mid with the same area-to-depth function as a Vickers in-
denter. A Berkovich indenter was used to make large inden-
tations to measure the elastic modulus and the hardness of
Zr4oTi14Ni;(CuyyBeqs; this same indenter, with a tip radius of
234 nm, was used to study the onset of plasticity at very small
indentation depths. The conical indenter had a blunt tip with
a large radius of curvature of 27 um; this indenter was used
to impose purely elastic deformation upon initial indentation
prior to the onset of plasticity. The indentations were made at
a constant nominal strain rate under load control. The sam-
ples tested in these experiments were mechanically polished
with a dispersion of 0.05um alumina particles; similar re-
sults were obtained for samples that were electropolished to
remove mechanical damage caused by polishing.

3.2 Experimental results

A series of ten indentations were made to a maximum load
of 135 mN using a Berkovich indenter. Figure 7 is a plot of
the load-displacement response of one of these indentations.
During loading, elastic and plastic deformation occurred. The
indentation depth at maximum load was 1025 nm. On unload-
ing, the elastic deformation was recovered, and the final depth
of the residual hardness impression was 750 nm.

Figure 8 is a profile of a cross-section of an indentation
of Zr4Ti14NijpCuj2Bens that was determined using atomic
force microscopy (AFM). Pile-up is clearly observed along
the sides of the triangular indentation. Because the material
being deformed is amorphous, it is unable to strain harden;
thus it is easier for the surrounding material to flow up around
the indenter (pile-up) than to displace the material which lies
further below the indentation.'®

Figure 9 is a plot of the elastic modulus of ZrsyTi;4Nijo-
Cuy,Bey, as a function of indentation depth. The elastic mod-
ulus was calculated using the method of Oliver and Pharr,'®
and the results shown are an average of ten indentations. The
elastic modulus of fused silica as a function of indentation
depth is also shown; fused silica serves as a reference ma-
terial and validates the accuracy of the tip shape calibration
because its elastic modulus has the expected value of 73 GPa.
The modulus of ZrnTi14NijgCusBesy is observed to increase
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Fig. 7 Load as a function of displacement for an indentation of
Zr40Ti14NijgCuizBegs using a Berkovich indenter.
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from 106 GPa at small indentation depths to a constant value
of 114 GPa for indentation depths greater than 200 nm. The
elastic modulus calculated from the stress-strain curve in
Fig. 1 is 97 GPa. The discrepancy between the elastic mod-
ulus determined from indentation experiments and from uni-
axial compression testing is due to limitations in the Oliver-
Pharr method, which does not account for the additional area
in contact with the indenter when pile-up occurs. As a result,
the contact area is underestimated, and the elastic modulus is
overestimated.

Figure 10 is a plot of the true hardness of Zr4Tij4Nijg-
Cuj;Bey, as a function of indentation depth; the results shown
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Fig. 8 An AFM profile of a cross-section of an indentation showing the
material pile-up along the sides of the triangular indentation.
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are based on contact areas determined from the measured
stiffness®® and thus account for the effect of pile-up. The
hardness of Zr49Ti;4NijoCuinBeoy is 5.4 GPa at depths greater
than 200 nm. Again the hardness of fused silica has been
plotted for comparison, and it has the expected hardness of
9.7 GPa.

We now consider the initial stage of indentation, when the
diamond tip first makes contact with the surface of the glass.
For purely elastic contacts, the indenting load P can be re-
lated to the indenter displacement / using the Hertz theory of
normal contact between two frictionless elastic solids:

4
P = gEr«/-Ehm, (5)

where R is the radius of curvature of the indenter tip and E;
is the reduced modulus.?” The reduced modulus accounts for
the effects of a non-rigid indenter on the load-displacement
behavior and is computed as
11— 11—
E.  E E;
where E and v are the elastic modulus and Poisson’s ratio
of the material being indented and E; and v; are the elastic
modulus and Poisson’s ratio of the indenter. In crystalline
materials, the elastic-plastic transition can be observed in the
indentation load-displacement data if the material is initially
dislocation-free. Figure 11 is a plot of the indentation load-
displacement response of a single crystal Mo film deposited
epitaxially on a MgO substrate. The elastic nature of the con-
tact for indentation depths of less than § nm is confirmed by
agreement between the experimental data and a plot of eq. (5)
using the calibrated tip radius and the elastic constants of Mo.
Several sudden, discrete increases in displacement, called
“pop-ins,” are observed at indentation depths greater than
8nm; these are attributed to dislocation nucleation events,
Figure 12 is a plot of the indentation load-displacement re-
sponse for ZrsoTi;aNijoCuiaBery when indented by a coni-
cal tip with a radius of curvature of 27 um. The contact be-
tween the indenter and material is purely elastic for depths
less than 252 nm, and the elastic modulus is computed to be
97 GPa using the Hertz theory. At approximately 252nm, a
sudden, discrete jump in displacement, similar to the pop-ins
observed in crystalline materials, occurs. Such an event in

; (6)
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Fig. 11 Load as a function of displacement for an indentation of a single

crystal Mo film deposited epitaxially on a MgO substrate. Pop-ins are
observed at indentation depths greater than 8 nm.

an amorphous material cannot be attributed to a dislocation
nucleation event, but it may be related to shear band forma-
tion. At depths greater than 252 nm, ZrsoTi14NijoCujaBeoy
deforms plastically as evidenced by the deviation of the load-
displacement data from Hertz-like behavior. Thus the pop-in
marks the onset of plasticity.

Figure 13 is a plot of the load-displacement response of
Z149Ti14NijoCui,Beyy at shallow indentation depths when in-
dented by the Berkovich tip with a radius of curvature of
234 nm. From the outset, ZrTi;4NijCuyrBess deforms both
elastically and inelastically as indicated by the fact that the
apparent elastic modulus computed using the Hertz theory is
only 80 GPa, less than the expected 97 GPa. We assume that
atomic rearrangements at the surface may be responsible for
this inelasticity. The modulus here is smaller than the modu-
Ius determined using the conical tip because the Hertz theory
does not account for the additional displacements of inelastic
deformation. A pop-in is observed at an indentation depth of
11.5nm. Again plasticity is observed as the deviation of the
data from Hertz-like behavior.

3.3 Discussion and analysis
The yield strength of a material under uniaxial compres-

200 T T T T T
{ Hertz
L e Zr-Ti~Ni-Cu-Be
150 R=27pm 1
.
= [ o* * 3
100 - . i
E <
— \
L ]
50 =
E=97GPa Pop-In
I (252 nin, 84 mN)
G L | 1 1 1 ] | —
0 50 100 150 200 250 300 350 400

Indentation Depth (nm)

Fig. 12 Load as a function of displacement for an indentation of
Zr4nTi14NijpCuioBerq with a conical tip with a radius of curvature of
27 um. A pop-in is observed at a load of 84 mN and a depth of 252 nm.
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Fig. 13 Load as a function of displacement for ZrygTi14NijgCujoBess at
shallow indentation depths when indented by a Berkovich tip with a radius
of curvature of 234 nm. A pop-in is observed at a load of 0.07 mN and a
depth of 11.5nm.
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sion is related to the hardness determined from indentation
according to

Ovyield = %, @)

where oyic1q is the yield stress, H is the hardness, and C is a
constant that depends on the ratio of elastic modulus to yield
stress and the indenter shape.”” For Zr4oTi4NijoCuisBeoy,
tested with a Berkovich indenter, C is approximately equal to
2.3.%%) Using this value of C and the hardness value of 5.4 GPa
from Fig. 10, the yield strength of ZrsyTi;4NijoCu;2Beys for
an indentation to a depth of 1025nm is calculated to be
2.3GPa. For uniaxial compression, the shear yield strength
is approximately half of the compressive yield strength such
that the shear yield strength is approximately 1.2 GPa. We
note that this is more than 20% higher than the shear yield
strength determined by compression testing of bulk samples.
We now consider the early stage of indentation when the
displacements are entirely elastic. We define a cylindrical co-
ordinate system in which z denotes the direction parallel to
the indentation axis, and r and @ denote the radial and cir-
cumferential directions, respectively. The principal stresses
along the z-axis in an elastic half space due to the Hertz pres-
sure applied to a circular region from a spherical tip are given

by
Oy =0y = Po {—(l +v) l:l - -Z—t.an_l (g):l
a Ve

1 2\
+§ (1 + a—2> ()

2\
az=—po<1+;l3) ,. ©)

where py is the maximum pressure under the indenter, v is the
Poisson’s ratio of the material being indented, « is the radius
of the contact circle, and z is the depth where the stresses are
to be evaluated.?V According to the Hertz theory, the maxi-
mum pressure under the indenter is given by

1
6PE2\
Po=\T3p2)

where P is the total load imposed by the indenter, R is the
radius of the indenter, and E. is given by eq. (6). The radius
of the contact circle is a function of the depth of indentation

and is given by
A
a = 2 ) .

Thus the principal stresses along the z-axis are defined ac-
cording to egs. (8)—(11). The magnitude of the shear stress on
a plane inclined by an angle $ to the horizontal is then given
by

and

(10)

an

T = [(o; — 0;) sin B cos B|. (12)

We assume that the Mohr-Coulomb analysis presented in
eq. (4) is a valid yield criterion for indentation of metallic
glasses. With

Onormal = Oy SiN° B+ o, cos? B, (13)
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T T
z

critical

Fig. 14 Schematic diagram illustrating the application of the Mohr-Coulomb
yield criterion to nanoindentation.

Equation (4) is expressed as

Teritical = Ko — o (0y sin® B+o, C052 B). (14)

We assume that « is constant and equal to the value found
from uniaxial compression experiments. We also assume that
yielding will occur on a plane inclined by 42° to the loading
axis as for uniaxial compression, such that 8 = 48°. We jus-
tify this assumption by considering a volume element beneath
the indenter. This stress state is the sum of a state of pure uni-
axial compression and a state of pure hydrostatic compres-
sion. Hydrostatic stress does not influence shear band ori-
entation; hence, a shear band formed during nanoindentation
should have the same orientation as a shear band formed dur-
ing uniaxial compression.

Figure 14 is a schematic diagram for the application of the
Mohr-Coulomb yield criterion to nanoindentation. The metal-

lic glass will yield when
5)

T = Teritical-

The slopes of the curves for 7 and 7 must also be equal
at the indentation depth where yielding first occurs such that

9T OTeitical

dz 8z
Equations (15) and (16) thus comprise two equations with
two unknown quantities: ko, the yield strength of the mate-
rial when subjected to pure shear, and z, the depth at which
yielding first occurs.

Equations (15) and (16) can be solved to determine the
shear yield strength of ZrsoTi;4NijoCujsBesy for the inden-
tations shown in Figs. 12 and 13. It is assumed that the first
pop-in observed marks the yielding of the material; thus, P
and /i are determined from the data at the point where the
first pop-in occurs. For indentations using the conical in-
denter, the shear yield strength of the material is calculated
to be 1.5GPa. For indentations using the Berkovich inden-
ter, the shear yield strength of the material is calculated to
be 2.9 GPa. As Table 1 shows, the shear yield strength of
Zr40Ti14NijoCuypBesy increases as the deformed volume de-
creases. For uniaxial compression experiments, the shear
yield strength is approximately 0.95GPa. The shear yield
strength increases to 2.9 GPa for the smallest indentations
made. This size dependence for plasticity may be related to
the distribution of free volume in the glass. As larger volumes
of material are tested, lower shear strengths may be expected
based on the probability of finding sites with larger free vol-
ume. For the indentations made with the Berkovich indenter,

16)
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Table 1 Shear yield strength as a function of deformed volume. As the
deformed volume decreases, shear yield strength increases.
Indentation depth Shear strength (GPa)
Bulk 0.95
1025 nm 1.2
252 nm 1.5
11.5nm 29

the calculated values of the shear yield strength range from
£30% of the reported value. This may be the result of sam-
pling different amounts of free volume at various locations.

4. Summary

Local adiabatic heating is not the primary cause of flow
localization in metallic glasses although significant heating is
predicted for the final failure event. The free volume theory
of deformation is consistent with both the orientation of shear
bands in compression samples and an indentation size effect
for the onset of plastic flow in nanoindentation.
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