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Abstract: Underground coal mining activities often cause

ground subsidence and damage to surface construction,

which seriously threatens the lives and property of resi-

dents in mining areas. In this paper, the deformation of

the Yang Juzhuang village, which is a residential area in

the Huainan mining area (China), was monitored through

an interferometric synthetic aperture radar (InSAR) time

series analysis. The vertical displacements were detected

using thirteen Sentinel-1A images that were acquired be-

tween December 2016 and May 2017. The validity and ap-

plicability of the method are verified by comparing the ac-

quired imageswith the GPSmeasurement results. Because

of thedeformation characteristics of theminingarea, a pre-

diction model that is combined with a grey support vector

machine regression (GM-SVR) is proposed, and the practi-

cal effects of the model are verified using the deformation

monitoring results of the study area. The combination of

this model and SBAS-InSAR provides rapid dynamicmoni-

toring and enables the issuance of disaster warnings in the

region.
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1 Introduction

Large-scale underground coal mining activities can easily

cause ground subsidence and damage the surface struc-

ture [1, 2]. Mining activities can unintentionally induce

geological disasters such as landslides, subsidence, and

ground fissures, which seriously threaten the sustainable

development of the region [3ś5]. As one of the largest

coal-production countries in the world, China’s geologi-

cal disasters in coal mining areas such as ground subsi-

dence, ground collapse and ground water accumulation

have been continuous and urgent problems for mining

enterprises and local governments [6, 7]. Practical expe-

rience has proven that when cumulative amounts of sur-

face deformation in amining area reaches a certain thresh-

old, a catastrophe will occur under numerous conditions

related to weather, geological activities, or human activi-

ties [8, 9]. Therefore, in order to ensure uninterruptedmin-

ing activities and to avoid the loss ofmining area resident’s

lives and property, long-term and effective environmental

monitoring and prediction for the surface of a mining area

is required [10, 11]. Additionally, we require a means to un-

derstand the characteristics and laws of surface deforma-

tions caused by mining. In addition to enhancing the sci-

entific and rational mining capacities for coal resources,

mining enterprises should intensify thework of prediction

and measurement of the extent of subsidence to reduce

risk and mitigate possible hazards [12, 13].

In recent years, compared with the traditional sparse

distribution and time-consuming measurement tech-

niques of GPS and levelling [14ś17], differential interfero-

metric synthetic aperture radar (D-InSAR) with its contin-

uous coverage, high accuracy, and high degree of automa-

tion, has become an effective means of obtaining surface

deformation information [18, 19]. Many scholars around

the world have conducted extensive research on surface

deformation monitoring using D-InSAR. The accuracy of

D-InSAR to the millimetre-level is verified [20]. However,
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D-InSAR is significantly affected by spatiotemporal coher-

ence and atmospheric delay effects [21]. Time-continuous

subsidence monitoring results are unobtainable. To over-

come the drawbacks and limitations of conventional D-

InSAR, the Small Baseline Subset (SBAS) technique has

been proposed [22]. Currently, SBAS technology is widely

used in the monitoring and analysis of deformations

caused by seismic events [23, 24], volcanic activity [25],

glaciers [26, 27], groundwater exploitation [28, 29] and

mining subsidence [30, 31]. The SBAS approach mainly

focuses on large-scale and long-span deformation moni-

toring and analysis [32ś34]. Although the performance of

SBAS in monitoring small-scale deformations in an urban

context has only recently been successfully validated [35].

There are few published articles on using SBAS for con-

tinuous dynamic monitoring analysis of residential areas.

For disaster prediction, in 2016, Shafaei [36] used the SVR

model to predict fluctuations on lake water surfaces. In

2016, Fattahi et al. (2016) [37] combined pressuremeter

tests and the predictive SVR model to predict the deforma-

tionmodulus of a rockmass. In addition, Hong et al. (2016)

[38] used themodel to predict landslide hazards. However,

there are few studies on the rapid monitoring and disaster

prediction of deformations of residential areas in mining

areas that examine the use of the SBAS-InSAR technology

and prediction model. Therefore, to facilitate safe mining

under buildings, to timeously understand surface defor-

mation laws, to predict the demand for possible disaster

locations and to rationally arrange time for relocatingmin-

ing villages, this study explores monitoring methods that

combine SBAS-InSAR and GM-SVR.

In this paper, SBAS-InSAR and 13 Sentinel-1 images

with revisiting periods of 12 days were applied to monitor

the deformation of the residential area in Yang juzhuang

(Huainan, China). According to the actual deformation

characteristics of the mining subsidence, a combined pre-

diction model based on a grey model and support vector

machine regression is proposed. Furthermore, combined

with the continuous dynamic monitoring results obtained

by SBAS-InSAR, a high-precision deformation prediction

of the mining area is performed through the model.

2 Materials and Methods

2.1 Study area and data preparation

In this work, the village of Yang juzhuang in the Huainan

mining area was selected as a case study (Figure 1). The

Huainan coalfield is located in the central Anhui Province,

East China,whichhas amininghistory that covers the past

100 years. It is one of the regions that has been noted in

Chinese history for the early exploitation and use of coal

resources. The rich coal resources in this region make up

for a shortage of energy in the eastern part of China. The

Huainan coalfield plays an irreplaceable role in ensuring

the sustainable and healthy development of the national

economy [39]. Mining activities in the Huainan area began

in the 1920s. However, due to continuous improvement in

the development of coal resources in mining areas, the ge-

ography of the coalmining area has also increased sharply.

As a result, the spatial extent of surface subsidence in the

Huainan coalfield was only 90 km2 in 2004, which grew

to 150 km2 in 2010 and is still increasing [40]. The urban

and rural environments of the mining area are deteriorat-

ing, and the lives of the people in the mining areas have

been greatly affected. All of these problems have created

security issues, which have attracted the attention of the

relevant local authorities.

Sentinel-1 is the first of the Copernicus Programme

satellite constellation studies conducted by the European

Space Agency. Following ERS and ENVISAT it is another

C-band remote sensing satellite of great importance that

collects data in every weather condition, day or night.

The first satellite, Sentinel-1A, launched on April 3rd, 2014.

Sentinel-1 provided a data continuity bridge from the ERS

and Envisatmissions, with further enhancements in terms

of revisits, coverage, timeliness and reliability of service.

There are wide ranges of applications for the data, which

include landmonitoring (agriculture, forestry) [41, 42],ma-

rine monitoring (sea-ice levels, ocean oil spills, ship ac-

tivity) [43], and emergency responses (flooding, landslide

and volcanic) [44]. In contrast to the traditional StripMape

(SM) mode and ScanSAR mode, the Sentinel-1 data adopts

a new InterferometricWide Swath (IW)mode of terrain ob-

servation by employing a progressive scans (TOPS) tech-

nology. In this paper, Yang Juzhuang was selected as the

study area (Figure 1). A total of 13 C-band Sentinel-1 IW

images from December 27, 2016 to May 20, 2017 were col-

lected (polarization: VV, revisit period: 12 days, orbit con-

figuration: ascending). The acquisition dates and other rel-

evant parameters are shown in Table 1. The corresponding

Sentinel-1 Precise Orbit Ephemerides were collected.

2.2 Rationale of the SBAS-InSAR technique

An InSAR time series analysis was developed on the basis

of conventional InSAR technology. Estimating the param-

eters of the phase statistical characteristics of the multi-

temporal SAR data can effectively reduce the errors intro-
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Figure 1: A regional overview of the village of Yang Juzhuang, Huainan, China: (a, b, c) location of the study area, (d) the waterlogged area,
and (e) the damaged road

Table 1: Parameters of Sentinel-1 images of the Huainan mining area

NO. Acquisition date Product Beam model NO. Acquisition date Product Beam model

1 27 Dec 2016 SLC TOPS 8 21 Mar 2017 SLC TOPS

2 08 Jan 2017 9 02 Apr 2017

3 20 Jan 2017 10 14 Apr 2017

4 01 Feb 2017 11 26 Apr 2017

5 13 Feb 2017 12 08 May 2017

6 25 Feb 2017 13 20 May 2017

7 09 Mar 2017

duced by factors such as atmospheric delays and low co-

herence in the interferogram. The basic principle of SBAS,

which is one of the branches of the time-series InSAR tech-

nology, is to use the observation results of the conven-

tional D-InSAR monitoring as a single observation value,

and then obtain a high-precision deformation time series

according to the least squares method. A detailed discus-

sion of this approach and its implementation can be found

in Lanari et al. (2004) [45]; blow is a brief summary.

Considering a set of N + 1SAR images acquired at the

ordered times (t0, t1. . . , tn) over an area of interest, then M

interferograms will be generated with small temporal and

spatial baselines to minimize the decorrelation phenom-

ena. In addition, M meets the following criteria [46]:

N + 1

2
≤ M ≤ N

(︂

N + 1

2

)︂

(1)

assuming that the interferogram j generated from the time

tA, tB (tB > tA). After removing the effects of the flat effect
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Figure 2: Processing flowchart of mine deformation monitoring and prediction in mining area based on SBAS-InSAR technology and GM-SVR
model

(the reference ellipsoid) and the topographic phase, the in-

terferometric phase of any pixel in the interferogram j can

be expressed as:

δφj = φ (tB) − φ (tA) = φdef ,j + φtopo,j + φatm,j (2)

+ φnoise,j

where φ (tB) and φ (tA) are the phase values of the SAR im-

ages at time tB and tA, respectively; φdef ,j is the deforma-

tion phase along the line of sight (LOS) direction; φtopo,j

is the phase error due to the inaccuracy of the reference

DEM; φatm,j is the atmospheric delay phase; and φnoise,j

is the noise effects phase.

The time series deformation, calculatedwith theSBAS-

InSAR algorithm can be represented as follows:

Bv = δφ (3)

where B is an M × N matrix and δφ is a vector which rep-

resents the interferometric phase values. When the coeffi-

cient matrix B is a full rank (M≥ N), the deformation rate

can be obtained by the least squares method, and when

M<N, thematrix B has a rank deficit. The singular value de-

composition (SVD) is used to obtain the deformation rate.

Finally, based on the time interval of the image, we can de-

termine the deformation of the corresponding time period.

The SBAS-InSAR process includes the following key

steps:

1. The master image was selected by comprehensively

considering a temporal baseline, a spatial baseline

and a Doppler centroid frequency baseline, and the

interferogram connection diagram was generated

according to the small baseline set principle.

2. For each small baseline pair, we do differential in-

terferometry, and select the appropriate algorithm to

unwrap the interferogram.

3. We artificially remove some interferometric pairs

with very poor interferometry quality and select

ground control points for orbit refining and re-

flattening.

4. By establishing a model on a pixel point with good

coherence, the deformation and deformation rate of

the target points are extracted by the SVD. The de-

tailed processing steps are shown in Figure 2.
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2.3 Establishment of GM-SVR prediction

model

Due to the destruction of in situ stress distributions in the

mining area, the overall structure of the surrounding rock

and overlying strata is affected, and under the influence

of some external factors, nonlinear deformations of the

ground is caused during the mining process. Since the de-

formation process containsmany unknown factors, the de-

formation process is very complicated. Therefore, the tra-

ditional single linear or single nonlinear forecastingmodel

is used for forecasting, which is not very practical and

cannot achieve the desired prediction effect. In this paper,

based on the GM (1, 1) model and the optimized Support

Vector Machine Regression model, a combined prediction

model GM-SVR is established. This model makes use of

the linear prediction advantages of the greymodel and the

excellent generalization abilities and learning abilities of

the nonlinear data of the support vector machinemodel to

perform high-performance predictions of the ground sub-

sidence in the mining area.

Generally, a systemwithpoor and incomplete informa-

tion is called a grey system. Before establishing the grey

prediction model, all original time series need to be re-

garded as having grey amounts with grey features. The

randomness of the initial data are weakened by the pre-

preprocessing of chaotic data into ordered data. Then, dif-

ferential equations are established to predict future de-

velopment trends. The advantage of the model is that for

systems with small data samples or inaccurate informa-

tion, the orderly mathematical rules in the internal con-

tinuous change process can be excavated, and the model

has a wide range of adaptations. Detailed principles can

be found in Mao et al. 2006 [47]. This article only gives a

brief introduction.

By accumulating the original data, a new data se-

quence is generated. The fluctuations and randomness of

the new data series are weakened [48]:

X(1) (t1) =
[︁

X(1) (t1) , X
(1)

(t2) , · · · · · · , X
(1)

(tn)
]︁

(4)

where X(1) are the 1-AGO (accumulated generating opera-

tor) of the initial data. Therefore, the GM (1, 1) model can

be established as Eq. (5) (a differential equation):

dx(1)

dt
+ αx(1) = u (5)

Using the least squares method, the values of

the parameters α and ucan be obtained. Therefore,

X̂(1) (t + 1)can be obtained by using Eq. (6).

X̂(1) (t + 1) =
(︁

X(0) (1) −
u

α

)︁

e−αt +
u

α
(6)

where X̂(1) (t + 1) is the predicted data. Finally, the last pre-

dicted data can be obtained by X̂(1) (t + 1)minus X̂(1) (t).

Support vector machine (SVM) is a new method in

data mining. This method is based on a general learn-

ing method and a statistical learning theory that special-

izes in the study of small samples. Support vector ma-

chine maps nonlinear problems in low-dimensional space

to high-dimensional space and solves nonlinear problems

in low-dimensional space through decision functions in

high-dimensional space. Additionally, the support vector

machine has a corresponding penalty mechanism to pre-

vent the occurrence of overfitting. SVM not only considers

the requirements of the approximation accuracy but also

considers the complexity of the approximation function

and can obtain optimal result under limited conditions.

Only a brief summary is presented here. The SVMobjective

function can be expressed as [49, 50]:

1

2
|| ω||

2
+ C

n
∑︁

i=1

(︁

ξ i + ξ
*
i

)︁

(7)

where ω denotes the direction vector, C denotes the adjust-

ment factor, and ξ i and ξ *i are slack variables. The devia-

tion of the non-insensitive (ϵ) out-of-band training sample

points is measured by introducing slack variables. Then, a

Lagrange multiplier α was introduced, and samples were

mapped to high-dimensional Hilbert space according to

KKT (KarushśKuhn-Tucker constraint). Finally, a linear re-

gression is applied to the transformed results in the high-

dimensional space to obtain a nonlinear regression func-

tion.

In this paper, the initial fitting of samples is carried

out through the GM (1, 1) model to grasp the original in-

ternal development trend of the samples. Then, the resid-

ual value sequence is obtainedby comparing thepredicted

value of the grey model with the initial sample. Normally,

thedeformationprocess of the surface of theminingarea is

very complicated, and the fluctuations in the data that are

obtained by monitoring are relatively large. Therefore, the

nonlinearity of the residual sequence predicted by the grey

model is usually high. Based on this, an optimized SVM re-

gression model is used to establish the residual correction

model and further explore the internal rules of the resid-

ual series. The support vector machine regression model

is optimized by searching the optimal penalty parameter

c and the variance G in kernel function by the grid search

method. Finally, by training the sample in the model, the

predicted value of the grey model and the model residual

correction of the SVR are obtained. The sum of the pre-

dicted value and the residual error correction value is the

final predicted value of the combined model. The techni-
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cal process of the deformation prediction combined with

SBAS-InSAR is shown in Figure 2.

3 Results

3.1 Data processing and analysis of
deformation monitored by the
SBAS-InSAR

In this paper, the SBAS-InSARmethodwas used to process

Sentinel-1 data. This section describes the main parame-

ters and processing steps and provides details of the anal-

ysis of the deformation of the study area.

First, an interference connection graphwas generated

with a 120-m perpendicular baseline threshold and a 60-

day temporal baseline. Sixty-three interferometric pairs

were obtained, and the relative relationship between the

time and space position of the connection graph is shown

in Figure 3. Next, according to the connection relationship

of the connection diagrams, a differential interferometry

set is generated, precision orbit data is used to remove the

flat effect, and the external Shuttle Radar Topography Mis-

sion digital elevation model SRTM3 DEM data are used to

eliminate topography phase [51]. The phase unwrapping

of the small baseline interferogram was carried out by the

minimum cost flow method. Subsequently, based on the

stability of the amplitude and phase, the stability point in

the study area was selected. Then, a third-order polyno-

mial model was used for orbit refinement and to remove

the trend phase caused by the orbital error. Finally, defor-

mation rate inversion and geocoding were performed, the

atmospheric delayphaseof the coherent point is separated

according to the temporal and spatial characteristics of the

atmospheric phase, and the line-of-sight deformation is

segmented according to the cosine of the incident angle

to obtain the ground vertical displacement.

Figure 4 shows a time series diagram of deformations

with typical representative characteristics in the study

area from December 27, 2016 to May 20, 2017. All images

show the cumulative amount of deformation using Decem-

ber 7, 2016 as the reference time. The upper right corner of

each figure shows the acquisition time of the image. Fig-

ure 5 shows the deformation rate of the study area. From

Figure 4 and Figure 5, the maximum cumulative vertical

subsidence caused bymining in the entire residential area

during the monitoring period is 48 mm; the average cumu-

lative displacement is −17.8 mm; the maximum deforma-

tion rate reaches -90 mm/year.

Figure 3: Temporal and spatial baseline connection diagram of
interferogram pairs

The accuracy of SBAS in monitoring deformation that

is caused by mining is verified by using the double-

differenced static positioning measurement of BDS/GPS

combined system (hereinafter referred to as GPS). The ac-

curacy of the elevation direction of the 1 h solution of the

GPS system is better than 4 mm, which meets the require-

ments of the deformation monitoring accuracy of this res-

idential area. The spatial distribution of the site is shown

in Figure 5. Figure 6 shows the comparison of the observa-

tion results of the deformation sequence at the observation

points between the SBAS-InSAR technology and the GPS

technology. Analysis of Figure 6 reveals that themaximum

absolute error, relative error and average absolute error of

vertical displacement between themeasurement results of

SBAS-InSAR and GPS at the G1 point are 4.33mm, 2.38mm

and 2.01mm respectively, and at the G2 point, they are 2.87

mm, 1.61 mm and 1.34 mm, respectively.

3.2 Assessment of prediction model

The time series data of the observation points (spatial dis-

tribution shown in Figure 5) that were obtained by the

SBAS-InSAR technology were input to the GM-SVR model

for fitting and prediction. To verify the performance of the

proposed GM-SVR model for deformation predictions in

the mining area, two other schemes are established in this

paper for comparison: scheme one, using a single GM (1, 1)

model for prediction; scheme two, using a single Support

Vector Machine Regression model for prediction. From De-

cember 27, 2016 toApril 02, 2017, eight settlement datawith

a time interval of 12 days were used as training samples for

modelling, and four settlement data from April 02, 2017 to

May 20, 2017 were used as a test sample for the prediction
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Table 2: Comparison of fitting results in each model of G1 /mm

No. Acquisition SBAS GM (1, 1) model SVR model GM-SVR model

date results

/mm

Fitting

value

Relative

error/%
Fitting

value

Relative

error/%
Fitting

value

Relative

error/%

1 2017.01.08 7.57 7.57 0 7.69 1.59 7.59 0.26

2 2017.01.20 10.48 11.24 7.25 9.83 −6.2 10.45 −0.29

3 2017.02.01 12.13 13.51 11.38 12.64 4.2 12.39 2.14

4 2017.02.13 15.89 16.24 2.2 16.01 0.76 15.86 −0.19

5 2017.02.25 19.58 19.53 −0.26 19.79 1.07 20.67 5.57

6 2017.03.09 25.75 23.47 −8.85 23.82 −7.5 25.72 −0.12

7 2017.03.21 29.66 28.21 −4.89 27.9 −5.93 29.68 0.07

8 2017.04.02 31.73 33.91 6.87 31.84 0.35 31.75 0.06

Figure 4: Deformation sequence of the study area (all maps refer to December 27, 2016): (a) January 8, 2017, (b) February 1, 2017, (c) March
9, 2017, (d) April 2, 2017, (e) April 26, 2017, and (f) May 20, 2017

model. The detailed data and results are shown in Tables 2-

5 and Figure 6.

Figure 7 shows that the deformation sequences of the

two observation points are similar during the observation

period and demonstrate an overall growth trend. By com-

parison, in Figure 7, the GM (1, 1) model, SVR model and

GM-SVR model proposed in this paper have better fitting

effects at the two observation points. However, in the com-

parison of the forecasting results, the GM (1, 1) model

shows unsatisfactory prediction results and large devia-

tions, which is obviously lower than the accuracy of the

SVR model and the model proposed in this paper.
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Figure 5: Cumulative deformation rate of the study area and location of GPS station: (a), (b) GPS station, and (c) cumulative deformation rate

Table 3: Comparison of predicted results of each model in point G1 /mm

No. Acquisition SBAS GM (1, 1) model SVR model GM-SVR model

date results

/mm

forecast

result

Relative

error/%
forecast

result

Relative

error/%
forecast

result

Relative

error/%

1 2017.04.14 33.89 40.76 20.27 35.47 4.66 32.27 −4.78

2 2017.04.26 36.33 48.99 34.85 38.61 6.28 32.73 −9.91

3 2017.05.08 38.09 58.88 54.58 42.16 10.69 35.24 −7.48

4 2017.05.20 42.81 70.78 65.34 48.05 12.24 41.77 −2.43

Table 2 shows that during the observation period of

the G1 point, the fitting effect of the three models are good

and the result is relatively stable. Among the threemodels,

themodel proposed in this paper has the best fitting effect.

The relative error is generally maintained below 2%. Only

the data of No.3 andNo.5 exceed 2%. Table 3 shows the pre-

diction results of the three models based on the training

samples at the G1 point. It can be seen that the deviations

between the predicted and themeasured values of the grey

model are relatively large; the SVRmodel and the GM-SVR

model of this paper have relatively good results which are

relatively stable and accurate. Table 4 shows the fitting re-

sults of the three models at G2. Differing from the result

at G1, the fitting effect of the GM (1, 1) model and the SVR

model is relatively poor, and the accuracy and stability of

the fitting result are all reduced. The maximum relative er-

rors of the fitting results of the GM (1, 1) model and the

SVR model reach 52.8% and −32.78%, respectively. How-

ever, the results of the GM-SVR model still maintain high

degrees of accuracy and stability. Table 5 shows the settle-

ment prediction results of the three models at G2. Similar

to the prediction result at G1, the accuracy of the GM (1, 1)
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Table 4: Comparison of fitting results in each model of G2 /mm

No. Acquisition SBAS GM (1, 1) model SVR model GM-SVR model

date results

/mm

Fitting

value

Relative

error/%
Fitting

value

Relative

error/%
Fitting

value

Relative

error/%

1 2017.01.08 1.51 1.51 0 1.57 3.97 1.52 0.66

2 2017.01.20 2.41 3.02 25.3 1.62 −32.78 2.38 −1.24

3 2017.02.01 2.61 3.99 52.8 2.67 2.3 2.62 0.38

4 2017.02.13 4.03 5.27 30.77 4.67 15.88 4.04 0.25

5 2017.02.25 7.26 6.95 −4.27 7.31 0.69 6.85 −5.65

6 2017.03.09 10.17 9.17 −9.83 10.08 −0.88 10.18 0.1

7 2017.03.21 12.75 12.11 −5.02 12.41 −2.67 12.73 −0.16

8 2017.04.02 13.83 15.98 15.55 13.89 0.43 13.84 0.07

Table 5: Comparison of predicted results of each model in point G2 /mm

No. Acquisition SBAS GM (1, 1) model SVR model GM-SVR model

date results

/mm

forecast

result

Relative

error/%

forecast

result

Relative

error/%

forecast

result

Relative

error/%

1 2017.04.14 15.42 21.08 36.71 14.35 −6.94 14.17 −8.11

2 2017.04.26 17.18 27.82 61.93 13.89 −19.15 15.58 −9.31

3 2017.05.08 19.86 36.72 84.89 12.81 −35.5 20.24 1.91

4 2017.05.20 25.21 48.45 92.19 17.47 −30.7 29.91 18.64

             

          

            

                  

           

                

            

             

            

            

                 

        

 

               

  

             

Figure 6: Comparison of the vertical deformation time series of two
observation points obtained by SBAS-InSAR and GPS

model at G2 is still not high. In contrast to the prediction re-

sult at G1point, theprediction effect of the SVRmodel atG2

is not ideal, and the maximum relative error even reaches

−35.5%. Only the prediction results of the GM-SVR model

are similar to those predicted at G1, and still maintain high

accuracy and stability. The relative error of the GM-SVR re-

sults is generallymaintainedbelow 10%.Based on this, for

the deformation sequence in this study area, the GM (1, 1)

Figure 7: Comparison of the original values of the observation
points and the results of the three models

model prediction result is not ideal and has essentially de-

viated from the monitoring value; the prediction result of

a single SVR model is not sufficiently stable, and only the

GM-SVR model result shows high accuracy and stability.

To test a model’s accuracy, there are generally three

methods: residual size, correlation degree, and posterior

error. To evaluate the performance of themodel more com-

prehensively and intuitively, this paper proposes to eval-
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Table 6: Accuracy comparison of each model /mm

GM (1, 1) model SVR model GM-SVR model

Root Mean Square Error G1 point 10.94 2.22 1.47

G2 point 9.03 3.19 1.48

Mean Absolute Error G1 point 6.39 1.54 0.88

G2 point 5.31 1.77 0.7

uate the accuracy of the model using two indicators, root

mean square error (RMSE) andmean absolute error (MAE).

The results are shown in Table 6.

4 Discussion

With the large-scale development and utilization of min-

eral resources, a series of environmental problems that are

caused by mining have gradually emerged, the most di-

rect impacted is the ground subsidence of a mining area.

Ground subsidence will destroy the land, buildings, trans-

portation facilities, pipeline facilities, etc. of amining area

and greatly interfere with the daily lives of the people who

occupy the mining area. Therefore, long-term dynamic

monitoring and prediction of surface deformations in the

mining area is urgently needed to understand the subsi-

dence laws and damage degrees of themining area; to pre-

dict the location, nature and scale of thepossible disasters;

and to minimise the adverse impacts of disasters on min-

ing areas.

In this paper, using SBAS-InSAR technology, the Yang

Juzhaung research area was continuously monitored by

13 Sentinel-1A images. The monitoring results are shown

in Figures 4 and 5. The comparison of the deformation

sequence observations of the observation points by GPS

and SBAS-InSAR technology verifies that the SBAS-InSAR

technology monitors the settlements in the residential

area with millimetre-level accuracy and meets the re-

quirements for deformation monitoring for mine measure-

ments [52]. The results show that during the period from

December 2016 to May 2017, severe subsidence occurred

in the study area. The displacement of the entire residen-

tial area gradually increased from north to south, and the

deformation rate accelerated significantly, thus forming a

clear subsidence funnel. It can be speculated that if the

study area continues to maintain such a settlement trend,

then the affected area will continue to increase. This may

cause damage to buildings in residential areas and affect

the safety of residents’ lives and property. In addition, af-

ter finding the local geological and hydrological data, the

diving level in the study area was found to be high, and

water accumulation occurredwhen the surface sunkby ap-

proximately 2 metres. Therefore, special attention should

be paid to this area to avoid further disasters caused by the

continued increase in land subsidence that could result in

further economic losses and casualties.

The GM-SVR model proposed in this paper is com-

pared with the accuracy of the other two traditional mod-

els. The comparison results are shown in Table 6. As can

be seen from Table 6, the prediction accuracy of the GM

(1, 1) model is low, and the root mean square errors of

both points are close to 10 mm. Compared with the GM

(1, 1) model, the SVR model shows better accuracy, but

the stability of the model’s prediction results is not suffi-

cient. Only the GM-SVRmodel maintains good global fore-

casting capabilities, and each index of this model is better

than the other two models. This model integrates the ad-

vantages of the GM (1, 1) model for linear data and the sup-

port vector machine models for nonlinear data processing

and uses the advantages of strong generalization abilities

and excellent learning abilities of the support vector ma-

chine model to convert the nonlinear residual generated

by the grey model to a high-dimensional linear problem.

A high-precision and widely applicable combination fore-

casting model with time series as input was successfully

constructed. Although the settlement value can be pre-

dicted more accurately by using the GM-SVR model, this

paper only makes numerical predictions for settlement,

and does not make good use of the prediction results for

disaster assessments in the field. For example, this study

does not address how to use the prediction results to as-

sess the damage level of buildings in the study area or

how to determine the range of possible disasters based

on the prediction results. Resolving these questions con-

stitute the current objectives of the research group.

5 Conclusion

In this paper, SBAS-InSAR technology is used to moni-

tor and analyse deformations of residential areas caused
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by coal mining, and the consecutive time deformation se-

quences in the study area from December 27, 2016 to May

20, 2017 were obtained. Based on the actual deformation

characteristics of mining subsidence in mining areas, a re-

liable deformation prediction model was established. Fi-

nally, by using the monitoring results of SBAS-InSAR, a

high-precision deformation prediction of the mining area

was performed through the GM-SVR model, which pro-

vided powerful data for the prevention of disasters.

The monitoring results show that Yang Juzhuang,

which is in the study area, has been affected by under-

ground coal mining activities since monitoring began in

December 2016. The maximum deformation rate reached

−90 mm/year. Until May 20, 2017, the maximum cumula-

tive vertical settlement was 48 mm.

The GM-SVR model presented in this paper can satis-

factorily predict the deformation of this study area. Com-

pared with the traditional prediction model for the com-

plex deformation caused by mining, the excellent perfor-

mance of the GM-SVRmodel is highlighted. The root mean

square error of the model’s prediction results is less than

2 mm, and the mean absolute error is less than 1 mm. This

model is of great significance in enabling the provision of

early warnings for mining disasters and the safe mainte-

nance of the life and property of the residents in mining

areas.

The combination of the GM-SVR model and SBAS-

InSAR can achieve rapid dynamicmonitoring and disaster

warnings in the region. This study is also an important ref-

erence for preventing similar disasters.
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