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Abstract

Deformation in the lithosphere-asthenosphere system can be accommodated by
faulting and plastic flow. However, incorporating structural data in models of
distributed deformation still represents a challenge. Here, I present solutions
for the displacements and stress in a half-space caused by distributed anelas-
tic strain confined in a tetrahedral volume. These solutions form the basis of
curvilinear meshes that can adapt to realistic structural settings, such as a man-
tle wedge corner, a spherical shell around a magma chamber, or an aquifer. I
provide computer programs to evaluate them in the cases of anti-plane strain, in-
plane strain, and three-dimensional deformation. These tools may prove useful
in the modeling of deformation data in tectonics, volcanology, and hydrology.

Introduction

Earth’s deformation encompasses physical processes that spread widely across
space-time. The deformation of the lithosphere-asthenosphere system is largely
accommodated by localized (faulting) and distributed (e.g., plastic flow, multi-
phase flow) deformation. Because of the urgency of understanding seismic haz-
ards, a large body of work is dedicated to describing brittle deformation (Chin-
nery , 1963; Iwasaki and Sato, 1979; Jeyakumaran et al., 1992; Meade, 2007;
Nikkhoo and Walter , 2015; Okada, 1985, 1992; Sato and Matsu’ura, 1974; Sav-
age and Hastie, 1966; Steketee, 1958; Wang et al., 2003). Recently, Barbot et al.
(2017) described how distributed plastic deformation induces displacement and
stress in the surrounding medium, opening the door to low-frequency and time-
dependent tomography from deformation data (Moore et al., 2017; Qiu et al.,
2018; Tsang et al., 2016) and to more comprehensive forward models of de-
formation in the lithosphere-asthenosphere system that include the mechanical
coupling between brittle and viscoelastic deformation (Barbot , 2018; Lambert
and Barbot , 2016).

Increasingly accurate images of Earth’s internal strain and strain-rates re-
quire incorporating morphological gradients (e.g., Barnhart and Lohman, 2010;
Dieterich and Richards-Dinger , 2010; Furuya and Yasuda, 2011; Li and Liu,
2016; Marshall et al., 2009; Murray and Langbein, 2006; Qiu et al., 2016; Steer
et al., 2014; Walter and Amelung , 2006). A familiar approach in fault mechanics
is to discretize faults in triangular elements, as they can conform to curvilinear
surfaces at least to first-order approximation (Comninou and Dundurs, 1975;
Gosling and Willis, 1994; Jeyakumaran et al., 1992;Maerten et al., 2005;Meade,
2007; Nikkhoo and Walter , 2015; Ohtani and Hirahara, 2015; Yoffe, 1960). It is
natural to extend the approach to tetrahedral volumes for distributed anelastic
strain to conform volume meshes to structural data. Rectangular and trian-
gular fault elements and cuboidal and tetrahedral volumes can be combined
to represent various physical processes of deformation in a realistic geometry.
Figure 1 illustrates how different types of fault and volume elements can be com-
bined to represent the kinematics or quasi-dynamics of a regional block of the

1



F
a
u
lt 

p
a
tc

h
e
s

Strikeslip

Anelastic strain volumes

ε
11

ε
12

ε
22

ε
23

ε
12

ε
33

ε
23ε

13

ε
13

Triangular

patch

Rectangular

patch

Tetrahedral

volume

D
ip

sl
ip

Cuboidal

volume

Localized

deformation

Distributed

deformation

Figure 1: Schematic view of the modeling approach. Localized deformation is
discretized with triangular or rectangular boundary elements representing fault
slip. Distributed deformation is discretized with tetrahedral or cuboidal volume
elements representing plastic deformation. The surrounding elastic material
is not meshed but its effect is included in the Green’s functions. Curvilinear
surfaces and volumes can be approximated with triangular and tetrahedral ele-
ments.

lithosphere-asthenosphere system. Fault processes can be represented by trian-
gular or rectangular boundary elements and distributed deformation processes
can be discretized with tetrahedral or cuboidal volume elements.

In this paper, I focus on anelastic deformation confined in a tetrahedral vol-
ume for three-dimensional problems and triangular surfaces for two-dimensional
problems. More complex deformation can be reproduced by a linear combination
of these elementary solutions. In the next two sections, I describe the governing
equations and derive a simple general expression for the displacement kernels
for arbitrary volumes of quasi-static anelastic deformation. Then, I derive the
displacement and stress kernels for the cases of anti-plane strain, plane strain,
and three-dimensional deformation. In the last section, I derive numerical so-
lutions based on fast Fourier transforms that are more amenable to large-scale
problems.

Eigenstrain and equivalent body forces

The deformation of materials can be broadly categorized into elastic and anelas-
tic deformation. Elastic deformation is reversible, implying that the mate-
rial spontaneously recovers its original configuration when the loads are re-
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moved. Until then, the material remains under stress, following the constitutive
stress/elastic strain relationship

σ = C : ǫe , (1)

where σ is the Cauchy stress, C is the elastic moduli tensor, assumed indepen-
dent of anelastic strain, and ǫ

e is the elastic strain tensor. Anelastic deformation
requires additional work to place the material back into its original configuration
and is thermodynamically irreversible. Many deformation processes within the
Earth, such as poroelasticity, viscoelasticity, and faulting are anelastic (Barbot
and Fialko, 2010a,b). Therefore, manipulating the total strain in the medium
as the sum of the elastic and anelastic contributions (e.g., Andrews , 1978)

ǫ = ǫ
e + ǫ

i , (2)

where ǫi represents the cumulative anelastic strain, is a useful approximation. In
practical applications the anelastic strain or its time derivative is known, either
provided by the constitutive behavior of the material under a given stress (e.g.,
Barbot , 2018) or inverted for (e.g., Qiu et al., 2018). The conservation of linear
momentum at steady state leads to the following governing equation for the
total strain

∇ · (C : ǫ) + f = 0 , (3)

where the anelastic strain has been associated with the equivalent body-force
density

f = −∇ ·m , (4)

and the moment density m = C : ǫ
i. The total displacement u(x) due to

anelastic strain and the elastic response of the medium can be obtained by
solving the momentum equation (3). The total strain follows as

ǫ =
1

2

(

∇u+∇ut
)

, (5)

where ∇ut is the transpose of the displacement gradient. Finally, the stress
field is derived by removing the anelastic strain contribution combining (1) and
(2), as follows

σ = C :
(

ǫ− ǫ
i
)

. (6)

Navier’s equation (3) applies to quasi-static deformation due to an arbitrary
distribution of anelastic strain under the infinitesimal strain approximation and
is valid as long as plastic deformation does not affect the elastic moduli in the
medium and inertia can be ignored. As a numerical approximation, I assume
piecewise uniform anelastic strain distributions, called transformation strain,
within closed volumes Ωk, so that the displacement can be written as

u(x) ≈
∑

k

∫

Ωk

G(x,y) · fk(y) dy , (7)
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where fk is the equivalent body force for a homogeneous anelastic strain in
the domain Ωk and G(x;y) are the Green’s functions for a point force. The
displacement kernels in (7) form the basic ingredients for forward (Barbot , 2018;
Lambert and Barbot , 2016) and inverse (Moore et al., 2017; Qiu et al., 2018;
Tsang et al., 2016) modeling of deformation. The closed-form analytic solution
of (7) for cuboid volumes of transformation strain is provided by Barbot et al.
(2017). To facilitate the meshing of curvilinear surfaces and volumes, I now
make the assumption that the transformation strain is confined in a tetrahedral
volume.

Displacement kernels

To develop the solution for the displacement kernel (I drop the subscript k for
the sake of clarity)

u(x) =

∫

Ω

G(x,y) · f(y) dy (8)

associated with a uniform transformation strain confined within a elementary
volume Ω, I write the moment density as

m(x) = Φ(x)m0 , (9)

where Φ(x) is a single-variate function that represents the location of the trans-
formation strain,

Φ(x) =

{

1 if x ∈ Ω,

0 otherwise ,
(10)

and m0 is a constant tensor. With this definition, the equivalent body force
becomes

f = −m0 · ∇Φ . (11)

As Φ(x) is uniform within Ω, I can write

∇Φ =

{

−n if x ∈ ∂Ω

0 otherwise,
(12)

where n is the outward-pointing unit normal vector to Ω. Combining (8), (11),
and (12), the displacement kernel simplifies to the surface integral

u(x) = m0 ·
∫

∂Ω

G(x,y) · n(y) dy . (13)

The stress can be obtained by differentiation of the Green’s function G(x,y)
itself or of the resulting displacement field, following (5) and (6). Equation (13)
represents a convenient framework to evaluate the deformation due to transfor-
mation strain confined in volumes of arbitrary shape as the integral equation
simplifies to a path integral in two dimensions or to a surface integral in three
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Figure 2: Deformation of a half-space in anti-plane strain due to anelastic strain
confined in a triangular element ABC. The vertices A, B, and C have the coordi-
nates xA, xB , and xC , respectively. The normal vectors are pointing outwards,
such that n(C) · (xC − xA) ≤ 0 and n(C) · (xC − xB) ≤ 0.

dimension, whereas the form (8) requires a surface integral in two dimensions
and a volume integral in three dimensions. In the next sections, I develop solu-
tions for these kernels for triangular surfaces in the cases of anti-plane strain and
plane strain and for tetrahedral volumes in the case of three-dimensional defor-
mation. The solution for more complex shapes can be obtained by superposition
using the approximation (7).

Distributed deformation of triangular shear zones

in anti-plane strain

Two-dimensional models of stress evolution may capture the main features of
a mechanical setting (Savage, 1983; Savage and Prescott , 1978; Thatcher and
Rundle, 1979) and their reduced complexity is more amenable to sensitivity
analyses (Daout et al., 2016a,b; Muto et al., 2016). The anti-plane strain ap-
proximation is relevant to transform plate boundaries (e.g., Barbot et al., 2008;
Erickson et al., 2017; Lambert and Barbot , 2016; Lindsey et al., 2014; Nur and
Israel , 1980; Nur and Mavko, 1974) and curvilinear elements may represent
shear zones (e.g., Takeuchi and Fialko, 2013) or lower-crustal flow within a
realistic stratigraphy.

Problem statement

Consider the elastic deformation in a half-space of rigidity µ in a situation of
anti-plane strain caused by distributed anelastic strain confined in an elementary
triangular area. In the case of anti-plane strain we have ui,1 = 0 for i = 1, 2, 3
and u2 = u3 = 0. The transformation strain is confined in a triangular area
delimited by three points A, B, and C (Figure 2). The surface is subjected to
two independent transformation strain components ǫi12 and ǫi13 associated with
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the moment density m12 = 2µǫi12 and m13 = 2µǫi13. Using (13), the deformation
simplifies to the nontrivial component

u1(x2, x3) =

∫

∂Ω

G11(x2, x3, y2, y3) (m12n2 +m13n3) dy2 dy3 , (14)

where the Green’s function for a line force centered at (y2, y3) is obtained by
solving Poisson’s equation with a Neumann boundary condition and is given by

G11(x2, x3) = − 1

4πµ

[

ln
(

(x2 − y2)
2 + (x3 − y3)

2
)

+ln
(

(x2 − y2)
2 + (x3 + y3)

2
)

]

.

(15)
The outward normal vector is different on each side, so we can write

u1(x2, x3) =
(

m12n
(C)
2 +m13n

(C)
3

)

∫

AB

G11(x2, x3, y2, y3) dy2 dy3

+
(

m12n
(A)
2 +m13n

(A)
3

)

∫

BC

G11(x2, x3, y2, y3) dy2 dy3

+
(

m12n
(B)
2 +m13n

(B)
3

)

∫

AC

G11(x2, x3, y2, y3) dy2 dy3 ,

(16)

where n(A), n(B), and n(C) are the unit normal vectors to the sides BC, AC,
and AB, respectively.

Analytic solution

The line integrals (16) are path independent and only depend on the coordinates
of the end-points. For any end point A and B, the closed-form solutions can be
found using

∫

AB

G11(x2, x3, y2, y3) dy2 dy3 = Γ(xB)− Γ(xA)

+ Γ(xB′

)− Γ(xA′

) ,

(17)

where xA and xB are the coordinates of points A and B (Figure 3), A’ and B’
are the images of points A and B about the surface, and Γ(r) is given by

Γ(r) =
1

8π
a · (x− r) ln ((x− r) · (x− r))

+
1

4π
n · (x− r) arctan

[

a · (x− r)

n · (x− r)

]

,
(18)

with the unit vector a aligned with the segment AB and n a unit vector normal
to the segment AB, such that n · a = 0, and where I have removed the terms
that cancel out upon integration over a closed path. The solution to (16) is
found by evaluating (17) once for each segments and multiplying the result by
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Figure 3: The line integration of the Green’s function G11 along the segment
AB only depend on the coordinates of the end-points xA and xB . The unit
vector a is parallel to AB and the unit normal vector v is perpendicular to AB.
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the respective tractions. The displacement gradient is obtained in a similar way
using

∇Γ(r) =
1

8π
a ln ((x− r) · (x− r))

+
1

4π
n arctan

[

a · (x− r)

n · (x− r)

]

,
(19)

where I have again removed the terms that cancel out upon integration over a
closed path. The expressions (18) and (19) are only singular at the end-points
A and B.

Semi-analytic solution with the double-exponential and the

Gauss-Legendre quadratures

I obtain the solution semi-analytically by solving the line integrals using high-
precision numerical quadratures. The Gauss-Legendre quadrature (Abramowitz
and Stegun, 1972; Golub and Welsch, 1969) provides accurate solutions away
from singular points. The double-exponential quadrature (Haber , 1977) is more
robust to the presence of singularities. To proceed, I consider the line integral

I(x2, x3) =

∫

AB

G11(x2, x3; y2, y3) dy2 dy3 , (20)

which I write as a parameterized line integral and in the canonical form of the
double-exponential or the Gauss-Legendre quadrature, i.e., within the bounds
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of integration −1 and 1, to get

I(x2, x3) =
R

2

∫ 1

−1

G11(x2, x3; y2(t), y3(t)) dt , (21)

where R is the length of segment AB, t is a dummy variable of integration, and

y2(t) =
xA
2 + xB

2

2
+ t

xB
2 − xA

2

2
,

y3(t) =
xA
3 + xB

3

2
+ t

xB
3 − xA

3

2
.

(22)

The displacement field for a combination of horizontal and vertical shear strain is
shown in Figure 4. The numerical solution with the double-exponential quadra-
ture agrees with the analytic solution (17) within double-precision floating-point
accuracy (about twelve digits) but takes about 50 times longer to evaluate. The
Gauss-Legendre quadrature with just 15 integration points provides high pre-
cision in the far-field and can be evaluated almost as fast as the analytic solu-
tion. Therefore, switching from the double-exponential to the Gauss-Legendre
method when the distance from the circumcenter exceeds 1.75 times the circum-
radius provides optimal performance without sacrificing accuracy. Two triangles
can be combined to form a rectangle. In this case the analytic and semi-analytic
solutions agree with the closed-form solution of Barbot et al. (2017).

Stress and strain

The stress field can be obtained using (6). For a triangular region with vertices
A, B, and C as in Figure 2, the location of the transformation strain is given by

Φ(x) =H

[(

xA + xB

2
− x

)

· n(C)

]

×H

[(

xB + xC

2
− x

)

· n(A)

]

×H

[(

xC + xA

2
− x

)

· n(B)

]

,

(23)

where H(x) is the Heaviside function. An example of the spatial distribution
of the shear stress around a triangular strain volume in shown in Figure 5.
When two triangles are combined to form a rectangle, it creates the stress field
derived by Barbot et al. (2017). The semi-analytic solution agrees with the
analytic expression based on (19) to double-precision floating point accuracy
and takes a similar time to evaluate. This indicates that combining the double-
exponential and the Gauss-Legendre quadratures is a viable approach when a
closed-form solution is otherwise unavailable.
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Figure 4: Displacement field in anti-plane strain due to anelastic strain confined
in triangular elements (triangles). A) A single triangular element and B) two
triangle elements forming a rectangle. The strain volumes are subjected to the
transformation strain ǫ12 = 10−6 and ǫ13 = 4 × 10−6. The contours (dashed
lines) are every 5mm.

Distributed deformation of triangular strain re-

gions in plane strain

The dynamics of the lithosphere-asthenosphere system around subduction zones,
normal faults, and spreading centers may be investigated under the plane strain
approximation (Barbot , 2018; Biemiller and Lavier , 2017; Cohen, 1996; Dinther
et al., 2013; Goswami and Barbot , 2018; Govers et al., 2017; Hirahara, 2002; Liu
and Rice, 2005; Muto et al., 2013; Romanet et al., 2018; Sato and Matsu’ura,
1974; Savage, 1998). In particular, Glas (1991) derived the closed expression for
the displacement and stress due to a cuboidal inclusion aligned with the free sur-
face and Barbot et al. (2017) expanded the results for a rotated cuboidal source.
In this section, I develop closed-form analytic and semi-analytical solutions for
triangular elements of arbitrary orientation to conform with curvilinear meshes.
This type of element may prove useful to capture the geometry of the mantle
wedge corner, of shear zones below volcanic arcs, or weak regions surrounding
dykes and sills.

Problem statement

I consider the elastic deformation in plane strain caused by distributed anelastic
strain in an elementary triangular area (Figure 2). In plane strain, we have
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u1,i = 0 for i = 1, 2, 3, and u1 = 0. I consider a triangular area delineated by
the vertices A, B, and C and subjected to the transformation strain components
ǫi22, ǫ

i
23, ǫ

i
32 and ǫi33, with ǫi23 = ǫi32. Using (13) again, the deformation simplifies

to the nontrivial components

u2(x2, x3) =

∫

∂Ω

G22(x2, x3, y2, y3) (m22n2 +m23n3)

+G32(x2, x3, y2, y3) (m32n2 +m33n3) dy2 dy3

u3(x2, x3) =

∫

∂Ω

G23(x2, x3, y2, y3) (m22n2 +m23n3)

+G33(x2, x3, y2, y3) (m23n2 +m33n3) dy2 dy3 ,

(24)

whereG22 andG23 represent the displacements at (x2, x3) induced by a line force
in the e2 direction centered at (y2, y3) and G32 and G33 represent the displace-
ments induced by a line force in the e3 direction. They are given by (Dundurs,
1962; Melan, 1932; Segall , 2010)

G22 =
−1

2π µ(1− ν)

[

3− 4ν

4
ln r1 +

8ν2 − 12ν + 5

4
ln r2 +

(x3 − y3)
2

4 r12

+
(3− 4ν)(x3 + y3)

2 + 2y3 (x3 + y3)− 2y23
4 r22

− y3x3 (x3 + y3)
2

r24

]

G23 =
1

2π µ(1− ν)

[

(1− 2ν)(1− ν) tan−1 x2 − y2
x3 + y3

+
(x3 − y3) (x2 − y2)

4 r12

+ (3− 4ν)
(x3 − y3) (x2 − y2)

4 r22
− y3x3(x2 − y2) (x3 + y3)

r24

]

,

G32 =
1

2π µ(1− ν)

[

− (1− 2ν)(1− ν) tan−1 x2 − y2
x3 + y3

+
(x3 − y3) (x2 − y2)

4 r12

+ (3− 4ν)
(x3 − y3) (x2 − y2)

4 r22
+

y3x3(x2 − y2) (x3 + y3)

r24

]

G33 =
1

2π µ(1− ν)

[

− 3− 4ν

4
ln r1 −

8ν2 − 12ν + 5

4
ln r2

− (x2 − y2)
2

4 r12
+

2y3x3 − (3− 4ν)(x2 − y2)
2

4 r22
− y3x3 (x2 − y2)

2

r24

]

,

(25)
with the radii

r21 = (x2 − y2)
2 + (x3 − y3)

2

r22 = (x2 − y2)
2 + (x3 + y3)

2 .
(26)
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Breaking down the path integral along the three triangle segments, it becomes

u2(x2, x3) =
(

m22n
(C)
2 +m23n

(C)
3

)

∫

AB

G22(x2, x3; y2, y3) dy2 dy3

+
(

m32n
(C)
2 +m33n

(C)
3

)

∫

AB

G32(x2, x3; y2, y3) dy2 dy3

+
(

m22n
(A)
2 +m23n

(A)
3

)

∫

BC

G22(x2, x3; y2, y3) dy2 dy3

+
(

m32n
(A)
2 +m33n

(A)
3

)

∫

BC

G32(x2, x3; y2, y3) dy2 dy3

+
(

m22n
(B)
2 +m23n

(B)
3

)

∫

AC

G22(x2, x3; y2, y3) dy2 dy3

+
(

m32n
(B)
2 +m33n

(B)
3

)

∫

AC

G32(x2, x3; y2, y3) dy2 dy3 ,

(27)

and

u3(x2, x3) =
(

m22n
(C)
2 +m23n

(C)
3

)

∫

AB

G23(x2, x3; y2, y3) dy2 dy3

+
(

m32n
(C)
2 +m33n

(C)
3

)

∫

AB

G33(x2, x3; y2, y3) dy2 dy3

+
(

m22n
(A)
2 +m23n

(A)
3

)

∫

BC

G23(x2, x3; y2, y3) dy2 dy3

+
(

m32n
(A)
2 +m33n

(A)
3

)

∫

BC

G33(x2, x3; y2, y3) dy2 dy3

+
(

m22n
(B)
2 +m23n

(B)
3

)

∫

AC

G23(x2, x3; y2, y3) dy2 dy3

+
(

m32n
(B)
2 +m33n

(B)
3

)

∫

AC

G33(x2, x3; y2, y3) dy2 dy3 ,

(28)

where n(A), n(B), and n(C) are the unit normal vectors to the sides BC, AC,
and AB, respectively.

Analytic and semi-analytic solutions

The displacement field can be evaluated analytically or using a numerical quadra-
ture using the path integral of the form (21). The closed-form expressions for
the line integrals

Uij =

∫

AB

Gij(x2, x3; y2, y3) dy2 dy3 , (29)

for the plane-strain Green’s functions (25) and i = 2, 3 are provided in Appendix
A. Examples of displacement fields occasioned by distributed anelastic strain
confined in the triangle surface ABC are given in Figure 6. In Figure 7, I
show how triangles can be combined to approximate a disk in dilatation. I
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have checked that combining two triangles to form a rectangle conforms to the
analytic solution of Barbot et al. (2017) and that the numerical integration with
the double-exponential and the Gauss-Legendre quadratures agrees with the
closed-form solution of (29) up to double-precision floating point accuracy for
all combinations of sources and displacement components.

Stress and strain

The strain can be obtained by differencing the displacement field analytically
or with a finite-difference approximation. An alternative is to directly integrate
the Green’s functions for the displacement gradient, given below

G22,2 = − x2 − y2
2πG(1− ν)

[

3− 4ν

4 r12
+

8ν2 − 12ν + 5

4 r22
− (x3 − y3)

2

2 r14

− (3− 4ν)(x3 + y3)
2 + 2y3(x3 + y3)− 2y3

2

2 r24

+
4 y3x3(x3 + y3)

2

r26

]

G22,3 = − 1

2πG(1− ν)

[

(3− 4 ν) (x3 − y3)

4 r1
2 +

(

8 ν2 − 12 ν + 5
)

(x3 + y3)

4 r2
2

+
x3 − y3

2 r1
2 − (x3 − y3)

3

2 r1
4 +

(3− 4 ν) (x3 + y3) + y3

2 r2
2

− (x3 + y3)
(3− 4 ν) (x3 + y3)

2
+ 2 y3 (x3 + y3)− 2 y3

2

2 r2
4

− y3 (x3 + y3)
2

r24
− 2

y3 x3 (x3 + y3)

r24

+ 4
x3 y3 (x3 + y3)

3

r26

]

(30)
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Figure 6: Displacement field in plane strain strain due to anelastic strain con-
fined in triangular elements (triangles). The horizontal displacement is shown
by the arrows and the color indicates the horizontal component u2. The dis-
placement fields are due to a) horizontal uniaxial extension (ǫ22 = 10−6), b)
pure shear (ǫ23 = 10−6), c) vertical uniaxial extension (ǫ33 = 10−6), and d)
isotropic extension (ǫ22 = ǫ33 = 10−6). The contours (dashed lines) are every
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G23,2 =
1

2πG(1− ν)

[

(1− 2 ν) (1− ν)
x3 + y3
r22

+
x3 − y3
4 r12

− (x3 − y3) (x2 − y2)
2

2 r14
+ (3− 4 ν)

x3 − y3
4 r22

− (3− 4 ν)
(x3 − y3) (x2 − y2)

2

2 r24
− y3 x3 (x3 + y3)

r24

+ 4
y3 x3 (x2 − y2)

2
(x3 + y3)

r26

]

,

G23,3 =
x2 − y2

2πG(1− ν)

[

− (1− 2 ν) (1− ν)
1

r22
+

1

4 r12

− (x3 − y3)
2

2 r14
+

(3− 4 ν)

4 r22

− (3− 4 ν) (x3 − y3) (x3 + y3)

2 r24

− y3 (x3 + y3)

r24
− y3 x3

r24

+ 4
y3 x3 (x3 + y3)

2

r26

]

,

(31)

G32,2 =
1

2πG(1− ν)

[

− (1− 2 ν) (1− ν)
x3 + y3
r22

+
x3 − y3
4 r12

− (x3 − y3) (x2 − y2)
2

2 r14
+

(3− 4 ν) (x3 − y3)

4 r22

− (3− 4 ν) (x3 − y3) (x2 − y2)
2

2 r24
+

y3 x3 (x3 + y3)

r24

− 4
y3 x3 (x2 − y2)

2
(x3 + y3)

r26

]

,

G32,3 =
x2 − y2

2πG(1− ν)

[

(1− 2 ν) (1− ν)
1

r22
+

1

4 r12

− (x3 − y3)
2

2 r14
+ (3− 4 ν)

1

4 r22

− (3− 4 ν)
(x3 − y3) (x3 + y3)

2 r24

+
y3 (x3 + y3)

r24
+

y3 x3

r24

− 4
y3 x3 (x3 + y3)

2

r26

]

,

(32)
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G33,2 = − x2 − y2
2πG(1− ν)

[

(3− 4 ν)
1

4 r12
+
(

8 ν2 − 12 ν + 5
) 1

4 r22

+
1

2 r12
− (x2 − y2)

2

2 r14

+ (3− 4 ν)
1

2 r22

+
2 y2 x3 − (3− 4 ν) (x2 − y2)

2

2 r24

+ 2
y3 x3

r24
− 4

x3 y3 (x2 − y2)
2

r26

]

,

G33,3 =
1

2πG(1− ν)

[

− (3− 4 ν) (x3 − y3)

4 r12
−

(

8 ν2 − 12 ν + 5
)

(x3 + y3)

4 r22

+
(x2 − y2)

2
(x3 − y3)

2 r14
+

y2
2 r22

− (x3 + y3)
2 y2 x3 − (3− 4 ν) (x2 − y2)

2

2 r24

− y3 (x2 − y2)
2

r24
+ 4

x3 y3 (x2 − y2)
2
(x3 + y3)

r26

]

,

(33)

where the comma in expressions like Gij,k indicates differentiation of the tensor
component Gij with respect to xk. Importantly, in all the terms forming the
Green’s function (25) and their derivatives (30-33), the only singular point is
at x = y. This guarantees that the displacement and stress solutions based
on numerical integration of the Green’s function will be numerically stable at
any point away from the source. This property provides an appealing reason to
resort to numerical quadratures because, contrarily to many analytic solutions
(including the one in Appendix A), all points away from the contour of the
source region are numerically stable.

The Φ(x) function that describes the location of transformation strain is the
same for anti-plane and in-plane strain problems, so the stress and strain compo-
nents can be obtained using (5), (6), and (23). Figure 8 shows the combination
of the 3 stress components obtained by deformation of a triangular source with
3 different components of transformation strain. I have checked that the results
from the finite-difference and the numerical quadrature methods converge for
these 9 cases.
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Figure 8: Stress field in plane strain strain due to anelastic strain confined in
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Figure 9: Three-dimensional deformation of a half-space due to anelastic strain
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Distributed deformation of tetrahedral strain vol-

umes in three dimensions

The development of three-dimensional deformation models has afforded an in-
creasingly accurate description of the mechanics of the lithosphere (Aagaard
et al., 2013; Barbot et al., 2017; Landry and Barbot , 2016; Mansinha and Smylie,
1971;McTigue and Segall , 1988;Meade, 2007; Nikkhoo and Walter , 2015;Okada,
1985, 1992; Sato and Matsu’ura, 1974; Wang et al., 2003). The expressions for
the deformation induced by uniform transformation strain confined in a cuboid
have been developed for a full elastic medium by Faivre (1969). Chiu (1978)
derived the solution for certain components of displacement and strain at the
surface of a half-space. Barbot et al. (2017) derived the displacement and stress
everywhere in a half-space. The development of realistic rheological models of
Earth’s interior requires curvilinear meshes that conform to structural data, so
in this manuscript I derive solutions for the case of transformation strain con-
fined in a tetrahedral volume in a half-space, extending from the work of Nozaki
and Taya (1997, 2001) for a full space.

Problem statement

I now consider deformation in a three-dimensional half-space (Figure 9). I con-
sider a tetrahedral volume delineated by the vertices A, B, C, and D at coordi-
nates xA, xB , xC , and xD, respectively, and subjected to the six independent
transformation strain components

ǫ
i =





ǫ11 ǫ12 ǫ13
ǫ12 ǫ22 ǫ23
ǫ13 ǫ23 ǫ33



 . (34)
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Using (13), the deformation simplifies to

ui(x1, x2, x3) =

∫

∂Ω

G1i(x1, x2, x3; y1, y2, y3) (m11n1 +m12n2 +m13n3) dy1 dy2 dy3

+

∫

∂Ω

G2i(x1, x2, x3; y1, y2, y3) (m12n1 +m22n2 +m23n3) dy1 dy2 dy3

+

∫

∂Ω

G3i(x1, x2, x3; y1, y2, y3) (m13n1 +m32n2 +m33n3) dy1 dy2 dy3

(35)
for i = 1, 2, 3, where Gij(x;y) represents the displacement component uj(x)
induced by a point force in the ei direction located at y. The Green’s functions
for the u1 component are given by (Mindlin, 1936; Okada, 1985; Press, 1965;
Segall , 2010)

G11 =
1

16πµ(1− ν)

[

3− 4ν

R1
+

1

R2
+

(x1 − y1)
2

R1
3

+
(3− 4ν)(x1 − y1)

2

R2
3

+
2x3y3

(

R2
2 − 3 (x1 − y1)

2
)

R2
5

+
4(1− 2ν)(1− ν)

(

R2
2 − (x1 − y1)

2 +R2 (x3 + y3)
)

R2 (R2 + x3 + y3)
2

]

,

G21 =
(x1 − y1) (x2 − y2)

16πµ(1− ν)

[

1

R1
3 +

3− 4ν

R2
3 − 6x3y3

R2
5 − 4(1− 2ν)(1− ν)

R2 (R2 + x3 + y3)
2

]

,

G31 =
(x1 − y1)

16πµ(1− ν)

[

x3 − y3

R1
3 +

(3− 4ν) (x3 − y3)

R2
3

+
6x3y3 (x3 + y3)

R2
5 − 4 (1− 2ν)(1− ν)

R2 (R2 + x3 + y3)

]

.

(36)
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For the u2 component, they are

G12 =
(x1 − y1) (x2 − y2)

16πµ(1− ν)

[

1

R1
3 +

3− 4ν

R2
3 − 6x3y3

R2
5 − 4(1− 2ν)(1− ν)

R2 (R2 + x3 + y3)
2

]

,

G22 =
1

16πµ(1− ν)

[

3− 4ν

R1
+

1

R2

+
(x2 − y2)

2

R1
3 +

(3− 4ν) (x2 − y2)
2

R2
3

+
2x3y3

(

R2
2 − 3 (x2 − y2)

2
)

R2
5

+
4(1− 2ν)(1− ν)

(

R2
2 − (x2 − y2)

2
+R2 (x3 + y3)

)

R2 (R2 + x3 + y3)
2

]

,

G32 =
(x2 − y2)

16πµ(1− ν)

[

x3 − y3

R1
3 +

(3− 4ν) (x3 − y3)

R2
3

+
6x3y3 (x3 + y3)

R2
5 − 4 (1− 2ν)(1− ν)

R2 (R2 + x3 + y3)

]

.

(37)
For the displacement component u3, they are given by

G13 =
(x1 − y1)

16πµ(1− ν)

[

x3 − y3

R1
3 +

(3− 4ν) (x3 − y3)

R2
3

− 6x3y3 (x3 + y3)

R2
5 +

4(1− 2ν)(1− ν)

R2 (R2 + x3 + y3)

]

,

G23 =
(x2 − y2)

16πµ(1− ν)

[

x3 − y3

R1
3 +

(3− 4ν) (x3 − y3)

R2
3

− 6x3y3 (x3 + y3)

R2
5 +

4(1− 2ν)(1− ν)

R2 (R2 + x3 + y3)

]

G33 =
1

16πµ(1− ν)

[

3− 4ν

R1
+

5− 12ν + 8ν2

R2
+

(x3 − y3)
2

R1
3

+
6x3y3 (x3 + y3)

2

R2
5 +

(3− 4ν) (x3 + y3)
2 − 2x3y3

R2
3

]

.

(38)
All involve the radii

R1 = ((x1 − y1)
2
+ (x2 − y2)

2
+ (y3 − x3)

2
)1/2

R2 = ((x1 − y1)
2
+ (x2 − y2)

2
+ (x3 + y3)

2
)1/2 .

(39)

21



Semi-analytic solution with the double-exponential and the

Gauss-Legendre quadratures

The integral (35) involves surface integrals of the form (no summation implied
over the indices i and j)

Kij =

∫

∂Ω

Gij(x1, x2, x3; y1, y2, y3) (mi1n1 +mi2n2 +mi3n3) dy1 dy2 dy3 ,

(40)
that can be broken down into the four faces ABC, BCD, CDA, and DAB of
the tetrahedron, as follows

Kij =
(

mi1n
(D)
1 +mi2n

(D)
2 +mi3n

(D)
3

)

∫

ABC

Gij(x1, x2, x3; y1, y2, y3) dy1 dy2 dy3

+
(

mi1n
(A)
1 +mi2n

(A)
2 +mi3n

(A)
3

)

∫

BCD

Gij(x1, x2, x3; y1, y2, y3) dy1 dy2 dy3

+
(

mi1n
(B)
1 +mi2n

(B)
2 +mi3n

(B)
3

)

∫

CDA

Gij(x1, x2, x3; y1, y2, y3) dy1 dy2 dy3

+
(

mi1n
(C)
1 +mi2n

(C)
2 +mi3n

(C)
3

)

∫

DAB

Gij(x1, x2, x3; y1, y2, y3) dy1 dy2 dy3 .

(41)
Following the approach described in the previous sections, I obtain solutions to
the surface integrals (41) using the double-exponential and the Gauss-Legendre
quadratures. To do so, I consider the individual surface integral

Jij(x1, x2, x3) =

∫

ABC

Gij(x1, x2, x3; y1, y2, y3) dy1 dy2 dy3 , (42)

which I write as a parameterized surface integral and in canonical form, to get

Jij(x1, x2, x3) =
A
4

∫ 1

−1

∫ 1

−1

(1−v)Gij(x1, x2, x3; y1(u, v), y2(u, v), y3(u, v)) du dv ,

(43)
where A is the area of the triangle ABC and u and v are dummy variables of
integration. The parameterization

y(u, v) =
1

4
xA (1− u) (1− v)

+
1

4
xB (1 + u) (1− v)

+
1

2
xC (1 + v) .

(44)

maps the triangle ABC in three-dimensional space to a right isosceles triangle
in the uv space (e.g., Beer et al., 2008; Pozrikidis, 2002), where xA, xB , and xC

are the spatial coordinates of vertices A, B, and C in integral (42), respectively.
For each displacement component correspond twelve integrals such as (43)

due to the presence of three force components on four faces. Therefore, the dis-
placement field requires the evaluation of at most 36 surface integrals. Examples

22



of surface displacements in map view caused by anelastic strain confined in a
tetrahedron are shown in Figure 10. The vertices are located at A = (−5,−5, 5),
B = (−5, 5, 5), C = (−5, 5, 15), and D = (5, 5, 5) expressed in km. Each panel
shows the displacement caused by a single transformation strain component
with an amplitude of one microstrain.

Six tetrahedra can be arranged to form a cuboid. In this case the semi-
analytic solution agrees with the analytical solution of Barbot et al. (2017) to
the limit of double-precision floating point accuracy. As the numerical solution
involves a surface integral, the computational burden is much larger than for the
two-dimensional case with only line integrals. The double-exponential quadra-
ture with 601 integration points takes about 2,500 times longer than the analytic
solution for a cuboid source. In contrast, the Gauss-Legendre quadrature with
7 and 15 points in both directions takes only 3 times and 16 times longer than
the analytic solution, respectively. As the solution based on the Gauss-Legendre
quadrature offers the same accuracy but is free of numerical artifacts away from
the surface of the tetrahedron, the small difference in computational cost makes
this approach more appealing than using the analytic solution.

Stress and strain

The stress field is essential to simulate forward models of deformation with the
integral method (Barbot , 2018) and to regularize inverse problems involving
distributed strain (Qiu et al., 2018). The strain can be obtained by differencing
the displacement field obtained with (35) but a more accurate approach is to
directly integrate the Green’s functions for the displacement gradient, as in

ui,j(x1, x2, x3) =

∫

∂Ω

Gki,j(x1, x2, x3; y1, y2, y3)mkl nl dy1 dy2 dy3 . (45)
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Figure 10: Displacement field at the surface of the half-space due to anelastic strain
confined in a tetrahedral volume ABCD. The arrows indicate horizontal displacements
and the background indicates the vertical (positive up) displacement. The panels
corresponds to different components of transformation strain with an amplitude of
one microstrain: a) uniaxial strain ǫ11, b) pure shear ǫ12, c) vertical pure shear ǫ13, d)
horizontal uniaxial extension ǫ22, e) vertical pure shear ǫ23, and f) vertical extension
ǫ33. The contours (dashed lines) are every 0.05mm.
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Figure 11: Uniaxial stress component σ11 due to non-trivial anelastic strain compo-
nent ǫ11 evaluated with a) the Gauss-Legendre quadrature throughout the domain with
152 integration points (15 points in each direction of integration of the 4 triangular sur-
faces) and b) the double-exponential quadrature within the circumsphere (horizontal
footprint in dashed white circle) using 6012 integration points and the Gauss-Legendre
quadrature outside the circumsphere. In both cases, the tetrahedron connects the ver-
tices A = (−5,−5, 5), B = (−5, 5, 5), C = (−5, 5, 15), and D = (5, 5, 5) expressed
in km (horizontal footprint in dashed black profile) and the figure shows horizontal
cross-sections cutting through the tetrahedron at 10 km depth. The intersection of
the cross-section and the tetrahedron is a triangle surface (contour in black profile.)
Numerical artifacts near the surface of the tetrahedron are evident with the solu-
tion based on the Gauss-Legendre quadrature. They are mostly eliminated with the
double-exponential quadrature.
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Figure 12: The stress component σij in horizontal cross-section due to the nontriv-
ial transformation strain component ǫij confined in a tetrahedron (self-stress). The
surface footprint of the tetrahedron is shown in the dashed profile. The intersection
of the cross-section with the tetrahedron is shown in solid black profile. The double-
exponential quadrature is used for points within the circumsphere (horizontal footprint
shown in grey circle) and the Gauss-Legendre quadrature is used outside. The panels
correspond to different components of transformation strain with an amplitude of one
microstrain: a) uniaxial stress σ11 due to nontrivial transformation strain component
ǫ11, b) stress component σ12 due to pure shear ǫ12 in the tetrahedron, c) stress com-
ponent σ13 due to vertical pure shear ǫ13, d) σ22 due to horizontal uniaxial extension
ǫ22, e) stress component σ23 due to vertical pure shear ǫ23, and f) vertical stress σ33

due to vertical extension ǫ33 within the tetrahedron. The contours (dashed lines) are
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surface footprint of the tetrahedron is shown in the dashed profile. The intersec-
tion of the cross-section with the tetrahedron is shown in solid black profile. The
double-exponential and the Gauss-Legendre quadratures are used for points inside,
respectively outside, the circumsphere (horizontal footprint shown in grey circle). a)
uniaxial stress σ11, b) shear stress component σ12, c) shear stress component σ13, d)
horizontal uniaxial stress component σ22, e) vertical shear stress component σ23, and
F) vertical stress σ33. The contours (dashed lines) are every 10 kPa.
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The derivatives of the Green’s function are given in closed form below for com-
pleteness,

G11,1 =
(x1 − y1)

16πµ(1− ν)

[

− (3− 4ν)

R1
3 − 1

R2
3 +

2R1
2 − 3 (x1 − y1)

2

R1
5
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2R2
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2
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5 − 6 y3 x3
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,
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,
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and

G21,1 =
(x2 − y2)

16πµ(1− ν)
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Continuing,

G31,1 =
1

16πµ(1− ν)
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The derivatives of the G12 component are the same as for G21 component

G12,1 =
(x2 − y2)

16πµ(1− ν)
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The derivatives of the G22 have a symmetry with those of the G11 component
by permutation of the 1 and 2 indices

G22,1 =
(x1 − y1)

16πµ(1− ν)
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The derivatives of the G32 term can be obtained from the G31 term by permu-
tation of the 1 and 2 indices,

G32,1 =
(x1 − y1)(x2 − y2)
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The derivatives of the G13 component are

G13,1 =
1
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The derivatives of the G23 can be obtained from the G13 derivatives by permu-
tation of the 1 and 2 indices

G23,1 =
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Finally, the derivatives of the G33 component are
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(54)

In all the terms composing the Green’s functions (36-38) and their derivatives
(46-54), the only singular point is at x = y, guaranteeing that the numerical
integration of the Green’s functions or their derivatives will be numerically stable
at any point away from the surface compounding the source.

For a tetrahedral region with vertices A, B, C, and D as in Figure 9, the
location of the transformation strain is given by the product of four Heaviside
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functions

Φ(x) =H

[(

xA + xB + xC

3
− x

)

· n(D)

]

×H

[(

xB + xC + xD

3
− x

)

· n(A)

]

×H

[(

xC + xD + xA

3
− x

)

· n(B)

]

×H

[(

xD + xA + xB

3
− x

)

· n(C)

]

.

(55)

The stress field can then be obtained using (5), (6), (45), and (55).
The numerical solutions for the stress field based on the Gauss-Legendre and

the double-exponential quadratures are compared in Figure 11 for the case of a
tetrahedron with the vertices A = (−5,−5, 5), B = (−5, 5, 5), C = (−5, 5, 15),
and D = (5, 5, 5) expressed in km and a non-trivial transformation strain ǫ11
of one microstrain. Using 15 integration points in each direction of integration
with the Gauss-Legendre quadrature, some numerical artifacts scatter in the
near-field, close to the surface of the tetrahedron. A close inspection of the
residuals with analytic solutions shows that the numerical error decays away
from the surface with a radial dependence. In the far-field, a low-order quadra-
ture is sufficient to obtain double-precision accuracy, as noted by Segall (2010).
In the near-field, the error can can be eliminated with the double-exponential
quadrature using more integration points. With 601 integration points in both
directions of integration, the errors are less than can be represented with double-
precision arithmetics.

Based on these results a simple heuristic can be divised to eliminate numer-
ical errors and minimize the computational cost of these calculations whereby
the double-exponential or the Gauss-Legendre quadrature is used depending on
the distance from the center of the circumsphere. This approach guarantees
double-precision accuracy with a computational cost comparable to using ana-
lytic solutions, all the while avoiding all possible numerical artifacts away from
the surface of the tetrahedron. Some examples of stress interactions are shown
in Figures 12 and 13 where the double-exponential quadrature was used for
points within one radius from the circumsphere center.

Semi-analytic solution with a spectral method

I now derive numerical solutions compatible with the Fourier-domain semi-
analytic solver of Barbot and Fialko (2010b) implemented in the software Re-
lax that was recently optimized for parallel computing on GPU (Masuti et al.,
2014). The approach solves Navier’s equation (3) analytically in the Fourier
domain and provides the space-domain solution using a discrete Fourier trans-
form. This approach is numerically more efficient than employing an analytic
solution for large enough domains because of the scaling properties of the fast
Fourier transform (e.g., Liu and Wang , 2005; Liu et al., 2012). However, the
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numerical accuracy is limited to about 1% due to undesirable periodic boundary
conditions. At the heart of the method is the explicit sampling of the equivalent
body-force density (11). This is obtained with
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(56)
For the stability of the Fourier transform and to avoid Gibbs oscillations near
sharp discontinuities, the Heaviside function is replaced with an error function

H(x) ∼ 1

2

[

1 + erf

(

x

σ
√
2

)]

(57)

and the Delta function is replaced with a Gaussian function

δ(x) ∼ 1√
2πσ2

exp

(

− x2

2σ2

)

(58)

Both approximations are exact in the limit σ → 0 and in practice I employ
σ = ∆x, using the numerical sampling size as a smoothing factor. This choice
is appropriate to conserve linear momentum, i.e., (58) is the derivative of (57),
and to suppress singular points near the vertices of the tetrahedron. Figure 14
shows the displacement field and the pressure field induced by an isotropic
transformation strain, which may find some applications in hydrological studies.
The isotropic strain does not impact a change of pressure in the surrounding
medium except near the free surface, as remarked earlier (Barbot et al., 2017;
Faivre, 1969). This observation also serves as a sophisticated benchmark.
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Figure 14: Displacement at the surface and pressure in the half-space due to isotropic
transformation strain confined in a tetrahedral volume ABCD calculated with a spec-
tral method. A) The arrows indicate horizontal displacements and the background
indicates the vertical (positive up) displacement. B) The pressure field in the cross-
section P-P’. C) The pressure in the cross-section Q-Q’. The transformation strain is
ǫ11 = ǫ22 = ǫ33 = 0.33× 10−6. The vertical displacement contours are every 0.05mm.
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Conclusions

I have presented solutions for the displacement and stress kernels in a half-space
associated with transformation strain confined in a tetrahedral volume. Numer-
ical and analytic solutions provide the same accuracy, can be evaluated with
commensurate computational costs, but numerical quadratures can be more
stable in some cases. This work may afford more accurate models of distributed
deformation that incorporate structural data. While I hope these results will
be useful, some key elements are missing, such as the stratification of elas-
tic properties, surface topography (e.g., Cayol and Cornet , 1997; Mayo, 1985;
McKenney et al., 1995; McTigue and Segall , 1988; Wang et al., 2018; Williams
and Wadge, 1998, 2000), in particular, Earth’s curvature (Pollitz , 1997; Yu and
Okubo, 2016), and coupling with gravity (Okubo, 1992; Rundle, 1982; Wang
et al., 2006). For more realistic models with laterial variations of elastic mod-
uli, fully numerical methods may be employed (e.g., Landry and Barbot , 2016,
2018).
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Appendix A. Analytic solution for line integrals

of the half-space elasto-static Green’s function in

plane strain

The closed-form solutions for the line integral (29) of the half-space Green’s
functions can be obtained using symbolic algebra with Maple R©. The displace-
ment field only depends on the coordinates of the end-points of the line integral,
so that

Uij =

∫

AB

Gij(x2, x3; y2, y3) dy2 dy3 = Iij

(

R

2

)

− Iij

(

−R

2

)

, (A1)

for i, j = 2, 3, where R is the length of segment AB. For increased clarity, I
define the mid-point coordinates

m =
xA + xB

2
(A2)

and the azimuthal vector

a =
xB − xA

||AB|| (A3)

The expressions for Iij(t) are provided below.
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4π (−1 + ν)

{(

(−1/4x2 + 1/4m2) a3
3 − 3/4 (x3 + 1/3m3) a2 a3

2

− 1/4 a2
2 (−x2 +m2) a3 − 1/4 a2

3 (x3 −m3)

)

. ln

[

t2 + ((2m2 − 2x2) a2 + 2 a3 (x3 +m3)) t+ (x2 −m2)
2 + (x3 −m3)

2

]

+

(

(

a3
2x3 + (−x2 +m2) a2 a3 − a2

2m3

)

. arctan

[

ta2
2 + (−x2 +m2) a2 + a3 (x3 +m3 + a3 t)

(x3 +m3) a2 − a3 (−x2 +m2)

]

+ 1/2 a2 t

)

a3

}

− 1

4π(−1 + ν)
x3

{

a2

(

a3
2t2 + 2 t (x3 +m3) a3 + a2

2t2 + 2 t (−x2 +m2) a2
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+m3
2 + 2x3 m3 + x3

2 + (−x2 +m2)
2

)

a3
2

. ln

[

t2 + ((2m2 − 2x2) a2 + 2 a3 (x3 +m3)) t+ (x2 −m2)
2 + (x3 +m3)

2

]

+ a3 (a2 − a3) (a2 + a3)

(

a3
2t2 + 2 t (x3 +m3) a3 + a2

2t2

+ 2 t (−x2 +m2) a2 +m3
2 + 2x3 m3 + x3

2 + (−x2 +m2)
2

)

. arctan

[

ta2
2 + (−x2 +m2) a2 + a3 (x3 +m3 + a3 t)

(x3 +m3) a2 − a3 (−x2 +m2)

]

− t (−x2 +m2) a3
4 + (3 t (x3 + 1/3m3) a2 −m3 (−x2 +m2)) a3

3

+ 2 a2

(

3/2 t (−x2 +m2) a2 + 1/2m3
2 + 3/2x3 m3 + x3

2 + (−x2 +m2)
2
)

a3
2

− a2
2 (t (3m3 + x3) a2 +m3 (−x2 +m2)) a3 −m3 a2

3 (x3 +m3)

}

/(

(x3 +m3 + a3t)
2 + (x2 −m2 − a2t)

2

)

I32(t) =

1

4π (−1 + ν)

{

1

4

(

(x3 −m3) a2 − a3 (x2 −m2)
)

(a2 − a3) (a2 + a3)

. ln
(

t2 + ((2m2 − 2x2) a2 + 2 a3 (−x3 +m3)) t+ (x2 −m2)
2 + (x3 −m3)

2
)

+ a2 a3

(

(

(x3 −m3) a2 + a3 (−x2 +m2)
)

. arctan

(−ta2
2 + (−m2 + x2) a2 − a3 (a3 t− x3 +m3)

(−x3 +m3) a2 − a3 (x2 +m2)

)

− 1/2 t

)}

+
1

a3π(−1/2 + ν)

{

− 1

2

(

a3 (−m2 + x2) + (x3 +m3) a2
)

a3

. ln

[

(

−a2
a3

+
a2 x3 + a2 m3 + a3 x2 − a3 m2

a3 (x3 +m3 + a3 t)

)2

+ 1

]

− (a3 (−m2 + x2) + (x3 +m3) a2) a2

. arctan

[

ta2
2 + (−x2 +m2) a2 + a3 (x3 +m3 + a3 t)

(x3 +m3) a2 − a3 (−x2 +m2)

]

+
(

a3 (−m2 + x2) + (x3 +m3) a2
)

a3 ln

[

a3 (−m2 + x2) + (x3 +m3) a2
x3 +m3 + a3 t

]

+ (a3 (−m2 + x2) + (x3 +m3) a2) a2 arctan

(

a3
a2

)

+ (x3 +m3 + a3 t) arctan

(−x2 +m2 + a2 t

x3 +m3 + a3 t

) }
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+
−3 + 4ν

4π (−1 + ν)

{(

(−1/4x2 + 1/4m2) a3
3 − 3/4 (x3 + 1/3m3) a2 a3

2

− 1/4 a2
2 (−x2 +m2) a3 − 1/4 a2

3 (x3 −m3)

)

. ln

[

t2 + ((2m2 − 2x2) a2 + 2 a3 (x3 +m3)) t+ (x2 −m2)
2 + (x3 −m3)

2

]

+

(

(

a3
2x3 + (−x2 +m2) a2 a3 − a2

2m3

)

. arctan

[

ta2
2 + (−x2 +m2) a2 + a3 (x3 +m3 + a3 t)

(x3 +m3) a2 − a3 (−x2 +m2)

]

+ 1/2 a2 t

)

a3

}

− 1

4π(−1 + ν)
x3

{

a2

(

a3
2t2 + 2 t (x3 +m3) a3 + a2

2t2 + 2 t (−x2 +m2) a2

+m3
2 + 2x3 m3 + x3

2 + (−x2 +m2)
2

)

a3
2

. ln

[

t2 + ((2m2 − 2x2) a2 + 2 a3 (x3 +m3)) t+ (x2 −m2)
2 + (x3 +m3)

2

]

+ a3 (a2 − a3) (a2 + a3)

(

a3
2t2 + 2 t (x3 +m3) a3 + a2

2t2

+ 2 t (−x2 +m2) a2 +m3
2 + 2x3 m3 + x3

2 + (−x2 +m2)
2

)

. arctan

[

ta2
2 + (−x2 +m2) a2 + a3 (x3 +m3 + a3 t)

(x3 +m3) a2 − a3 (−x2 +m2)

]

− t (−x2 +m2) a3
4 + (3 t (x3 + 1/3m3) a2 −m3 (−x2 +m2)) a3

3

+ 2 a2

(

3/2 t (−x2 +m2) a2 + 1/2m3
2 + 3/2x3 m3 + x3

2 + (−x2 +m2)
2
)

a3
2

− a2
2 (t (3m3 + x3) a2 +m3 (−x2 +m2)) a3 −m3 a2

3 (x3 +m3)

}

/(

(x3 +m3 + a3t)
2 + (x2 −m2 − a2t)

2

)

And finally,

I33(t) =

− 3− 4ν

8π(1− ν)

{

1

2
(t− (x2 −m2) a2 − a3 (x3 −m3))

. ln

[

t2 + ((2m2 − 2x2) a2 + 2 a3 (−x3 +m3)) t+ (x2 −m2)
2 + (x3 −m3)

2

]

+ ((x3 −m3) a2 + a3 (−x2 +m2)) arctan

[−t+ (−m2 + x2) a2 − a3 (−x3 +m3)

(−x3 +m3) a2 − a3 (−x2 +m2)

] }

+
1

8π(1− ν)

{

− a3 a2 ((x3 −m3) a2 + a3 (−x2 +m2))
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. ln

[

t2 + ((2m2 − 2x2) a2 + 2 a3 (−x3 +m3)) t+ (x2 −m2)
2 + (x3 −m3)

2

]

+ (a2 − a3) (a2 + a3) ((x3 −m3) a2 + a3 (−x2 +m2))

. arctan

[−t+ (−m2 + x2) a2 − a3 (−x3 +m3)

(−x3 +m3) a2 − a3 (−x2 +m2)

]

− ta2
2

}

+
8ν2 − 12ν + 5

8π(−1 + ν)

{

1

2

(

ta22 + (m2 − x2) a2 + a3 (x3 +m3 + a3 t)
)

. ln

[

t2 + ((2m2 − 2x2) a2 + 2 a3 (x3 +m3)) t+ (x2 −m2)
2 + (x3 −m3)

2

]

+ ((x3 +m3) a2 − a3 (−x2 +m2))

. arctan

[

t+ (−x2 +m2) a2 + a3 (x3 +m3)

(x3 +m3) a2 − a3 (−x2 +m2)

] }

+
1

8π(−1 + ν)

{

4 a3
(

(x3 +m3) a2 − a3 (−x2 +m2)
)

.
(

((x3 +m3) ν − x3 − 3/4m3) a2
2 − (−3/4 + ν) a3 (−x2 +m2) a2 − 1/4 a3

2x3

)

. ln

[

t2 + 2t ((m2 − x2) a2 + a3 (x3 +m3)) + (x2 −m2)
2 + (x3 −m3)

2

]

+

[

− 4

(

(m2 + x3 +m3 − x2) (−m2 + x3 +m3 + x2) ν

− 5/4x3
2 − x3 m3 + 3/4 (m2 −m3 − x2) (m2 +m3 − x2)

)

a3
2a2

2

+
(

4 (x3 +m3)
2
ν − 3m3

2 − 8x3 m3 − 3x3
2
)

a2
4

+ a3
3 (8 (x3 +m3) ν − 6m3 − 4x3) (−x2 +m2) a2

− 8 a3 (−x2 +m2) ((x3 +m3) ν − x3 − 3/4m3) a2
3

+
(

−4 (−x2 +m2)
2
ν + x3

2 + 3 (−x2 +m2)
2
)

a3
4

]

. arctan

[

ta2
2 + (−x2 +m2) a2 + a3 (x3 +m3 + a3 t)

(x3 +m3) a2 − a3 (−x2 +m2)

]

+ (3− 4ν) t ((x3 +m3) a2 − a3 (−x2 +m2)) a2
2

}

/(

(x3 +m3) a2 − a3 (−x2 +m2)

)

+
1

8π(−1 + ν)

{

4 a3 ((x3 +m3) a2 − a3 (−x2 +m2))

.
(

((x3 +m3) ν − x3 − 3/4m3) a2
2 − (−3/4 + ν) a3 (−x2 +m2) a2 − 1/4 a3

2x3

)

. ln
(

t2 + 2 ((m2 − x2) a2 + a3 (x3 +m3)) t+ (x2 −m2)
2 + (x3 −m2

3

)

+

[

(

4 (x3 +m3)
2
ν − 3m3

2 − 8x3 m3 − 3x3
2
)

a2
4

53



− 8 a3 (−x2 +m2) ((x3 +m3) ν − x3 − 3/4m3) a2
3

− 4

(

(m2 + x3 +m3 − x2) (−m2 + x3 +m3 + x2) ν − 5/4x3
2 − x3 m3

+ 3/4 (m2 −m3 − x2) (m2 +m3 − x2)

)

a3
2a2

2

+ 8 a3
3 ((x3 +m3) ν − 3/4m3 − 1/2x3) (−x2 +m2) a2

+ 2
(

−2 (−x2 +m2)
2
ν + x3

2 + 3/2 (−x2 +m2)
2
)

a3
4

]

. arctan

[

ta2
2 + (−x2 +m2) a2 + a3 (x3 +m3 + a3 t)

(x3 +m3) a2 − a3 (−x2 +m2)

]

− 4 (−3/4 + ν) t ((x3 +m3) a2 − a3 (−x2 +m2)) a2
2

}

/(

(x3 +m3) a2 − a3 (−x2 +m2)

)

.

The equations for I23 and I32 are numerically unstable in the limit a3 = 0. For
this special case, given that ||a|| = 1, I take the analytical limit for a2 → 1 and
a3 → 0. The codes to evaluate these equations, as well as any other solution
presented in this manuscript, are available in an online repository (see the Data
and Resources section).
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