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Deformation of a Peridynamic Bar

S.A. SILLING1, M. ZIMMERMANN2 and R. ABEYARATNE2

1Computational Physics Department, MS-0820, Sandia National Laboratories, Albuquerque,
NM 87185-0820, U.S.A. E-mail: sasilli@sandia.gov
2Department of Mechanical Engineering, Room 3-173, Massachusetts Institute of Technology,
Cambridge, MA 02139, U.S.A.

Received 18 March 2003

Abstract. The deformation of an infinite bar subjected to a self-equilibrated load distribution is
investigated using the peridynamic formulation of elasticity theory. The peridynamic theory differs
from the classical theory and other nonlocal theories in that it does not involve spatial derivatives
of the displacement field. The bar problem is formulated as a linear Fredholm integral equation and
solved using Fourier transform methods. The solution is shown to exhibit, in general, features that are
not found in the classical result. Among these are decaying oscillations in the displacement field and
progressively weakening discontinuities that propagate outside of the loading region. These features,
when present, are guaranteed to decay provided that the wave speeds are real. This leads to a one-
dimensional version of St. Venant’s principle for peridynamic materials that ensures the increasing
smoothness of the displacement field remotely from the loading region. The peridynamic result con-
verges to the classical result in the limit of short-range forces. An example gives the solution to the
concentrated load problem, and hence provides the Green’s function for general loading problems.

Mathematics Subject Classifications (2000): 74B20, 82B21, 74A99, 45A05, 45B05.

Key words: linear integral equations, Fredholm integral equations, peridynamic, Fourier transform,
discontinuity, Green’s function, point load, elastic bar.

1. Peridynamic Theory

Discontinuities of various sorts arise naturally in the modeling of many phenom-
ena of physical interest, including cracks. Since the classical theory of elasticity
involves spatial derivatives of the displacement field that may not exist on these
singularities, an alternative formulation of elasticity theory, one that avoids the
use of any spatial derivatives, has been proposed by Silling [1]. This formulation,
called the peridynamic theory, uses integral equations to compute the force on a
material particle, and therefore, in general, it can account for both short-range and
long-range forces.

The peridynamic approach may be thought of as a continuum version of molec-
ular dynamics, because material particles interact with each other directly through
finite distances. In the three-dimensional peridynamic theory, the equation of mo-
tion is given by

ρü(x, t) =
∫

R

f
(
x, x′, t

)
dV ′ + b(x, t), (1)
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where R is a region, x is the location of a particle in the reference configuration, u
is the displacement field, ρ is the mass density, b is a prescribed body force field,
and f is the force density on particle x due to particle x′ at time t . To arrive at a
peridynamic one-dimensional theory for an infinitely long bar of constant cross-
section with area A, assume that the bar is parallel to the x1 axis. Then integrate
(1) over the cross-section A located at any x1 and divide through by A to obtain

ρü(x, t) =
∫ ∞

−∞
f (x, x′, t) dx′ + b(x, t), (2)

where x ≡ x1,

u(x1, t) = 1

A

∫
A

u1(x, t) dA, b(x1, t) = 1

A

∫
A

b1(x, t) dA (3)

and

f (x1, x
′
1, t) = 1

A

∫
A

∫
A′

f1(x, x′, t) dA′ dA (4)

in which dV ′ = dA′ dx′ has been used. Note that the one-dimensional force den-
sity f is not equal to the three-dimensional force density component f1; in fact,
these two quantities do not have the same units.

Because the peridynamic theory is nonlocal, the displacement components u2

and u3 are not necessarily linear functions of x2 and x3. This makes it much less
straightforward to derive the constitutive model for a bar from a three-dimensional
constitutive model in the peridynamic theory than in the classical theory, e.g.,
Atkin and Fox [2]. Instead, we formulate the constitutive law for a peridynamic
bar directly in the one-dimensional setting, omitting the calculations that would be
required by (4).

The constitutive response of the bar is characterized by a function f̂ which
relates the force between particles to the kinematics, which for a homogeneous
objective microelastic material has the form

f (x, x′, t) = f̂
(
u(x′, t) − u(x, t), x′ − x

)
. (5)

For consistency with Newton’s third law, f̂ must have the symmetry property

f̂ (η, ξ) = −f̂ (−η,−ξ) ∀η, ξ. (6)

One way in which to see the connection between the peridynamic theory and
the classical theory is to consider, for example, the following special form of the
constitutive function f̂ :

f̂ (η, ξ) = −2σ̂

(
η

ξ

)
d ′

�(ξ), ξ �= 0. (7)

Here σ̂ (·) is a continuously differentiable function on (−∞,∞). The sequence
of functions d�(ξ) parameterized by � is a generalized function in the sense of,
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e.g., [3], which implies that, as � → 0, this sequence approaches a delta function;
d ′

�(ξ) is its derivative with respect to ξ . In view of (6), d�(·) must be an even
function. By substituting (7) into (5), and the result into the integral in (2), changing
the dummy variable from x′ to ξ = x′ − x, integrating by parts, and using the delta
function-like properties of d� as � → 0, one can readily verify that in the limit
� → 0, the integral in (2) yields

lim
�→0

∫ ∞

−∞
f (x′, x, t) dx′

= −2 lim
�→0

∫ ∞

−∞
σ̂

(
u(x + ξ, t) − u(x, t)

ξ

)
d

dξ
d�(ξ) dξ

= 2 lim
ξ→0

d

dξ
σ̂

(
u(x + ξ, t) − u(x, t)

ξ

)
= σ̂ ′(ux)uxx. (8)

Therefore the peridynamic equation of motion (2) reduces to the classical equation
of motion in the limit � → 0:

ρü = ∂σ

∂x
+ b with σ = σ̂ (ε), ε = ∂u

∂x
. (9)

The parameter � in the constitutive description (7) therefore plays the role of a
length-scale parameter and one recovers the classical theory of nonlinear elasticity
in the limit of vanishing length scale. This is the limit of short range forces.

In this paper we shall be working with linear peridynamic materials where

f̂ (η, ξ) = C(ξ)η; (10)

C is referred to as the material’s micromodulus function. For such a material, the
equation of motion specializes to

ρü(x, t) =
∫ ∞

−∞
C(x′ − x)

(
u(x′, t) − u(x, t)

)
dx′ + b(x, t). (11)

We require two characteristics of the micromodulus function C: First, in view
of (6), C must be an even function:

C(ξ) = C(−ξ) for − ∞ < ξ < ∞. (12)

Second, if the material is to sustain real propagating sinusoidal waves of arbi-
trary wave number, the micromodulus C must be suitably restricted. Substituting
u(x, t) = exp i(κx − ωt) into the equation of motion (11) leads to the following
dispersion relation between the angular frequency ω and the wave number κ:

ρω2 = M(κ). (13)

Here

M(κ) =
∫ ∞

−∞
(1 − cos κξ)C(ξ) dξ, (14)
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and it is the one-dimensional specialization of the acoustic tensor discussed in [1].
It relates the constitutive properties contained in C to the wave speeds c = c(κ) =
ω/κ of the material. Note that in the linear peridynamic theory, unlike the classical
theory of linear elasticity, wave speeds are in general dependent on the wave num-
ber. We require that the wave speeds corresponding to every wave number be real,
which means that the micromodulus C must be such that

M(κ) > 0 whenever κ �= 0. (15)

This requirement is analogous to strong ellipticity in the classical theory. Note
that C is not required to be positive everywhere since this is sufficient, but not
necessary, for (15) to hold; on the other hand, one can show that E > 0 in (20)
below is necessary but not sufficient. (See [1] for a detailed discussion of waves
in linear peridynamic materials.) Note trivially from (14) that M(0) = 0, and so,
when (15) holds, M has no real zeros other than κ = 0.

Next, suppose that particles x and x′ which are further away than some critical
distance do not interact. This means that C possesses a horizon h such that it
vanishes identically outside the horizon:

C(ξ) = 0 for |ξ | > h. (16)

It is not necessary that the micromodulus function have a finite horizon, though
one would expect on physical grounds that C(ξ) → 0 as ξ → ±∞. With regard to
the smoothness of the micromodulus, suppose that C ∈ CN

pw[−h, h], so that C has
continuous derivatives of order 0, 1, . . . , N − 1 on [−h, h], but its N th derivative
involves discontinuities and is piecewise continuous on this domain.

Finally, although the concept of a stress tensor plays no fundamental role in
the peridynamic theory, it is helpful to introduce such a notion in order to make
the connection between the peridynamic and classical theories. To do this in one
dimension, one can adapt Cauchy’s notion of stress in a crystal and define the
“stress” σ (x) at the particle x to be the total force that all material particles to its
right exert on all material particles to its left. Thus by considering the force exerted
by the particle located at x + r on the particle located at x − s, and summing over
all r > 0, s > 0, the stress at x can be defined as

σ (x) =
∫ ∞

0

∫ ∞

0
f̂ (u(x + r) − u(x − s), r + s) ds dr. (17)

In the special case of a homogeneous deformation of the form u(x) = εx for some
constant ε, the expression (17) simplifies to the (in general nonlinear) “stress-strain
relation”

σ =
∫ ∞

0
ξ f̂ (εξ, ξ) dξ ; (18)

note that this is independent of x. If the peridynamic material is linear, this further
specializes to

σ = ε

∫ ∞

0
ξ 2C(ξ) dξ, (19)
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and therefore the Young’s modulus E in the classical theory of elasticity is related
to the micromodulus C in the peridynamic theory by

E =
∫ ∞

0
ξ 2C(ξ) dξ. (20)

The relations (18)–(20) are physically meaningful only in the context of homoge-
neous deformations. Note also that the value of E found in (20) depends not only
on the material, but also on the geometry of the cross-section because of (4).

2. Self-equilibrated Load Problem

In the classical theory of elasticity, the equilibrium of a bar under a self-equilibrated
load is essentially a trivial problem. However the solution according to the peridy-
namic theory exhibits some interesting phenomena because, here, particles interact
with each other through a finite distance. The form of the peridynamic solution
away from the loading region is of particular interest. We will see in this section
that the spatial variation of the displacement field is a decaying oscillation; and
in Section 6 we see further that discontinuities propagate away from the loading
region in a progressively weakening manner.

Let a bar occupying −∞ < x < ∞ be subjected to a time-independent body
force density function b that is self-equilibrated:∫ ∞

−∞
b(x) dx = 0. (21)

Moreover, suppose that the body force vanishes outside some loading region −a �
x � a:

b(x) = 0 for |x| > a. (22)

Assume that the bar is homogeneous and composed of a linear peridynamic mate-
rial with micromodulus C. The displacement field u is then governed by the linear
Fredholm integral equation∫ ∞

−∞
C(ξ)

(
u(x − ξ) − u(x)

)
dξ + b(x) = 0, −∞ < x < ∞. (23)

Given b and C subject to the restrictions (21), (22) and (12), (15), (16) we are to
determine u. Note that, if C possesses a horizon h, then the limits of integration in
(23) can be written as ±h.

If u(x) is a solution of (23), one can readily verify that u(x) + K1 + K2x

is also a solution for arbitrary constants K1 and K2. Thus one does not expect
the solution of (23) to be unique. However, there is a close connection between
positive wave speeds and positive definiteness of the energy density in the linear
peridynamic theory [1] and so it is straightforward to demonstrate uniqueness to
within an arbitrary linear function.



178 S.A. SILLING ET AL.

For any function p on (−∞,∞), let p̄ denote its Fourier transform,

p̄(κ) =
∫ ∞

−∞
e−iκxp(x) dx, −∞ < κ < ∞, (24)

provided this integral exists. The inverse transform is provided by

p(x) = 1

2π

∫ ∞

−∞
eiκxp̄(κ) dκ, −∞ < x < ∞. (25)

We use the broad interpretation of a Fourier transform where it can be applied, in
particular, to delta functions and to functions which do not vanish at ±∞, e.g.,
[3, 4].

Taking the Fourier transform of the governing equation (23) and using the
convolution theorem leads to the following expression for the transform of the
displacement field:

ū(κ) = b̄(κ)

M(κ)
, where M(κ) = C(0) − C(κ) (26)

is the function encountered previously in (14). Applying the inversion formula (25)
to (26) results in a formal solution to the self-equilibrated load problem:

u(x) = 1

2π

∫ ∞

−∞
b̄(κ)eiκx

M(κ)
dκ, −∞ < x < ∞. (27)

Reversing the above steps confirms that this formal solution indeed solves the
original problem provided the functions involved are such that the forward and
inverse Fourier transforms can be applied to them.

3. Remote Behavior

We now examine the displacement field (27) at points far from the loading region
−a � x � a. With a view toward using the method of contour integration, the in-
dependent variable in the Fourier transform will now be allowed to take on complex
values. The notation p̄(z) instead of p̄(κ) will be used when the Fourier transform
is being considered as a function on the complex plane with z = κ + iν where κ

and ν are real numbers.
Assume that b̄ exists and is bounded. Then b̄(z) is entire and therefore the only

poles of the integrand in (27) are the zeros of the function M(z). As noted previ-
ously, z = 0 is the unique real zero of M. Also, M generally has complex zeros
as well, depending on the material. If these complex zeros are present, because of
the symmetry condition (12), they occur in sets of four located symmetrically in
the four quadrants of the z-plane as shown in Figure 1. Let zj , j = 1, 2, . . . ,Q,
denote the zeros of M in the first quadrant and let κj and νj be the associated real
and imaginary parts:

zj = κj + iνj , κj � 0, νj > 0, j = 1, 2, . . . ,Q; (28)
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Figure 1. Roots of M(z) in the complex plane. The semicircular contour used for inverting
the Fourier transform is also shown.

the number of complex zeros, 4Q, may be finite or infinite. The strict inequality on
νj follows from the fact that zj cannot be real. If we denote the zeros in the second
quadrant by z−j , j = 1, 2, . . . ,Q, then necessarily

z−j = −κj + iνj , j = 1, 2, . . . ,Q. (29)

Thus the zeros in the upper half plane are zj , j = ±1,±2, . . . ,±Q, and those in
the lower half-plane are −zj , j = ±1,±2, . . . ,±Q.

Since b̄ is bounded, and because a > 0, the term |eizxb̄(z)| decreases exponen-
tially in the upper half-plane for large |z| when x > a; likewise for x < −a, it
decreases exponentially in the lower half-plane. In order to evaluate the integral
in (27) by the method of residues one must therefore complete the contour of
integration with a large semi-circle in the upper half-plane for x > a, and by a
large semi-circle in the lower half-plane for x < −a. Moreover, the path along the
real axis has to avoid the pole at the origin by appropriately going below and above
it in these respective cases, and taking one-half the residue at the origin in each
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case. In order to calculate the residue at the origin we first note from (14) and (20)
that

M(0) = 0, M ′(0) = 0, M ′′(0) = 2E, (30)

and from (21) and (24) that

b̄(0) =
∫ ∞

−∞
b(x) dx = 0, b̄′(0) = −i

∫ ∞

−∞
ξb(ξ) dξ. (31)

Therefore z = 0 is a simple pole and the corresponding residue of (27) is

R0 = Resz=0

{
b̄(z)eizx

2πM(z)

}
= b̄′(0)

πM ′′(0)
= −i

2πE

∫ ∞

−∞
ξb(ξ) dξ. (32)

Similarly let R±
j denote the residue at ±zj :

R±
j (x) = Resz=±zj

{
b̄(z)eizx

2πM(z)

}
, j = ±1,±2, . . . ,±Q. (33)

By using these results and applying the residue theorem, we find that the displace-
ment field (27) outside of the loading region can be written explicitly as

u(x) =




u∞ + 2π i
Q∑

j=−Q,j �=0

R+
j (x), x > a,

−u∞ − 2π i
Q∑

j=−Q,j �=0

R−
j (x), x < −a,

(34)

where we have set

u∞ = π iR0 = 1

2E

∫ ∞

−∞
ξb(ξ) dξ. (35)

Since νj > 0 for each integer j > 0, it follows from (28), (29) and (33) that
R±

j (x) → 0 as x → ±∞. Therefore u(x) → ±u∞ as x → ±∞. Therefore the
relative displacement between the two ends of the bar is 2u∞. Integration of the
right side of (35) by parts shows, perhaps surprisingly, that this value agrees with
the corresponding result in the classical theory for a bar with zero force applied at
the ends.

Yet, the displacement field (34) has an interesting structure which is different
from that of the classical theory. To see this, note from (28), (29), (33) and (35)
that (34)1 can be written in the following form:

u(x) = u∞ +
Q∑

j=1

e−νj x(Aj cos κjx + Bj sin κjx), x > a, (36)
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for some set of real constants Aj and Bj . Since by (28) all the νj ’s are positive,
the trigonometric terms in (36) represent oscillatory structures that decay as one
moves away from the region in which the load is applied.

Recall that M(z) always has the origin as its unique real zero, but it may fail
to have complex zeros. This case corresponds to Q = 0 in the above discussion,
so that u(x) = u∞ for x > a according to (34). Therefore, no oscillations are
present in such a material outside the loading region. (The microelastic material
with C(x) = e−λ|x|, where λ is a positive constant, is an example of a material with
this property. We have studied the self-equilibrated load problem for this material
in detail, for both infinite- and finite-length bars, as will be reported separately.)

Recall from (13) that it is the requirement of real wave speeds that implied
that M has no real zeros other than 0. If there had been another real zero, then
the corresponding ν would vanish, and so the oscillations in (36) would not decay
as x → ∞. So real wave speeds ensure reasonable behavior in this equilibrium
problem.

Also, since zj is a zero of the function M, and since M as defined in (14)
depends on the material but not the loading, it follows that the decay rate depends
on the nature of the material but not on the loading distribution. So, even if a
loading function b has strong high-frequency components, these components are
not propagated very far away from the loading region.

Finally, let νmin be the smallest of the νj ’s. Then, for large x, the correspond-
ing term is damped out slowest and therefore controls the remote behavior of the
solution:

u(x) ∼ u∞ + e−νminx
(
Amin cos κminx + Bmin sin κminx

)
as x → ∞. (37)

Under reasonable conditions, the higher order terms decay increasingly rapidly.

4. Example: Double Concentrated Load

We now turn to a specific case of the preceding problem. Suppose that the micro-
modulus function C is piecewise constant as follows:

C(ξ) =



3E

�3
, |ξ | � �,

0, |ξ | > �.
(38)

The positive constant E can be shown, using (20), to be the Young’s modulus; it
is independent of � which is both the internal length scale and the horizon in this
example. By (24), its Fourier transform C is

C(κ) = 6E

�3

sin κ�

κ
for κ �= 0, C(0) = 6E

�2
. (39)

Suppose that the bar is subjected to a pair of self-equilibrated concentrated forces,
each of unit magnitude, acting at the points x = ±a. Then

b(x) = δ(x − a) − δ(x + a), (40)
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where δ is the delta function. By (24), the Fourier transform of b is

b̄(κ) = e−iaκ − eiaκ = −2i sin aκ. (41)

The displacement field in this bar, according to (27), (39) and (41), is given by

U(x) = −i�3

6πE

∫ ∞

−∞
eiκx κ sin aκ

κ� − sin κ�
dκ; (42)

because we will make use of this particular displacement field in the next section,
we denote it by the symbol U rather than the generic u. Contour integration may
be used as described in Section 3 to evaluate the integral in (42). Let zj denote
the zeros in the upper half-plane of the function (1 − sin z/z). After applying the
residue theorem, the displacement field in the bar is found to be

U(x) = U0(x) + i�

6E

∑
j=±1,±2,...

zj (eizj |x−a|/� − eizj |x+a|/�)
1 − cos zj

+ 1

P
(δ(x − a) − δ(x + a)) , −∞ < x < ∞, (43)

where

U0(x) =




− a

E
, x < −a,

x

E
, |x| � a,

a

E
, x > a.

(44)

In constructing (43), the special case x = ±a must be evaluated directly from
(42) rather than by using contour integration because no suitable contour can be
found. However, the integral is easily evaluated in this case using the identity
2πδ(x ± a) = ∫ ∞

−∞ eiκ(x±a) dκ . The resulting term in (43), which contains the delta
functions, is not particular to this material, but would appear for other microelastic
materials as well. This can be deduced from the discussion of discontinuities in
Section 6 below (see, for example, equation (60)).

When the length scale � → 0, the terms in the summand decay exponentially
and therefore (43) agrees with the classical result u = U0(x) in this limit.

Figure 2 shows plots of the displacement field (43) for the three values �/a =
4.0, 2.0 and 0.5. The solutions were obtained using a relaxation method.

5. Single concentrated load problem

We now consider an infinite bar subjected to a single concentrated force at the
origin (and suitable forces at infinity to hold it in equilibrium). The solution of this
problem can be used as a Green’s function when the loading is more general.
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Figure 2. Numerical solution to the double concentrated load problem for materials with three
different values of the horizon. The spikes are delta functions at the points where the loads are
applied, ±a.

Even though the single load does not correspond to a self-equilibrated loading,
a solution to this problem can be found by using the solution from the preceding
section together with superposition. From the previous example, the displacement
field corresponding to the application of a pair of concentrated forces of magnitude
1 at x = ±a is u = U(x), where U is given by (43). Therefore the displacement
field associated with a pair of forces of magnitude −0.5 applied at x = 0 and
x = 2a is u = −0.5U(x − a). Similarly when a pair of forces of magnitude 0.5
is applied at x = −2a and x = 0 the displacement field is u = 0.5 U(x + a). By
superposing these two solutions and letting a → ∞, we find that the displacement
field corresponding to a single concentrated force of unit magnitude applied at
x = 0 is
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Û (x) = 1

2
lim

a→∞{U(x + a) − U(x − a)}. (45)

From (40), the function defined by (45) solves the single concentrated load
problem, i.e., the solution corresponding to

b(x) = δ(x). (46)

Evaluating the displacement field (45) using (43) leads to

Û (x) = Û0(x) + i�

6E

∑
j=±1,±2,...

zjeizj |x|/�

1 − cos zj

+ δ(x)

P
, (47)

where

Û0(x) = − |x|
2E

. (48)

Equation (47) provides a Green’s function that can be used for constructing
a solution to the general load problem. Using (47), the displacement field corre-
sponding to an arbitrary body force distribution b(x) is

u(x) =
∫ ∞

−∞
b(x′)Û(x − x′) dx′. (49)

This provides an alternative approach to the Fourier transform method discussed in
Section 2.

The limit of vanishing length scale � → 0, leads to the classical result u =
Û0(x). It is worth noting that in the classical theory of elasticity, the displacement
field associated with this problem is bounded and continuous at all points in the bar.
In contrast, as seen from (47), the linear peridynamic theory predicts unbounded
displacements at the point where the force is applied.� This is true for the peri-
dynamic theory in three dimensions as well. It is perhaps worth recalling that the
solution to the three-dimensional problem of a concentrated load in the classical
theory of elasticity (Kelvin’s problem) involves unbounded displacements at the
point of force application [5].

6. Propagation of Discontinuities

In general, the equilibrium solution for the displacement field u has the same
smoothness as the body force field b. This follows immediately from (23). Note
that this represents a difference between the peridynamic theory and the classical
theory of elasticity, where in the latter, u would be two orders smoother than b.

In addition, any discontinuity in the micromodulus C (or in one of its deriva-
tives), has a further effect on the smoothness of u as we now demonstrate. Suppose

� This is a consequence of the fact that in the peridynamic theory, in general, the displacement
field and body force field typically have the same smoothness according to (23).
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that b has a discontinuity in its N th derivative at some x = xb (which because
of (23) means that u will necessarily have a discontinuity in its N th derivative at
x = xb), and that in addition, C has a discontinuity in its Lth derivative at some
x = xc. Then we will show that u has a discontinuity in its (N +L+1)th derivative
at x = xb + xc; in its (N + 2L + 2)th derivative at x = xb + 2xc, and so on, so that
in general, it has a discontinuity in its (N + nL + n)th derivative at x = xb + nxc,
n = 1, 2, . . . . The smoothness of u therefore increases as one moves away from
the loading region. In general, it is the order L of the discontinuous derivative of C

that determines the rate at which the smoothness of u increases.
In order to demonstrate this, let the jump in a function p at a location x be

denoted by

[p]x = lim
ε→0

(p(x + ε) − p(x − ε)) . (50)

It is convenient to write the equation of equilibrium (23) in the form

Pu(x) =
∫ ∞

−∞
C(ξ)u(x − ξ) dξ + b(x) ∀x, (51)

where we have set P = ∫ ∞
−∞ C(ξ) dξ ; in fact P = C(0) and we assume this to be

nonzero. Taking the Rth derivative of (51) with respect to x gives

Pu(R)(x) =
∫ ∞

−∞
C(ξ)u(R)(x − ξ) dξ + b(R)(x), (52)

where, for any function p, we adopt the notation

p(0)(x) = p(x), p(n)(x) =
∫ x

p(n+1)(x′) dx′, n = 0,±1,±2, . . . ,

(53)

so that p(−1) = ∫ x
p(x′) dx′, p(1) = dp/ dx and so on. Integrating (52) by parts

L times gives

Pu(R)(x) =
∫ ∞

−∞
C(L)(ξ)u(R−L)(x − ξ) dξ + b(R)(x). (54)

At this point it is helpful to change the dummy integration variable to x′ = x − ξ :

Pu(R)(x) =
∫ ∞

−∞
C(L)(x − x′)u(R−L)(x′) dx′ + b(R)(x). (55)

We can evaluate the jump of (55) at any x by using (50). This leads to

P
[
u(R)

]
x

=
∫ ∞

−∞

[
C(L)

]
x−x ′u

(R−L)(x′) dx′ + [
b(R)

]
x
. (56)

Suppose that C(L) contains a finite number of jumps. Now suppose that u(R−L−1) is
discontinuous at exactly one point x∗. Then its derivative contains a delta function
centered at x∗ and so we can write

u(R−L)(x) = [
u(R−L−1)

]
x∗δ(x − x∗) + φ(x), (57)
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where φ is some continuous function. On substituting (57) into (56), and evaluating
the integral using the properties of the delta function, one obtains

P
[
u(R)

]
x

= [
C(L)

]
x−x∗

[
u(R−L−1)

]
x∗ + [

b(R)
]
x
. (58)

To put this in a slightly more suggestive form, set N = R − L − 1. Then (58) may
be rewritten as

P
[
u(N+L+1)

]
x

= [
C(L)

]
x−x∗

[
u(N)

]
x∗ + [

b(N+L+1)
]
x

(59)

which holds for all x. This means that a jump in some derivative of u can occur
at a location x for either of two reasons. First, there might be a jump in that same
derivative of b at that same location. Second, there might be a jump in a derivative
of u at some nearby point x∗ = x − xc provided there is also a jump in some
derivative of C at xc.

To be more specific, suppose that u(N) is discontinuous at x = xb because
b has a corresponding discontinuity at this location. Suppose further that C(L) is
discontinuous at x = xc. Then from (59), setting x∗ = xb and x = xb + xc,
shows that u(N+L+1) is discontinuous at this x (even though b might not have any
discontinuity at this location). Applying (59) again with N replaced by N + L + 1
and this time setting x∗ = xb + xc and x = xb + 2xc shows that u(N+2L+2)

has a discontinuity at this x. One can continue this process indefinitely showing
that, in general, u(N+nL+n) has a discontinuity at xb + nxc for n = 1, 2, . . . . The
discontinuity propagates in this way, but the discontinuous derivatives have higher
and higher order as one moves away from the loading region. In this sense, the
discontinuities weaken as their distance from the loading region increases. This
propagation is illustrated schematically in Figure 3.

As an example of this process, we return to the example of two concentrated
forces discussed in Section 4. In this case the locations of the discontinuities are
xb = a and xc = �. From (38), it follows that [C(0)]� = −3E�−3. Since the
body force consists of delta functions at x = ±a, it immediately follows that
[b(−1)]±a = 1. Applying (59) with L = 0, N = −2, and x = x∗ = a leads to

[
U(−1)

]
a

= 1

P

[
b(−1)

]
a

= �2

6E
, (60)

where P = C(0) = 6E/�2 has been obtained from (39). Using this result and
reapplying (59) with N = −1, x = a + �, x∗ = a leads to

[
U(0)

]
a+�

= 1

P

[
C(0)

]
�

[
U(−1)

]
a

= − �

12E
. (61)

Repeating the process with N = 0, x = a + 2�, x∗ = a + � results in

[
U(1)

]
a+2�

= 1

P

[
C(0)

]
�

[
U(0)

]
a+�

= 1

24E
(62)



DEFORMATION OF A PERIDYNAMIC BAR 187

(a)

(b)

Figure 3. Decay of discontinuities in displacement to the right of the loading region in
response to step function loading (a). C contains discontinuities as shown (b).

and in general

[
U(n)

]
a+(n+1)�

= �2

6E

(−1

2�

)n+1

, n = −1, 0, 1, 2, . . . . (63)

This demonstrates the propagation of discontinuities in the derivatives of U of
increasing order moving away from the points of application of the point load.

In the classical theory of elastostatics, the displacement field can have disconti-
nuities in its first derivative only if the elasticity tensor is such that ellipticity of the
partial differential equations can be lost, which is closely related to the condition of
nonconvexity of the elastic potential.� In one dimension, these conditions generally
require nonmonotonicity of the stress–strain curve of a bar. In the classical theory,

� Conditions for and consequences of these conditions have been studied by Ericksen [6], Ball [7],
Knowles and Sternberg [8], Abeyaratne [9], Kikuchi and Triantafyllidis [10], Rosakis [11], and
Rosakis and Jiang [12] among others.
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if the stress–strain relation in an elastic material is monotonic, it follows from the
equilibrium equation that the displacement field is two derivatives smoother than
the body force field. In contrast, in the peridynamic theory the displacement field
and body force field have the same smoothness. Consequently, as the results of
this section show, a loss of ellipticity is not required for discontinuities to exist in
the peridynamic theory, since discontinuities can be stimulated by discontinuities
in the body force density and propagated by discontinuities in the micromodulus
function C.

It was shown previously in Section 3 that oscillations due to loading decay as
one moves away from the loading region. The results of the present section show
that in a qualitatively similar fashion, the displacement field also becomes smoother
far from the loading region.

7. Discussion

The results described above show that the peridynamic theory predicts some fea-
tures in an apparently simple one-dimensional equilibrium problem that would not
be present in the classical solution. Among these are a pattern of wavelike oscilla-
tions that spread out to infinity from the loading region. These oscillations decay
far from the loading region, provided the material properties are reasonable, i.e.,
the wave speeds are positive. Another interesting feature is a repeating pattern of
discontinuities in higher and higher derivatives as one moves away from the loading
region. The way these discontinuities propagate depends on the material properties
through the micromodulus function C. There is no analogue to this repetition of
discontinuities in the classical theory, at least not for elliptic materials.

The decay in the amplitude of the oscillations and the order of the discontinu-
ities they contain away from the loading region amounts to a kind of St. Venant
principle in one dimension for peridynamic materials with positive wave speeds.
This version of the St. Venant principle is comprised of the decay rates for oscilla-
tions and discontinuities derived in (37) and (59) away from the loading region.

Finally, it is reasonable to ask what exactly is to be gained by using the peri-
dynamic model in the one-dimensional equilibrium bar problem that has such a
simple, and to all appearances adequate, solution in the classical theory. The peri-
dynamic model has two potential advantages: First, it allows for the spontaneous
emergence of discontinuities, in contrast to the classical theory, which predicts
deformations with infinite smoothness in typical (elliptic) materials. Second, it
includes long-range forces between material particles, unlike the classical theory,
which generally deals only with contact forces between particles.

When viewed as a continuum version of molecular dynamics, the peridynamic
theory may be capable of modeling events on a small scale that go unseen by the
classical theory of elasticity. This is particularly true of those microscale features
that involve the spontaneous emergence of discontinuities such as cracks and other
sources of material failure. For example, consider two identical bars of length H
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that are brought into contact with each other at the ends, and then subjected to
compressive loads at the free ends. The classical theory would predict a homoge-
neous deformation as though there were a single bar of length 2H , thus ignoring
the point of contact. In contrast, a peridynamic model of this problem could take
into account the alteration in the interparticle forces in the vicinity of the contact
region. Presumably, the short-range forces on opposite sides of the discontinuity
would be increased at the expense of the long-range forces. This local perturbation
in the forces could be modeled, as a first approximation, as a self-equilibrated load
problem with loads exerted on each bar in the vicinity of the contact surface. This
loading would be reflected in the patterns of oscillations and discontinuities similar
to those described in this paper.

If H is on the order of 1 meter, the adequacy of the classical model is perhaps
self-evident. On the other hand, if H = 10−8 m, which is not an uncommon length
scale in many practical problems of current interest, it is less obvious that the
classical solution provides a good representation. At this length scale, it is likely
that long-range forces of the type in the peridynamic approach would need to be
considered in an accurate continuum model.

It has been observed experimentally that the effective Young’s modulus and
strength of nanoscale fibers and tubes are greater than the corresponding macroscale
values [14]. Multiple physical effects, not all of them fully understood, contribute
to this excess stiffness and strength. There is currently interest in the mechanics
community in developing continuum models for these small-scale structures. As
discussed Section 1, the peridynamic theory explicitly includes long-range forces,
and its specialization to extension of a bar takes into account the cross-sectional
geometry through (4). It therefore seems plausible that the peridynamic theory,
when used with a suitable atomistic force density function f, could offer advantages
for physically based continuum modeling of these nanoscale structures.

As noted in the introduction, one of the most important characteristics of the
peridynamic theory of elasticity is the fact that it does not involve spatial derivatives
of the displacement field. It is worth noting however that in the special case of a
smooth motion where one can, for example, define strain, there is a formal relation
between this theory and a nonlocal theory of elasticity. In order to see this, consider
a homogeneous, microelastic body, and let K(ξ) be a constitutive function defined
through

K ′′(ξ) = C(ξ). (64)

Substituting (64) into the equation of motion (11), integrating once by parts, and
setting ε = ∂u/∂x leads to

d

dx

∫ ∞

−∞
K(x′ − x)ε(x′, t) dx′ + b(x, t) = ρü(x, t) (65)

provided that K ′(ξ) decays to zero sufficiently fast as ξ → ∞. If we formally set

σ (x, t) =
∫ ∞

−∞
K(x′ − x)ε(x′, t) dx′, (66)
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the peridynamic equation of motion (65) can now be written in the classical form
∂σ/∂x + b = ρü. Thus if we identify σ with stress and ε with strain, (66) corre-
sponds to the constitutive relation for a certain class of nonlocal elastic materials
with kernel K (e.g., [13]). In the special case of a homogeneous deformation one
can readily show by integrating by parts that (66) reduces to (19).
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