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Abstract

Red blood cells (rbcs) are the most common type of cells in human
blood and they exhibit different types of motions and deformed shapes
in capillary flows. The behaviour of the rbcs should be studied in
order to explain the rbc motion and deformation mechanism. This
article presents a numerical simulation method for rbc deformation
in microvessels. A two dimensional spring network model is used to
represent the rbc membrane, where the elastic stretch/compression
energy and the bending energy are considered with the constraint of
constant rbc surface area. The forces acting on the rbc membrane are
obtained from the principle of virtual work. The whole fluid domain
is discretized into a finite number of particles using smoothed particle
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hydrodynamics concepts and the motions of all the particles are solved
using Navier–Stokes equations. Minimum energy concepts are used
to simulate the deformed shape of the rbc model. To verify the
model, the motion of a single rbc is simulated in a Poiseuille flow and
the characteristic parachute shape of the rbc is observed. Further
simulations reveal that the rbc shows a tank treading motion when it
flows in a linear shear flow.
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1 Introduction

The microcirculation of blood plays an important role in the human body by
bringing oxygen from the lungs to the tissues and nutrients to the organs, while
removing wastes and carbon dioxides from organs and tissues, respectively.
These processes are greatly affected by the rheological properties of the red
blood cells (rbcs), such as deformability. Healthy rbcs have a biconcave disk
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shape. Human rbcs are non-nucleated deformable liquid capsules enclosed
by a thin viscoelastic membrane, which consists of a lipid bilayer supported
by a mesh-like cytoskeleton, formed by a network of spectrin proteins linked
by short filaments of actins [1]. This biological membrane contains a large
amount of haemoglobin which is highly efficient in binding oxygen.

Blood continuously flows within the cardiovascular network, as blood flows
from heart to arteries, capillaries, veins and then flows back to the heart. In
the capillary vessels, rbcs reveal a number of interesting shapes and dynamics
in response to the flow conditions and which are crucial for optimal mass
transfer. The importance of understanding the mass transfer, such as oxygen
and carbon dioxide exchange between the rbcs and tissues through capillaries,
motivated a number of experimental (in vivo and in vitro), theoretical and
numerical studies [5].

In this study, we present an advanced numerical modelling technique using
smoothed particle hydrodynamics (sph) to analyse the behaviour of rbcs.
sph is advantageous in the direct modelling of blood components, such as rbc

membranes, rbc exterior fluid (plasma) and rbc interior fluid (cytoplasm).
The rbc membrane is modelled by a spring network and the forces acting on
the rbc membrane are determined based on the minimum energy principal [14].
In the first step of this study, a mathematical model based on the conservation
of mass and momentum is developed to describe the rbc motion in plasma
flow, using both sph concepts [9, 8, 6] and the spring network model for
the rbc [10, 13]. Then the model is converted into a discretized meshfree
framework in a Fortran program to analyse the motion and deformation
mechanism of rbcs. To verify the model, the motion of a single rbc is
simulated in a Poiseuille flow and in a linear shear flow.
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Figure 1: Particle location for the rbc membrane.

2 Model and method

2.1 Spring network model of RBC

A two dimensional spring network model is used to represent the rbc mem-
brane, as used in previous studies [13, 10]. In this model, the initial rbc

membrane shape is assumed to be a circle. Then the circular rbc membrane
is discretized into a finite number of point masses as shown in Figure 1. The
radius of the initial circle should be chosen such that the diameter of the final
shape of the rbc gives the average diameter of rbcs, about 7.6µm. Further,
the number of particles in the rbc membrane should be chosen ensuring
that the minimum distance between two neighbouring particles is equal to
the particle minimum spacing in the fluid (plasma) domain, for effective and
efficient simulation by sph. Therefore, 88 particles are used and they are in-
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terconnected by 88 elastic springs (see Figure 2) and this number is chosen so
that the distance between two neighbouring particles is approximately 0.2µm.
The radius of the initial circle is assumed to be 2.8µm [10]. The elastic energy
stored in the springs due to stretching/compression is

El =
1

2
Kl

N∑

i=1

(

li − l0

l0

)2

, (1)

and the elastic bending energy stored in the springs due to the bending is

Eb =
1

2
Kb

N∑

i=1

tan2

(

θi

2

)

. (2)

In the above, li, θi and l0 are the length of the springs, the angle between
a pair of consecutive springs, and the reference length (the length with
no deformation) between a pair of consecutive rbc particles, i and i + 1,
respectively. In addition, Kl and Kb are the spring constants. We set Kl =

Kb = 3× 10−12 Nm.

In order to maintain a constant membrane area, an energy penalty function
is introduced:

Es =
1

2
Ks

(

s− se

se

)2

, (3)

where s and se are the cross-sectional area of the rbc and the equiva-
lent cross-sectional area of the rbc membrane, respectively, and Ks is the

penalty coefficient. Here se = π
(

2.8× 10−6
)2

× 0.55m2 is chosen as it is
the physiological area of a healthy rbc [10]; it corresponds to a 55% reduc-
tion of total cross-sectional area from the initial area of the circle. We set
Ks = 3× 10−8 Nm.

The total energy of the rbc membrane is the sum of all the three types of
energies:

E = El + Eb + Es . (4)
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Figure 2: Spring network model of the rbc.

The forces acting on the ith membrane particle are calculated using the
principal of virtual work:

Fi = −
∂E

∂ri
, (5)

where ri is the position vector of the ith membrane particle and Fi is the
vectorial force acting on the ith membrane particle. After about 0.15 s, the
typical shape of the rbc membrane is obtained. Further simulations do
not show any change in the rbc membrane and the energy curve shown in
Figure 3 proves that the total elastic energy in the rbc membrane does not
change after about 0.15 s. Since there is no change in total elastic energy and
since the total energy obtains a minimum value, after 0.15 s the forces acting
on the rbc membrane particles are minimized and no further change in rbc

membrane shape will occur.

2.2 Governing equations for the flow field

Navier–Stokes equations in Lagrangian form are used to model the whole
flow field, with the assumption that all the fluids are incompressible and the
system is isothermal. Neglecting gravitational effect, the conservation of mass
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Figure 3: Change in elastic energy of rbc membrane.

and conservation of momentum equations are

dρ

dt
= −ρ∇ · v , (6)

dv

dt
= −

1

ρ
∇p+

µ

ρ
∇2

v+ f , (7)

where ρ and µ are the density and the dynamic viscosity of the fluid, respec-
tively, v is the velocity vector, p is the pressure, and f is the external force
acting on the fluid and rbc particles (the latter obtained from equation (5)).

The full flow field including the rbc exterior fluid (plasma) and interior fluid
(cytoplasm), is discretized into a set containing a finite number of particles.
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Each particle represents a finite mass, associated with density and pressure.
The system evolves due to the interaction between discretized particles and
externally exerted forces. In the sph method, any field function value of
the ith particle is approximated from the same field function value of the
neighboring jth particles using a smoothing or kernel function W. Using the
sph concepts, equations (6) and (7) are rewritten as

dρi

dt
=

N∑

j=1

mj (vi − vj) · ∇iWij , (8)

dvi

dt
= −

N∑

j=1

mj

(

pj

ρj
2
+

pi

ρi
2

)

· ∇iWij

+

N∑

j=1

mj

(µj + µi) (ri − rj) · ∇iWij

ρiρj |ri − rj|
2

(vi − vj) + fi , (9)

where N is the number of neighbouring particles of the ith particle and m is
the mass. For the kernal W, a cubic spline smoothing function is used [9].

3 Results

3.1 RBC motion in Poiseuille flow

The obtained shape of the rbc membrane (see Section 2.1) is rotated, such
that the major axis of the rbc membrane is vertical. Finally, the rbc

membrane is put into a plasma domain. To represent the plasma component,
the fluid particles are arranged outside the rbc membrane such that the
particle spacing is equal to 0.2µm (see Figure 4). The cytoplasm particles in
the rbc interior are arranged in the same manner.

To validate the model, pressure driven Poiseuille flow is applied to the fluid
domain and the behaviour of the rbc shape is investigated. Lennard-Jones
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Figure 4: Initial particle configuration.

type repulsive forces [9] are applied pair-wise to the plasma and cytoplasm
particles to avoid the penetration of fluid particles through capillary walls
and rbc membrane [4]. Pressure is applied to all the plasma particles, with
a uniform pressure gradient along the length of the capillary to create the
Poiseuille flow. Periodic boundary conditions are applied to the inlet and
the outlet. The time step is 1× 10−9 s over a temporal domain of 1× 10−2 s.
The dynamic viscosity of plasma, cytoplasm and rbc membrane particles is
assumed to be 1× 10−3 Pa s and other parameters are given in Table 1.

In contrast to the Poiseuille flow, the velocity of neither the rbc nor the
plasma flow can be accurately calculated in terms of analytical functions. The
rbc acts as a barrier to plasma flow and distorts the Poiseuille velocity profile.
If there are no objects within the plasma domain, then a pure Poiseuille
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Table 1: Simulation parameters
Parameter Definition Value References
Kl Spring constant for stretching 5× 10−8 Nm [10]
Kb Spring constant for bending 5× 10−10 Nm [10]
Ks Penalty coefficient 5× 10−5 Nm [10]

ρrbc Density of rbc membrane 1098 kg/m3 [12]

ρplasma Density of plasma 1025 kg/m3 [3]

ρcytoplasm Density of cytoplasm 1050 kg/m3 [7]

velocity profile is seen. However, due to the existence of the rbc, parabolic
shaped velocity profiles are not observed.

The rbc shape gradually deforms from its initial biconcave shape to a
parachute shape, as the rbc advances in the Poiseuille flow (see Figure 5).
Initially, rbc membrane particles follow a parabolic elocity profile, similar to
the velocity profile of the Poiseuille flow. Gradually, all the rbc membrane
particles reach an equilibrium velocity, which implies there is a relative motion
of the rbc with respect to the plasma flow. The velocity profile of the system
reveals that the plasma particles next to the capillary wall boundary have
zero velocity, while the plasma particles at the centreline of the fluid flow
reach the maximum velocity. Shi et al. [11] reported similar behaviour. At
the steady state, the rbc obtains a parachute shape which allows it to move
even through capillaries which have smaller diameters than the diameter of
the rbc at rest. The steady state shape obtained by this study is comparable
the shapes reported by Tsubota et al. [14]. This phenomenon is important
for effective capillary mass transfer in microcirculation [15].

3.2 RBC behaviour in a linear shear flow

Fischer et al. [2] experimentally observed that the rbcs gradually deform
and elongate from their initial biconcave shape to an ellipsoidal shape when
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Figure 5: rbc’s shape in Poiseuille flow at time 0 s, 0.002 s, 0.004 s, 0.006 s,
0.008 s and 0.01 s.

they are subjected to a shear flow. At the steady state, the deformed shape
of the rbcs do not change and the rbcs make a constant inclination angle
with the flow direction. Meanwhile, the rbc membrane circulates around
the cytoplasm, known as tank treading motion. To verify the developed sph

model, the rbc membrane (see Section 2.1) is rotated, such that the major
axis of the rbc membrane is horizontal and is put into a plasma domain.
The initial particle distribution of plasma and cytoplasm is the same as in
the previous section. The height and the length of the microchannel were
7µm and 12µm, respectively. Shear flow is generated by the sudden motion
of the upper and lower plates in opposite directions at a constant velocity
of 2× 10−3 m/s and with a time step of 1× 10−9 s.

Simulation results reveal that, when the rbc is subjected to a shear flow, the
membrane rotates around the cytoplasm, while the rbc makes a constant
angle with the vertical direction (see Figure 6). In Figure 6, the black dot
represents the first particle of the rbc membrane. With time that particle
rotates in a clockwise direction along the rbc membrane. Further, the velocity
distribution of the whole flow field confirms the tank treading behaviour of
the rbc membrane. The inside fluid of the rbc (cytoplasm) also circulates
inside the membrane, due to the tank treading motion of the rbc membrane
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(a) t = 0 s (b) t = 0.002 s

(c) t = 0.004 s (d) t = 0.006 s

(e) t = 0.008 s (f) t = 0.010 s

Figure 6: Tank treading motion of the rbc membrane.

(see Figure 7).

4 Conclusions

In summary, the deformation of a single rbc was simulated using the sph

method and with the aid of an existing two dimensional spring network model.
The rbc membrane shape was determined using the minimum energy principal.
Initially, a modified sph code simulated the plasma flow in microchannels. For
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Figure 7: Velocity distribution of flow field at time 0.003 s.

the first time, the minimum energy concept was applied with sph concepts to
simulate the motion and the deformation of the rbc. The deformation of a
rbc was simulated under both Poiseuille flow and linear shear flow. Results
revealed that the rbc obtains a parachute shape when within a Poiseuille flow.
Further, the rbc showed a tank treading motion in linear shear flow while
the cytoplasm particles showed a rotational-like motion. Using the minimum
energy principal with sph concepts was successful, as the simulation results
showed good agreement with previously reported results. We conclude that
using the sph method, rbc membrane fluid interactions are easily simulated.
However, this model assumes that the plasma and cytoplasm have the same
viscosity as water. For a more precise study, the interaction of multiple rbcs
should be considered. This methodology will be extended to investigate an
accurate deformation mechanism of a three dimensional rbc.
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