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3D printing is rapidly becoming an effective means of prototyping and creating custom consumer
goods. The most common method for printing a polymer melt is fused filament fabrication (FFF),
and involves extrusion of a thermoplastic material through a heated nozzle; the material is then built
up layer-by-layer to fabricate a three-dimensional object. Under typical printing conditions the melt
experiences high strain rates within the FFF nozzle, which are able to significantly stretch and orient
the polymer molecules. In this paper, we model the deformation of an amorphous polymer melt
during the extrusion process, where the fluid must make a 90o turn. The melt is described by a
modified version of the Rolie-Poly model, which allows for flow-induced changes in the entanglement
density. The complex polymer configurations in the cross-section of a printed layer are quantified and
visualised. The deposition process involving the corner flow geometry dominates the deformation
and significantly disentangles the melt.

NOMENCLATURE

Symbol Description

t Time
T Temperature
R Nozzle outlet radius
R0 Radius of heated nozzle section
L Nozzle length
L0 Length of heated nozzle section
H Layer thickness
Q Mass flow rate
u Velocity vector
U Magnitude of velocity vector
K Velocity gradient tensor
γ̇ Shear rate
γ̇W Shear rate at nozzle wall
WiN Mass-averaged equilibrium reptation Weissenberg

number

Wi
R

N Mass-averaged equilibrium Rouse Weissenberg
number

WiW Equilibrium reptation Weisseberg number at noz-
zle wall

WiRW Equilibrium Rouse Weisseberg number at nozzle
wall

UN Vertical average print speed
UL Horizontal average print speed
Re Reynolds’ number
p Pressure
ρ Mass density
Ge Plateau modulus
µs Rouse viscosity
Zeq Entanglement number
Mw Molecular weight
Me Entanglement molecular weight
T0 Reference temperature
TN Print temperature
a(T ) WLF shift factor
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C1 WLF parameter
C2 WLF parameter
α Thermal diffusivity
τ0
e Rouse time of one entanglement segment at T0

τ0
R Rouse time of polymer chain at T0

τ0
d Reptation time of chain at T0

τres Residence time in nozzle
τdep Deposition time
Lskin Thermal skin layer in deposit
τsw Die swell time scale
zM Terminal swell distance
σ Total stress
A Polymer deformation tensor
R Polymer end-to-end vector
Rg Polymer radius of gyration
Ars Principle shear deformation
trA− 3 Stretch deformation
N Normal stress difference
λ1 Principle eigenvalue
ê1 Principle eigenvector
ηθ Polar angle
ηφ Azimuthal angle
ν Entanglement fraction
β Convective constraint release parameter
νN Entanglement fraction at nozzle wall
νL Entanglement fraction at weld site
ŝ Flow direction
êx, êy, êz Orthonormal Cartesian coordinate basis

r̂, θ̂, φ̂ Orthonormal spherical coordinate basis
r0, φ0 Initial polar coordinates
r, φ Transformed polar coordinates
θ Polar angle between nozzle and layer
R Mesh points
M Rotation matrix
Λ Deformation factor tensor
Ω Rotation Matrix
M Transformation matrix
dA Area of deposition cross-section
da Area of mesh element
ds Displacement
∆t Advection time
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I. INTRODUCTION

Fused filament fabrication (FFF), also know as fused
deposition modelling (FDM) [10], is a powerful additive-
manufacturing tool. The simple-to-use technology al-
lows the fabrication of complex geometries via build-
preparation software, as well as printed parts with lo-
cally controlled properties such as density and porosity
[33]. FFF is now considered indispensable for the rapid
manufacturing of concept models, functional prototypes
and customized end-use parts.
In FFF, a solid thermoplastic filament is fed into a

machine via a pinch-roller mechanism, as shown by the
simplified schematic in Fig. 1. FFF systems contain mul-
tiple contractions between the pinch roller and the nozzle
exit; for simplicity Fig. 1 shows a single contraction be-
tween the heated and final sections of the nozzle. The
most common printing material investigated is acryloni-
trile butadiene styrene (ABS), an amorphous polymer
melt containing rubber (butadiene) nano-particles [60].
FFF machines can also print parts from amorphous poly-
carbonate [25], semi-crystalline poly-lactic acid [15] and
other thermoplastic materials [42].
The feedstock is melted and extruded through a nozzle,

with the solid portion of the filament acting as a piston
to push the melt through. A three-dimensional object is
constructed by printing the extrudate layer-by-layer onto
a build plate. As the material is deposited the nozzle
moves in the xy-plane to create a prescribed pattern,
and the platform moves in the z-direction for additional
layers to be built. The thickness of the single layer is
determined by the height of the nozzle with respect to
the previously printed layer (Fig. 1), whereas the width
of the layer is determined by a combination of the flow
rate, surface tension and viscoelasticity. The speed of
the material flowing through the nozzle is controlled to
prevent drawing and buckling, so that the width of the
layer is approximately equal to the nozzle diameter.
Upon deposition, the melt bonds, cools and solidifies

with adjoining material so that the structure of the fi-
nal object consists of a number of partially-bonded fila-
ments. Much of the literature to date has focused on how
FFF parameters, such as build style, raster width and
raster angle, affect the material properties [1, 2, 5, 32].
Analytical models, based on classical lamination theory
combined with the Tsai-Wu failure criterion, are used to
predict the tensile strength of the bond [2], and adhesives
can be used to alter the bonding behaviour [17].
In the absence of a post-deposition cross-linking pro-

cess, bonding between layers is thermally driven and sig-
nificantly affected by print temperature [50]; higher tem-
peratures can enable better adhesion between printed
layers and therefore stronger mechanical strength of the
final printed part, while temperatures that are too high
lead to polymer degradation and weakening of the prod-
uct [19]. Recently, carefully-calibrated infra-red imag-
ing has been developed to extract the temperature pro-
file at the weld [47] and finite-element analysis has been
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FIG. 1. Simple schematic of typical FFF process, as described
in text. In frame of moving nozzle, the melt exits the nozzle
at speed UN and the build plate moves at speed UL in the
ŷ-direction. The current printed layer is denoted Lp and the
middle of the layer is denoted mp. Welds occur at the interface
between layers. The layer thickness H is typically less than
the nozzle diameter 2R. See Appendix C for typical model
parameters.

used to examine temperature gradients at the nozzle exit
[58]. Laser-assisted heating is proposed to improve the
thermal-bonding process and consequently the strength
of the printed part [16].

A number of studies have investigated the thermal-
welding of polymer molecules (e.g. [18, 56]), however,
these studies focus on the diffusive behaviour of melts
in an equilibrium state. During FFF the polymer ex-
periences large shear rates in the nozzle and rapid tem-
perature changes that are expected to significantly de-
form the polymer microstructure. A non-equilibrium mi-
crostructure will affect polymer diffusion [26, 31, 53] and
consequently welding. For example, it is suggested that
polymer alignment in the flow may lead to de-bonding of
the layers and create defects in the final printed object
[49].

In this paper, we employ a continuum molecularly-
aware polymer model [35], which we modify to incorpo-
rate flow-induced changes in the entanglement density, to
describe the behaviour of a typical amorphous polymeric
printing material during the FFF extrusion process. As-
suming steady-state and a uniform temperature profile,
the printing flow and polymer configuration tensor within
a cylindrical nozzle and during the subsequent deposition
are calculated using a simple mapping to represent the
90o turn and deformation into an elliptical-shaped layer.
We quantify and visualise the polymer microstructure
across a printed layer post-extrusion and investigate the
effect of print speed on disentanglement. The relaxation
of this deformation and the effect on weld properties will
be considered elsewhere.
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II. MODEL FOR FFF

A. Modified Rolie-Poly Model with Flow-Induced

Disentanglement

A linear polymer melt is well described by the Doi-
Edwards tube model [14]. In this paper, we implement a
variation of this standard theory known as the the Rolie-
Poly model [35] and include a new feature that allows for
flow induces changes in the entanglement density [28].
Although the Rolie-Poly model does not allow for second
normal stresses in axisymmetric flows, it provides a sim-
ple one-mode constitutive equation for the stress tensor
to describe entangled polymers.
At equilibrium, the entanglement number of a melt of

molecular weight Mw is defined by

Zeq =
Mw

Me
, (1)

where Me is the molecular weight between entangle-
ments. The Rouse and reptation times of a polymer at a
given reference temperature T0 are given by [36]

τ0R = τ0eZ
2
eq, (2a)

τ0d = 3τ0eZ
3
eq

(

1− 3.38
√

Zeq

+
4.17

Zeq
− 1.55
√

Zeq
3

)

, (2b)

respectively, where τ0e is the Rouse time of one entangle-
ment segment.
Due to the non-isothermal conditions of FFF, the

temperature-dependent rheology must be considered. We
account for this by scaling the relaxation times by a shift
factor a(T ), typically measured by rheology, which has
the well-known WLF form [55]

a(T ) = exp

(−C1(T − T0)

T + C2 − T0

)

, (3)

for temperature T and constants C1 and C2. At equilib-
rium, the Rouse and reptation times of a melt are given
by

τeqR (T ) = τ0Ra(T ), (4)

and

τeqd (T ) = τ0da(T ). (5)

Momentum balance is given by

ρ
Du

Dt
= ∇ · σ, (6)

for mass density ρ, fluid velocity u and the material
derivative D

Dt =
∂
∂t + (u · ∇). In steady state we solve

∇ · σ = 0, (7)

for stress tensor σ. The total stress in the polymer melt
comprises solvent and polymer contributions

σ = pI+Ge(A− I) + 2µs(K+K
T ), (8)

where p is the isotropic pressure and the velocity gradient
tensor is denoted Kαβ = ∇βuα. The polymer contribu-
tion to the stress is given by the plateau modulus Ge

multiplied by the polymer deformation tensor

A =
〈RR〉
3R2

g

, (9)

for end-to-end vector R and radius of gyration Rg. Fig.
2a shows the polymer microstructure, defined by tensor
A, as an ellipsoid; a sphere represents an undeformed
polymer at equilibrium (A = I) with radius Rg, whereas
an ellipse signifies stretch and orientation. For times
shorter than τe, Rouse modes corresponding to lengths
shorter than Me contribute to a background viscosity de-
fined as [23]

µs =
π2

12

Ge

Zeq
τeqR . (10)

We assume that the polymer deformation tensor A sat-
isfies the Rolie-Poly equation [35]

DA

Dt
= K ·A+A ·KT − 1

τd(T, γ̇)
(A− I)

− 2

τR(T )

(

1−
√

3

trA

)(

A+ β

√

trA

3
(A− I)

)

,

(11)

where trA denotes the trace of tensor A. Convective
constraint release (CCR) is incorporated via the param-
eter β [27]. The reptation and Rouse times are denoted
τd(T, γ̇) and τR(T ), respectively.
When a melt is subjected to flow, entanglements may

be lost via convection and new entanglements made by
reptation. We incorporate flow-induced changes in the
entanglement fraction ν = Z/Zeq to the Rolie-Poly model
via the recent kinetic equation of Ianniruberto & Mar-
rucci [28–30]:

Dν

Dt
= −β

(

K : A− 1

trA

dtrA

dt

)

ν +
1− ν

τeqd (T )
, (12)

where entanglement loss can be modified by varying the
CCR parameter β. The reptation time is given by a
thermal contribution plus a convective one determined
by the rate of entanglement loss [28]

1

τd(T, γ̇)
=

1

τeqd (T )
+ β

(

K : A− 1

trA

dtrA

dt

)

, (13)

where the temperature-dependence of the equilibrium
reptation time is given by Eq. 5. The reptation time
therefore implicitly depends on the shear rate γ̇. The
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TABLE I. Weissenberg numbers (Eqs. 16-18) calculated dur-
ing extrusion for Zeq = 37 and β = 0.3 (similar to poly-
carbonate printing material), print temperature TN = 250oC
and two typical speeds UN = 75 and 10 mm/s. See Appendix
C for further details.

Reptation Wi Fast Slow Rouse WiR Fast Slow

WiN (average) 13 2 Wi
R

N (average) 0.07 0.009

WiW (wall) 91 24 WiRW (wall) 1.5 0.4

Rouse time does not depend on the local shear rate
and is given by Eq. 4 under flow conditions. The
steady-state constitutive curve defined by Eqs. 8, 11 and
12 demonstrates the shear-thinning behaviour typical of
FFF-printed materials and is discussed in Appendix A;
increasing the CCR parameter β acts to suppress excess
shear-thinning behaviour [27].
In steady state shear, Eq. 12 reduces to

ν =
1

1 + βArsγ̇τ
eq
d

, (14)

where Ars is the shear component of A. Larger shear
rates impose a greater deformation on the polymer mi-
crostructure and the resulting alignment reduces the en-
tanglement fraction. Ianniruberto compared this flow-
induced disentanglement theory [28] to molecular dynam-
ics simulations of simple steady shear flow conducted by
Baig et al. [6] for a wide range of shear rates γ̇, finding
that β = 0.15 gives the best fit to the entanglement loss
data for Zeq = 14. The theory is also compared to the
step strain response experiments reported by Takahashi
et al. [51] for a polystyrene melt with Zeq = 12; in this
case good agreement is found for β = 0.25. Inhomoge-
neous disentanglement has also been found in dissipative
particle dynamics simulations by Khomami et al. [40, 46]
of polymer melts with Zeq = 13, 17.

In the following we show results for β = 0.3. For our
model parameters, the constitutive curve is monotonic
and we avoid shear-banding effects. The effect of increas-
ing β to unity in our FFF model (as in reference [35]),
which gives the most extreme case of disentanglement, is
shown in Section VB. We discuss the effect of choosing
smaller β in Appendix A.

B. FFF Parameters and the Printing Process

In the following, Eqs. 7, 8, 11 and 12 are solved to
determine the melt behaviour during steady-state extru-
sion. Extrusion is treated in two stages in a frame fixed
with the nozzle, where the build plate moves in the ŷ
direction.
First, the melt flows through a fixed, vertically-

orientated nozzle at mass-averaged speed UN . The noz-
zle is circular in shape so that the flow is axisymmetric.
The melt is then deposited onto the build surface, which
moves horizontally at mass-averaged speed UL. During

this deposition, the fluid must speed up and deform to
make a 90o turn. The layer thickness H is typically
less that the nozzle diameter, so that the shape of the
layer is roughly elliptical [50]. The print temperature TN

is assumed to be uniform across the nozzle radius and
throughout the deposition, and we assume that the flow
is steady (see Appendix C for details).
Assuming mass conservation, the speeds are related by

πR2UN =
πRH

2
UL, (15)

where R is the nozzle outlet radius. As well as local ac-
celeration due to the corner geometry, the flow must also
speed up to conserve mass whilst transforming from cir-
cular to elliptical geometry. If UN < HUL/2R, then too
little material is deposited and drawing occurs; similarly,
if UN > HUL/R then buckling of the printed material
occurs.
The equilibrium mass-averaged reptation Weissenberg

number in the nozzle is defined by

WiN =
UN

R
τeqd (TN ), (16)

for equilibrium reptation time τeqd given by Eq. 5.
Values for a typical print temperature and two typical
print speeds (fast and slow) are given in Table I. Since
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FIG. 2. (a) Visualisation of polymer as a deformed sphere
under shear flow. (b) Velocity profiles w(r) and ellipsoidal
representation of polymer deformation (Zeq = 37, β = 0.3)
across the nozzle radius for fast and slow print cases corre-
sponding to WiN = 13 and 2 (Table I).
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WiN ≫ 1, we expect a significant orientation of the poly-
mer in the nozzle. The local Weissenberg number at the
nozzle wall

WiW = γ̇W τeqd (TN ), (17)

where γ̇W is the wall shear rate, is an order of magnitude
larger than WiN . This is due to two effects. For cylin-
drical Poiseuille flow of a Newtonian fluid WiW = 8WiN
because of the parabolic profile [9]. A shear-thinning
fluid has a plug-like velocity profile (Fig. 2b) with a
much higher relative shear rate, and hence Weisseberg
number, at the wall.
Similarly, the equilibrium mass-averaged Rouse Weis-

senberg number in the nozzle is defined as

Wi
R

N =
UN

R
τeqR (TN ), (18)

where the equilibrium Rouse time is given by Eq. 4. For
the fast printing case, the local Weissenberg number is
WiRW ∼ 1 near the nozzle wall, which implies stretch of
the polymer tube during extrusion.
In the following, we show results for Zeq = 37, β = 0.3

TN = 250oC and WiN = 13 and 2, which are typical val-
ues used for FFF of an an amorphous polymeric printing
material [42]. For comparison, we have chosen model pa-
rameters for Bisphenol A Polycarbonate. The full set
of model parameters and the assumptions of this model
are discussed in Appendix C; the model parameters for
polycarbonate are given in Table II, and typical print
speeds and nozzle dimensions (corresponding to the sim-
plified schematic in Fig. 1) are given in Tables III and
IV, respectively.

III. STEADY-STATE NOZZLE FLOW

A. Calculation of Nozzle Flow

The fluid flows along a direction ŝ with arc length coor-
dinate s. The flow direction ŝ changes when the material
exits the nozzle according to

ŝ ≡
{

êz, in the nozzle,

êy, in deposited layer.
(19)

First, we consider steady-state flow through the circular
nozzle in the vertical ŝ-direction. The reasonable steady-
state assumption is discussed in Appendix C. In cylin-
drical polar coordinates (r, φ, s), the velocity profile is
denoted

u = w(r)ŝ, (20)

so that the velocity-gradient tensor is

K =
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FIG. 3. (a-d) Polymer deformation properties in the nozzle
(Zeq = 37, β = 0.3): (a) Entanglement fraction profile ν(r),
(b) tube stretch profile trA(r)−3, (c) shear deformation pro-
file Ars(r) and (d) normal stress difference profile N(r). Fast
(WiN = 13) and slow (WiN = 2) print cases are shown.

By Eq. 8, the total shear stress is given by

σrs = GeArs + µs
∂w

∂r
(22)

and satisfies the steady-state momentum balance

∂p

∂s
=

1

r

∂

∂r
(rσrs), (23)

for a pressure gradient ∂p/∂s chosen to induce the mean
extrusion velocity

UN =

∫

w(r)

πR2
d2r. (24)

Finally, the polymer deformation is described by the
steady-state Rolie-Poly equation

K ·A+A ·KT − 1

τd(T, γ̇)
(A− I)

− 2

τR(T )

(

1−
√

3

trA

)(

A+ β

√

trA

3
(A− I)

)

= 0,

(25)

where trA = Ass + Aφφ + Arr. The reptation time is
given by

1

τd(T, γ̇)
=

1

τeqd (T )
+ β(K : A), (26)

from Eq. 13 and the entanglement fraction is given by
Eq. 14 for γ̇ = ∂w/∂r.
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FIG. 4. (a-d) Polymer deformation properties in the noz-
zle for slow-print case (Zeq = 37, β = 0.3 and WiN = 2):
(a) Entanglement fraction profile ν(r, φ), (b) tube stretch
trA(r, φ) − 3, (c) principle shear deformation Ars(r, φ) and
(d) normal stress difference N(r, φ) shown in the xy-plane.
The fast case (WiN = 13) induces similar deformation pro-
files.

B. Polymer Deformation in the Nozzle

Fig. 2 shows the steady-state velocity profiles calcu-
lated from Eqs. 14, 22-26 for Zeq = 37, β = 0.3 and two

typical print speeds corresponding to WiN = 13 and 2.
The profiles have a plug-like shape due to shear-thinning
behaviour and are axisymmetric. The ellipses show how
the polymer chains becomes more stretched and oriented
near the nozzle walls due to the increasing shear rate.
The polymer deformation for the two typical print

speeds is quantified in Figs. 3a-d, showing the en-
tanglement fraction ν, the tube stretch trA − 3, the
shear orientation Ars and the normal stress difference
N = Ass − 0.5(Arr + Aφφ). Note that for the Rolie-
Poly model, Arr = Aθθ in axisymmetric flow, so that N
is the first normal stress difference in the nozzle. As ex-
pected, the larger Weissenberg number imposes a greater
deformation on the polymer, with the chains becoming
more stretched and aligned with the flow direction for the
fast-print case. Due to this alignment, the entanglement
fraction decreases dramatically near the wall (Fig. 3a).
For WiN = 2, ν is reduced to 20% of the equilibrium
value at the nozzle wall, whereas for WiN = 13 the melt
is nearly fully disentangled at the wall (ν = 5%). These
profiles provide an initial condition to calculate A during
the deposition process.
Fig. 4 shows the contours of the described deforma-

tions across the nozzle for the case WiN = 2; the axisym-
metry should be compared with later results (section V)
showing non-axisymmetric deformation after deposition.
In particular, Fig. 4a,b highlights the thin boundary
layer of disentanglement and stretch at the nozzle wall

x

y
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FIG. 5. (a) Polar angle ηθ (Eq. 27a) shown in the xy-plane
and corresponding ellipse located at the outer edge of the
nozzle and, (b) ηθ shown in xyz-space with arrows indicat-
ing the local polar coordinate axis (r, φ, s) for the ellipse, for
Zeq = 37, β = 0.3 and WiN = 2. The azimuthal angle (Eq.
27b) ηφ = 0.

due to the shear-thinning nature of the flow. The tensor
component Ars parametrises the principle shear deforma-
tion of the polymer chain and so Fig. 4c demonstrates
the shear stress across the nozzle. Since Asφ = Arφ = 0
in axisymmetric flow, the shear deformation is solely re-
sponsible for the polymer orientation.
This polymer orientation is interpreted as an ellipse

with an orientation defined by a polar angle ηθ and az-
imuthal angle ηφ, i.e.

ê1 · ŝ = cos ηθ, (27a)

ê1 · r̂ = − sin ηθ cos ηφ, (27b)

where ê1 is the principle eigenvector (corresponding to
the largest eigenvalue λ1) of the deformation tensor A.
Fig. 5 shows how the polar angle ηθ decreases near the
nozzle wall, demonstrating how the polymer becomes
more extended and therefore better aligned with the
flow direction in this region. Due to the axisymmetric
Poiseulle flow, the azimuthal angle ηφ is zero everywhere
and corresponds to ellipses that are tilted ‘inwards’ to-
wards the centre of the nozzle.

IV. STEADY-STATE DEPOSITION FLOW

A. Assumptions of Model Deposition Flow

Due to the small Reynolds number (Re ∼ 10−6), the
exiting flow quickly assumes a uniform plug-flow velocity
profile. The filament shape during deposition is a compli-
cated balance of surface tension, polymer relaxation and
complex boundary conditions including the free surface.
Although it is known that the material must turn a 90o

bend, the actual deposition shape, corresponding flow
field, and temperature profile have yet to be analysed ei-
ther theoretically or numerically. Rather than solve the
full problem, we make the following assumptions.

1. We assume that the temperature is uniform (at TN )
during deposition. The extrudate exits the nozzle
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FIG. 6. (a) Shape of the deposition parametrised by deforming a cylinder into an elliptic-cylinder such that the outside edge of
the deposition traces an ellipse. Initial circular cross section (θ = 0) has velocity UN in the ẑ-direction and final elliptic cross
section (θ = π/2) has a velocity UL in the ŷ-direction. (b) Nozzle view (θ = 0) in xy-plane, (c) side view in the zy-plane and
(d) layer view (θ = π/2) in xz-plane; r denotes the radial position on a plane and φ denotes the angle around a plane. The
points indicate individual mesh points and the shaded area represents the area of a mesh element.

and reaches the build plate on the time scale

τdep = H/UN . (28)

For our model parameters the deposition time is
typically of order τdep = 0.005 − 0.03 s (see Table
III). Upon exit, the material will cool via a com-
bination of convection and radiation. Thus, a non-
uniform temperature profile with a cool boundary
layer near the free surface, where the layer thick-
ness depends on the print speed, is expected (see
Appendix C). This cooling will consequently delay
polymer relaxation due to the diverging relaxation
time (Eq. 3). We neglect the effect of this cooling
in our model and assume that the temperature of
the deposit is uniform. This assumption is roughly
compensated by assuming that the polymer does
not relax during the deposition stage, as addressed
next.

2. We assume that the deposition occurs sufficiently
fast that we can ignore polymer relaxation. For
polycarbonate of Zeq = 37, this requires the depo-
sition time to satisfy

τdep ≪ τeqd = 0.03 s at TN ,

τdep ≪ τeqR = 5.7× 10−4 s at TN .
(29)

Although we estimate τR < τdep <∼ τd (see Table
III), a cooling temperature profile as addressed in
item 1 may arrest relaxation in the skin layer re-
sponsible for welding in a similar way.

3. We assume that the length scale zM for which die
swell develops is greater than layer thickness H; i.e.
zM > H. The terminal swell distance downstream
of the nozzle exit is [11]

zM = τswUN , (30)

where τsw is the characteristic time scale for the
swell diameter to fully develop. This time scale is

associated with the relaxation of the first normal
stress difference [3], but little known about this re-
laxation mechanism. Experimentally, zM is found
to be of the order 2R and some experiments show
τsw to depend on the nozzle shear rate [9]. For
the Rolie-Poly model, the first normal stress dif-
ference N1 = Ass − Arr relaxes on the order of
the reptation time τd, although for WiR > 1 lin-
ear relaxation does not apply. For polycarbonate
at print temperature TN = 250oC, we find that
zM/H ≈ 1 − 10 in the typical print speed range
(see Table III). Hence, there is probably insuffi-
cient time for maximum swell ratio to develop dur-
ing deposition of the melt onto the build plate. The
terminal swell ratio is discussed in Appendix C.

4. We assume a smooth ansatz for the shape of the
curved filament and demand that the polymeric
material undergo affine flow of the elements along
streamlines. The effect of changing the curvature
of the corner region is discussed in Appendix C.

B. Deposition Flow and Polymer Deformation

To parametrise the shape and flow field of the curved
filament, we deform a cylinder around a 90o corner into
an elliptic-cylinder, so that the outer edge of the deposi-
tion traces an ellipse as shown in Fig. 6. Full details of
the mesh generation are given in Appendix B. The angle
θ between the nozzle and the fully-deposited layer is in
the range θ ∈ [0, π/2]. In the lab frame, the Cartesian
velocity profile u = (0, v, w) of the deformation flow is
given by

u = U(θ)ŝ(θ), (31)

where

ŝ = sin θêy + cos θêz, (32)
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is the flow direction and U is the magnitude of the ve-
locity. The velocity vector field is shown in Fig. 7a.
Under the assumption τdep ≪ τd, τR and assuming no

secondary flows, instead of solving the full Navier-Stokes
equations the velocity profile is calculated from the flux-
conservation condition

U(θ)dA(θ) = UNdA(0), (33)

where dA denotes the area of a cross-section of the de-
posit at angle θ. This is equivalent to imposing local flux
conservation on a single mesh element during deposition
(see Fig 6b,c) and is discussed in detail in Appendix B.
Eq. 33 dictates an increase in U to conserve mass

during the typical geometric transformation from a circle
to an ellipse (Eq. 15). There is a larger displacement ds
towards the outer edge of the deposit to accommodate
the 90o corner (Fig. 7a); this displacement is given by
the arc length ds = r1δθ, where r1 is the radius measured
from the inner corner (0, R,H) and δθ is angle between
two cross-sections (see Appendix B for further details).
Under this assumption (τdep ≪ τd, τR), the steady-

state Rolie-Poly Eq. 11 is reduced to

(u · ∇)A = K ·A+A ·KT , (34)

for velocity gradient tensor

K =







0 0 0

vx vy vz
wx wy wz






, (35)

where the subscripts denote derivatives in the respective
directions. In this case, ux, uy, uz = 0 since there is no
change in length in the x̂-direction. In this way, the poly-
mer is simply advected with the velocity gradients. Sim-
ilarly, entanglements are advected via

(u · ∇)ν = −β(K : A)ν, (36)

from Eq. 12.
Eqs. 34 and 36 are solved using a semi-implicit finite-

difference scheme combined with the velocity profile from
Eq. 33 and the initial polymer tensor A imposed by
the nozzle flow. Full details of the calculation are given
in Appendix B. For convergence, we require 100 cross-
sections with 200× 100 mesh points on each plane. This
corresponds to a mesh element at the outer edge of the
printed layer having volume dx× dy× dz = 6× 3× 2µm
for a nozzle of radius R = 0.2 mm.
Fig. 7b shows an ellipsoidal visualisation of the poly-

mer tensor A during the deposition process for Zeq =

37, β = 0.3 and WiN = 2. Initially the polymer ellip-
soids are directed inwards towards the nozzle centre (as
in Fig. 2b). The orientation changes with the flow direc-
tion, so that ultimately the polymers are aligned roughly
parallel to the printed filament layer. Similar orientations
of cellulose fibrils are seen in experiments [20]. Fig. 7b
also shows how the ellipses become more stretched along
the outer edge of the deposition due to the increased
displacement in this region. Next, we consider the final
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FIG. 8. (a-d) Polymer deformation properties after deposition
(final plane θ = π/2) for Zeq = 37, β = 0.3 and WiN = 2:
(a) Entanglement fraction profile ν(r, φ), (b) tube stretch
trA(r, φ) − 3, (c) principle shear deformation Ars(r, φ) and
(d) local normal stress difference N(r, φ) shown in the xz-
plane. The fast case induces similar deformation profiles. (e)
Quantitative comparison of the stretch (red line) and disen-
tanglement (blue line) along the z-axis ((x, y) = (0, R)) in-
duced initially in the nozzle (zmax = 2R) and after deposition
across the printed layer (zmax = H), as a function of distance
from weld site zw.

polymer deformation across the printed cross-section (i.e.
for θ = π/2).

V. RESULTS

A. Polymer Deformation Across the Printed

Filament Cross-section

Figs. 8a-d show the entanglement fraction ν, the
tube stretch trA − 3, the principle shear deformation
Ars and the normal stress difference N profiles, respec-
tively, across the printed layer for Zeq = 37, β = 0.3 and

WiN = 2; the deformation profiles are qualitatively sim-
ilar for WiN = 13. In contrast to the nozzle flow (Fig.
3), the deformation is no longer axisymmetric and there
is a distinct gradient in the polymer microstructure from
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FIG. 9. (a) Polar angle ηθ (Eq. 27a) and (b) azimuthal
angle ηφ (Eq. 27b) shown in the xz-plane; (c) schematic of
corresponding ellipses shaded according to y-coordinate (red
is the front of ellipse) to illustrate angles ηθ (where λ1 is
the principle eigenvalue) and ηφ (azimuthal rotation from −r̂-
axis). Arrows indicate the local polar coordinate axis (r, φ, s).

the top to the bottom of the layer.

The structure at the top (z = −H) and bottom (z = 0)
of the layer is of particular interest as welding between
adjacent layers in the ẑ-direction occurs at these sites.
The stretch of the free surface due to the curved geometry
induces a large deformation along the outer edge of the
deposition, so that the polymer microstructure at z = 0 is
highly stretched and oriented (Figs. 8b,c, see Appendix
C for the effect of changing the curvature). By far, the
largest effects occur during this deposition process, with
the stretch increasing significantly (by a factor of 3 under
the assumption τdep ≪ τR) in the bottom half of the
layer.

Alignment of the polymers in the flow direction, to-
gether with the velocity gradient profile, disentangles the
polymer melt and ν is reduced to less than 10% of the
equilibrium entanglement fraction at z = 0 (Fig. 8a). Al-
though the stretch at z = −H is comparatively smaller,
the melt also becomes disentangled in this region (com-
pared to ν in the nozzle before deposition) due to large
velocity gradients. Velocity gradients exist primarily due
to the material turning 90o; there is also a secondary con-
tribution due to the transformation of the deposit from
a circular to an elliptical shape.

Due to the anisotropy, the non-axisymmetric compo-
nents Asφ and Arφ, corresponding to in-plane tilt and
azimuthal shear, respectively, become non-zero and con-
tribute to the total orientation of the polymer. We quan-
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tify the effect of these non-axisymmetric components on
the polymer orientation by considering the polar and az-
imuthal angles, ηθ and ηφ (Eq. 27), after deposition. Fig.
9a shows that the polar angle ηθ decreases (compared to
Fig. 5), demonstrating how the polymers become more
aligned with the flow direction during deposition. The ef-
fect of the velocity gradients in the centre of melt is also
demonstrated by this decrease in ηθ. The corresponding
alignment leads to disentanglement at r = 0, so unlike
flow in the nozzle, the entire cross section of the melt
becomes disentangled during deposition. The non-zero
azimuthal angle ηφ (Fig. 9b) signifies how the tilt of the
ellipses becomes non-axisymmetric after deposition, with
ellipses directed ‘upwards’ away from build plate across
the entire layer (Fig. 7). Ellipses at the top and bottom
of the layer have a similar ‘upwards’ tilt, exhibiting a
very different orientation to the ‘inwards’ axisymmetric
tilt we see in the nozzle.

B. Effect of CCR parameter on Disentanglement

For comparison with Figs. 4 and 8 with β = 0.3, Fig.
10 shows the deformation imposed by the nozzle flow and
during deposition for CCR parameter β = 1. Since the
melt is less shear-thinning in the case β = 1, there is a
larger boundary layer of disentanglement in the nozzle
(compared to Fig. 4) and the disentanglement induced
by the deposition process is much more extreme (com-
pared to Fig. 8). The deformation of A imposed during
deposition is equivalent for β = 1 and 0.3 due to the
assumption τdep ≪ τd, τR (Eq. 34).

C. Effect of Shear Rate on Disentanglement

Here we consider how the predicted disentanglement
varies with the equilibrium entanglement number Zeq

(equivalent to changing Mw) and the local Weissenberg
number calculated at the nozzle wall WiW (Eq. 17).

Fig. 11a shows the entanglement fraction at the noz-
zle wall (prior to deposition), νN , for β = 1 and three
molecular weights. From Eq. 14, νN is given by

νN =
1

1 + βArsWiW
, (37)

and agrees quantitatively with the calculated degree of
disentanglement at the nozzle wall for Ars = 0.5, al-
though Ars is not independent of WiW . The disentan-
glement fraction does not depend on Zeq.

For WiW > 1, νN is reduced to less than 20% of the
equilibrium entanglement fraction and reducing the CCR
parameter slightly inhibits disentanglement at the nozzle
wall (Fig. 11b). We find nearly 100% disentanglement
at WiW = 100. For comparison, a 50% entanglement
loss is found for Wi = 100 in the molecular simulations
of simple shear flow by Baig et al. [6]. This is well rep-
resented by the theory of Ianniruberto & Marrucci for
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Zeq = 14, β = 0.15 [29], which employs the Doi-Edwards
tensor rather than the Rolie-Poly model. For our model
parameters, β = 0.15 gives a non-monotonic constitutive
curve (see Appendix A).

Fig. 11c shows the entanglement fraction νL at weld
site z = 0 after deposition. Again this process is indepen-

dent of Zeq. For the case β = 1, the idealised deposition
process imposed by the model removes almost all entan-
glements from the melt at the weld site. For smaller
values of the CCR parameter β the disentanglement pro-
cess is significantly less severe for moderate Weissenberg
numbers, and the melt only becomes fully disentangled
for WiW ≥ 100.
By spatially advecting the entanglements through the

deposition and assuming τdep ≪ τd, Eq. 36 leads to

U
∂ν

∂s
∼ −β(K : A)ν, (38)

for flow direction ŝ. Since the deformation is dominated
by the extension induced by stretching the fluid elements
around the corner, we assume

K : A ≈ ∂U

∂s
Ass, (39)

which gives

1

ν

∂ν

∂s
∼ −βAss

U

∂U

∂s
. (40)

Integrating yields

νL ∼ νN

(

UL

UN

)−βAss

, (41)

where νN is given by Eq. 37. Thus, disentanglement
depends on the geometry, which determines the ratio
UL/UN (Eq. 15), the total stretch imposed and the CCR
parameter β. Eq. 41 fits the data well for β = 1.0, 0.6
and 0.3, and Ass = 9 (Fig. 11c), although Ass is not
independent of WiW .

VI. DISCUSSION

A. Model Summary and Limitations

We have developed a model of the fused-filament-
fabrication process and tested the effect of changing print
speed, entanglement number Zeq and CCR parameter β
on the degree of polymer deformation and disentangle-
ment during extrusion. We have used Bisphenol A Poly-
carbonate as an example of a typical amorphous polymer
used for FFF. We model the nozzle flow as axisymmet-
ric, steady-state pipe flow. The nozzle flow can stretch
and orient the polymer near the nozzle wall, which con-
sequently disentangles the melt via convective constraint
release.
Since the material must melt before being deposited,

practically the upper speed limit for printing is restricted
by thermal diffusion in the nozzle. In the model, we as-
sume a uniform temperature profile across the nozzle ra-
dius. For polycarbonate, it is estimated to take ∼ 7 s
to achieve TN across the nozzle radius via thermal diffu-
sivity (see Appendix C). By comparing to the residence



12

time in the heated nozzle section, this leads to an up-
per flow rate limit of ∼ 3 × 10−6 kg/s for our model,
although faster rates are often used (e.g. 9×10−6 k/s for
UL = 100 mm/s). Arguably only the outer side of the
filament must be melted to ensure welding. Moreover,
fluorescence-based measurements during polymer extru-
sion report temperature gradients of up to 5oC/mm be-
tween the centre of the nozzle and the wall due to shear
heating effects [39]. A more detailed model is required
to capture the effects of an inhomogeneous temperature
profile in the nozzle.

After exiting the nozzle, the extrudate deforms to make
a 90o turn and is deposited into a elliptical-shaped layer.
Rather than calculate the full fluid mechanics, we have
calculated the steady-state flow by assuming flux con-
servation and a uniform temperature profile. However,
we estimate that a cool boundary layer with thickness
∼ 0.1 mm will develop during deposition (see Appendix
C); a more detailed model is required to capture these
complex cooling dynamics upon exiting the nozzle. We
also neglect polymer relaxation during deposition. The
assumption that reptation is slow compared to the depo-
sition time (τd > τdep), yields the validity condition

WiN >
H

R
, (42)

which for our model parameters leads to WiN > 1.5. For
smaller Weissenberg numbers where polymer relaxation
must be considered, the flow may not be in steady state
during deposition.

Due to the corner flow geometry and the transition
from a circular to an elliptical shape, the polymer de-
formation is affected primarily by the deposition flow
rather than the nozzle flow, with polymer stretch be-
coming significant in the bottom half of the layer. Dur-
ing deposition, the polymer tensor A is deformed fur-
ther from equilibrium, non-axisymmetric configurations
become non-zero and the structure of the weld region
is highly stretched, oriented and partially disentangled.
The degree of disentanglement at the weld site (z = 0)
depends on both the shear rate in the nozzle and the
CCR parameter β. Faster printing imposes a greater de-
formation and disentangles the melt further during the
extrusion process. For WiW > 100, the weld site be-
comes fully disentangled for all β.

Understanding the polymer behaviour during extru-
sion in terms of the material properties, print speed and
nozzle geometry is key to characterising the strength of
the weld between printed filaments. After deposition,
the printed melt will rapidly cool towards the glass tran-
sition. The way in which the deformation relaxes as a
function of temperature governs the diffusive behaviour
at the weld and is therefore key to understanding the
ultimate welding characteristics such as weld thickness,
structure and entanglement. The effect of this polymer
deformation on welding behaviour will be discussed else-
where.

B. Outlook

The molecular CCR mechanism is key to understand-
ing polymer behaviour in highly non-linear flows such
as the FFF technique for additive manufacturing. CCR
was first added to the original Doi-Edwards tube model
by Ianniruberto & Marrucci [27, 38]. The recent GLaMM
model [22] refines the tube theory further to include the
effects of CCR on the chain stretch. CCR in the tube
model has now been revisited to account for flow-induced
changes in the entanglement density [28, 29].
In this paper, we have modified the Rolie-Poly model

[35] to incorporate Ianniruberto’s flow-induced disentan-
glement theory and capture inhomogeneous disentangle-
ment at the continuum level of the orientation tensor. Al-
though the Rolie-Poly model handles stretch in a slightly
different way to the molecular GLaMM model, the ad-
vantage of the Rolie-Poly model is the simple one-mode
constitutive equation that can be applied to arbitrary
inhomogeneous flows. We have shown that disentangle-
ment during FFF is sensitive to the chosen CCR parame-
ter β, particularly during the deposition stage due to the
large stretch induced by the corner-flow geometry.
Flow-induced disentanglement is observed in numerous

simulations, including Brownian simulations [57], molec-
ular dynamics simulations [6] and dissipative particle
dynamics simulations [40]. To date β serves as a fit-
ting parameter between simulations and the tube the-
ory, and different values are required depending on the
flow type and entanglement number [28]. Thus, testing
FFF-induced disentanglement using a range of constitu-
tive models is a must.
Various other CCR theories have arisen based on

molecular simulations. For example, Wang & Larson [54]
incorporate kink-jump motions of the tube segments to
capture the constraint release effect and find a broad dis-
tribution of constraint lifetimes. In contrast to tube mod-
els, slip-link models construct an effective field to repre-
sent entanglements so that the chain satisfies random-
walk statistics at all length scales and constraint release
is determined by a slip-link friction [34, 45]. However,
with little experimental evidence, flow-induced disentan-
glement continues to be a debated topic.
Lastly, the model presented here is restricted to pre-

dicting the behaviour of linear amorphous polymer melts.
FFF systems can handle a wide range of rheologically
complex materials, including semi-crystalline melts [15]
and filled melts, containing nano-scale particles, such as
ABS [60]. Since semi-crystalline polymers tend to flow
more readily compared to amorphous melts above the
glass transition temperature, FFF systems incorporate
fans that rapidly cool the extruded material [21]. Thus,
it is expected that semi-crystalline printed parts will ex-
hibit a greater degree of anisotropy than parts made from
amorphous materials.
Although the most-commonly-printed polymer is ABS,

an amorphous melt containing rubber nano-particles that
provide toughness even at low temperatures, this mate-
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rial has been rarely characterised rheologically [4]. The
addition of fibres to an amorphous melt can also enhance
both thermal and mechanical properties. Yet how these
fillers behave during the printing process and how they
modify viscoelasticity remain open questions.
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Appendix A: The Constitutive Curve

The steady-state constitutive curve defined by Eqs. 8,
11 and 12 is plotted in Fig. 12a for a Zeq = 37 melt that
remains fully entangled (ν = 1) and that is allowed to dis-
entangle (ν < 1), where the value of ν varies with shear
rate. The CCR parameter is set to β = 0 and 1. The
curve indicates the shear-thinning nature of the Rolie-
Poly model. Feed stocks for FFF processes are typically
shear thinning and are often assumed to follow a power-
law viscosity model [8, 41, 44, 58]. These treatments are
not molecularly aware and cannot capture normal stress
effects of complex flow fields. The Rolie-Poly model, on
the other hand, includes key aspects of the molecular
melt structure.
For β = 0 there is no CCR so that ν can only equal

unity in a steady flow and the constitutive curve is non-
monotonic. For β = 1, disentanglement can occur and
the entanglement fraction ν becomes less than unity for
sufficiently large shear rates. This disentanglement mech-
anism acts to suppress excess shear-thinning behaviour
in a similar way to increasing the CCR parameter β [27],
as is demonstrated in Fig. 12b. Smaller β flattens the
constitutive curve, enhancing shear-thinning behaviour
by reducing the rate of convective constraint release. For
β = 0.15 the constitutive curve becomes non-monotonic
for Zeq = 37, in which case shear-banding instabilities
would be expected in the nozzle [43].

Appendix B: Full Deposition Calculation

1. Parametrisation

To parametrise the shape of the curved filament, we de-
form a cylinder into an elliptic-cylinder by rotating suc-
cessive planes, as shown in Fig. 6a. We divide the space
into a three-dimensional mesh, where each plane is spec-
ified in terms of the spherical coordinate system (r, θ, φ),
where r defines the radial position from the centre of the
plane and φ is the azimuthal angle around the plane. The
angle between the nozzle and the fully-deposited layer is
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denoted by θ and is in the range θ ∈ [0, π/2]. The initial
plane (located at the nozzle exit) is a circle of radius R
centred at (0, 0,−H) with θ = 0 (Fig. 6b). The final
plane at θ = π/2 is an ellipse centred at (0, R,−H/2)
with major radius R and minor radius H/2 (Fig. 6d).
The mesh points R = (x, y, z) are expressed as Carte-

sian functions of the spherical coordinate system (r, θ, φ).
That is, in the frame moving with the nozzle,

R(r, θ, φ) = x(r, θ, φ)êx+y(r, θ, φ)êy+z(r, θ, φ)êz. (B1)

Coordinates for each plane are calculated by applying a
deformation to the initial plane, parametrised by initial
polar coordinates (r0, φ0), rotated by angle θ about the
stagnation point at the nozzle exit. That is,

R(r, θ, φ) = T (θ) ·R(r0, 0, φ0), (B2)

where

T (θ) ≡ Λ(θ) ·M(x̂, θ). (B3)

That is, a rotation about the x̂-axis for angle θ defined
by

M(x̂, θ) =







1 0 0

0 cos θ − sin θ

0 sin θ cos θ






, (B4)
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and a deformation factor given by

Λ(θ) =







λx(θ) 0 0

0 λy(θ) 0

0 0 λz(θ),






. (B5)

This is a general mapping for any function Λ. In our
case, the deformation is defined by

λx = λy = 1, (B6a)

λz =
H

2R
, (B6b)

so that the outer corner of the deposition shape traces
an ellipse. Eq. B6 defines the typical geometry trans-
formation imposed by the FFF process; since the noz-
zle head is placed at height H above the build plate (or
previously-printed layer), which is less than the nozzle
diameter 2R, printed layers are elliptically shaped and
mass is conserved by balancing UN and UL (Eq. 15).

2. Initial condition

The initial velocity is assumed to be uniform at the
nozzle exit and is given by u = (0, 0, UN ). The initial
polymer configuration A induced by flow through the
nozzle is calculated in Section III and in cylindrical polar
coordinates (r0, φ0, s). This is then converted to the the
Cartesian frame (x, y, z) to calculate the deposition flow.
In the following i, j, k, . . . label Cartesian and α, β, γ, . . .
label spherical polar coordinates.
The polymer tensor Aαβ is converted to Cartesian co-

ordinates (x, y, z) via the rotation

Aij = ΩiαAαβΩβj , (B7)

where the rotation matrix is given by

Ωiα =







cosφ0 − sinφ0 0

sinφ0 cosφ0 0

0 0 1







iα

, (B8)

so that the initial polymer configuration for the deposi-
tion calculation is given by

Axx = Arr, (B9a)

Ayy = Arr, (B9b)

Azz = Ass, (B9c)

Axy = 0, (B9d)

Axz = cosφ0Ars, (B9e)

Ayz = sinφ0Ars, (B9f)

since there is zero second normal stress (Arr = Aθθ) in
the Rolie-Poly model under axisymmetric flow.

3. Mesh Spacing

The initial geometry (polar angle θ = 0) is given by a
circular plane defined in Cartesian coordinates by

R(r0, 0, φ0) = r0 cosφ0
êx + r0 sinφ0

êy, (B10)

for initial polar coordinates (r0, φ0). This initial plane is
divided up into a numerical mesh (Fig. 6b) with mesh
spacing given by

δs = δr0 r̂
0 + r0δφ0 φ̂

0
, (B11)

where

r0 = |R−R
o|, (B12)

for plane centre R
o = 0. For this initial circular geom-

etry, the radial and azimuthal spacing, δr0 and δφ0, are
uniform and given by

δr0 =
2R

Mmax
and δφ0 =

2π

Pmax
, (B13)

where Mmax and Pmax are the number of radial and az-
imuthal mesh points, respectively.
Due to the nature of the mapping, it is natural to

continue adopting the parametrisation (r, θ, φ) for sub-
sequent planes. However, the initial polar coordinates
(r0, φ0) defined for the circular plane, are not equivalent
for subsequent planes. In general, the coordinates

r ≡ r(r0, θ, φ0) and φ ≡ φ(r0, θ, φ0), (B14)

depend on the shape of the plane at θ, which is deter-
mined by deformation that Eq. B2 imposes onto a circu-
lar plane. Note that r and φ are not explicitly required to
calculate R, but act as counters to locate adjacent mesh
points within a plane.
In the case discussed in this paper the deformation

imposes elliptical geometry. Thus, for θ > 0,

r 6= r0 and φ 6= φ0, (B15)

and the mesh spacing is not uniform across and around
each plane:

δr 6= δr0 and δφ 6= δφ0, (B16)

Since the mesh spacing must now reflect the spacing be-
tween mesh points that are mapped using Eq. B2, we
must make the following distinctions.
First, the mesh spacing is given by

δs± = δr r̂+ r1δθ θ̂ + r2δφ φ̂, (B17)

where ± signifies the forward and backward directions
for each coordinate. Second, the arc lengths in Eq. B17
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are calculated from the average of two successive arcs by
defining

r±1 ≡ 1

2

(

|R−R
s|+ |R(r, θ ± δθ, φ)−R

s|
)

, (B18a)

r±2 ≡ 1

2

(

|R−R
o|+ |R(r, θ, φ± δφ)−R

o|
)

, (B18b)

where

R
s ≡ (0, R, 0) and R

o ≡ T (θ) ·R(0, 0, 0), (B19)

are the stagnation point and centre of each plane. Finally,
the radial spacing δr is given by

δr± = |R−R(r ± δr, θ, φ)|, (B20)

the azimuthal angle δφ is calculated via the law of cosines

cos δφ± =
|R−R

o|2 + |R(r, θ, φ± δφ)−R
o|2 − |R−R(r, θ, φ± δφ)|2

2|R−R
o||R(r, θ, φ± δφ)−R

o| . (B21)

and the polar angle is chosen to vary uniformly according
to

δθ =
π

2Nmax
, (B22)

where Nmax is the total number of planes. The mesh
spacing defined in Eq. B17 is shown in Fig. 13.

FIG. 13. Schematic of numerical method showing the initial
circular plane and two successive planes that are elliptic in
shape. Cartesian mesh points are parametrised by spherical
polar coordinates (r, θ, φ). Mesh spacing δs−α is given by Eq.
B17. Note that the radial spacing δr and the azimuthal angle
spacing δφ are not uniform around and across each plane for
θ > 0 due to the elliptical geometry. See text for details.

4. Flow Field

The velocity profile is also written as Cartesian func-
tions of the spherical coordinate system (r, θ, φ), such
that

u(r, θ, φ) = U(r, θ, φ) ŝ(θ),

= v(r, θ, φ)êy + w(r, θ, φ)êz,
(B23)

where

U =
√

v2 + w2 and ŝ = sin θêy + cos θêz, (B24)

are the magnitude of the velocity and the local unit nor-
mal vector (normal to the plane), respectively. On exit-
ing the nozzle, θ = 0 and u = (0, 0, UN ), whereas at the
end of deposition θ = π/2 and the velocity profile of the
layer is u = (0, UL, 0).
Instead of solving the full Navier-Stokes equations, we

assume τdep ≪ τd, τR. Thus, assuming no secondary
flows, the velocity profile is calculated from the local flux-
conservation condition

U(r, θ, φ) da(r, θ, φ) = UN da(r0, 0, φ0), (B25)

where da denotes the area of a single mesh element im-
posed by the prescribed shape (B2), as shown in Fig.
6b,c. Thus, the horizontal and vertical velocity compo-
nents are given by

v(r, θ, φ) = UN
da(r0, 0, φ0)

da(r, θ, φ)
sin θ, (B26a)

w(r, θ, φ) = UN
da(r0, 0, φ0)

da(r, θ, φ)
cos θ, (B26b)

respectively.

5. Polymer Deformation

Since the flow starts in steady state and polymer re-
laxation is ignored, the deposition flow remains in steady
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state. Thus, to advect the polymer with velocity gradi-
ents during deposition, we solve

(u · ∇)A = K ·A+A ·KT , (B27)

in the Cartesian frame. In Einstein notation, Eq. B27 is
written as

(ui∂i)Ajk = KjlAlk +AjlKkl,

= ∂lujAlk +Ajl∂luk.
(B28)

where derivatives in the Cartesian frame are denoted

∂i =

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

i

. (B29)

Since the Cartesian mesh points are defined as functions
of the spherical polar coordinate system (r, θ, φ), deriva-

tives in the r̂, θ̂ and φ̂ directions, that is

∂α =

(

∂

∂r
,
1

r1

∂

∂θ
,
1

r2

∂

∂φ

)

α

, (B30)

are easily computed from the mesh, as shown in Fig. 13.
Due to the non-uniform nature of the mesh, veloc-

ity gradients in the r̂, φ̂ and θ̂ directions are given by
the average of a forward and backward first-order finite-
difference approximation. For example, velocity gradi-
ents in the r̂-direction are given by

∂rui =
1

2

(

ui(r + δr+, θ, φ)− ui

δr+

)

+
1

2

(

ui − ui(r − δr−, θ, φ)

δr−

)

,

(B31)

and similarly for the θ̂ and φ̂-directions. One-sided finite-
difference approximations are used at the boundaries.
Derivatives are converted to the Cartesian frame via

∂α = Mαi∂i. (B32)

where

Mαi =







cosφ cos θ sinφ − sin θ sinφ

0 sin θ cos θ

− sinφ cos θ cosφ − sin θ cosφ







αi

. (B33)

Thus, Eq. B28 becomes

uiM−1
αi ∂αAjk = M−1

αl ∂αujAlk +AjlM−1
αl ∂αuk, (B34)

and tensor Ajk is advected in the θ̂-direction through
angle θ via

Γ2∂2Ajk =
(

M−1
αj ∂αulAlk +AjlM−1

αk∂αul

)

−
∑

α=1,3

Γα∂αAjk,

(B35)
where

Γα = uiM−1
αi . (B36)

We make the forward finite-difference approximation

Γ2
1

r+1

∂Ajk

∂θ
=

Ajk(r, θ + δθ, φ)−Ajk

∆t
, (B37)

where

∆t =
r+1 δθ

Γ2
, (B38)

is the advection time scale that captures a greater dis-
placement ds = r+1 δθ at the outside edge of the deposi-
tion (Fig. 7a).

Then, the semi-implicit finite-difference scheme is de-
fined by the generalised matrix system

[

Ajk−∆t
(

M−1
αl ∂αujAlk +AjlM−1

αl ∂αuk

)

]

(r,θ+δθ,φ)

=

[

Ajk+∆t
(

M−1
αl ∂αujAlk +AjlM−1

αl ∂αuk

)

−∆t
∑

α=1,3

Γα∂αAjk.

]

(r,θ,φ)

,

(B39)

to be solved for Ajk(r, φ) on the plane at angle θ + δθ
using information from the previous plane at angle θ.
Note that Mαl and uj are known for all planes a priori
based on the transformation given by Eq. B2 and the
flux-conservation condition Eq. B26, respectively. The
final results are given in the flow coordinate system via

Aαβ = MαiAijMjβ . (B40)

Appendix C: Approximations and Assumptions in

the Model

Here we detail typical parameters and discuss further
details of the validity of the FFF model. The model pa-
rameters for polycarbonate are given in Table II, and
typical print speeds and nozzle dimensions (correspond-
ing to the simplified schematic in Fig. 1) are given in
Tables III and IV, respectively. The assumptions made
are as follows:



17

TABLE II. Model parameters for typical amorphous printing material, polycarbonate.

Polycarbonate Properties Notation Value Units

Reference Temperature T0 260 oC

Thermal Diffusivity [59] (at 25oC) α 0.144 mm2/s

Molecular Weight Mw 60 kDa

Entanglement Molecular Weight [37] Me 1.6 kDa

Plateau Modulus [37] Ge 2.6× 106 Pa

Entanglement Time (at T0) [14] τ0
e 3.29× 10−7 s

WLF parameter C1 3 -

WLF parameter C2 160 -

Equilibrium Entanglement Number Zeq 37 -

Equilibrium Reptation Time (at TN ) Eq. 5 τeq

d 0.03 s

Equilibrium Rouse Time (at TN ) Eq. 4 τeq
R 5.7× 10−4 s

TABLE III. Model parameters for two typical print speeds corresponding to a ‘fast’ and ‘slow’ case.

Printing Parameters Notation Fast Case Slow Case Units

Mass flow rate Q 9.29× 10−6 1.26× 10−6 kg/s

Mean Initial Speed (heated nozzle section) U0 3 0.5 mm/s

Mean Extrusion Speed (final nozzle section) UN 75 10 mm/s

Mean Print Speed (across deposited layer) UL 100 13 mm/s

Thermal Diffusion Time (heated nozzle section) Eq. C2 τα 7 7 s

Residence Time (heated nozzle section) Eq. C3 τ0
res 2 12 s

Nozzle Temperature TN 250 250 oC

Deposition Time Eq. 28 τdep 0.005 0.03 s

Thermal Skin Layer in Deposit Eq. C4 Lskin 0.06 0.16 mm

Residence Time (final nozzle section) Eq. C5 τres 0.011 0.08 s

Die Swell Time τsw 0.0352 0.0352 s

Terminal Swell Distance Eq. 30 zM 2.64 0.352 mm

TABLE IV. Model parameters for typical nozzle geometry, as shown in Fig. 1.

Nozzle Dimensions Notation Value Units

Temperature TN 250 oC

Radius (heated nozzle section) R0 1.0 mm

Length (heated nozzle section) L0 6.0 mm

Radius (final nozzle section) R 0.2 mm

Length (final nozzle section) L 0.8 mm

Layer Thickness H 0.3 mm

1. We ignore viscous heating and assume that there
is zero temperature gradient across the nozzle ra-
dius. A thick filament of solid polycarbonate is fed
into the FFF nozzle at a mass flow rate Q. As the
solid filament enters the nozzle, a heated element
increases the temperature of the material to TN so
that it becomes molten and flows at average speed
U0 such that

Q = ρπR2
0U0, (C1)

for density ρ and nozzle radius R0. The time scale
for heat diffusion is given by

τα = R2
0/α, (C2)

for thermal diffusivity α. If the residence time in
the heated section of the nozzle satisfies

τ0res = L0/U0 ≫ τα ≈ 7 s, (C3)

for length L0, then the temperature is expected
to be uniform across nozzle radius. Finite-element
analyses of thermal diffusion in the heated nozzle
section (which ignore viscous heating effects) show
that uniform temperature profiles (∆T ≤ 1oC) are
rapidly achieved [8, 41, 44]. For our model parame-
ters τ0res ∼ τα for typical print speeds (Table III), so
effects of a non-uniform temperature profile within
the nozzle may need to be considered.
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FIG. 14. (a) Numerical mesh with a square corner at (y, z) =
(−R, 0) and resulting polymer deformation across the printed
layer: (b) entanglement ν(r, φ) and (c) Tube stretch profile
trA(r, φ) − 3 for Zeq = 37, β = 0.3 and WiN = 2. The blue
dotted lines show the equivalent cylindrical mesh with the
same volume.
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FIG. 15. Quantitative comparison of the stretch tr(A) (red
lines) and disentanglement ν (blue lines) along the z-axis
((x, y) = (0, R)) for a deposition shape with a smooth cor-
ner (Eq. B6, Fig. 6a) and a square corner (Eq. C7, Fig. 14).
Model parameters are Zeq = 37, β = 0.3 and WiN = 2.

2. We assume that the temperature throughout the
deposition is uniform. A simple calculation from
thermal diffusivity suggests a cool boundary layer
near the free surface of thickness

Lskin =
√
τdepα, (C4)

which depends on the print speed through the
deposition time; for a typically fast print speed
Lskin = 0.06 mm (Table III). We choose to ne-
glect the complicated heat transfer process here.

3. We assume that the flow is steady state in the noz-
zle and during deposition. The molten material
exits the final nozzle section at average speed UN

(usually after passing through two contractions). If
the residence time in the final nozzle section satis-
fies

τres = L/UN ≫ τeqd , (C5)

for length L, then the flow can be assumed to be
steady. For polycarbonate rheology, τres ∼ τeqd for
typical printing speeds (Table III), thus a more de-
tailed calculation of the flow may be required to
capture start-up effects in the nozzle.

4. We assume that the time scale for die swell to fully
develop is larger than the deposition time scale.
Upon exiting the nozzle, since the melt is no longer
constrained, the polymer conformations relax and
elastically stored energy is released leading to die
swell. The die-swell ratio DM/2R, where DM de-
notes the maximum steady-state diameter of the
melt after exiting the nozzle, is estimated from the
first normal stress difference and the shear stress at
the wall [52]. Using the values calculated in section
III, the die-swell ratio is found to be [52]

DM

2R
=

(

1 +
1

2

(

Ass −Arr

2Ars

)

W

)1/6

+ 0.13 ≈ 1.2, (C6)

for WiN = 2 and 13. Reported values for FFF-like processes range from ∼ 1.05 to 1.3 [42] and this
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swelling phenomenon is found the affect the align-
ment of extruded fibre suspensions [24]. Ceramic
particles [7] and carbon fibres [48] may be used to
reduce the swelling effect.

5. We prescribe the shape of the deposition and ne-
glect any spreading of the deposition on the build
plate. Models that address the spreading of a
printed layer [12, 13] have yet to be applied to poly-
mer melts. The deposition shape described in Sec-
tion IV assumes a smooth corner region (Fig. 6a).
However, the prescribed shape can effect the defor-
mation imposed by the deposition process. As a
comparison we have calculated the effect of having

a sharp corner, whose deformation is defined by

λx = 1, (C7a)

λy = λz =















1

cos θ
, for θ < θ∗,

tan θ∗

sin θ
, for θ > θ∗,

(C7b)

where θ∗ = tan−1(R/H) denotes the angle at which
the corner is reached (Figure 14a). In this way the
total deposited volume equals that of the cylinder
that would be deposited during vertical extrusion
with no die swell. Fig. 14b,c shows that qual-
itatively the stretch and disentanglement profiles
across the layer are similar to the smooth corner
case (Fig. 8b). A quantitative comparison is shown
in Fig. 15. A square outer-corner region induces
more stretch and disentangles the melt further; at
z = 0 the stretch increases from trA = 10.13 to
10.87 (approximately 93% smaller with a smooth
corner) and ν decreases from νL = 0.0075 to 0.0068
(approximately 10% larger with a smooth corner).

[1] Sung-Hoon Ahn, Michael Montero, Dan Odell, Shad
Roundy, and Paul K Wright. Anisotropic material prop-
erties of fused deposition modeling ABS. Rapid Proto-
typing Journal, 8(4):248–257, 2002.

[2] Sung Hoon Ahn, Changil Baek, Sunyoung Lee, and
In Shup Ahn. Anisotropic tensile failure model of rapid
prototyping parts-fused deposition modeling (FDM). In-
ternational Journal of Modern Physics B, 17(08n09):
1510–1516, 2003.

[3] C Allain, M Cloitre, and P Perrot. Experimental investi-
gation and scaling law analysis of die swell in semi-dilute
polymer solutions. Journal of Non-Newtonian Fluid Me-
chanics, 73(1):51–66, 1997.

[4] Yuji Aoki, Akira Hatano, Takeshi Tanaka, and Hiroshi
Watanabe. Nonlinear stress relaxation of ABS polymers
in the molten state. Macromolecules, 34(9):3100–3107,
2001.

[5] Adhiyamaan Arivazhagan and SH Masood. Dynamic me-
chanical properties of ABS material processed by fused
deposition modelling. Int J Eng Res Appl, 2(3):2009–
2014, 2012.

[6] Chunggi Baig, Vlasis G Mavrantzas, and Martin Kroger.
Flow effects on melt structure and entanglement network
of linear polymers: Results from a nonequilibrium molec-
ular dynamics simulation study of a polyethylene melt in
steady shear. Macromolecules, 43(16):6886–6902, 2010.

[7] A Bellini. Fused deposition modelling of ceramins:
a comprehensive experimental, analytical and computa-
tional study of material behaviour, fabrication process
and equipment design. PhD thesis, Drexel University,
2002.

[8] Anna Bellini, Selcuk Guceri, and Maurizio Bertoldi. Liq-
uefier dynamics in fused deposition. Journal of Manufac-
turing Science and Engineering, 126(2):237–246, 2004.

[9] R Byron Bird, Robert C Armstrong, and Ole Hassager.
Dynamics of polymeric liquids. Vol. 1: Fluid mechanics.
John Wiley and Sons Inc., New York, NY, 1987.

[10] Chee Kai Chua and Kah Fai Leong. Rapid prototyping:
principles and applications, volume 1. World Scientific,
2003.

[11] M Cloitre, T Hall, C Mata, and DD Joseph. Delayed-die
swell and sedimentation of elongated particles in worm-
like micellar solutions. Journal of Non-Newtonian Fluid
Mechanics, 79(2):157–171, 1998.

[12] Robert Sinclair Crockett. The liquid-to-solid transition in
stereodeposition techniques. PhD thesis, The University
of Arizona, 1997.

[13] RS Crockett and RS Calvert. The liquid-to-solid tran-
sition in stereodeposition techniques. In DL Bourell,
JJ Beaman, HL Marcus, RH Crawford, and JW Barlow,
editors, Solid Freeform Fabrication Proceedings, pages
257–264. University of Texas, 1996.

[14] Masao Doi and Sam F Edwards. The theory of polymer
dynamics. Oxford University Press, 1988.

[15] Dietmar Drummer, Sandra Cifuentes-Cuéllar, and Do-
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