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Abstract. The closed-form analytic expressions for the displacement and stresses at any 
point of an elastic layer lying over a base due to a very long vertical strike-slip dislocation 
are obtained. The interface between the layer and the base is assumed to be either 
'smooth-rigid' or 'rough-rigid' or 'welded'. The variations of displacement and stresses with 
the horizontal distance from the fault for different types of coupling of the layer with the 
base have been studied. It is found that the displacement for 'welded interface' lies between 
the displacements due to 'smooth rigid' and 'rough-rigid' interfaces for different positions of 
the observer and different values of the ratio of rigidities of the layer and half-space. 

Keywards. Subsurface deformation; vertical strike-slip fault; elastic layer. 

1. Introduction 

Steketee (1958a, b) used the theory of Volterra's dislocations to determine the 
three-dimensional static displacements and stresses in the earth due to a strike-slip 
fault with uniform slip. Maruyama (1966) derived the formulas for the displacement 
and stress fields of a two-dimensional Somigliana dislocation in a semi-infinite 
medium. The static deformation of a multilayered half-space due to seismic sources 
has been studied, amongst others, by Singh (1970), Sato and Matsu'ura (1973), Singh 
and Garg (1985) and Roth (1990). 

Rybicki (1971) obtained the analytic expressions for the surface deformation of a 
semi-infinite elastic medium consisting of an elastic layer lying over an elastic 
half-space due to a very long vertical strike-slip fault lying in the layer using the 
method of images. Bonafede and Dragoni (1982) studied the effect of the stress 
concentration on a very long strike-slip fault situated in an elastic plate subject to 
basal shear stress. 

The deformation at any point of the medium is useful to analyse the deformation 
field around mining tremors and drilling into the crust of the earth. In the present 
paper, we have calculated the deformation inside a layer lying over a base as a result of a 
very long vertical strike-slip fault in the layer. Different types of boundary conditions-- 
namely, rough-rigid, smooth-rigid and welded--at the interface are considered and 
the resulting different deformations are compared numerically. The elastic layer 
represents the lithosphere and the welded case corresponds to the earth model 
consisting of the lithosphere overlying the asthenosphere. 

The technique employed in the present paper consists of first finding the integral 
expressions for the displacement inside the layer from the corresponding integral 
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expressions for an unbounded elastic medium, given by Singh (1985), by applying 
suitable boundary conditions at the boundaries of the layer and then evaluating the 
integrals analytically. 

2. Theory 

Let (x, y, z) be the Cartesian coordinate system with z-axis vertically downwards. Let 
(u, v, w) be the displacement components. We shall be considering the antiplane strain 
problem so that v = w -  0 and u = u(y, z) satisfies the equilibrium equation 

(~2u/~y2) + (~2u/~z2) = 0 (1) 

for zero body forces. The non-zero strains and stresses are 

e12 = �89 e13 = �89 

�9 12 = #(~ul~y), ~13 = #(gu/c~z) 

(2) 

(3) 

# being the rigidity of the elastic medium. 
We assume that a line source parallel to x-axis intersects the yz-plane at the point 

P(~, fl). The displacement Uo, parallel to the x-axis, due to the line source in an 
unbounded medium is given by Singh (1985) 

U o =  f f  b4osinkty-~)+ B o c o s k ( y - o t ) ] e x p ( - k l z - f l [ ) d k .  (4) 

The source coefficients Ao and B o for various single couples are given in table 1. 
These coefficients are independent of the variable of integration k. We note that the 
value of B o changes for z X ft. We write B~ for B o when z < ft. Then B o = - B ~  for 
z > ft. The single couple [12] is a couple in the xy-plane with forces in the x-direction 
and with its arm in the y-direction. F12 is the moment of the couple [12]. Similarly, 
[13] denotes a couple of moment Ft3 in the xz-plane with forces in the x-direction 
and arm in the z-direction. 

3. Formulat ion of  the problem 

Suppose that a horizontal layer of thickness H and rigidity/~ is lying over a half-space. 
The origin of the Cartesian coordinate system (x, y, z) is placed at the upper boundary 

Table L Source coefficients for various 
sources. The upper sign is for z > fl and the 
lower sign for 0 < z < p. 

Source Ao Bo 

Single couple [12] F12 0 
2~p 

Single couple [13] 0 + Fx3 
- 2~# 
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Figure 1. Section x = 0 of the mode l  

of the layer and z-axis is drawn vertically downwards so that the layer occupies the 
region 0 <~ z ~ H. The region z > H is the half-space as shown in figure 1. 

We shall determine the deformation of the layer due to a very long strike-slip fault 
situated in the layer. The surface z = 0 is assumed to be traction-free. Therefore, the 
boundary condition, at z = 0, is 

~13 =0.  (5) 

The interface z = H between the layer and the half-space may be either 'welded' or 
'smooth-rigid' or 'rough-rigid'. 

When the interface is of the 'smooth-rigid' type, the boundary condition is (Small 
and Booker 1984) 

13 (z =/-/) = 0 (6) 

whereas for the 'rough-rigid' interface, the boundary condition is (Small and Booker 
1984) 

u(z = H )  = 0.  (7)  

When the interface is 'welded', the boundary conditions are 

u(z = n - ) = u(z = n + ) 

"C13( z m. H - ) = Z,s(Z = n + ) (8) 

and this case corresponds to the realistic earth model represented by a lithosphere 
overlying asthenosphere (Nur and Mavko 1974; Garg and Singh 1988). 

We shall obtain the analytic expressions for the deformation of the layer 
corresponding to each type of contact between the half-space and the layer. 
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4. Solution of the problem 

Suitable expression for the displacement, parallel to the x-axis and satisfying equation 
(1), at any point of the layer is 

. - - . o  § [{A s i n k ( y -  ~) + B cos k(y - ~) } e x p ( -  kz) 

+ {C sin k(y - ct) + D cos k(y - ct)} exp(kz)] dk (9) 

with Uo given in (4). The stresses are 

z12 = #  [ A o c o s k ( . v - c t ) - B o s i n k ( y - c t ) ] e x p ( - k [ z - / / I ) k d k  
0 

+ l ~ f ~ [ { A c o s k ( y - ~ ) - B s i n k ( y - ~ ) } e x p ( - k z )  

+ {C cos k(y - ~) - D sin k(y - ~) } exp(kz)] k dk, (10) 

z13-- ~t f~ I-~ {Ao sin k (Y-  ~) + Bo cos k(y - ~) } ] e x p ( -  klz - //I) k dk 

f ~ I ' { -  A sin k(y - ~ ) -  B COS k(y - o0} e x p ( -  kz) + p  

+ { C sin k (y  - ct) + D cos k(y - ~t) } exp (kz)] k dk. (11) 

The traction-free boundary condition at the surface z = 0 yields 

A o e x p ( -  kfl) - A + C = 0 

B~ e x p ( -  k//) - B + D = 0 (12) 

4.1 Smooth=rioid interface 

The boundary condition (6) gives 

- Ao exp { - k(H - / / ) }  - A e x p ( -  kH) + C exp(kH) = 0 

B~ e x p {  - k(H - / / ) }  - B e x p ( -  kH) + D exp(kH) = 0 (13) 

Equations (12) and (13) determine the values of the unknowns A, B, C and D for the 
'smooth-rigid' interface. Substituting the values of A, B, etc., so obtained, in (9) the 
integral expression for the displacement is obtained. Expressing the denominator in 
the integrand as a power series and then evaluating the integrals analytically with 
the help of the standard transform integrals (Erd61yi 1954), the closed-form expression 
for the displacement is obtained as 

u=.40 y_~)2u +Bo ~y_~ +(z_//)2 

+ Ao 0' - ~)T ~-~ +//)2 + . _ ~)2 + (2nil + z + [/)2 
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y - o r  y - ~ t  
(y - ~t) 2 + (2nil + z - fl)2 (y - ct) 2 + (2nil - z + fl)2 

" r "  . D  0 - -  - - - -  ~ (y _ ~)2 + ( 2 . H -  z - ~)2 I_(Y - ~)2 + (z + ~)2 

~ [ 2 n N + z + p  2 n N + z - B  + 
I . ~  0 ' -  ~)2 + ( 2 n i l  + z + ~)2 (3,_ ~)2 + ( 2 n i l  + z - ~)2 

2 n H - z + f l  2 n H - z - f l  } ]  
-~ (y - ~t) 2 + (2nil - z + fl)2 - (y _ ~t)2 + (2nil - z - fl)2 �9 

(14) 

4.2 Rough-rigid interface 

As in section (4.1). the closed-form expression for the displacement u is 

1 [  l u = Ao (y _ ~)~ u  - ~)~ + ~o 0 '  - ~)~ + (z - ~)~ 

+ A  0 , _ ~ ) ~ + ( z + ~ ) 2 +  ( - i t  

y - - e  y - e  
+ t ( y _  ~)2 + ( 2 n i l  + z - ~)2 ( y _  ~)2 + ( 2 n i l  - z + #)2 

§ (y _ ~)~ + ~ _ z _ ~)~ + o (y _ ~)~ + (z + ~)~ 

+ ~ ( - l r {  2 n ~ + z + ~  2 n H + z - ~  
. - -  ~ (y  - ~t) 2 + ( 2 n i l  + z + fl)2 (y  _ ~)2 + ( 2 n i l  + z - fl)2 

2 n H - z + ,  2 n H - z - ,  } ]  
+ ( y _ ~ ) 2 + ( 2 n H _ z + f l )  2 (y _ 0C? ~ i ~  IS ~ _ fl)2 . (15) 

4.3 Welded interface 

Let #o be the rigidity of the half-space (z t> H). The displacement u in the region z t> H 
is of  the type 

f f  [A 1 sin k ( y - ~ ) +  B1 c o s k ( y - c t ) ] e x p ( - k z ) d k .  (16) U =  

The shear stress ~la is 

z13=#o f ~ [ A l s i n k ( y - ~ O +  B l c o s k ( y - ~ ) ] e x p ( - k z ) k d k .  (17) 

F rom equations (8), (9), (11), (12), (16), (17) and proceeding as in section (4.1), the 
displacement u at any point  of  the layer is found to be 

u = ao (y _ ~)~ u (z _ ~)~ + Bo (y _ ~)2 u (z _ ~)2 
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where 

[ +.40 (y_~?u .o1  I . ( y - ~ , ) e + ( f . f f + z + / / )  2 

y - ct y - c t  
+ (y - ~t) z + (2n i l  + z - / / ) 2  + (y _ ct)2 + (2ni l  - z - / / ) 2  

' "  }1 z + ,  + ( y _  ~)2 + ( 2 n i l -  z + fl)2 + Bo y _  ~ f  + (z + fl)2 

_. ( 2nil + z +// 2nil + z - / /  

+ .~1 "~ ~(Y -- g)2 + (2ni l  + z + fl)2 (y - ct) 2 + (2ni l  + z - lt)2 

2nH-z+fl 2nH-z-fl }] 
+ (y _ ~)2 + (2nil - z + fl)2 - (y _ a)2 + (2nil - z -//)2 (18) 

R = ( s  - 1 ) / ( s  + 1), s = (U/#o). (19) 

We observe that the displacement due to the smooth rigid and rough-rigid interfaces 
can be obtained from that of welded interface by taking R = 1 (Po = 0) and R = - 1 
(#o = ~) ,  respectively. 

5. Vertical strike-slip dislocation 

The single couple [12] is equivalent to a long vertical strike-slip line source such that 
(Maruyama 1966; Singh 1985) 

F1 z = # U0 dfl, (20) 

where Au = Uo is the slip. We shall be assuming that the slip is uniform, which 
makes the displacement discontinuous and the stress singular a t  the edge. This 
assumption has been made for mathematical convenience so that an analytic solution 
can be obtained. 

Equations (14), (15), (18), (20) and table 1 determine the horizontal displacement u 
at any point of the layer due to a long vertical strike-slip line source situated at the 
point (~,/3) of the layer. The displacement at any point of the l/tyer due to a long 
vertical strike-slip fault with finite vertical extent 0 ~< fll ~//~<//2 ~< H is obtained from 
the corresponding results for a long vertical line source on integrating with respect 
to / / f rom/11 to//2. 

The results for the smooth-rigid interface can be obtained from the corresponding 
results for welded interface by taking R = 1. On putting R -- - ! in the expressions 
for the deformation field due to a welded interface, the deformation field for the 
rough-rigid interface can be obtained. The deformation field for the welded interface 
is given below: 

u-'--U-~ tan - l ( z  + //z "l - tan - l ( z  + //l ) - t a n -  i ( z  - //" y - = ] \ y - ~ }  \ y - a /  

+tan  -1 + ~ R'~tan-  I ~ -  
.--1 [ \ y--0t 
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- t a n - l ( 2 n H - + z - - + [ 3 1 )  y - ~ t  \ y - c t  

\ y - ~  \ y - ~  

- t a n - l ( 2 n H f _ z f  f l l ) - t a n - 1 ( 2 n H - - ~ _ z f  f lZ)  

+ tan-  1 (2nH--_--z-z x-- [3 * ) } ] 

#Uo [ z + [31 z + [32 
~'~ = -~-~ h(v - ~)~+ (z + [31) 2 - (y - ~)2 + (z + [3~)2 

z-[32 z-[31 + 
(y _ ~)2 + (z - [32) 2 (y  _ ~)2 + (z - [31) 2 

+ ~= R" 2 n i l + z + [ 3 1  2 n H + z + f l 2  
. I (Y - -Ot )2+(2nH+z+[3 t )  2 ( y - o t ) 2 + ( 2 n H + z + f l 2 )  2 

2nil  + z - [32 2ni l  + z - [3t + 
(y -c t )2  + (2nH + z - [32 )  2 (y-c t )2  + (2nH + z - [ 3 , )  2 

2nil  - z + [32 2ni l  - z + [31 
- t 

( y - c t ) 2 + ( 2 n H - z + [ 3 2 )  2 ( y - c t ) 2 + ( 2 n H - z + [ 3 1 )  2 

2nH-z-[32 2nH-z-[3t }I 
+ Cv_ ~ ) - ~ u  [31)2 ( y  _ ~ )2  + ( 2 n i l  - z - [32)  2 

# [ / o F  y - o r  y--ct  
z13 --- 2n L(Y - g)2 + (z + [32) 2 ( y  - og) 2 --[- (z  -~- i l l )  2 

(21) 

(22) 

y - g  y - c t  
- -  ( y  - -  0~) 2 "~ (Z - -  [32) 2 "[ ( y  - -  0~) 2 + (Z - -  [31) 2 

+~R"{ Y-~ Y-~ 
.=t  (Y-  ~)2 + ~ n H +  z + [32) 2 (Y-  or)2 + (2nil + z + [31) 2 

y - ~  y - g  

(y - or) 2 + (2nil + z - [32) 2 I- (y _ a)2 + (2nil + z - [31) 2 

y - o r  y - g  
(y - ct) 2 + (2nil - z + flz) 2 + (y - ct) 2 + (2nil - z + [31) 2 

y - ~  y - ~ t  } 1 ( 2 3 )  
"~ (y _ ~)2 + (2nil - z - [32) 2 - (.,1; - or) 2 -1- (2nil - z - [31) 2 

6. N u m e r i c a l  resu l t s  

In this section, the variations of the displacement u parallel to the fault and the 
stresses ~12 and ~13 with the horizontal distance y from the fault for different types 
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of the contact of the layer with the half-space have been studied numerically. The 
fault causing the deformation of the layer is a very long vertical strike-slip fault with 
finite vertical extent lying in the layer. For simplicity, ~ = O, 81 = 1t/4 and 82 = 3tl/4 
are taken so that the fault passes through the z-axis (figure 2). 

Figures 3-5 exhibit the variation of the displacement u with the horizontal distance 

0 
z ' 0  ~ Y  

z - H  

P ~ P l ;  

f 

ELASTIC LAYER 

HALF-SPACE 

z 

Figure 2. Section x = 0 of the model with finite vertical strike-slip fault (0 ~ ~1 ~< z ~ P2 ~< H) 
in the elastic layer. 

~ t 
0.26 | 

o22 

o.o: 
0 0,4 0.8 1,2 1.6 2 2.4 Z.6 

DISTANCE FROM THE FAULT 

Figure 3. Variation of the dimensionless displacement u/U o with the dimensionless 
horizontal distance y/H from a vertical strike-sfip fault for z = O. (~) denotes that  the curve 
is for a 'smooth-rigid' interface while (~) for a 'rough-rigid' interface. 3A, 3B and 3C denote 
the curves for welded interface corresponding to the rigidity contrast S ffi 0-5; 1.5 and 1, 
respectively. 
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Figure 4. Variation of u/U o with y/H for z = 0-5H. Notation as in figure 3. 
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Variation of u/Uo with y/H for z = H. Notation as in figure 3. Figure 5. 

f rom the fault for three different positions of  the observer, namely, z = O, H/2 and H. 
In  each figure, curves corresponding to different types of  the interface are drawn. For  
the welded contact,  three values of the ratio of  rigidities of the elastic layer and the 
elastic half-space are taken, namely, ~ = 1/2, 1 and 3/2. S = 1/2 implies that  the elastic 
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layer is of the low rigidity as compared to the rigidity of the elastic half-space while 
S = 1 means that the medium (z/> 0) is a uniform half-space. It  is found that the 
displacement due to 'welded' contact lies between the displacements due to ' smooth-  
rigid' contact and 'rough-rigid' contact for different values of S. 

The variation of the stress z13 for two values of z(z = HI2 and z = H) has been 
shown in figures 6-7. In each figure, curves corresponding to the three values of 
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0 0 . 6  0 $ 1 .2  1 . 6  2 2 .&  2 4 ;  
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Figure 6. Variation of stress H~13/I~Uo with y/H for z = ff5H. Notation as in figure 3. 
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Figure 7. Variation ofHtt3/pU o with y/H for zffiH. Notation as in figure 3. 
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S(S = 1/2, 1 and 3/2) for the welded interface have been drawn. In the interval, 
0~<y ~<2H, the value of the stress due to welded interface lies between the 
corresponding values due to 'smooth-rigid' interface and 'rough-rigid' interface. 

Figures 8-13 show the variation of the stress z12 with the distance y. In these 
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Variation of stress H~I 2//~Uo with y/H for z = 0 and S = 1/2. Notation as in figure 3. 
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Figure 9. Variation of H~tz/gUo with y/l-I for z = 0 and S = 3/2. Notation as in figure 3. 



266 Nat Ram Garg and Raj Kumar Sharma 

0 't ~ 3A ""---"" 
-0 .~  

~ -o.:u// 
~ 

-1 .4 , i i I i ! i I i i 

0 0.4 0.8 12 1.8 2 2.4 

- -  DISTANCE FROM THE FAULT 

Figure 10. Variation ofH~12/pU o with y/H for z = 0"SH and $ = 1/2. Notation as in figure 3. 
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Variation of Hz12/PUo with y/H for z = 0"SH and $ ffi 3/2. Notation as in figure 3. 
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figures, three locations of the observer at z = 0, 1-1/2 and H are considered. For the 
welded interface, two values of the ratio S(S = 1/2 and S = 3/2) are considered. It is 
noted that the stress z12 almost vanishes at the interface when the interface is of the 
'rough-rigid' type. 

7. Conclusions 

Without using the method of images, analytic expressions for the displacement and 
stresses at any point of an elastic layer due to a very long vertical strike-slip fault in 
it are obtained in the present paper. Different cases arising out of the coupling of the 
iower boundary of the layer in different ways to a half-space are considered in detail. 
In engineering, elastic layer represents an elastic plate while in geophysics it represents 
a lithosphere. One type of the coupling of an elastic layer with an elastic half-space 
corresponds to the realistic earth model-lithosphere lying over an asthenosphere. 
Lastly, the influence of the different kinds of the interface upon the deformation field 
is studied numerically. 
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