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Deformation of anisotropic Fermi surfaces due to electron-

electron interactions.

R. Roldán1, M.P. López-Sancho1, F. Guinea1 and S.-W. Tsai2

1 Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid,

Spain.
2 Department of Physics, University of California, Riverside, CA 92521, USA

PACS. 74.70.-b – Superconducting materials.
PACS. 71.27.+a – Strongly correlated electron systems.
PACS. 71.18.+y – Fermi surfaces.

Abstract. – We analyze the deformations of the Fermi surface induced by electron-electron
interactions in anisotropic two dimensional systems. We use perturbation theory to treat, on
the same footing, the regular and singular regions of the Fermi surface. It is shown that,
even for weak local coupling, the self-energy presents a nontrivial behavior showing momentum
dependence and interplay with the Fermi surface shape. Our scheme gives simple analytical
expressions based on local features of the Fermi surface.

Introduction. – An open question in the study of the interactions in anisotropic metallic
systems is the deformation of the Fermi surface induced by the interactions. The Fermi surface
is one of the key features needed to understand the physical properties of a material. Recent
improvements in experimental resolution have led to high precision measurements of the Fermi
surface (FS), and also to the determination of the many-body effects in the spectral function,
as reported by ARPES experiments [1]. The interpretation of experiments in anisotropic
strongly correlated systems remains a complex task [2].

The FS depends on the self-energy corrections to the quasiparticle energies, which, in
turn, depend on the shape of the Fermi surface. Hence, there is an interplay between the self-
energy corrections and the FS topology. For weak local interactions, the leading corrections
to the FS arise from second order diagrams. The self energy, within this approximation, can
show a significant momentum dependence when the initial FS is anisotropic and lies near hot
spots (see below). This simultaneous calculation of the FS and the second order self energy
corrections is a formidable task. Many approaches have been used to study this problem like
pertubation theory [3], bosonization methods [4, 5], or perturbative Renormalization Group
calculations [6–8], and the cellular dynamical mean-field theory (CDMFT), an extension of
Dynamical Mean Field Theory [9].

In this work, we calculate perturbation theory corrections and use Renormalization Group
arguments [10, 11] in order to study analytically the qualitative corrections to the shape of
the FS induced by the electron-electron interaction. This method allows us to classify the
different features of the FS from the dependence of the self-energy corrections on the value of
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a high energy cutoff, Λ, defined at the beginning of the Renormalization process. As it will
be shown later, one can also analyze the effects of variations in the Fermi velocity and the
curvature of the non interacting FS on the self-energy corrections.

We will study two dimensional Fermi surfaces, and we will consider mostly the t − t′

Hubbard model, although the calculations do not depend on the microscopic model which
gives rise to a particular Fermi surface. We define the model in the next section. Then,
we describe the way the corrections induced by different features of the FS depend on the
high energy cutoff Λ. Next, we present a detailed calculation of the changes expected for a
regular FS, and make contact with results from ARPES experiments on cuprates. At the
end we highlight the most relevant aspects of our calculation, and compare them with results
obtained using alternative schemes.

The model. – The hamiltonian of the t− t′ Hubbard model is:

H= t
∑

s;i,j n.n.

c†s,ics,j + t′
∑

s;i,j n.n.n.

c†s,ics,j + U
∑

i

ni↑ni↓ (1)

where cs,i(c
†
s,i) are destruction (creation) operators for electrons of spin s on site i, ni,s =

c†s,ics,i is the number operator, U is the on-site repulsion, and t and t′ are the nearest and next-
nearest neighbors hopping amplitudes, respectively. The Fermi surfaces of the non interacting
systems are defined by:

ǫF = ε(~k) = 2t [cos(kxa) + cos(kya)] + 4t′ cos(kxa) cos(kya) (2)

where a is the lattice constant (see Fig.[1]).

Fig. 1 – Qualitative picture of the evolution of the FS with filling from almost isotropic to convex,
going through a FS exhibiting inflexion points, and one with van Hove singularities (left panel,
t′ = −0.3t). A region with almost perfect nesting is shown in the right panel (t′ = 0.3t).

Assuming that t < 0, t′ > 0 and |2t′| < |t|, the Fermi surface is convex for −2t + 4t′ ≤
ǫF ≤ ǫ0 = −8t′ + 16t′3/t2. For −8t′ + 16t′3/t2 ≤ ǫF ≤ −4t′ the Fermi surface shows eight
inflection points, which begin at kx = ky = k0 = a−1 cos−1(−2t′/t) and move symmetrically
around the (±1,±1) directions, towards the center of the edges of the square Brillouin zone,
(0,±π), (±π, 0). For ǫF = 4t′ the Fermi surface passes through the saddle points (van Hove
singularities) located at these special points of the Brillouin zone. For 4t′ < ǫF ≤ −4t, the
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Fermi surface is convex and hole like, centered at the corners of the Brillouin Zone, (±π,±π)
(See Fig.[1]). Finally, when t′ = 0, the model has particle hole symmetry, and the Fermi
surface shows perfect nesting for ǫF = 0.

The effects of the Hubbard interaction when the Fermi surface is near perfect nesting
[12–16] or near a Van Hove singularity [17–24] have been extensively studied. Anomalous
effects are also expected when the Fermi surface has inflection points [25, 26].

Self-energy corrections to singular Fermi surfaces. – The corrections to the non interact-
ing Fermi surface are given by the real part of the self energy. Using second order perturbation
theory, the self energy is given by the diagrams shown in Fig.[2]. In the following, we assume
that the effect of the high energy electron-hole pairs on the quasiparticles near the Fermi sur-
face have been integrated out, leading to a renormalization of the parameters t, t′ and U of the
hamiltonian, neglecting the possibility that other couplings are generated. Thus, the hamil-
tonian, eq.(1), describes low temperature processes below a high energy cutoff, Λ ≪ t, t′. For
consistency, U ≤ Λ. We also assume that the Fermi surface of the interacting system exists,
and that it has the same topology as that of the non interacting system.

The frequency dependence of the imaginary part of the self energy in a nested region of the
Fermi surface, or at van Hove singularities is known to be linear, unlike the usual quadratic
dependence expected in Landau’s theory of a Fermi liquid.

ImΣ2(~k, ǫ~k) ∝ |ǫ~k| (3)

where ǫ~k = ε(~k)− ǫF. Away from the hot spots, the leading contribution to the two loop self
energy, when the Fermi surface is near a van Hove singularity, comes from diagrams where the
polarizability bubble, Π(~q, ω), involves transitions near the saddle point [27]. Near a nesting
situation, the polarizability at low momenta is similar to that of a one dimensional Fermi
liquid. The susceptibilities can be written as:

Π(~q, ω) ∼







W−1Π̃vH

(

ω
m∗|~q|2

)

van Hove

W−1Π̃1D

(

ω
vF|~q|

)

nesting
(4)

where vF is the normal Fermi velocity in the nesting situation, and m∗ is an average of the
second derivative of the bands at the saddle point. Note that, in both cases, the density of
states is proportional to W−1 ∼ t−1, t′−1.

The imaginary part of the second order self energy near the regular regions of the Fermi
surface can be written as [27]:

ImΣ2(~k, ǫ~k) ∼
∫ ǫ~k

0

dω

∫ qmax

0

dq ImΠ(q, ω) (5)

( a ) ( b )

Fig. 2 – Low order self energy diagrams. Left: Hartree diagram. Right: two loop correction.
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where qmax ∼ |Λ|/vF, and vF is the Fermi velocity in these regions. Using eq.(4), we find:

ImΣ2(~k, ǫ~k) ∝
{

ǫ
3/2
~k

van Hove

ǫ2~k nesting
(6)

We recover the usual Fermi liquid result for the regular parts of the Fermi surface near almost
nested regions. This result arises from the fact that the small momentum response of a quasi–
one–dimensional metal does not differ qualitatively from that predicted by Landau’s theory
of a Fermi liquid.

Finally, near an inflection point, we can use the techniques developed in [25,26] to obtain:

ImΣ2(~k, ǫ~k) ∝ ǫ
3/2
~k

(7)

It is finally worth noting that there is another special point, where the Fermi surface changes
from convex to concave and a pair of inflection points are generated for ǫF = ǫ0 and ~k ≡ (k0, k0)

defined earlier. At this point, the imaginary part of the self energy behaves as ImΣ2(~k, ǫ~k) ∝
ǫ
5/4
~k

.
We can obtain the real part of the self energy from the imaginary part by a Kramers-

Kronig transformation, and restricting the frequency integral to the interval 0 ≤ ω ≤ Λ. We
obtain:

ReΣ2(~k, ǫ~k) ∝ −g2|Λ| ×







log2
(

Λ
ǫ~k

)

van Hove

log
(

Λ
ǫ~k

)

nesting
(8)

where the negative sign is due to the fact that it is a second order contribution in perturbation
theory, and g is a dimensionless coupling constant of order U/W . The sign is independent of
the sign of U in eq.(1). In the regular parts of the Fermi surface, eq.(6) leads to:

Re(~k, ǫ~k) ∝
{

−g2 |Λ|3/2

W 1/2 van Hove

−g2 |Λ|2

W nesting
(9)

where the additional powers in W arise from the m∗ and vF factors in the susceptibility, eq.(4).
In the limit Λ/W → 0, the different dependence on Λ of the self-energy corrections at

different regions of the Fermi surface is enough to give a qualitative description of the changes
of the Fermi surface. For instance, when the non interacting Fermi surface is close to the
saddle point, ~k ≡ a−1(±π, 0), a−1(0,±π), the self-energy correction is negative and highest in
this region. Note that the logarithmic divergences in eq.(8) are regularized by the temperature
or elastic scattering.

In order to remove the Fermi surface from a van Hove point or nesting situation, a large
number of electrons must be added to the regular regions. When the points of the FS near
these hot spots are at distance k from the hot spot, the change in the self energy needed to
shift the Fermi momentum by an amount δk is, using eq.(8), δΣ ∝ g2Λ δk

k with additional
logarithmic corrections near a van Hove singularity. Near the regular regions of the Fermi
surface, a shift in energy of order δΣ leads to a change in the momentum normal to the
Fermi surface of magnitude δkreg ∼ δΣ/vF. The area covered in this shift gives the number
of electrons which are added to the system near the regular regions of the Fermi surface. We
find δn ∼ kmaxδkreg ∼ g2 kmaxΛ

vF
δk
k where kmax ∼ a−1 determines the size of the regular regions

of the Fermi surface. The value of δn diverges as the Fermi surface moves towards the hot
spot, k → 0. Hence, the number of electrons needed to shift the FS away from the hot spot
also diverges. This analysis essentially reproduces the calculation at fixed chemical potential
in the presence of a reservoir with regular self-energy corrections given in [24, 28] (a different
analysis [29] does not make use of a reservoir).
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Self-energy corrections to regular Fermi surfaces. – We study now the system at a filling
which yields a curved FS, slightly anisotropic, in the absence of singularities. Near the Fermi
surface the electronic dispersion can be approximated by:

ǫ~k = vFκ⊥ + βκ2
‖ (10)

where κ‖ is the momentum parallel to the FS, κ‖ = (~k− ~kF )‖, κ⊥ is the momentum perpen-

dicular to the FS relative to kF , κ⊥ = (~k−~kF )⊥, vF is the Fermi velocity vF = n̂⊥ ·∇ε(~k) and

β is related to the local curvature of the Fermi surface b = n̂‖ ·
(

∇2ε(~k)
)

n̂‖, by β = bvF /2.

The Fermi velocity vF and the FS curvature b, are functions of t, t′, ǫF and the position along
the Fermi line. We assume that the main contribution to the self energy arises from processes
where the momentum transfer is small, or from processes which involve scattering from the
region under consideration to the opposite part of the Fermi surface, i. e., backward scatter-
ing. This assumption can be justified by noting that the Hubbard interaction is momentum
independent, so that the leading effects are associated to the structure of the density of states.
The processes discussed here have the highest joint density of states.

Using the parametrization in eq.(10), the imaginary part of the self energy, which describes
the decay of quasiparticles in the region under consideration, is independent of the cutoff Λ.
The contribution from forward scattering processes is:

ImΣ2(~k, ω) =
3

64

U2a4√
2π2

ω2

v2F |β|
. (11)

The quadratic dependence of energy is expected, and consistent with Landau’s theory of a
Fermi liquid. This contribution diverges as vF → 0, that is, when the Fermi surface approaches
a van Hove singularity, or as |b| → 0 which signals the presence of an inflection point or
nesting. The contribution due to backward scattering is exactly the same as that from forward
scattering, eq.(11), with the same numerical prefactors.

Using a Kramers-Kronig transformation, and integrating again in the interval 0 ≤ ω ≤ Λ,
we obtain:

ReΣ2(~k, ω = 0) = − 3

64

U2a4√
2π3

Λ2

v2F |β|
(12)

This expression gives the leading corrections to the shape of the FS. Notice that both, vF and
β, are momentum dependent.

In Fig.[3](a)-(b), the bare (thin black line) and renormalized (thick red line) Fermi surfaces
are shown at two different densities in the first quadrant of the Brillouin zone (BZ) for the
parameter values t = −1, t′ = −0.3t, reminiscent of hole-doped cuprates. At the density
shown in Fig.[3](a) the self-energy corrections are stronger in the less curved regions of the FS
around the diagonal parts of the BZ. This correction coincides with that found in [30] for the
renormalization of a flat FS by a two-loop field theory RG approach, where interactions induce
a small curvature to the bare flat FS. When we change the filling, the FS shape varies, and
close to half-filling the FS has the form shown in Fig.[3](b). The change in shape qualitatively
agrees with the doping evolution of kF measured by ARPES on cuprates [31, 32]. The self
energy corrections, close to half-filling, enhance the hole-like curvature and flatten the FS
close to the (π, 0) and (0, π) points of the BZ as shown in Fig.[3](b).

In Fig.[3](c) we show the FS corresponding to t = −1, t′ = 0.3t (t/t′ > 0) reminiscent of
the electron-doped cuprates, close to half-filling, at a similar density as the one represented
in Fig.[3](b). The self-energy corrections here are stronger at the most curved regions of the
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(p,p)(0,p)

G (p,0)

( a )

(p,p)(0,p) (p,p)(0,p)

G (p,0)

( b )
G (p,0)

( c )

Fig. 3 – Deformations induced by the interactions on the FS of the t− t′ Hubbard model, in the first
quadrant of the Brillouin zone. Thin black line represents the unperturbed FS while the thick red line
represents the FS corrected by the interaction, the shadowed region corresponds to their difference.
For t′/t = −0.3 (a): high doping range and (b) close to half filling. For t′/t = +0.3 (c)close to half
filling.

FS, in the proximity of the saddle points (where vF diverges). The corrected FS is closer to a
nesting situation than the bare FS. Our results, near half-filling, are in overall agreement with
those of [9], although we find that the self energy corrections are stronger at the antinodal
region in both hole-like and electron-like Fermi surfaces.

Conclusions. – We have presented a simplified way of taking into account the self-energy
corrections to the Fermi surface. We have made use of the different dependences of the self
energy on the high energy cutoff in order to analyze the main features of the changes of the
FS. The results suggest that the main self-energy corrections, which are always negative, peak
when the FS is close to the (±π, 0), (0,±π) points in the Brillouin zone. If these contributions
are cast as corrections to the hopping elements of the initial hamiltonian, we find that the
nearest neighbor hopping, t, is weakly changed (as it does not contribute to the band dispersion
in these regions). The next nearest neighbor hopping, t′ which shifts the bands by −4t′ in
this region, acquires a negative correction. This implies that the absolute value of t′ grows
when t′ > 0, or decreases, when t′ < 0, in reasonable agreement with the results in [9]. Note
that the tendency observed in our calculation towards the formation of flat regions near these
points, when analyzed in higher order perturbation theory, will lead to stronger corrections.
Our results also confirm the pinning of the FS near saddle points, due to the interactions. The
analysis is consistent with the measured Fermi surfaces of the cuprates [1] and qualitatively
agree with the doping evolution reported by ARPES [1, 31, 32].

Finally the analysis presented here is valid only at weak coupling, and we do not consider
corrections to the interactions or to the wave-function renormalization. The main goal of this
scheme is that can be used with different models and the expressions obtained are analytical
and related to the local features of the non-interacting FS in a simple way, so that they can
be readily used to get an estimate of the corrections expected.

∗ ∗ ∗
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