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1 Introduction and formulation of local rigidity

1.1. Let G be a Lie group, andH a closed subgroup o&. If a discrete
subgroupl” of G acts properly discontinuously and freely @yH, then the
double coset spacE\G/H carries naturally a manifold structure such that the
quotient mapG/H — I'\G/H is locally diffeomorphic. The manifold\G/H

is said to be &Clifford-Klein form of G/H. If it is compact, thenl” is said to

be auniform lattice for G/H . A typical example is a compact Riemann surface
M, with genusg > 2, which is biholomorphic to a compact Clifford-Klein form
of the Poincag disk G/H ~ SL(2,R)/SO(2) by the uniformization theorem.
It is important from geometric view point that a Clifford-Klein forii\G/H
inherits anyG-invariant local geometric structure @h/H such as (indefinite)-
Riemannian metric, complex structure, symplectic structure, causal structure and
S0 on.

1.2. Our interest is in the indefinite-Riemannian Clifford-Klein forms. But, we
start with a brief review of classical results on Riemannian Clifford-Klein forms.
Let G be a real reductive linear Lie group akll a maximal compact sub-

group ofG. The homogeneous manifod/H carries aG-invariant Riemannian
metric and is called &iemannian symmetric spacthen,G/H always admits

a compact Clifford-Klein form by a theorem of Borel, Harish-Chandra, Mostow,
and Tamagawa ([4, 5, 27]). The local rigidity theorem for Riemannian symmetric
spaces due to Selberg and Weil ([30, 34]), later extended by Mostow, Margulis
and some others, asserts that a compact Clifford-Klein foi /H is locally

rigid (see Sect. 1.5 for definition) except for the Poirgcdisk in the irreducible
case. In other words, non-trivial deformation BfG/H exists in this case only
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if dmG/H = 2, namely, only if\G/H ~ M, (¢ > 2). The study of the
corresponding deformation theory is nothing but Treéchniiller theory.

1.3. More generally, letG be a real reductive linear Lie group, amtl a
subgroup that is reductive i6. We sayG/H is a homogeneous manifold of
reductive typeSemisimple symmetric spaces suchSaén, R)/SO(p, n — p) are
typical examples (see [3, 7] and references therein).

If G/H is of reductive type, then there exists a nat@ahvariant indefinite-
Riemannian metric oG /H. On the other hand3/H does not always admit
compact Clifford-Klein forms. In fact, it can happen that only finite discrete sub-
groups of G can act properly discontinuously dad/H. This is so called the
Calabi-Markus phenomenomamed after their first discovery in the Lorentzian
manifold SO(n, 1)/SO(n — 1, 1) ([6, 13, 21, 35]). The existence problem of com-
pact Clifford-Klein forms of indefinite-Riemannian homogeneous manifolds has
been actively studied in the last decade by various methods, such as the criterion
of the Calabi-Markus phenomenon, characteristic classes, cohomology of dis-
crete groups, symplectic geometry, ergodic actions, decay of matrix coefficients,
and so on (cf. [1, 2,13-15, 18, 19, 21, 23, 32, 36]). But the classification of homo-
geneous manifolds having compact Clifford-Klein forms is still unsolved even
for semisimple symmetric spaces (we recall that the classification of semisimple
symmetric spaces was done by Berger [3] about 40 years ago).

1.4. We recall the known construction of a compact Clifford-Klein form of a
homogeneous manifold of reductive type. Assume that there exist subgfoups
andL of G such that the following three conditions are satisfied:
i) L acts properly orG/H.
i) The double coset spade\G/H is compact.
iii) I'is a torsion free, cocompact discrete subgroup..of

Then,I"\G/H is a compact Clifford-Klein form of5 /H. If L is a reductive
subgroup, then simple criteria for (i) and (ii) are obtained in [13] (see Sect. 2.2)
and there always exists satisfying (iii). A list of homogeneous manifolds/H
admitting compact Clifford-Klein forms by this method is presented in [18].
Conversely, it is conjectured that there exists a reductive subdraaiisfying
(i) and (i) if G/H (of reductive type) admits a compact Clifford-Klein form.
The conjecture is true for all examples known so far (including Riemannian cases
and group manifold cases).

1.5. Let us introduce a rigorous definition of tHecal rigidity for the ho-

mogeneous manifolés/H. Let G be a Lie group and” a finitely generated
group. We denote by#4(I",G) the set of all homomorphisms df to G. We

equip. #4(I", G) with the topology of pointwise convergenceé(I’, G) is a real

analytic variety ifI" is finitely presented. Lel be a closed subgroup &. We

define

R(I,G,H) = {ue.#4(I,G): uis injective, and
u(I") acts properly discontinuously da/H }.
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Then the double coset spag&/)\G/H forms a family of Clifford-Klein forms
parametrized by € R(I", G, H), provided is torsion free.
There is a natural action & on.#4(I",G) by inner automorphisms:

(g-u)M=gu(m)gt, geG,yeLue 4I,G).

This action stabilize®R(I", G,H). We say that a homomorphisme R(I",G,H)

is locally rigid as a discontinuous groupcting onG/H if the G-orbit through

u € R(I,G,H) is open inR(I,G,H). This terminology coincides with the
standard one iH is compact (e.g. [29, 34]).

1.6. Our object of study is the local rigidity of a compact Clifford-Klein form.
The failure of local rigidity leads to a theory of the moduli space of specific
geometric structures that model on a homogeneous mar@gld. Previous to
this, a few examples where local rigidity fails were studied in low dimensions:
1) The Poinca diskG/H = SL(2, R)/SO(2).

2) G/H =G’ x G’/ diagG’ with G’ = SL(2,R) ([9, 22]).

3) G/H =G’ x G’/ diagG’ with G’ = SL(2, C) ([8]).

These cases concern with the deformation of complex structures of a closed
Riemann surface with genus 2 (the Teichniller space), 3 dimensional Lorentz
structures, and 3 dimensional complex structures, respectively.

The failure of local rigidity might be also of interest in connection with spec-
tral geometry for indefinite-Riemannian manifolds (e.g. an indefinite-Riemannian
analog of the Phillips-Sarnak conjecture [28]).

1.7. This paper proves that there exists non-trivial deformation of a uniform
lattice even in higher dimensional compact Clifford-Klein forfi§G/H con-
structed in Sect. 1.4.

Our main results are Theorem 2.4 and Corollary 2.6. With minimal notation,
we just illustrate here by typical cases in the following two theorems:

Theorem A. Suppose GH = G’ x G’/diagG’ with G’ a simple linear Lie
group. Then the following two conditions are equivalent.

i) There exists a uniform lattic&’ of G’ such thatl” x 1 € R(I",G,H) is not
locally rigid as a discontinuous group acting on/@& .

ii) G’ is locally isomorphic to SQh, 1) or SU(n, 1).

Theorem B. The following homogeneous manifolds admit uniform lattices that
are not locally rigid (n> 1):
SQ(2n, 2)/SQ(2n, 1), SU(2n, 2)/Sp(n, 1), SO(4, 3)/G2(R), SO(4,4)/Spin(4, 3).

All of the above homogeneous manifolds cafyinvariant indefinite-Rie-
mannian metric. It is in sharp contrast to the Selberg-Weil local rigidity theorem
in the Riemannian case.

We note that known examples in (2) and (3) in Sect.1.6 deal @ith=
SL2,R) ~ SO(2,1) ~ SU(1,1), G’ = SL2,C) ~ SO(3,1), respectively
(namely,n = 1, 2 or 3 in the condition (ii) in Theorem A). Much more than
Theorems A and B, we shall give a quantitative estimate of the deformation
parameter that allowg” to deform without destroying properly discontinuous
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actions. The quantitative estimate will be described in terms of the diameter of
a certain compact Riemannian manifold and the “angle” betwéemndL with
notation in Sect. 1.4. This is stated in Theorem 2.4 and Sect. 3.7. The proof of our
main results contains the affirmative solution of a generalization of a conjecture
of Goldman [9] (see Remark 2.5), which was originally posedsm). In
particular, there are at leas{(I") rankG’ parameters for the codimension of the
G-orbit throughl” x1 € R(I, G, H), namely, parameters for non-trivial deforma-
tions preserving properly discontinuous actions. Our proof is based on the recent
progress on properly discontinuous actions ([1,17]) and on classical results of
Milnor about the fundamental group of a negatively curved manifold ([26]).

We note that the deformation given in this paper produces new compact
Clifford-Klein forms I'\G/H, namely, the manifolds that enjoy the same local
properties and the same fundamental groups. A distinguished feature i5 that
does not necessarily have the property:

(1.7) the Zariski closure of" acts properly orG/H,
whereas previous examples in [13,21] (see Sect. 1.4) have the property (1.7).

It should be noted that the property (1.7) is also important in the non-reductive

case such as the Auslander Conjecture wi@rfel = GL(n,R) x R"/GL(n, R).

1.8. We remark that there also exist compact Clifford-Klein forms with
indefinite-Riemannian metric where local rigidity holds.

Proposition. The following homogeneous manifolds admit uniform lattices that
are locally rigid (n> 1, m > 2):

SU(2n, 2)/U (2n, 1), SO4m, 4)/SO(4m, 3), SO(4n, 4)/Sp(n, 1).

2 Deformation of a uniform lattice for G/H

2.1. Let G be a real reductive linear Lie grouf, a maximal compact sub-
group of G, and# the corresponding Cartan involution. Then we have a Cartan
decomposition

g=t+yp
of the Lie algebrgg of G. We fix a maximal abelian subspaeef p. We put

R-rankG := dimg a, d(G) := dimg p.
Let A be the analytic subgroup @& corresponding ta and we write
log:A—uq,
for the inverse map of the diffeomorphism exp +—+ A. Let

WG = NK(CL)/ZK(CL)
= {geK:Ad(gJa=a}/{geK :Ad(g)Y =Y forY €a}.
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ThenWs acts ona effectively. The finite groupNg is isomorphic to the Weyl
group for the restricted root systel(g, a) if G is connected. Associated to a
subsetC of G, we define al\-invariant subset ofi by

a(C) := log(A N KCK). (2.1)

2.2.  We recall how we find a uniform lattice for an indefinite-Riemannian
homogeneous manifolé/H whereH is non-compact.

Suppose thaH is af-stable closed subgroup of a real reductive linear Lie
group G with finitely many connected components. Thidnis also a real re-
ductive linear Lie group with Cartan involutiofiy. The corresponding Cartan
decomposition of the Lie algebiaof H is given by

b=({OnNe+({HNp).

We have dfl) = dim(h N p). We take a maximal abelian subspacén h N p.
Thenb is not necessarily contained i but there exists an elemenbf K such
that Ad@g)b C a. We fix suchg and putay := Ad(g)b. Thenay is a subspace of
a that is unique up to conjugation ;. The definition (2.1) amounts to

CL(H):W6~CLH.

Analogous notation is used foréastable closed subgroupof G.
Now, we consider the following conditions:

(2.2.1) H, L are¢-stable closed subgroups of a real reductive linear Lie group
G with finitely many connected components.

(2.2.2) a(H) N a(L) = {0}.

(2.2.3) df) +d(L) = d(G).

(2.2.4) I' is a cocompact discrete subgrouplofvithout torsion.

Under the above four conditiong; acts properly discontinuously and freely
on G/H such thatI"\G/H is a compact Clifford-Klein form ofG/H (see
[13], Theorem 4.1 and Theorem 4.7). The assumption (2.2.1) assures that there
exists aG-invariant (indefinite-)Riemannian metric 08 /H with signature
(dimp—dim(pnp), dime—dim(enp)). For instanceSO(2n, 2)/U (n, 1) carries an
SQ(2n, 2)-invariant indefinite-Riemannian metric of signature (@ —n). If H
is a maximal compact subgroup Gf(i.e. ¢ = h) so that the metric is Riemannian,
then we can take := G satisfying (2.2.1)—(2.2.3), which explains the well-known
result ([4,5,27]) on the existence of compact Clifford-Klein forms of Rieman-
nian symmetric spaces in the framework here. A typical indefinite-Riemannian
example satisfying (2.2.1)—(2.2.3) is given B/H = SO(2n,2)/U(n,1) and
L = SO(2n,1). We refer to [18], Corollary 4.7 for a list oL(G, H) satisfying
the above assumptions (cf. [13, 21]).

2.3. In the setting (2.2), we put’ := Zg(L), the centralizer oL in G. For
p € Hom(I', L), we form a subgroup o& by

I,={y()eG:yerl}.
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Denoting by1 the trivial representation of’, we have obviously; = I'.

Example. SupposeG’ is a semisimple Lie group having no center, and we set
G = G’ x G, H := diagG’, andL := G’ x 1. Then the conditions (2.2.1)—
(2.2.3) are satisfied. Suppoge is a countable subgroup @’. We note that

L' =1x G and.24(I" x 1,L’) ~ Hom(I", G’). Any torsion free discontinuous
group (C G’ x G’) acting on a group manifol&’ ~ G/H is of the formI,

up to switch of factor if and only iiR-rankG = 1 (see [22] forSL(2, R); [16],
Corollary 3.4 for the general case).

2.4. Here is our main theorem:

Theorem. Suppose we are in the setting (2.2) and retain the notation as above.
There exists an open neighbourhood®\ Z(I", L) of the trivial representatiod
such thatl’, acts properly discontinuously and freely oryi® and thatl,\G/H
is a compact Clifford-Klein form of @H for anyp € W.

The quantitative estimate &f will be given in (3.7) and an easiest case of
W is illustrated in Sect. 3.8.

2.5. Remark.W. Goldman constructed “non-standard Lorentz space forms” by
proving a similar result to Theorem 2.4 in the special case where

G/H =G’ x G'/diagG’  with G’ = SL(2, R)

under the assumption that the image fs contained in a one dimensional
abelian group ([9]). He conjectured that this assumption on Imagmuld be
removed (see Remarks (i) in loc. cit.). Theorem 2.4 affirms his conjecture (for
any linear real reductive group’), with an explicit estimate of the open Sat

(see (3.7)).

2.6. Corollary. Suppose we are in the setting (2.2.1), (2.2.2) and (2.2.3). Assume
that [ containsso(n, 1) (n > 2) or su(n,1) (n > 1) as a normal factor and that

I" # 0. Then there exists a discrete subgralipf G which is not locally rigid as

a cocompact discontinuous group acting ofHb.

3 Proof of Theorems

3.1. Suppose we are in the setting of Sects. 2.2 and 2.3. In particular, we recall
L = L andL’ = Zg(L). We take a maximal abelian subspacef p such that

a. :=anlanda = anl are maximal abelian subspacespafi [ andp N I/,
respectively. Note that(L) = W - a.. We fix an AdG)-invariant non-degenerate
bilinear form (, ) on g, which is positive definite op and negative definite on

¢ such thatt is orthogonal top (e.g. the Killing form if G is semisimple). We
define the norm omp by

IY|:=(Y,Y)3, for Y € p.
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We identify the tangent space @t= eK € G/K with p. Then(, }|,x, induces a

G-invariant Riemannian metric on the homogeneous s@&d€¢, which makes

G/K into a Riemannian symmetric space. We writé,y) for the distance

between two pointx,y in G/K, and d(A, B) for the distance between two
compact subsetd, B ¢ G/K. Let X := L/L N K, which is a totally geodesic
submanifold ofG /K. We set

B(o;R) :={x € X : d(x,0) < R}.

Supposel” is a cocompact discrete subgrouplofvithout torsion. Lets be the
diameter of the compact Clifford-Klein formr\X ~ I"'\L/K NL, on which the
Riemannian metric is induced frox. We define:
(3.1.1) F {v € I' : vB(0;5) N B(0;9) # 0},
(3.1.2) vr min d(vB(0; §), B(0; 8)).

yeI'\F

We note thaf- is a finite set of generators df. We write
l=lg :I"'—= N
for the word length with respect to the generating et
3.2. We define a function o by
v G =R, g =k expX)k: — |X],
whereks, k; € K andX € a. Here are some elementary facts abput

Lemma.
1) ¢ is well-defined and»(g) =d(g - 0,0) for g € G.

2) ©(99") < plg) +ly) forg, g’ € G.
3) ¢(g) > 0foranyg € G. Furthermore(g) = 0if and only ifg € K.

Proof. Supposgy = k; expX)ky with ki, k, € K andX € a. Then we have

d(g-0,0) = d(kiexpX)k;-0,0) =d(expX)kz -0, (k) *-0)
= d(expX)-0,0) = [X],

proving (1). Next, we have

d(gg" - 0,0) < d(gg’ - 0,9-0)+d(g-0,0)
d(g'-0,0)+d(g-0,0) = »(g") + ¥(9),

showing (2). The statement (3) is clear[]

3.3. Lemma (cf. [26]). For R > 0, there exists a constankTe N such that
d(x1,g-%2) > vr(l(g) — Tr)

for any %, x; € B(0; R) and for anyg € I'. Furthermore, if R= 0, we can take
TR =1

©(99')
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Proof. We take a finite subsdfr C I" such that

B(o;R) C U ~ - B(0;6)
YEIR
and define
Tr = 2Kg + 1, Kg:= maxl(y) € N.
yEIR

Let x1,% € B(0;R) andg € I'. We putk := [d(xﬁl’i}‘{'m] +1. Thend(xq, g - X2) <
vrk. We choose pointy;, . .., Yk+1 along the minimal geodesic fromy to x;
such thaty; = X1, Yk+1 = g - X and thatd(yi, yi+1) < vp for 1 <i < k. We take
v € I'withy, € 4 -B(0;0) (L <i < k+1). We may assumey, g~ y+1 € Ir.
Because

d(B(0; 8), % is1 - B(0; ) = d(vi - B(0;6), %i+1 - B(0;9)) < d(yi, Y1) < v,
we havey; ~14i41 € F from the definition ofvr. In view of

g=710(1"") - (W )9 )

we havel(g)gKR+k+KR:k+TR_1§cﬂxly,ilg-Xz)+TR_ 0

34. ForY € a andr > 0, we define a ball byB'(Y,r) :=
{Z €a:|Z—-Y|<r}, and a closed cone containing the subspacé a by

a(r) = J B'(Y.r|Y)).

YeaL

With notation in Sect. 3.1, we put
M, = rfnez?:xd(p(f) - 0,0),

for p € Hom(",L’). Here is an upper estimate of the Cartan projectiod of

Lemma. With the notation as above, ife Hom(l",L’), then we have

a(l}) C We - (aL(“V”If) +B(0; M,,)) .

Proof. Supposeyp(y) € I,. We writey = kyexp(Y)kz (ki, ko € LNK, Y € a))
andp(v) = ki exp@)k; (ki, k3 € L'NK, Z € ar/). Then

Yp(y) = Kiki exp(Y + Z)kok;
becausd. andL’ commute. It follows from Lemma 3.2 and Lemma 3.3 that
Y| =d(y-0,0) > vr((y) - 1). (34.1)

It follows from Lemma 3.2 (1) and (2) that
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1Z| =d(p(7) - 0,0) < 1(V)M,. (3.4.2)

Hence we havéz| < (1+ XM, = ™1+ M, namely,

M, Y
Y+Z € B’(Y;ﬁ
vr

)+B(O;M,) C a(M2) +B/(0;M,).
vr

This completes the proof. [

3.5. Lemma. In the setting (2.2), if M < v, thenI” is isomorphic tol,.

Proof. It suffices to show the injectivity of the map “I" — I',, v — vp(7),
providedM, < vr. Supposey € Kerj. By (3.4.1) and (3.4.2), we have

vr(l(y) = 1) < d(y-0,0) =d(0,7~"-0) =d(0, p(7) - 0) < | (7)M,..

Hence, ifM, < vr, then we have

Kerj c {7 er:l()< ”F}.
vVp — Mp
Since the right side is a finite set and since a torsion free gidufoes not
contain a finite subgroup except fe}, Kersg={e}. O

3.6. We recall the criterion for the proper actions:

Fact ([17], Corollary 1.2; see also [1]let G be a real reductive group, H a
closed subgroup, anfl a discrete subgroup. Thdnacts properly discontinuously
on G/H if and only ifa(I") N (a(H) + V) is relatively compact for any compact
subset V of.

3.7. Proof of Theorem 2.4First we note that(L) (resp.a(H)) is a finite union

of the W -orbit of the subspace im_(resp.ay) (see Sect. 2.2). Let = (H, L)

be the minimum of the angle between- ay and ay wherew runs over the
Weyl groupWs. The assumption (2.2.2) implies > 0. If sinyy > r > 0, then
ac(r)Nna(H) = {0} and @.(r) + V1) N (a(H) + Vy) is relatively compact for any
compact subsetd;, V, of a. With notation in Sect. 3.1, we define an open set in
(I, L) by

W :={pe.4(L"):d(o,p(f)0) <vrsiny foranyf € F}. (3.7)

Clearly the trivial representatioh € W. If p € W, thenM, < vrsiny < vp.
Then
a(lp) N (a(H) +V)

is relatively compact for any compact subsétof a by Lemma 3.4. Therefore
the action ofl’, on G/H is properly discontinuous by Fact 3.6.

Becausel" is isomorphic tol, by Lemma 3.5, is torsion free. Hence the
action of I, on G/H is free because it is properly discontinuous.

We recall that the cohomological dimensioniofover R denoted by cg(1”)
is the projective dimension A& as a leftR[I']-module. Equivalently,
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cdr(I") = sup(n € N : H"(I"; A) # 0 for some leffR[I"]—moduleA}.

Becausel is a uniform lattice ofL, we have cd I" = d(L) ([31]). As " ~ T,
as an abstract group, we haverdd, = cdr I. Hence, we have

cdg I, =d(L) =d(G) —d(H)

by (2.2.3). Becausé), acts properly discontinuously ¢a/H, I,\G/H is com-
pact because of Corollary 5.5 in [13]. Hence we have completed the proof of the
Theorem. O

3.8. Although our concern here is with non-abelian case, it is illustrative to
see how the general proper discontinuity condition (3.7) works in the easiest
(trivial) case, namely, in the abelian case. Gt= R? equipped with standard

Riemannian metric an#i := Ref = R <é) We fix @ := (Zl) € R2\ {0},
)
and define subgroups @& by
r=7a c L:=R7d.

In view of a(L) = R@ anda(H) = Re{, the condition (2.2.2) is satisfied if
and only ifa; # 0, which we shall assume from now on. Then the conditions
(2.2.1) — (2.2.4) are satisfied sinceHd(= d(L) = 1 and dG) = 2. The angle
Y =(H,L) (see Sect. 3.7 for definition) satisfiga’| sint) = |ay|.

With notation in Sect. 3.1, the diamet&of I'\L/(L N K) = Z&\Ra /{0}
equals| @’|, a generating subsét of I" is given by {0,+@'}, andvy = |@|.
For eachb € RR?, we define a homomorphism

pg T =G, na —nb (nez).
Sincel’ = Zg(L) = G becauses ~ R? is abelian, we have a diffeomorphism
R2 5 L) =. 4Z&,RY), B s py.
Now, the open seiV of . 4(I",L’) given in (3.7) has the form

W = {ppe. 4L L):d(o,pp(f) 0)<|@]siny, foranyf e F}
= {pp €. 4L L) d(0,p3(@)-0) < |2}
~ {? cR?: |E>\ < |a2|}.

For py € 4(I,L'), the subgroup’,. of G (Sect. 2.3) is given by
I, ={wpM€G:ivelr=2a} :{n(?+?):n GZ}.

Theorem 2.4 asserts the ,\G/H = I, \R?/R¥ is a compact Clifford-Klein
form if p € W, namely, if| b [ = v/b;” + b," < [a|. One can observe that the
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action of I',_. on G/H = IRiz/}RE> is properly discontinuous becaus® + B>
and & are linearly independent |fF>| <|a| (i.e. if pp € W).
However, this is not always the casepify ¢ W. In fact, let us putB> =

( ga ) Then,pp ¢ W becausqF)| > |ag|. We have:
A2

) I,.\G/H is non-compact it + & is rational.

i) I, \G/H is not Hausdorff ife + &, is irrational.

In either case/,. \G/H fails to be a compact Clifford-Klein form. This shows
that the conditiorp € W is critical for Theorem 2.4 in this abelian example.

3.9. Proof of Corollary 2.6.Let Ly, be the maximal semisimple normal sub-
group ofL. There exists a unique connected normal subgigupf L with the
following propertiesi /L, is compact and., is the direct product ofs, andR®
for somed. We note thats, N I' # 0. There is a finite covering

w :E;—>Ln

such that the analytic subgromﬂi1 with Lie algebrals, is a direct product of
non-compact simple linear Lie groups, s&j, x - - - x Gx. We note that at least
one of the factorsG; is locally isomorphic toSO(n, 1) or SU(n, 1) from our
assumption. We take a cocompact, torsion free subgiGupf G; for eachj.
Here, we can and do choogg such thatb(73) := dimg H(Zj;R) # 0 if Gj is
locally isomorphic taSO(n, 1) or SU(n, 1) by a theorem of Millson and Kazhdan
[25, 12]. We define

I' = Inx---x1Ig
r w(I" x 79).

We note thalbl(f) # 0. ThenI" is a cocompact torsion free subgroup Lof.

We take an open neighbourho®d C . #(I",L’) of the trivial representatiod

as in Theorem 2.4. We fix an arbitrary Cartan subgrétpf L', and write the
inclusion: :J’" — L’ and the projectionr : I' — I'/[I',I']. The dimension
of J’ is denoted by rank’ as usual. We note that the abelianizatiof{ I, I'] is

isomorphic toZ!") modulo torsion. In view of the inclusion

i :Hom(I'/[I1,d") — .4(l"), 7~ toTom,

there exists a neighbourhod’ of 1 in Hom("/[I,I'],J’) with i(W’') C W,
whereW’ is homeomorphic to a Euclidean ball of dimenshai@") rankL’ (> 0).

Supposeg'g~! = I, for somep € i(W’) andg € G. The Zariski closure of
I', denoted byl", equalsL,, while I, is contained in_L,J’. Therefore, we have
glng™t C LyJ’, which leads to

gl—sngil = Lsn

becausd. g, is the unique maximal connected semisimple subgroup,df. If
p € i(W’) is generic, then
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rank (I,Lsn/Lsn) = by(I") +d.
On the other hand,
FLsn/Lsn = QFLsng_l/gLsng_l = (gpg_l)(gl—sng_l)/gl—sng_l = Fpl—sn/l—sn .

The left side is isomorphic t@d.NHence the equality holds only ﬁl(f) =0,
which contradicts to our choice df. Thus,I" is not conjugate td’,. This shows
that I" is not locally rigid as a discontinuous group acting®pH by Theorem
24. O

3.10. Before proving Theorem A, we make some remarks on local rigidity in
Sect. 1. Assumél’ C H. Then the following is immediate from definition.
(3.10.1) R(I,G,H) C R(I',G,H").

(3.10.2) Ifu e R(I,G,H) is locally rigid for G/H’, then it is locally rigid for
G/H.

We denote byH }(I", Ad ou) the cohomology of " with coefficients in the Lie
algebrag regarded as & module under Adu. u € R(I',G, {e}) is said to be
infinitesimally rigidif H(I", Ad ou) = 0. A theorem of Weil ([34]) asserts that
(3.10.3) ifu is infinitesimally rigid, theru is locally rigid for G/{e}.

Proof of Theorem A.

(2) = (1) As in Example 2.3, we put =G’ x 1. We apply Corollary 2.6.

(1) = (2) Supposel’ is a torsion free, cocompact discrete subgroup of a
simple Lie groupG’, which is not locally isomorphic t&QO(n, 1) or SU(n, 1).
We write . := idx1 : I' - G’ x G’ so that(I") = I x {e}. Then. €
R(I",G’ x G’,diagG’). By using the local rigidity theorem due to Weil:

HYI,¢)=0 if g #sI2.R),

and the vanishing theorem of the first Betti number due to Matsushima, Kaneyuki-
Nagano, Kazhdan, Wang and Kostant ([10, 11, 20, 24, 33]):

HYI R)=0 if g’ #s0(n,1),su(n,1),

we have
HYI Adoy) =HYI ¢') ®dimg’HY(I,R) = 0

(note thatsl(2,R) ~ s0(2,1) ~ su(1,1)). Hence. € R(I,G’ x G',{e}) is
infinitesimally rigid, and therefore locally rigid as a discontinuous group acting
on G’ x G’/ diagG’ by (3.10.2) and (3.10.3). O
3.11. Proof of Theorem BWe define a subgroup of G as follows:
Case 1) L :=SU(n,1) if G/H =S0O(2n,2)/SO(2n, 1), (n > 1),
Case 2) L :=SU(2n,1) if G/H =SU(2n,2)/Sp(n, 1), (n > 1),
Case 3) L :=S0(4,1) if G/H = SO(4, 3)/Gz(R),
Case 4) L :=S0(4,1) if G/H = SO(4, 4)/Spin(4, 3).
The triple (, G, H) satisfies the conditions (2.2.1), (2.2.2) and (2.2.3) (see
Corollary 4.7 in [18]). Then the Lie algebra of the centralizeér Zg (L) is given
by
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sl(2,R) (n=1in Case 1)
'~<¢R (n > 2in Case 1, Case 2, Case 3)
s0(3) (Case 4)

Therefore all the assumptions of Corollary 2.6 are satisfied. Hence Theorem B
is proved. O

3.12. Proof of Proposition 1.8 We define a subgroup of G as follows:
Case 1) L :=Spn, 1) if G/H =SU(2n,2)/U(2n, 1), (h > 1),
Case 2) L:=Spn,1) if G/H =SO(4n,4)/SO4n, 3), (n > 2),
Case 3) L :=S0(4n, 3) if G/H =S0O(4n,4)/Sp(n,1), (h > 1).

Then the triple I, G, H) satisfies the conditions (2.2.1), (2.2.2) and (2.2.3).
We take a torsion free cocompact discrete subgrbugf L. As we remarked in
3.10, it suffices to show that is infinitesimally rigid inG, that is,

Lemma. SupposéL, G) is one of the above. If C L is a torsion free cocompact
discrete subgroup, then HI", g) = 0.

Proof. We take a fundamental Cartan subalgelpraf [, and denote by (L, \)
by the irreducible finite dimensional representationLoWith extremal weight
A€ bE.
Case 1 and Case 2) = Sp(n,1). We fix a suitable baséfi, ..., fu+1} in
v/—1h*, and fix a positive system\*([, h) such thatZ, := A*([, ) N A(p, h) =
{fi £fas1 11 <i <n}.
Case 3) SupposeL = SO(4n,3) and G = SO(4n,4). We fix a suitable
base {fi,...,fn+1} in vV—1h*, and fix a positive systemA*(I,) such that
Lo = AL ) N AP, h) = {fansr} U{fi £fonsr 1 1 <i < 2n}

The adjoint representation &fon g¢ is decomposed as follows:

gc = F (L7 fl) 2] F (L> fl + f2)7 (Case 1)
gc ~ F(Lf)®3F(L, fi+f) o 3F(L,0) (Case 2)
gc ~ F(Lf+fR)aF(Lf), (Case 3)

In any of the above cases, we have

ﬁ{a €Xo: <0¢,f1> #0}
ﬁ{a €, <Ot,f1+f2> 7&0}

ﬁ{fl + fn+1} =2>1
f{f1 £ fher, fo £ faer} =4>1,

and then
HY (I F(Lf1) =0, HYIF(Lfi+f)) =0,
by the vanishing theorem of Raghunathan ([29], Theorem 1). On the other hand,
we have
HY(I,C) =HY(I,F(L,0)) =0
in the case (2), namely, whet€ is a uniform lattice ofSp(n,1) withn > 2
([20]). Thus,H(I", gc) = 0. HenceH(I',g)=0. O
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