DEFORMATION OF CRACKED NET-REINFORCED
CONCRETE WALLS

By Zdenék P. Bazant,' F. ASCE and Byung H. Oh?

Aestaact: The deformation and crack width in concrete walls of slabs, plates,
panels, and shells reinforced by a regular rectangular net of steel bars and sub-
jected to in-plane (membrane) internal forces is analyzed taking into account
the frictional-dilatant behavior of rough interlocked cracks, and for the dowel
action of bars at crack crossings. The tension-stiffening effect, i.e., the restraint
of the bars between the cracks due to their embedment in concrete, is also
taken into account. Numerical computer studies are carried out. Reinforcement
designs obtained from equilibrium apnditions alone on the basis of either the
classical frictionless approach or the recent frictiona) (slip-free) approach are
compared in terms of the resulting crack widths. It is found that the use of
frictional equilibrium design based on a low friction coefficient (0.75) leads to
a much smaller crack width than the classical frictionless design when the re-
inforcement is laid in a direction which significantly deviates from the principal
internal force direction. The influences of bar diameter and crack spacing on
the crack width are also determined. The deformation analysis in which the
frictional dilatant behavior of cracks, the dowel action, and tension stiffening
are neglected leads to rather different values for the crack width.

INTRODUCTION

This paper analyzes the in-plane deformation of walls of concrete
slabs, plates, panels, or shells that are intersected by a system of parallel
continuous cracks. The walls are considered reinforced by a regular net
of reinforcing bars, and are subjected to given in-plane (membrane) in-
ternal forces.

The reinforcement of such walls is in practice usually designed on the
basis of equilibrium conditions alone, and no conditions on the defor-
mations are used, partly because a realistic calculation of deformations
is much more difficult. When all reinforcement is laid in directions that
deviate from the principal directions of given internal forces by more
than about 10°, the usual design method leads, however, to unaccept-
ably large cracks, as often seen in structures. Some modification of the
equilibium design method, which retains its simplicity yet gives a
smaller crack width in the case of a skew placement of reinforcement,
therefore, is desirable.
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The recently proposed frictional (slip-free) limit design of reinforce-
ment is such a method. Like in the usual design, only equilibrium con-
ditions are used. The results are identical to the classical, frictionless
design when the bars are laid in the principal directions; but when they
are laid skew the results are surprising. Equilibrium conditions indicate
a heavier, and often much heavier, reinforcement when friction is con-
sidered than when it is not (3,5). In view of this fact we may expect the
frictional design for skew reinforcement to lead to a smaller deformation
than the frictionless design. This is what we need; but is the reduction
of deformation sufficient? Can we avoid the complexity of a design
based on deformation calculations if we use the frictional equilibrium
conditions?

For walls reinforced by a regular net of bars, there seem to exist at
present no precise test data from which to directly answer these ques-
tions. There does exist, however, numerous test data on the deformation
due to cracks. A realistic incremental model (1) as well as a secant model
(4) have recently been developed to reflect the experimentally observed
behavior, chiefly the dilatancy of cracked concrete due to shear which
is caused by a slip displacement on the cracks. Therefore, an attempt
will be made here to calculate the deformations of the cracked reinforced
wall on the basis of such a model. The secant slip-dilatancy model from
Ref. 4, which is somewhat less realistic but easier to use and interpret
than the incremental model (1), is chosen for this purpose. To determine
the overall deformation of the wall, a simple method to take into account
the tension-stiffening effect due to the bond between concrete and steel,
particularly the restraining effect of the solid concrete between the cracks
on the overall axial extension of the steel bars, and also the effect of the
dowel action of the steel bars at crack crossings, will be developed.

The present problem has already been studied analytically by A.
Gupta (11) and by A. Pitonisk (Visiting Scholar at Northwestern Uni-
versity—private communication). However, they neglected, for the sake
of simplicity, the frictional-dilatant behavior of cracks and the effects of
tension-stiffening and dowel action. Therefore, an effort is made here
to extend these valuable pioneering studies by taking into account the
aforementioned effects which, as will be seen, are quite significant, as
already pointed out in a preceding discussion (2).

STATEMENT OF PROBLEM

Considered is a concrete wall reinforced by a regular net of reinforcing
bars, and intersected by a system of parallel normal cracks at constant
spacings. The bars, as well as the cracks, are assumed to be densely
distributed. Although it would not be much more difficult to analyze
skew nets or nets with bars in more than two directions, attention is
limited to the rectangular nets (Fig. 1). The notations are: (1) x, y =
cartesian coordinate axes oriented in the directions of bars, b,, b, = spac-
ings of bars of x and y directions; 8 = angle between the crack plane
and axis y; (2) N,, N, = given principal internal (membrane) forces in
the wall, a = given angle between N, and x; (3) p,, p, = steel reinforce-
ment ratios.

The reinforcement must be designed so as to assure equilibrium for
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FIG. 1.—Cracked Reinforced Concrete

given N,, N,, and a. The basic principle generally accepted fo'r de§ign
is that a crack may exist in concrete and that it may be of any dlrgctlon.
By assuming that cracks exist, and neglects possible tensile resistance
of concrete, This is on the side of safety. Neglecting possible friction on
the cracks is, however, not on the side of safety, as has been recently
discovered (3,4,5). The reason simply is that a friction shear force must
be accompanied by a norinal compression force on the crack, causing
that additional reinforcement is needed to balance the tensile reaction
from this compression force. The formulas for the frictional design of
reinforcement are basically given by Eqs. 6-9, and 13-15 of Ref. 3, and
Eqs. 1-7 of Ref. 5. They are summarized in Appendix 1 with some re
finements. For given friction coefficient k, given yield stress of steel, f,,
and given N,, N,, and a, the calculation yields a set of p,, p, values for
which the design is safe. These values form in the p,, p, plane a safe
design envelope, on which one can easily locate the point that corre-
sponds to the optimum design in the sense of maximum weight of steel.
The results are identical to those obtained by Marti and Thiirlimann (17)
from the assumption of plasticity of concrete based on a yield surface
with Coulomb-type friction.

TensiON-STIFFENING EFFECT

Tension-stiffening (8,9,10,13,16,20,21,24) is the excess tensile stiffness
of cracked reinforced concrete as a whole, as compared to the stiffness
of the reinforcing bars alone. This effect is due to transmission of tensile
force by bond stresses from the steel bar into the adjacent concrete be-
tween the cracks. If this effect is disregarded, the stiffness of reinforced
concrete panels, slabs, and shells is usually strongly underestimated.

Phenomenologically, the effect may be taken into account by assum-
ing that, instead of a sudden stress drop after cracking, the tensile stress
in concrete decreases gradually as the straining progresses. This ap-
proach was adopted by Scanlon (21) who used a stepped piecewise lin-
ear stress decrease, Lin and Scordelis (16), who used a smoothly curved
stress decrease, and Gilbert and Warner (10), who adjusted the stress
decrease law according to the proximity of reinforcement. This ap-
proach, however, mixes the tension-stiffening effect due to bond with
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the tensile strain-softening of concrete due to progressive microcracking,
and leads to no tension stiffening when a fully (continuously) cracked
concrete is considered, as is the case here.

It seems preferable then (9,10) to treat the tension-stiffening as an in-
crease of stiffness of reinforcing bars due to the restraining effect of ad-
jacent concrete between the cracks, resulting from bond. Thus, one may
seek to characterize the tension stiffening effect in terms of an equivalent
cross section area of steel bar, A,,, which is quite simple for practical
computations. A,, may be defined as the cross section area of a bond-
free “equivalent” steel bar which gives under the assumption of a uni-
form axial force along the bar the same overall axial extension as the
actual steel bar of cross section A,, along which the axial force fluctuates.
Since the bond stresses cause the axial force at cross sections between
the crack crossings to drop below its value at crack crossings, A,, = A,.

To obtain simple formulas, four typical, highly idealized cases may be
considered:

Zero Bond Slip and Sparse Bars.—First, assume the bars to be spaced
sufficiently sparsely so that they do not interact. Furthermore, although
a tensioned bar always slips within a certain small distance from the
crack, let this slip be neglected for a moment. For the condition of equiv-
alence, it is best to use the strain energy. To calculate it, one must some-
how approximate the strain field in concrete caused by the bond
stresses. To this end, one may use the old idea of stress or strain “dif-
fusion,” assuming that the bond stress, +,, “diffuses” into concrete
roughly along a cone of slope 1/k shown in Fig. 2(b). This causes the
normal strain in the bar direction over each cross section of the cone to
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FIG. 2.—Diagrams and Sketches for Cracked Reinforced Concrete
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be equal the axial strain, €,, in the bar. The strain outside the cone is
considered zero.

Based on this crude simplification the strain energy (per bar) of the
uniaxial stresses in both the steel and concrete between two adjacent
cracks is

3 2
1 ,, ,.1_, 211(D+ks’)3 2«(0) (D) ]
= - + - — —_—— =) - —
u 2E,e,A,s zEce [3k > 3% \2 3 s 1)

in which E,, E. = Young’s moduli of steel and concrete; A, = aD?/4;
D = diameter of the bar; and s’ = spacing of the cracks along the bars
= 5/cos 8 where 8 = angle between the bars and the normal to the crack
planes [Fig. 2(a)]. The slope of the diffusion cone may be taken as k =
0.7, although it would be better to calibrate k according to test data. The
strain energy in Eq. 1 must equal the strain energy E, € A, s'/2 of the
equivalent steel bar, and noting that p3/P, = A, /A, where p = actual
steel ratio, and p,, = equivalent steel ratio, this condition leads to

.

l’ﬂ=1+5‘°‘—5—‘('i+3) ....................................... @
4 3DE,\D .

Zero Bond Slip and Dense Bars.—If the bar spacing is too small, the
cones of strained concrete considered in the first case overlap. Thus, the
volume corresponding to one bar is less than that of the full cone [Fig.
2(e)]. Take the limiting cross _section as a circle even though it is not;
i.e., Ag= wD3/4or D, = 2VAy/w where A, = cross section area of the
panel corresponding to one bar (and centrally symmetric with respect
to the bar); see Fig. 2(f). Eq. 1 may now be revised as follows:

1., 1., wg( 2D,—3D) 2% (D)’ nwD? ]
= - ’+_ — 4 ot ] - e[ — _——_—! 3
2 Besds 25“'[ g 3k 3k \2 Y

This must again equal E,equs'/Z where A,, = A,p,,/p, which yields

P 3ks'DE,

Bond Slip Limit.—If the axial strain, ¢,, of the bar is too large, the
bar would slip against concrete. The bond force per unit length of the
bar would then roughly equal the empirical ultimate bond force, U;, as
determined from pull-out tests. The axial force in the bar at the crack
crossing is 0,A,. Due to the transfer of the load into concrete, the axial
force in the bar decreases away from the crack [Fig. 2(c)]. Assuming this
decrease to be linear (constant U;), the average axial force in the steel
bar is 0,A, — L;s' /4. So the total extension of the bar between the cracks
is (0,A, — Ujs'/4) s'/(E,A,), which must equal the extension 0,4,s'/
(E,A,) of the equivalent bar. This yields

[3ks' (D3 - D?)~-D3(2D,~3D)-D%] ........... @
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Limit of Zero Steel Stress.—The preceding case can lead to a negative
stress in steel if the spacing of cracks is too large. Thus we must impose
the limit of zero steel stress at middistance between the cracks [Fig.
2(d)]. In this case the condition of equal extensions becomes
aAs' /(EA,) = 0,As' [(2E,A,), which yields:

Eﬂ‘lsz
p

Among the four foregoing values, the minimum decides; i.e., the ac-
tual value is:

%‘1 = MIN(EQS. 2,4, 5, 6) +evnerneeeineee e et *

Stireness Due 10 DoweL AcTiON

The recent formulation of Walraven (25) is adopted here. His expres-
sion for the dowel force [Fig. 2(i)] is:

3B’ElSE

F, = ST eR T G F2FY (8)
G,D\" EnD*

. . - _L_ = s

in which 8 (45515) , ElL=—"—— )

in which G, = foundation modulus of concrete, f = free length of bar;
and ¢ = reduction factor due to crack opening. Tests of Elliott (6) and
of Paulay, et al., (19) demonstrated that G, is independent of bar di-
ameter, D, and led to the empirical expression

G=3a VI8 ™ (10)

in which f! = cylinder compression strength (N/mm?’) and 8, = tangen-

tial relative displacement on the crack (in millimeters). Furthermore,

Elliot’s tests (6) indicated that

02
5,+02

€

in which 8, = normal relative displacement on the crack (in millimeters).

As for the free length, f, Schifer (22) proposed, for the case of zero
axial force in the bar, the free length f, = ¢, D tan 8, in which D = bar
diameter (in millimeters) and ¢, = empirical constant (=1.0). The free
length here reduces as 8 decreases, which reflects the fact that for non-
orthogonal cracks the dowel force causes a block of concrete in the acute
angle to spall off [Fig. 2(g, i)]. The effect of the axial tensile force in the
bar is to increase the free length, and according to Leonhardt’s tests (15)
the expression f, = ¢, D tan 8§ may be augmented as

Ao,
f=¢,Dtan6 +
45

D (12)

in which Ac, must be in N/mm’. This represents the difference in steel
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stress between the crack crossing and a remote location.

The dowel force is normal to the bar, and when the bar is inclined
with respect to the crack, the dowel force, F,, is not parallel to the crack.
The projections of F, per unit cross section area in the normal and tan-
gential directions of the crack plane as denoted are o?, and ¢%,, and
then:

F F
ol = Z‘- sin8, of = X:, COSO .ot (13)

0
in which A, = the cross section area of the wall per bar.

STiFFNESS OF CRACKED ReEINFORCED CONCRETE

To calculate the stiffness of cracked reinforced concrete, one may use
a similar procedure as that in Ref. 4, but it must now be generalized to
include the dowel action and the tension stiffening

If the contribution of the axial forces in the bars is left for later separate
consideration, the normal anl shear stresses that are transmitted across
the crack plane by the combined action of interlock of concrete surfaces
[8,1,7,12,14,18,23 25] and the dowel (shear) forces in lhe steel bars may
be expressed as 0%, = 03, + a¢,, 0%, = 0%, + 0%, where 0%, and ¢, are the
normal and shear stresses transmitted through the crack plane by the
action of concrete. (Without concrete, the bars can transmit their axial
forces but not the dowel forces.) The frictional shear stresses, a§,, and
the associated normal displacements are assumed to be governed (4) by
the following friction law and the dilatancy law:

for o5, <0: |of = —kof, + ¢ (frictionalslip); ................. (14)
for 8,=0: §,=0,05)+e (dilatancy) ......... ... ... ....... (15)

in which k = friction coefficient; ¢ = cohesion; a, = dilatancy ratio; and
e = initial dilatancy.

From the macroscopic point of view, the effect of the relative displace-
ments, §, and 8,, on many densely distributed parallel cracks of mean
spacing, s, is to produce the averaged strains

8 8,

o n

€, = —s—; € =0, y5= S TTeeteeeseereseiai (16)

in which vy, = shear angle = 2¢(,. The total strains of concrete contain-
ing many densely distributed parallel cracks may then be expressed as

L R (17)

in which €’ = column matrix (€,,€{;,¥5)"; T denotes a transpose; and
€ and €° are similar matrices representing the total strains and the strains
in the concrete between the cracks. Assuming the concrete between the
cracks to be isotropic and elastic, one may then write

E;' —-vE' O

in which ¢° = (0¢,,0%,05,)"; C. = the compliance matrix of uncracked
concrete; and E_, v, and G, are its Young's modulus, Poisson’s ratio,
and shear modulus, respectively. When the concrete is in a state of
plane strain rather than plane stress, E, and v must be replaced by E, ./
(1 = v¥)and v/(1 - v), respectively. Note that E_ and G_ should be taken
here as the secant moduli.

Substituting from Eqs. 16 and 17 8, = s(e,, — €,) and &, = s(y,, —
vw) into Eq. 15, and expressing ¢;, and y§, from Eq. 18, one obtains

o, — vo§ g e
€ — T" = ta, ('y,,, - E‘) T (19)
[ [

Noung that e,, = €, and substltutlng o, = E.¢, + voi, = E.e, + v(a¥,
+ o4,) and ¢, = Fka, = C + o into Eq. 19, one further obtains

1- _ 1
[ G (+ad)(+k):| Opn = €y + VEL F gy, + E (iad)(Ic)

in which * and 7 signs distinguish between slip to the right (top signs)
and to the left (bottom signs). Expressing o',,,, from Eq. 20 and substi-
tuting this into Eq. 14, one obtains o}, and o5;. To get the total stresses
of concrete alone, one must now make use of the equlllbrlum relations
o = a7 + ol and o;, = ap + of. Noting that o}, = E.¢, + vot, =

E.e, + v(o], + a?)), it follows that
L 0 i (21)

inwhich D°=E* [ v =+ Fap |[;

glE. + 0:"
f= Vg B A O (22)
¥kg,E* t c+ o4
o1 1~ |
(E*)" = E + E(ia,)(tk) ................................. (23)
1 e [1-* 1
$=g (xa )(xc) - . ( E ) ol + b—(:a,,) o (24)

Matrix D° represents the stiffness matrix of concrete that contains
closely spaced parallel cracks whose surfaces slip and are in contact. The
stiffness of reinforcement may now be brought into the picture. The total
stress, ¢ = (0,,,0,4,0,), in the crack coordinates (1 and t) may then
be calculated as:

100



FORCE
DEFORMATION
-

C— —1

TENSION
STEEL STIFFENING
DEFORMAT [ON (BOND)

R B

AXIAL

FiG. 3.—Scheme of Superimposing Various Stiffnesses and Compliances

o=De ...................... N e e (25)
Here D represents the sum of the stiff ¢
' : ness, D, due to concrete and all
;tlffness matrices D} for the axial deformation of the bar systems i = 1
f(’)r;n'e'dl\‘lv (te;ctll:xd;‘n% th(fe dowel action), after these matrices are trans:
i e help of rotation matrices, R;, from th i
to the crack coordinates. Thus: ' © bar coordinates

D=D‘+§":R,TD,’-R,~

i=1

. ' p¥E, 0 0 c? s?

in which D?= [ 0 0 O:I; R,=] 8¢ ¢ —C(,§S 27)
0 00 -2CS 2CS C*-8§?

Here C = cos 8,; S = sin 0,; E, = Young’s modulus of steel; and p¥ =

equtivalent steel ratio for the ith bar system = A, /Ay for the ith ba:
S);qs em. The tension stiffening effect is thus taken into account under
o,
Note the separate and different t i
reatment of the axial and shear
(dowel) response of.the steel bars. The axial stiffness, after being cor-
rected for tension stiffening due to bond, is superimposed on the stiff-
ness of lf.racked concrete as a whole. The shear (dowel) stiffness of bars
Frrn:anw ile is sqpeqmposed on the stiffness of the crack alone (Fig. 3).
. € reason consists in the fact that the overall axial deformations of steel
ars a1'1d of Fracked concrete must be the same, and that the mean shear
stress in solid concrete on the plane located midway between the cracks

q T
Sllould [ ulhb ate the Slleal StlesSeS on tl‘e CraCk due to fl’lCthll alld tO

NUMERICAL STUDIES AND ANALYSIS OF RESULTS

For the purpose of numerical calculations, the v ? i

_For ‘ : alue Ny of th -
cipal internal force due to the design loads is given. Let 0.175 N? gep(l;:e
Eo ‘;he dead IQad, and 0.25 N? to the live load. According to the ACI

ode, the ultimate design must then be based on N y = 1.4 (0.75 NP)
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+ 1.7 (0.25 N?) = 1.475 N?. The ratio m = N,/N, and the angle, o, are
also specified. The properties considered in numerical examples are E,
= 24,800 MN/m?% E, = 200,000 MN/m%; v = 0.18; f, = 27.6 MN/m? f,
= 276 MN/m?’; bar spacing b = 15 cm; N7 = 400 kN/m; plate thickness
h = 10 cm; bar diameter D = 1.27 cm (except where indicated differ-
ently); and capacity reduction factor 4 = 0.9. For ultimate bond force
the formula U, = 35Vf,, with (f! in psi, (26) is used. The crack spacing
s is considered as 5 cm except where indicated differently. (In reality,
of course, the crack spacing is also an unknown, depending on the steel
ratio, bar diameter, type of concrete, and ultimate bond stress.)

A computer program has been written to calculate a great number of
cases. For each case, the values of N,, m(=N,/N,), and « are assigned.
On their basis the optimum reinforcement ratios p, and p, are deter-
mined using the formulas given in Refs. 3 and 5 (Appendix I). This is
done for several values of the crack friction coefficient: k = 0.75, k = 1.7
(the most realistic value), and k — . The last value of k gives results
which are equivalent to the classical frictionless design of reinforcement
3.5).

After determining p, and p,, the program calculates average mem-
brane strains (¢, ,€,,v,,) of the reinforced wall, and the relative tangen-
tial and normal displacements on the cracks 3, and 5, (3, is called the
crack width even though the asperities may be in contact at nonzero 8,,).
The slip-dilatancy model, described in Ref. 4 and extended here, is used
for this purpose.

The maximum crack width, 8, ..., is found in the program by scan-
ning the entire range of crack angle ¢ for a given value of a. For each
« a series of discrete values of 9, increasing from 0°-180°, by steps of 1°,
is selected. The crack width is then solved for each of them, and the
case giving the maximum value is located among the results. For sim-
plicity, the coefficients characterizing the cracks are assumed to be con-
stant; also ¢ = ¢ = 0. For k and a, it seems appropriate to select the
values that correspond to the load at which the cracks begin to slip and
open significantly. According to tests, k is roughly 1.7 when the crack
surfaces undergo a large slip (18). Moreover, the examination of the cal-
culated response curves based on a theory that was calibrated by several
test series (1) indicates also that k = 1.7 and a, = 1.0. Therefore, k =
1.7 and a, = 1.0 are selected as typical and most realistic values for the
slip-dilatancy model.

The results of numerical studies are plotted in Figs. 4-7. Fig. 4 shows
that consideration of tension-stiffening causes a significant reduction
(from 12%-16%) in the resulting crack width, and that the additional
consideration of dowel action causes a further appreciable reduction
(about 9%). With regard to the effect of the angular deviation of rein-
forcement from the principal force direction, Fig. 5 shows the results
when the tension-stiffening and the dowel action are both neglected
(dashed lines) and when they are both taken into account. All this is
shown for reinforcement designs obtained from equilibrium conditions
alone on the basis of friction coefficients k = 0.75, 1.7, and . It is seen
from the calculated plots that the use of k = 0.75 in the design, as com-
pared to the frictionless design (k = »), greatly offsets the increase of
crack width due to angular deviation of reinforcement over the crack
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Fig. 6 shows again the effect of the angular deviation of reinforcement, g £
now for the designs based only on k = 1.7 and, for different crack spac- & oosl “ oos |

ings and different bar diameters, the magnitude of which affects both
the tension stiffening and the dowel action. It is seen that for a large . . . , o PO EEDEEEEEDSSS
crack spacing (100 mm or 4 in.) the influence of the bar diameter upon % "¢ w0 4o 0 [T
the crack width increase due to the angular deviation of reinforcement
is much more intense than it is for a small crack spacing (25 mm or 1
in.).

Finally Fig. 7 shows the results obtained with the consideration of ten-
sion-stiffening and dowel action for different crack spacings and for dif-

FIG. 7.—Comparison of Crack Widths for Various Designs with Tenslon Stiftening
and Dowel Action and Varlous Crack Spacing (m = 0, D = 12.7 mm)
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ferent reinforcement designs based on different friction coefficients (k
= (.75, 1.7, and ). The crack width increase due to the angular devia-
tion of reinforcement is somewhat less for larger crack spacings (80%
vs. 50% increase for k = 1.7) but is generally not strongly dependent on
the assumed crack spacing (if the bar diameter is small; D = 12.7 mm
or 0.5 in.).

Even though experimentally verified material properties have been
used, one must keep in mind that the foregoing results represent es-
sentially simplified theoretical deductions. It would be useful to carry
out measurements on reinforced panels and compare them with the
present results.

SummaRY AND CONCLUSIONS

The deformation and crack width of concrete walls reinforced by a
regular rectangular net of reinforcing bars and subjected to in-plane
(membrane) internal forces is analyzed on the basis of realistic models
for the frictional dilatant behavior of rough interlocked cracks, and for
the dowel action of bars at crack crossings. The tension stiffening effect,
i.e., the restraining effect of the solid concrete between the cracks caused
by bond stresses, is taken into account in terms of an equivalent steel
ratio and is calculated by considering either slipping or nonslipping bars.
The dowel action is modeled as an additional stiffness in the stress-dis-
placement relation for the cracks. Extensive numerical computer studies
have been conducted, and reinforcement designs obtained on the basis
of equilibrium conditions alone of either the classical frictionless ap-
proach or the recent frictional (slip-free) approach are compared in terms
of the resulting crack widths for these different designs. The secant slip-
dilatancy model is used.

The computer results lead to the following conclusions.

1. The tension stiffening effect reduces the calculated crack width by
10%-25%, and the dowel action further by as much as 10%. So, it is
quite important to consider these effects in calculations.

2. The reinforcement designs obtained with different crack friction
coefficients often lead to rather different crack widths for the same loads.
The difference is significant (up to about 160%) when the bar direction
deviates from the principal tensile force by more than about 5%, while
for reinforcement that is laid in the direction of the principal tensile force
no difference is obtained.

3. The use of friction coefficient k = 0.75 (which is lower than the
realistic value of 1.7) in the equilibrium design of reinforcement assures
that the crack width for any direction of reinforcement is no more than
twice the crack width for parallel reinforcement. By contrast, for the fric-
tionless design, for which k — , the crack width for skew reinforcement
may be as much as five-times larger than for parallel reinforcement.
Thus, the simple use of the frictional design allows a significant reduc-
tion of the crack width for the cases of arbitrary skew reinforcement
without the need of actually calculating the deformations and checking
them against some limit. This-is a much more difficult task if it should
be carried out realistically (taking into account the aggregate interlock,
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jon, and tension stiffening). .
dor.l ﬁ:‘:gt;:\ﬂuence of bar diametergon the crack width increase due to
angular deviation of reinforcement is for a large crack spacing stronger
than it is for small crack spacing. For small dlame.ters (=0.5in.; .13 mm),
the influence of crack spacing is negligible, while for large diameters

1 in.; 25.4 mm) it is not. . _ )
( E':n The classic)al approach, in which the frictional dilatant behavior of

cracks is neglected in the deformation analysis and the cracks are as-
sumed to be oriented so that no slip displacement qccurs on the!n (i.e.,
to be normal to the maximum principal strain direction), yields different
values of the crack width.
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ArpenDiX |.—DEsSIGN OF OPTIMUM REINFORCEMENT

A summary of the design procedure according to Refs. 3 and 5 will
now be giveny. It will be algo il]:dicated how it should be adjusted to take
into account the minimum reinforcement requirements. Let n, =
N:/N, and n, = N,/N, in which N;, N, = pﬁncipal internal forces (N,
> N, N, > 0), and N;, N} = reinforcement yield forces. The safe design

envelope is given by
[(n, — 1) — By, — nILCn, = 1§) = By (= )] = @Bag) o (28)

in which (n3,nf) = [1 + m = (1 — m) cos 2a}/2; ny, =(- m)(sin 2e)/
2; B, = 1/(1 + sin B); and B, = (1 - sin B) B,. The optimum values are:

(Mo =1+ % (1 — m) sin 2a (cosec § — tan L) PN (29)

(Mo = m + -12-(1 — m)sin2a (cosec P + AN @) ..ol (30)

in which m = N,/N,, a is shown in Fig. 1; = arctan (k); and k = fnchpn
coefficient. Now, from Egs. 29 and 30, the optimum .reinforcement ratios
are Px,o,u = Mxopt Ul,ull/oix’ py, = ny,opl Ul,uu/o;yl i.l'\ which Fy,ult =.Nl,u.lf/hr h
= wall thickness; 0%, and o,, = axial stresses in the bars of ch.rectlons x
and y (0%, and o}, is taken as & f, in which ¢ = capacity reduc_tlon‘ facton('i'
f, = yield stress of bar). Assuming the dead-to-live load ratio 3:1, and
introducing the respective load factors 1.4 and 1.7, leaves Ny, =
14N, + L7N, = 1.475NP. As already mentioned, one mgs.t use in Egs.
28-30 the ultimate design value N, = 1.475N? where N7 is the design
value of N,. Note that the safe design requires n, =7, = f,p:/o, and n,
=7, = fp,/on
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Some cases give a negative value for n, , orn, .. This means that no
tensile reinforcement is needed in the corresponding direction in this
case. One must, however, use at least the minimum shrinkage and tem-
perature reinforcement specified by section 7.12 of ACI Code (0.002 in
case of a slab). The complete design procedure when either Eq. 29 or
Eq. 30 gives a negative value is then as follows:

Case 1.—If n, < 0, set p, = p, .. (given, e.g., 0.002), and n, = n, .y
= Pomin Oo/O1uy Then, if n, .. <r,p, solve Eq. 28 for n, = (n,),,: I 1y i
> r,p, substitute n, = (1n,),; = r,p; in which [see Fig. 1(b) of Ref. 5]

re=1+ ngy [cosec B + sin B) sec B — tan a)]
re =m+ nl [(cosec B — sinB)secp + tana)] ...l (31

Case 2.—If n, < 0; set p, = p, ., (given), and n, = N, in = Pymin0y,/
oy - Then if n .. <r,, solve lgq. 28 for n, = (n,),,; and if n ., = 1,0,
substitute n, = (1,),, = riq in which [Fig. 1(b) of Ref. 5]

1o =1+ n}, [(cosec B — sin B) sec p — tan a}

ro = m + nj, [(cosec B + sin ) sec Brtanal ....oooviieninian... (32)
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