
DEFORMATION OF CRACKED NET-REINFORCED 
CONCRETE WALLS 

By Zden~k P. Bafant,. F. ASCE and Byung H. Oh' 

AesTRACT: The deformation and crack width in concrete walls of slabs. plates. 
panels. and shells reinforced by a regular rectangular net of steel bars and sub­
jected to in-plane (membrane) internal forces is analyzed taking into account 
the frictional-dilatant behavior of rough interlocked cracks, and for the dowel 
action of bars at crack crossings. The tension-stiffening effect, i.e., the restraint 
of the bars between the cracks due to their embedment in concrete, is also 
taken into account. Numerical computer studies are carried out. Reinforcement 
designs obtained from equilibrium apnditions alone on the basis of either the 
classical frictionless arproach or the recent frictional (slip-free) approach are 
compared in terms 0 the resulting crack widths. It is found that the use of 
frictional equilibrium design based on a low friction coefficient (0.75) leads to 
a much smaller crack width than the classical frictionless design when the re­
inforcement is laid in a direction which significantly deviates from the principal 
internal force direction. The influences of bar diameter and crack spacing on 
the crack width are also determined. The deformation analysis in which the 
frictional dilatant behavior of cracks, the dowel action, and tension stiffening 
are neglected leads to rather different values for the crack width. 

INTRODUCTION 

This paper analyzes the in-plane deformation of walls of concrete 
slabs, plates, panels, or shells that are intersected by a system of parallel 
continuous cracks. The walls are considered reinforced by a regular net 
of reinforcing bars, and are subjected to given in-plane (membrane) in­
ternal forces. 

The reinforcement of such walls is in practice usually designed on the 
basis of equilibrium conditions alone, and no conditions on the defor­
mations are used, partly because a realistic calculation of deformations 
is much more difficult. When all reinforcement is laid in directions that 
deviate from the principal directions of given internal forces by more 
than about 10", the usual design method leads, however, to unaccept­
ably large cracks, as often seen in structures. Some modification of the 
equilibrium design method, which retains its simplicity yet gives a 
smaller crack width in the case of a skew placement of reinforcement, 
therefore, is desirable. 
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The recently proposed frictional (slip-free) limit design of reinforce­
~e.nt is such a method. Like in the usual design, only equilibrium con­
dItIOns are used. The results are identical to the classical, frictionless 
desig~ when the bars are laid in the principal directions; but when they 
are laId skew the results are surprising. Equilibrium conditions indicate 
a heavier, and often much heavier, reinforcement when friction is con­
sidered than when it is not (3,5). In view of this fact we may expect the 
frictional design for skew reinforcement to lead to a smaller deformation 
than the frictionless design. This is what we need; but is the reduction 
of deformation sufficient? Can we avoid the complexity of a design 
based on deformation calculations if we use the frictional equilibrium 
conditions? 

For walls reinforced by a regular net of bars, there seem to exist at 
present no precise test data from which to directly answer these ques­
tions. There does exist, however, numerous test data on the deformation 
due to cracks. A realistic incremental model (1) as well as a secant model 
(4) have recently been developed to reflect the experimentally observed 
behavior, chiefly the dilatancy of cracked concrete due to shear which 
is caused by a slip displacement on the cracks. Therefore, an attempt 
will be made here to calculate the deformations of the cracked reinforced 
walJ on the basis of such a model. The secant slip-diJatancy model from 
Ref. 4, which is somewhat less realistic but easier to use and interpret 
than the incremental model (1), is chosen for this purpose. To determine 
the overall deformation of the wall, a simple method to take into account 
the tension-stiffening effect due to the bond between cOncrete and steel, 
particularly the restraining effect of the solid concrete between the cracks 
on the overall axial extension of the steel bars, and also the effect of the 
dowel action of the steel bars at crack crossings, will be developed. 

The present problem has already been studied analytically by A. 
Gupta (11) and by A. Pitonak (Visiting Scholar at Northwestern Uni­
versity-private communication). However, they neglected, for the sake 
of simplicity, the frictional-dilatant behavior of cracks and the effects of 
tension-stiffening and dowel action. Therefore, an effort is made here 
to extend these valuable pioneering studies by taking into account the 
aforementioned effects which, as will be seen, are quite significant, as 
already pointed out in a preceding discussion (2). 

STATEMENT OF PROBLEM 

Considered is a concrete wall reinforced by a regular net of reinforcing 
bars, and intersected by a system of parallel normal cracks at constant 
spacings. The bars, as well as the cracks, are assumed to be densely 
distributed. Although it would not be much more difficult to analyze 
skew nets or nets with bars in more than two directions, attention is 
limited to the rectangular nets (Fig. 1). The notations are: (1) x, y = 
cartesian coordinate axes oriented in the directions of bars, bl , b2 = spac­
ings o~ bars of x and y directions; 8 = angle between the crack plane 
and axts y; (2) N I' N 2 = given principal internal (membrane) forces in 
the wall, a = given angle between NI and x; (3) P., Py = steel reinforce­
ment ratios. 

The reinforcement must be designed so as to assure equilibrium for 
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FIG. 1.-Crecked ReInforced Concrete 

gt'ven N Nand Q. The basic principle generally accepted for design 
l' 21 b f d' . is that a crack may exist in conc!ete and that it may e 0 a.ny Ir~ctton. 

By assuming that cracks exist, and neglects po~slble te~stle r~sl~tance 
of concrete. This is on the side of safety. Neglectmg possIble fnctton on 
the cracks is, however, not on the side of safety, as has been recently 
discovered (3,4,5). The reason simply is that a friction shear force m~st 
be accompanied by a norinal compression force on the cra~k, caus~ng 
that additional reinforcement is needed to balance the tenstle reactton 
from this compression force. The formulas for the frictional design of 
reinforcement are basically given by Eqs. 6-9, and 13-15 of Ref. 3, and 
Eqs. 1-7 of Ref. 5. They are summarized in Appendix I with some re 
finements. For given friction coefficient k, given yield stress of steel, {y, 
and given N l' N 2' and Q, the calculation yield.s a set of P., P y values for 
which the design is safe. These values form m the P., PJI plane a safe 
design envelope, on which one can easily locate. the pom~ that corre­
sponds to the optimum design in the ~nse of max~mum w~lg~t of steel. 
The results are identical to those obtamed by MartI and Thurhmann (17) 
from the assumption of plasticity of concrete based on a yield surface 
with Coulomb-type friction. 

TENSION-SnFFENING EFFECT 

Tension-stiffening (8,9,10,13,16,20,21,24) is the excess tensile st~ffness 
of cracked reinforced concrete as a whole, as compared to the sttffness 
of the reinforcing bars alone. This effect is .due to tra~smission of tensile 
force by bond stresses from the steel bar mto the a~lacent con~rete be­
tween the cracks. If this effect is disregarded, the sttffness of rem forced 
concrete panels, slabs, and shells is usually strongly underestimated. 

Phenomenologically, the effect may be taken int? account b~ assum­
ing that, instead of a sudden stress drop afte~ c~ackmg, the tenstle .stress 
in concrete decreases gradually as the strammg progress~s. T~ls ~p­
proach was adopted by Scanlon (21) who used a stepped pIecewIse Im­
ear stress decrease, Lin and Scordelis (16), who used a smoothly curved 
stress decrease and Gilbert and Warner (to), who adjusted the stress 
decrease law ~ccording to the proximity of reinforcement. This ~p­
proach, however, mixes the tension-stiffening effect due to bond WIth 

95 

the tensile strain-softening of concrete due to progressive microcracking, 
and leads to no tension stiffening when a fully (continuously) cracked 
concrete is considered, as is the case here. 

It seems preferable then (9, to) to treat the tension-stiffening as an in­
crease of stiffness of reinforcing bars due to the restraining effect of ad­
jacent concrete between the cracks, resulting from bond. Thus, one may 
seek to characterize the tension stiffening effect in terms of an equivalent 
cross section area of steel bar, A.~, which is quite simple for practical 
computations. A.~ may be defined as the cross section area of a bond­
free "equivalent" steel bar which gives under the assumption of a uni­
form axial force along the bar the same overall axial extension as the 
actual steel bar of cross section As, along which the axial force fluctuates. 
Since the bond stresses cause the axial force at cross sections between 
the crack crossings to drop below its value at crack crossings, A.~ ~ As. 

To obtain simple formulas, four typical, highly idealized cases may be 
considered: 

Zero Bond Slip and Sparse Bars.-First, assume the bars to be spaced 
sufficiently sparsely so that they do not interact. Furthermore, although 
a tensioned bar always slips within a certain small distance from the 
crack, let this slip be neglected for a moment. For the condition of equiv­
alence, it is best to use the strain energy. To calculate it, one must some­
how approximate the strain field in concrete caused by the bond 
stresses. To this end, one may use the old idea of stress or strain "dif­
fusion," assuming that the bond stress, T b , "diffuses" into concrete 
roughly along a cone of slope l/k shown in Fig. 2(b). This causes the 
normal strain in the bar direction over each cross section of the cone to 
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FIG. 2.-Dlagram. and Sketches for Cracked Reinforced Concrete 
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be equal the axial strain, E" in the bar. The strain outside the cone is 
considered zero. 

Based on this crude simplification the strain energy (per bar) of the 
uniaxial stresses in both the sleel and concrete between two adjacent 
cracks is 

U = ~ E,E: A,s' + ~ E,E: [~; (D ~ ks'f - ~; (~f -n (~r s'] (1) 

in which E., E, = Young's moduli of steel and concrete; A, = nD 2/4; 
D = diameter of the bar; and s' = spacing of the cracks along the bars 
= s/cos 8 where 8 = angle between the bars and the normal to the crack 
planes [Fig. 2(a)). The slope of the diffusion cone may be taken as k = 
0.7, although it would be better to calibrate k according to test data. The 
strain energy in Eq. 1 must equal the strain energy E, E: A '4 s' /2 of the 
equivalent steel bar, and noting that pi/P, = A,/A, where p = actual 
steel ratio, and p '. = equivalent steel ratio, this condition leads to , 

~ = 1 + :~ :: (k~' + 3) ........................................ (2) 

Zero Bond Slip and Dense Bars.-If the bar spacing is too small, the 
cones of strained concrete considered in the first case overlap. Thus, the 
volume corresponding to one bar is less than that of the full cone [Fig. 
2(e»). Take the limiting cross section as a circle even though it is not; 
i.e., Ao = nDi/4 or D2 = 2VA o/n where A o = cross section area of the 
panel corresponding to one bar (and centrally symmetric with respect 
to the bar); see Fig. 2(f). Eq. 1 may now be revised as follows: 

U =! E E2 A c' +! E E2 [n~ (s' _ 2D2 - 3D) _ 2n (~)3 _ n~ s'] (3) 
2"'" 2" 4 3k 3k2 4 

This must again equal E.E:A,.s' /2 where At. = A.Pt/p, which yields 

p Ec 
C!!l = 1 + [3ks' (~-~) - ~(2D2 - 3D) -~] ........... (4) 
P 3ks'D 2E, 

Bond Slip Limit.-If the axial strain, E" of the bar is too large, the 
bar would slip against concrete. The bond force per unit length of the 
bar would then roughly equal the empirical ultimate bond force, U~, as 
determined from pull-out tests. The axial force in the bar at the crack 
crossing is <T.A •. Due to the transfer of the load into concrete, t~e axi?l 
force in the bar decreases away from the crack [Fig. 2(c)). Assuming thIS 
decrease to be linear (constant U~), the average axial force in the steel 
bar is <T A - U~s' /4. So the total extension of the bar between the cracks 
is (<T.A: ~ U;,s' /4) s' /(E,A,), which must equal the extension <T,A,s' / 
(E.A..,) of the eqUivalent bar. This yields 

& = lU~' ~ 1 ............................................. (5) 
P 1---

4<T,As 
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Limil of Zero Steel Stress.-The preceding case can lead to a negative 
stress in steel if the spacing of cracks is too large. Thus we must impose 
the limit of zero steel stress at middistance between the cracks [Fig. 
2(d». In this case the condition of equal extensions becomes 
<T,A,s' /(E.A,,!) ~ <T.A,s' /(2E.A.), which yields: 

& S 2 ........................................................ (6) 
P 

Among the four foregoing values, the minimum decides; i.e., the ac­
tual value is: 

& = Min (Eqs. 2, 4, 5,6) ....................................... (7) 
P 

STIFFNESS DUE TO DoWEL ACTION 

The recent formulation of Walraven (25) is adopted here. His expres­
sion for the dowel force [Fig. 2(i)) is: 

3133 El&,~ 
Fd = 3 ••••••••••••••.•••••.•.•.•.•••••••• (8) 

3 + 613f + 6(13f)2 + 2(13f) 

in which 13 = (G t D)1I4, E 1 '" EsnD4 .......................... (9) 
4E.T. ' , 64 

in which G = foundation modulus of concrete, f '" free length of bar; 
and ~ = reduction factor due to crack opening. Tests of Elliott (6) and 
of Paulay, et aI., (19) demonstrated that G! is independent of bar di­
ameter, D, and led to the empirical expressIon 

Gt = 34 Yt; &;0.85 ............................................ (10) 

in which f: '" cylinder compression strength (N/mm2) and &, = tangen­
tial relative displacement on the crack (in millimeters). Furthermore, 
Elliot's tests (6) indicated that 

~= 0.2 .................................................. (11) 
&" + 0.2 

in which &" = normal relative displacement on the crack (in millimeters). 
As for the free length, f, Schafer (22) proposed, for the case of zero 

axial force in the bar, the free length f I = c, D tan 9, in which D = bar 
diameter (in millimeters) and c, = empirical constant (=1.0). The free 
length here reduces as 9 decreases, which reflects the fact that for non- . 
orthogonal cracks the dowel force causes a block o~ concre,te in the .acute 
angle to spall off [Fig. 2(g, i)). The effect of the aXIal tensIle force In the 
bar is to increase the free length, and according to Leonhardt's tests (15) 
the expression f I = c, D tan 8 may be augmented as 

f = c, D tan 9 + ~~' D ......................................... (12) 

in which ~<T, must be in N/mm2
• This represents the difference in steel 
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stress between the crack crossing and a remote location. 
The dowel force is normal to the bar, and when the bar is inclined 

with respect to the crack, the dowel force, F 01' is not parallel to the crack. 
The projections of F 01 per unit cross section area in the normal and tan­
gential directions of the cratk plane as denoted are a~n and a~" and 
then: 

ad = F" sin 8 ad, = F" cos 8 .................................. (13) 
nn Ao ' n Ao 

in which Ao = the cross section area of the wall per bar. 

STIFFNESS OF CRACKED REINFORCED CONCRETE 

To calculate the stiffness of cracked reinforced concrete, one may use 
a similar procedure as that in Ref. 4, but it must now be generalized to 
include the dowel action and the tension stiffening. 

If the contribution of the axial forces in the bars is left for later separate 
consideration, the normal an~ shear stresses that are transmitted across 
the crack plane by the combined action of interlock of concrete surfaces 
(81 7,1214,18,23,25] and the dowel (shear) forces in the steel bars may 

" , 01 cr 01 h cr d " th be expressed as a~. = a~. + a"", a~, = an' + an' were a nn an a n' are e 
normal and shear stresses transmitted through the crack plane by the 
action of concrete. (Without concrete, the bars can transmit their axial 
forces but not the dowel forces.) The frictional shear stresses, a::', and 
the associated normal displacements are assumed to be governed (4) by 
the following friction law and the dilatancy law: 

for a~. ~ 0: la::'1 = -k~. + c (frictional slip); ................. (14) 

for 8.;?: 0: 8. = ad 18,1 + e (dilatancy) ........................ (15) 

in which k = friction coefficient; c = cohesion; ad = dilatancy ratio; and 
e = initial dilatancy. 

From the macroscopic point of view, the effect of the relative displace­
ments, 8. and 8" on many densely distributed parallel cracks of mean 
spacing, s, is to produce the averaged strains 

E~. = 8.; Eft = 0; 'Y::' = 8, .................................... (16) 
s s 

in which 'Y~ = shear angle = 2E::'. The total strains of concrete contain­
ing many densely distributed parallel cracks may then be expressed as 

E = E C + E" •....••...•••........••.•.•••••••••••.....•.•..... (17) 

in which E" = column matrix (E~.,E:;''Y~)T; T denotes a transpose; and 
E and E C are similar matrices representing the total strains and the strains 
in the concrete between the cracks. Assuming the concrete between the 

cracks to be isotro[Pi: ~~d ~:::~' on; mJay then write 

EC=Ca': C = e E-I 0 ....................... (18) 
c' eel 

sym. G; 
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in which a' = (a~n,a~"a:;,f; C e = the compliance matrix of uncracked 
concrete; and Ee, v, and Ge are its Young's modulus, Poisson's ratio, 
and shear modulus, respectively. When the concrete is in a state of 
plane strain rather than plane stress, Et and v must be replaced by EJ 
(1 - v2

) and v/(1 - v), respectively. Note that Et and Ge should be taken 
here as the secant moduli. 

Substituting from Eqs. 16 and 17 8n = S(E •• - E~.) and 8, = s('y., -
'Y:;') into Eq. 15, and expressing E~n and 'Y:;' from Eq. 18, one obtains 

a~. - vu~, ( a~,) e 
En. - E

t 

= ±a" 'Y., - G
e 

+; .......................... (19) 

Noting that E~, = E" and substituting a~, = EeE" + vu~. = EtE" + v(a~. 
+ a~) and a~, = +ka~. ± C + a:, into Eq. 19, one further obtains 

[ 1 - v
2 

+..!.. (±a,,)(±k)] a~. = E •• + VE" + a,,'Y., + ~ (±a,,)(±c) 
Ee G, t 

-~ _ (1 -v2) a:. + ..!.. (±a,,) a~ .............................. (20) 
sEe. Ge 

in which ± and + signs distinguish between slip to the right (top signs) 
and to the left (bottom signs). Expressing a~. from Eq. 20 and substi­
tuting this into Eq. 14, one obtains a~. and a~. To get the total stresses 
of concrete alone, one must now make use of the equilibrium relations 
a~n = a~. + a:. ~nd a~, = a~ + a:,. Noting that a~, = E,E" + vu~. = 
EeE" + v(a~n + ann), it follows that 

at = DeE + f ................................................. (21) 

in which Dt = P [: Et
:; :aa:] . 

+k E:kv (±a,,);±k) , 

! glP + a:n 1 
f= vgIE>t+ vu:n •••••••••••••••••••••••••••••••••••••• (22) 

+kglP ± c + a:, 
1 - v2 1 

(P)-I = -- + - (±a,,)(±k) ................................. (23) 
E, G, 

1 e (1 -V2)" 1" (24) gl=-(±a,,)(±c)--- -- ann+-(±a,,)an, ............. . Gt s Ee Gt 

Matrix D' represents the stiffness matrix of concrete that contains 
closely spaced parallel cracks whose surfaces slip and are in contact. The 
stiffness of reinforcement may now be brought into the picture. The total 
stress, a = (ann,a",an,)T, in the crack coordinates (n and t) may then 
be calculated as: 
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cr = DE . . . . . . . . . . . . . . . . . . . . . . , .............................. (25) 

H~re D repre:-ents t~e sum of the stiffness, D", due to concrete and all 
stiffness matrtces. D; for the axial deformation of the bar systems i = I, i' ... N .(excludmg the dowel action), after these matrices are trans­
ormhed With the h~lp of rotation matrices, R;, from the bar coordinates 

to t e crack coordmates. Thus: 

" 
D = DC + L R T D' R 

;~. ' , , ......................................... (26) 

in which D: = rp~~ E, g g]; R; = [~: ~~ _CZ5 J L 0 0 0 -2C5 2C5 C2 _ 52 (27) 
Here C = cos 9' 5 = sin 9 . E - Y , d I . ".;, ,- oung s mo u us of steel; and p'~ = 
eqUIvalent steel ratio for the ith bar system = A /A fo th 'th 'b 
;~~tem. The tension stiffening effect is thus take~o/ int~ a:cou~t' und:; 

Note the separate and different treatment of the axial and shear 
(dowel) respo~se of. the steel bars. The axial stiffness, after being cor­
rected for tenSIOn stiffening due to bond, is superimposed on the stiff­
ness of c~ac~ed con?,ete as a whole. The shear (dowel) stiffness of bars 
meanwhtle IS supertmposed on the stiffness of the crack alone (Fi 3) 
~he reason consists in the fact that the overall axial deformations ol~teei 

ars a~d of ~racked concrete must be the same, and that the mean shear 
stress m SO~I~ concrete on the plane located midway between the cracks 
should eq.utllbrate the shear stresses on the crack due to friction and to 
dowel achon. 

NUMERICAL STUDIES AND ANALYSIS OF RESULTS 

. For. the purpose of numerical c~lculations, the value Nf of the prin­
Cipal mternal force due to the geslgn loads is given. Let 0.75 Nf be due 
to the dead I?ad, and ~.25 N I to the live load. According to the ACI 
Code, the ultimate deSign must then be based on N. = 1.4 (0.75 Nf) 
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+ 1.7 (0.25 Nf) = 1.475 N? The ratio", = Nz/N. and the angle, (I, are 
also specified. The properties considered in numerical examples are E c 

= 24,800 MN/m2; E. = 200,000 MN/m2; \I = 0.18; f; = 27.6 MN/m2; f!! 
= 276 MN/m2; bar spacing b = 15 cm; N? = 400 kN/m; plate thickness 
" = 10 cm; bar diameter D = 1.27 cm (except where indicated differ­
ently); and capacity reduction factor cI> = 0.9. For ultimate bond force 
the formula U; = 35 v'[; , with (f; in psi, (26) is used. The crack spacing 
s is considered as 5 cm except where indicated differently. (In reality, 
of course, the crack spacing is also an unknown, depending on the steel 
ratio, bar diameter, type of concrete, and ultimate bond stress.) 

A computer program has been written to calculate a great number of 
cases. For each case, the values of N., m(=Nz/N.), and (I are assigned. 
On their basis the optimum reinforcement ratios P% and py are deter­
mined using the formulas given in Refs. 3 and 5 (Appendix I). This is 
done for several values of the crack friction coefficient: k = 0.75, k = 1.7 
(the most realistic value), and k -- 00. The last value of k gives results 
which are eqUivalent to the classical frictionless design of reinforcement 
(3,5) . 

After determining P% and Py' the program calculates average mem­
brane strains (E%,Ey'"Y%y) of the reinforced wall, and the relative tangen­
tial and normal displacements on the cracks 8, and 8" (8" is called the 
crack width even though the asperities may be in contact at nonzero 8"). 
The slip-dilatancy model, described in Ref. 4 and extended here, is used 
for this purpose. 

The maximum crack width, 8",max' is found in the program by scan­
ning the entire range of crack angle 9 for a given value of a. For each 
(I a series of discrete values of 9, increasing from 0"-180", by steps of JO, 
is selected. The crack width is then solved for each of them, and the 
case giving the maximum value is located among the results. For sim­
plicity, the coefficients characterizing the cracks are assumed to be con­
stant; also c = e = O. For k and a" it seems appropriate to select the 
values that correspond to the load at which the cracks begin to slip and 
open significantly, According to tests, k is roughly 1.7 when the crack 
surfaces undergo a large slip (18). Moreover, the examination of the cal­
culated response curves based on a theory that was calibrated by several 
test series (1) indicates also that k = 1.7 and a" = 1.0. Therefore, k = 
1.7 and (ld = 1.0 are selected as typical and most realistic values for the 
slip-dilatancy model. 

The results of numerical studies are plotted in Figs. 4-7. Fig. 4 shows 
that consideration of tension-stiffening causes a significant reduction 
(from 12%-16%) in the resulting crack width, and that the additional 
consideration of dowel action causes a further appreciable reduction 
(about 9%). With regard to the effect of the angular deviation of rein­
forcement from the principal force direction, Fig. 5 shows the results 
when the tension-stiffening and the dowel action are both neglected 
(dashed lines) and when they are both taken into account. All this is 
shown for reinforcement designs obtained from equilibrium conditions 
alone on the basis of friction coefficients k = 0.75, 1.7, and 00. It is seen 
from the calculated plots that the use of k = 0.75 in the design, as com­
pared to the frictionless design (k = (0), greatly offsets the increase of 
crack width due to angular deviation of reinforcement over the crack 
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FIG. 5.-Comparlson of Maximum Crack Width Between Frictional (Slip-Free) and 
Frictionless DeSigns with and without Tension Stiffening and Dowel Action (s 
50 mm, D = 12.7 mm) 

width for parallel reinforcement (in Fig. 5(d), it reduces a five-fold in­
crease to a two-fold increase). 

Fig. 6 shows again the effect of the angular deviation of reinforcement, 
now for the designs based only on k = 1.7 and, for different crack spac­
ings and different bar diameters, the magnitude of which affects both 
the tension stiffening and the dowel action. It is seen that for a large 
crack spacing (100 mm or 4 in.) the influence of the bar diameter upon 
the crack width increase due to the angular deviation of reinforcement 
is much more intense than it is for a small crack spacing (25 mm or 1 
in.). 

Finally Fig. 7 shows the results obtained with the consideration of ten­
sion-stiffening and dowel action for different crack spacings and for dif-
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ferent reinforcement designs based on different friction coefficients (k 
= 0.75, 1.7, and (0). The crack width increase due to the angular devia­
tion of reinforcement is somewhat less for larger crack spacings (80% 
vs. 50% increase for k = 1.7) but is generally not strongly dependent on 
the assumed crack spacing (if'the bar diameter is small; D = 12.7 mm 
or 0.5 in.). 

Even though experimentally verified material properties have been 
used, one must keep in mind that the foregoing results represent es­
sentially simplified theoretical deductions. It would be useful to carry 
out measurements on reinforced panels and compare them with the 
present results. 

SUMMARY AND CONCLUSIONS 

The deformation and crack width of concrete walls reinforced by a 
regular rectangular net of reinforcing bars and subjected to in-plane 
(membrane) internal forces is analyzed on the basis of realistic models 
for the frictional dilatant behaVior of rough interlocked cracks, and for 
the dowel action of bars at crack crossings. The tension stiffening effect, 
Le., the restraining effect of the solid concrete between the cracks caused 
by bond stresses, is taken into account in terms of an equivalent steel 
ratio and is calculated by considering either slipping or nonslipping bars. 
The dowel action is modeled as an additional stiffness in the stress-dis­
placement relation for the cracks. Extensive numerical computer studies 
have been conducted, and reinforcement designs obtained on the basis 
of equilibrium conditions alone of either the classical frictionless ap­
proach or the recent frictional (slip-free) approach are compared in terms 
of the resulting crack widths for these different designs. The secant slip­
dilatancy model is used. 

The computer results lead to the following conclusions. 

1. The tension stiffening effect reduces the calculated crack width by 
10%-25%, and the dowel action further by as much as 10%. So, it is 
quite important to consider these effects in calculations. 

2. The reinforcement designs obtained with different crack friction 
coefficients often lead to rather different crack widths for the same loads. 
The difference is significant (up to about 160%) when the bar direction 
deviates from the principal tensile force by more than about 5%, while 
for reinforcement that is laid in the direction of the principal tensile force 
no difference is obtained. 

3. The use of friction coefficient k = 0.75 (which is lower than the 
realistic value of 1.7) in the equilibrium design of reinforcement assures 
that the crack width for any direction of reinforcement is no more than 
twice the crack width for parallel reinforcement. By contrast, for the fric­
tionless design, for which k - 00, the crack width for skew reinforcement 
may be as much as five-times larger than for parallel reinforcement. 
Thus, the simple use of the frictional design allows a significant reduc­
tion of the c.rack width for the cases of arbitrary skew reinforcement 
without the need of actually calculating the deformations and checking 
them against some limit. This is a much more difficult task if it should 
be carried out realistically (taking into account the aggregate interlock, 
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dowel action and tension stiffening). 
4 The infl~ence o{ bar diameter on the crack width inc~ease due to 

an~ular deviation of reinforcement is for a l~rge crack spac~ng. stronger 
than it is {or small crack spacing. For s~~11 dlame.ters ($0.5 m., ~3 mm), 
the influence of crack spacing is neghglble, whde for large diameters 
(1 in.; 25.4 mm) it is not. ..' . f 

5. The classical approach, in which the frlchonal ddatant behaVior 0 

cracks is neglected in the deformation analysis and the cracks are. as­
sumed to be oriented so that no slip displa~em~nt ~ccurs ?n the?, (I.e., 
to be normal to the maximum principal stram directIOn), Yields dlffctcnt 
values of the crack width. 
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ApPENDIX I.-DESIGN OF OpnMUM REINFORCEMENT 

A summary of the design procedure according to Refs .. 3 and 5 will 
now be given. It will be also indicated how it shoul~ be adjusted to tak~ 
into account the minimum reinforcement reqUirements. Let n x -

N'/N and 11 =: N'/N in which NI, N2 = principal internal forces (NI 
>xN IN > O)Y andYN' IN' = reinforcement yield forces. The safe design 
-- 21 I ' X' Y 
envelope is given by 

[(lIx - 11~) - ~1(lIy - n~)Jl(ny - n~) - ~I (n, - n~)] = (2p2n~)2 ..•.•... (28) 

in which (no nil) =: (1 + m ± (1 - m) cos 20]/2; n~ = (1 - m)(sin 2a)/ 
2; ~2 = 1 /(t+ Y sin P); and 131 = (1 - sin ~) 132' The optimum values are: 

(/I) = 1 + ! (1 - til) sin 20 (cosec ~ - tan 0) .................... (29) 
x OJ.t 2 

(n) = m + ! (1 - m) sin 20 (cosec P + tan 0) .................... (30) 
yopt 2 

in which m = N
2
/N

I
, 0 is shown in Fig. 1; ~ = arctan (k); and k = fricti~n 

coefficient. Now, from Eqs. 29 and 30, the optimum reinforcement ratios 
are PH/.t = llx.opt fTI.uJt/fT~x' Py. t = ny.opt al.ult/fT"yy, ~n which al.ult =. Nl,u!,/h, h 
= wail thickness' a' and a"f = axial stresses tn the bars of directions x 
and Y (fT' and as' is'iaken a~ ~ f in which ~ = capacity reduction factor; 
f. '" yild stres;Vof bar). !,-ssurriing the dead-to-live load ratio 3:1, an~ 
introducing the respective load factors 1.4 and 1. 7, leaves !'ll,ult 
1 4N + 1 7N '" 1.475N°. As already mentioned, one must use m Eqs. 

. In • JI. I D N0' th d . 
28-30 the ultimate design value N 1 = 1.475N I where 1 IS e eSlgn 
value of N I' Note that the safe design requires n x $ r x = fyp./u1 and IIy 
$ ry = fypyilJ ,. 
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Some cases give a negative value for II"",., or "y"",,' This means Ihal no 
tensile reinforcement is needed in the corresponding direction in this 
case. One must, however, use at leasl the minimum shrinkage and tem­
perature reinforcement specified by section 7.12 of ACI Code (0.002 in 
case of a slab). The complete ~esign procedure when eilher Eq, 29 or 
Eq. 30 gives a negative value is then as follows: 

Case t.-If II, :s; 0, set p, = P"min (given, e.g., 0.002), and II, = 1I"min 

= p"min a~/al,u'" Then, if 1I"min < r,p, solve Eq. 28 for lIy = (ny)opt: If 1I"min 

~ r,p, substitute lIy = (lIy)opt = ryp; in which [see Fig. l(b) of Ref. 5] 

r,p = 1 + II~ [cosec p + sin p) sec p - tan a)) 

ryp = m + II~ [(cosec p - sin P) sec P + tan a)] .................... (31) 

Case 2.-1f lIy :s; 0; set Py = ~,min (given), and lIy = "y,"!in = Py,noin(T;J 
al,ull' Then if " y,min < ryQ' solve hq. 28 for II, = (II'),.,.,; and If "y,,,.,,. ~ rv\.!' 
substitute II, = (1I.)opt = r,Q in which [Fig. l(b) of Ref. 5) 

r,Q = 1 + II~ [(cosec p - sin P) sec P - tan a] .. 
ryQ = m + II~ [(cosec P + sin P) sec P + tan a] ........ , ........... (32) 
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