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Abstract. We consider entire transcendental functions f with an invariant (or
periodic) Baker domain U . First, we classify these domains into three types
(hyperbolic, simply parabolic and doubly parabolic) according to the surface
they induce when we take the quotient by the dynamics. Second, we study
the space of quasiconformal deformations of an entire map with such a Baker
domain by studying its Teichmüller space. More precisely, we show that the
dimension of this set is infinite if the Baker domain is hyperbolic or simply
parabolic, and from this we deduce that the quasiconformal deformation space
of f is infinite dimensional. Finally, we prove that the function f(z) = z+e−z ,
which possesses infinitely many invariant Baker domains, is rigid, i.e., any
quasiconformal deformation of f is affinely conjugate to f .

1. Introduction. Let f : S → S be a holomorphic endomorphism of a Riemann
surface S. Then f partitions S into two sets: the Fatou set Ω(f), which is the
maximal open set where the iterates fn, n = 0, 1, . . . form a normal sequence; and
the Julia set J(f) = S \ Ω(f) which is the complement.

If S = Ĉ = C ∪ {∞}, then f is a rational map, and every component of Ω(f)
is eventually periodic by the non-wandering domains theorem in [25]. There is a
classification of the periodic components of the Fatou set: such a component can
either be a cycle of rotation domains or the basin of attraction of an attracting or
indifferent periodic point.

If S = C and f does not extend to Ĉ then f is an entire transcendental mapping
(i.e., infinity is an essential singularity) and there are more possibilities. For example
a component of Ω(f) may be wandering, that is, it will never be iterated to a
periodic component. Like for rational mappings there is a classification of the
periodic components of Ω(f) (see [5]) and compared to rational mappings, entire
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380 NÚRIA FAGELLA AND CHRISTIAN HENRIKSEN

ones allow for one more possibility: A period p periodic component U is called a
Baker domain, if for all z ∈ U we have fn(z) → ∞, as n→ ∞. The first example of
an entire function with a Baker domain was given by Fatou in [13], who considered
the function f(z) = z+1+e−z and showed that the right half-plane is contained in
an invariant Baker domain. Since then, many other examples have been considered,
showing various properties that are possible for this type of Fatou components (see
for example [11], [6], [3], [22], [23], [15] and also [4]). It follows from [2] that a Baker
domain of an entire function is simply connected.

Taking an iterate of the map if necessary we consider only the cases of invariant
Baker domains. We remark that in a Baker domain, orbits tend to infinity at a slow
rate. More precisely, if γ is an unbounded invariant curve in a Baker domain (and
hence all its points tend to infinity under iteration), then there exists a constant
A > 1 such that |f(z)| ≤ A|z| for all z ∈ γ [5]. This is in contrast to the fact that
points in C that tend to infinity exponentially fast belong to the Julia set of f.

There is another important difference between rational and entire transcenden-
tal mappings which concerns the singularities of the inverse map f−1 or singular
values. In the rational case, the points for which some branch of f−1 fails to be well
defined are precisely the critical values, i.e., the images of the zeros of f ′. In the
transcendental case, one more possibility is allowed, namely the asymptotic values,
which are points a ∈ C for which there exists a curve γ(t) → ∞ as t→ ∞ satisfying
f(γ(t)) → a as t→ ∞. It follows from a theorem of Denjoy, Carleman and Ahlfors
that entire functions of finite order may have only a finite number of asymptotic
values (see e.g. [20] or [26] Theorem 4.11), but in the other extreme there exists an
entire map for which every value is an asymptotic value.

As is in the case with basins of attraction and rotation domains, there is also
a relation between Baker domains and the singularities of the inverse map. In
particular, it is shown in [12] that Baker domains do not exist for a map such that
the set Sing(f−1) is bounded, where Sing(f−1) denotes the closure in C of the set
of singular values. The actual relationship between this set and a Baker domain U
is related to the distance of the singular orbits to the boundary of U (see [8] for a
precise statement). We remark that it is not necessary, however, that any of the
singular values be inside the Baker domain. Indeed, there are examples of Baker
domains with an arbitrary number of singular values (including none) inside.

Our first goal in this paper is to give a classification of Baker domains. Our
result is an extension of previous classifications of certain classes of Baker domains.
Indeed, when the map f restricted to the Baker domain U is proper, we call U a
proper Baker domain. In particular the degree of f restricted to U is finite. In the
special case where this degree is one we call the domain U univalent. In [4] there is
a classification of univalent Baker domains in terms of the map they induce in the
unit disk via the Riemann map.

In [8] the classification is extended to accomodate a larger class of Baker domain,
namely the regular Baker domains. More precisely let ϕ : U → D denote a Riemann
map, mapping U to the unit disk. Such a map conjugates f to a self-mapping of D

that we denote by BU . The map BU is called the inner function associated to U . If
BU is proper then this mapping is a (finite) Blaschke product. It follows from the
Denjoy-Wolff theorem (see e.g. [19], Thm. 5.4), that there exists a point z0 ∈ ∂D

such that BnU converges towards the constant mapping z0 locally uniformly in D as
n tends towards infinity. We call this point the Denjoy-Wolff point of BU . If BU
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extends analytically to a neighborhood of z0 we call U a regular Baker domain. In
particular, proper Baker domains are a subclass of the regular Baker domains.

Our classification is as follows.

Proposition 1. Let f be entire and U a Baker domain. Then U/f is a Riemann
surface conformally isomorphic to exactly one of the following cylinders:

(1) {−s < Im(z) < s}/Z for some s > 0 and we call U hyperbolic;
(2) {Im(z) > 0}/Z and we call U simply parabolic;
(3) C/Z and we call U doubly parabolic. In this case f : U → U is not proper or

has degree at least 2.

In the special case of regular Baker domains, the dynamics of the three types are
shown in figure 1.

1

(a) hyperbolic (b) doubly parabolic

(c) simply parabolic (d) simply parabolic

Figure 1. The three possibilities for the dynamics of BU when U is
a regular Baker domain. Having normalized so that the Denjoy-Wolff
point is z0 = 1, we have that 0 < BU (1) < 1 in the hyperbolic case
(a); BU (z) = z − a(z − 1)3 + O((z − 1)4) for some a > 0, in the doubly
parabolic case (b); BU (z) = z + ia(z − 1)2 + O((z − 1)3), where either

a > 0 (c) or a < 0 (d). By the symmetry of the map, D and �C \ D must
belong to the basin of attraction of 1 and hence the Julia set must be a
subset of the unit circle.

It is a natural question to ask wether examples of Baker domains of all three types
exist. They do, as we show in Section 4. However, our examples for hyperbolic and
simply parabolic domains are univalent and, to our knowledge, no concrete examples
are known of such maps with degree larger than one.

Our second goal in this paper is to study the possible quasiconformal deforma-
tions of entire maps with a Baker domain. We can consider the space of entire
mappings with a fixed Baker domain as a subset of the space of entire mappings
modulo conjugacy with affine mappings. It is natural to ask how this set looks. It
is easy to see it cannot be open, since any entire map with a Baker domain can
be approximated by polynomials, and no polynomial possesses a Baker domain.
Lifting maps with Herman rings (see Example 1 in section 4) for different rotation
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numbers converging to a rational p/q, shows that the set is not closed. Can it have
components that are reduced to points? By considering the space of quasiconformal
deformations we will see that if such a point exists, the corresponding mapping can
only have Baker domains which are doubly parabolic.

More precisely we will consider the Teichmüller space of an entire mapping f with
a fixed Baker domain, using the general framework given by [18] (see Section 5). We
will see that the dimension of this set is infinite if the Baker domain is hyperbolic or
simply parabolic, and from this we will deduce that the quasiconformal deformation
space of f is infinite dimensional. The precise statement is as follows.

Main Theorem. Let U be a fixed Baker domain of the entire function f and U its
grand orbit. Denote by S the set of singular points of f in U , and by Ŝ the closure
of the grand orbit of S taken in U . Then T (f,U) is infinite dimensional except if U
is doubly parabolic and the cardinality of Ŝ/f is finite. In that case the dimension
of T (f,U) equals #Ŝ/f − 1.

Furthermore we show that the lowest dimension is possible, that is we give an
example of a rigid map with a proper Baker domain. Using the Main Theorem we
can show the following (see Section 6).

Proposition 2. The map f(z) = z + e−z is rigid, i.e., if f̃ is a holomorphic map
which is quasiconformally conjugate to f , then f̃ is affinely conjugate to f .

2. Preliminaries – quasiconformal mappings. In this section we recall shortly
the relevant definitions and results relative to quasiconformal mappings, to be used
in Section 5. The standard references are [1] and [16]. In this section, V, V ′ ⊂ C

are open subsets of the complex plane or more generally, one dimensional complex
manifolds.

Definition 1. Given a measurable function µ : V → C, we say that µ is a
k−Beltrami coefficient of V if |µ(z)| ≤ k < 1 almost everywhere in V . Two Beltrami
coefficients of V are equivalent if they coincide almost everywhere in V .

Definition 2. A homeomorphism φ : V → V ′ is said to be k−quasiconformal if it
has locally square integrable weak derivatives and

µφ(z) =
∂φ
∂z̄ (z)
∂φ
∂z (z)

=
∂̄φ(z)
∂φ(z)

is a k−Beltrami coefficient. In this case, we say that µφ is the complex dilatation
or the Beltrami coefficient of φ.

With the same definition, but skipping the hypothesis on φ to be a homeomor-
phism, φ is called a k−quasiregular map.

Definition 3. Given a Beltrami coefficient µ of V and a quasiregular map f : V →
V ′, we define the pull-back of µ by f as the Beltrami coefficient of V defined by:

f∗µ =
∂f
∂z̄ + (µ ◦ f)∂f∂z
∂f
∂z + (µ ◦ f)∂f∂z̄

.

We say that µ is f–invariant if f∗µ = µ. If µ = µg for some quasiregular map g,
then f∗ = µg◦f .
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It follows from Weyl’s Lemma that f is holomorphic if and only if f∗µ0 = µ0,
where µ0 ≡ 0.

Definition 4. Given a Beltrami coefficient µ, the partial differential equation
∂φ

∂z̄
= µ(z)

∂φ

∂z
(1)

is called the Beltrami equation. By integration of µ we mean the construction of
a quasiconformal map φ solving this equation almost everywhere, or equivalently,
such that µφ = µ almost everywhere.

The famous Measurable Riemann Mapping Theorem by Morrey, Bojarski, Ahlfors
and Bers states that every k-Beltrami coefficient is integrable.

Theorem 1 (Measurable Riemann Mapping Theorem, [1]). Let µ be a Beltrami
coefficient of C. Then, there exists a quasiconformal map φ : C → C such that
µφ = µ. Moreover, φ is unique up to post-composition with affine maps.

We end this section with a lemma that will be important in Section 5. Since we
are unable to give a reference, we include its proof here.

Lemma 1. Let A denote the set of K-quasiconformal homeomorphims ω : D →
D that extend continuously to the boundary as the identity. Then there exists a
constant C = C(K) such that for all ω ∈ A and all z ∈ D we have that the
hyperbolic distance dD in D satisfies

dD(z, ω(z)) ≤ C.

Proof. This is a standard compactness argument. Let B denote the set of K-
quasiconformal homeomorphisms of the sphere that fix −1, 1 and ∞. We endow
A and B with the topologies corresponding to uniform convergence. A map ω ∈ A
can be extended to the sphere, by letting it coincide with the identity outside D.
This defines an injection A → B which can be seen to be a homeomorhism onto its
image. It is easy to see that the image of A in B is closed. Now, it is well-known
that B is sequentially compact (cf. [17]), and it follows that A is sequentially
compact. Then, take a sequence of maps ωn ∈ A and points zn ∈ D and suppose
that dD(zn, ωn(zn)) → ∞. Let ω̂n be the map we obtain by conjugating ωn with a
Möbius transformation that sends D to itself and zn to 0. Now, ω̂n is a sequence
of maps in A with |ωn(0)| → 1. This is in contradiction with the fact that A is
sequentially compact.

3. Classification of Baker Domains. Proof of Proposition 1. Let U be an
open subset of the complex plane or, more generally, a one dimensional complex
manifold. For an endomorphism f of the space U, the grand orbit of y ∈ U is the
set {x ∈ U | fn(x) = fm(y) for some n,m > 0}. The grand orbit of a set is the
union of the grand orbits of its elements. The grand orbit relation is the equivalence
relation such that x ∼ y if and only if they have the same grand orbit. We denote
by U/f the quotient space obtained from U by identifying points under the grand
orbit relation of f.

Let f be an entire transcendental map and U an invariant Baker domain of f .
We recall the statement of Proposition 1.

Proposition 1. Let f be entire and U a Baker domain. Then U/f is a Riemann
surface conformally isomorphic to one of the following cylinders:
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(1) {−s < Im(z) < s}/Z for some s > 0 and we call U hyperbolic, or
(2) {Im(z) > 0}/Z and we call U simply parabolic, or
(3) C/Z and we call U doubly parabolic. In this case f : U → U is not proper or

has degree at least 2.

The proposition is a direct consequence of the work of Cowen. In [9] he defines the
notion of a fundamental set for an endomorphism ψ of a domain Ω as an open, simply
connected and forward invariant subdomain V ⊂ Ω, such that for any compact set
K ⊂ Ω there exists n > 0 so that ψn(K) ⊂ V. Cowen shows the following theorem.

Theorem 2 ([9]). Let φ : D → D be analytic and without fixed points. Then there
exist a fundamental set V for φ on D and an analytic mapping σ : D → Ω, with
Ω = C or Ω = D, and a Möbius transformation Φ mapping Ω onto itself such that:

(a) φ and σ are univalent on V ;
(b) σ(V ) is a fundamental set for Φ on Ω;
(c) σ (semi)conjugates φ to Φ, i.e., σ ◦ φ = Φ ◦ σ.

Moreover, Φ is unique up to conjugation by a conformal isomorphism of Ω, and Φ
and σ depend only on φ, not on the particular fundamental set V.

Proof. We prove how Proposition 1 follows from Cowen’s theorem. Let φ = BU be
the inner function associated to f : U → U, as defined in the introduction. Since f
has no fixed points in U, φ has no fixed points and we can invoke Cowen’s theorem
to obtain mappings σ and Φ as well as a fundamental domain V ⊂ D. Since V is a
fundamental domain for φ and σ(V ) is a fundamental domain for Φ we get

U/f 
 D/φ 
 V/φ 
 σ(V )/Φ 
 Ω/Φ.

First suppose Ω = C. The two fixed points of Φ must then coincide at infinity,
and Φ : C → C is conjugate to translation by one on the plane. This is the doubly
parabolic case of the proposition. Now if φ : D → D were proper and of degree
one, it would be conjugate to the translation by one (or minus one) on the upper
half plane, which is impossible since a doubly infinite cylinder is not conformally
equivalent to a one sided infinite cylinder. So if f : U → U is proper it is not of
degree one.

Now suppose that Ω = D. By the symmetry of Φ, the fixed points of Φ must be on
the unit circle. If the two fixed points coincide, we conjugate Φ with a map sending
D onto the upper half plane and the fixed point to infinity. By the invariance of the
half plane, the mapping we obtain must be of the form z �→ z + a for a real and
non-zero. This is the simply parabolic case of the proposition. The last possibility
is that the two fixed points of Φ are distinct. Denote the multiplier of the attracting
fixed point by λ (the repelling fixed point then has multiplier 1/λ). We conjugate Φ
with a Möbius transformation that sends the attracting fixed point to infinity, the
repelling fixed point to 0 and the unit disc to the right half plane to obtain a Möbius
transformation Φ̃ mapping the right half plane onto itself. This mapping must be
z �→ 1

λz and by invariance of the right half plane, 0 < λ < 1. Finally conjugating by
z �→ 1

λ log(z), Φ̃ on the right half plane is conjugated to translation by one on the
strip {−π/λ < Im(z) < π/λ}. This is the hyperbolic case of the proposition.

4. Examples. Examples of hyperbolic and simply parabolic univalent Baker do-
mains were already given in [4], but we include them here for completeness. Addi-
tionally we present examples of degree two and three doubly parabolic domains.
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Up to this date, we do not know of any example of a hyperbolic or simply
parabolic proper Baker domain with degree larger than one. We summarize this in
the following table.

Univalent 1 < degree
Hyperbolic Example 1 ?

Simply parabolic Example 2 ?
Doubly parabolic ××× Examples 3 and 4

Example 1. (univalent, hyperbolic)
Let f(z) = z + α + β sin(z) for 0 < α < 2π and 0 < β < 1. Projecting f by

w = eiz, we obtain the map

F (w) = eiαwe
β
2 (w−1/w)

which is a holomorphic self-map of C
∗ = C\{0}. It is easy to check that F restricted

to the unit circle S
1 is the well-known standard family of circle maps.

For appropriately chosen values of the parameters α and β, the map F has a
Herman ring V symmetric with respect to S

1. It is easy to check that lifting V
by eiz we obtain a Fatou component U of f , which is an invariant Baker domain,
symmetric with respect to the real axis. See Figure 2. Since V is a rotation domain,
the map F is univalent in V . Using the fact f(z+2kπ) = f(z)+2kπ one can easily
show that f |U must also be univalent.

One can check that U is conformally equivalent to a horizontal band B of finite
height and that f in U is conjugate to a horizontal translation in B. It follows
easily that U is hyperbolic.

U

Figure 2. The dynamical plane of f(z) = z + α + β sin(z) for certain
values of α and β such that f has a univalent hyperbolic Baker domain.
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Example 2. (univalent, simply parabolic) Let g(w) = λw expw. Then 0 is a
fixed point of g with multiplier λ. The map g has only one critical point at z = −1.
Observe that g is semiconjugate to the map f(z) = z + log(λ) + ez by w = ez.

Let λ = e2πiθ where θ is chosen so that g has a Siegel disk ∆ around 0 (we
can choose θ to be any Brjuno number). Then ∆ lifts under ez to a domain U
which contains a left half plane. See Figure 3. The invariant closed curves in ∆
lift to invariant almost vertical curves in U , the points of which move upwards
towards infinity. Hence U is a Baker domain which is easily seen to be univalent.
We can lift the linearizing map φ : ∆ → D by the exponential to get a mapping
Φ : U → {Re(z) < 0}, that conjugates f : U → U to the translation by 2iπθ on the
right half plane. It follows that U/f is a one-sided infinite cylinder.

U

Figure 3. The dynamical plane of f(z) = z + α + ez with α =
√

5−1
2

,
which contains a univalent simply parabolic Baker domain.

Example 3. (degree 2, doubly parabolic)
In this section we study the example

f(z) = z + e−z,

which was also investigated in [3], showing the existence of infinitely many invariant
Baker domains for f . We start by proving the same fact using different arguments
and then proceed to show that the domains are doubly parabolic.

To study the dynamics of f it is convenient to work with the map g(w) = we−w

that is semiconjugate to f by w = e−z. Observe that w = 0 is a fixed point of g
of multiplier 1, and g(w) = w − w2 + O(w3) near 0. The attracting and repelling
direction of 0 are the positive and negative real axis respectively. There exists an
attracting petal P of f at 0 which determines a basin of attraction A. Let A0

denote the immediate basin of attraction, i.e., the connected component of A that
contains P. Then, A0 also contains the unique critical point w = 1.

We now lift this picture back to the dynamical plane of f (see Figures 4 and
5). Observe that the preimages of R

− under e−z are the horizontal lines {Imz =
(2k+1)π, k ∈ Z}. Hence all of them are invariant by f and their points have orbits
whose real part tends to −∞ exponentially fast. This implies that all of them lie
in the Julia set of f .
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U0

U1

U−1

V

w �→ w + e−w z �→ ze−z

z = e−w

Figure 4. To the left is an illustration of the dynamics of f : w �→
w+e−w. This map possesses a sequence of fixed doubly parabolic proper
Baker domains . . . , U−1, U0, U1, . . .. The map f is semiconjugate to g :
z �→ ze−z by z = e−w. The Baker domains of f correspond to the
immediate parabolic basin of attraction of the parabolic fixed point 0 of

g.

The horizontal strips that lie in between these preimages are mapped to the whole
dynamical plane of g in a one-to-one fashion and, therefore, they each contain a
preimage of A0. Let us denote these preimages by . . . , U−1, U0, U1, . . ., and observe
that each Uk contains the invariant horizontal line Imz = 2kπ, since these are
mapped to the positive real axis by e−z. Hence, for all k ∈ Z, the set Uk is invariant
and its points tend to infinity under iteration of f (since this is the preimage of 0
under the conjugation). Therefore each of these sets is an invariant Baker domain.

3π

2π

−2π

−3π

π

0

−π

Figure 5. Sketch of the dynamical plane of f . There is an invariant
Baker domain in every strip Imz ∈ ((2k + 1)π, (2k + 3)π), k ∈ Z.

We now proceed to check that each Uk is doubly parabolic. Indeed, Uk/f 
 A0/g,
which can be seen to be equivalent to a double infinite cylinder, for instance by using
the Fatou coordinates.

Example 4. (degree 3, doubly parabolic) This example is similar to the last,
except that we lift a mapping with a parabolic fixed point and a double critical
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point in the basin. More precisely, consider the map g(w) = exp(w2/2 − 2w). It
is easy to check that w = 0 is parabolic with multiplier 1 and that the immediate
basin contains a double critical point. The negative real axis, as in the example
above, is contained in the Julia set of g.

Lifting by the exponential function we obtain infinitely many Baker domains
separated by the horizontal lines {Im(z) = (2k + 1)π}. Arguing like the previous
example we see that these are doubly parabolic Baker domains of degree 3.

Note that, in a similar fashion, it is easy to construct examples of doubly para-
bolic proper Baker domains of any degree.

Example 5. (Fatou’s example: infinite degree, non-regular, doubly par-
abolic)

Let f(z) = z+1+e−z. It is well known that f has a Baker domain that contains
the right half plane, and that all the infinitely many critical points belong to the
Baker domain. Hence the degree is infinite, and since the critical points accumulate
at the Denjoy-Wolf point, the inner map cannot be extended to a neighborhood of
this point. Hence the Baker domain is not regular. Since the map near infinity is
basically a translation by one, it is clear that the quotient by f is a doubly infinite
cylinder. Hence the Baker domain is doubly parabolic.

5. Deformations. Proof of the Main Theorem. In this section we consider
the Teichmüller space of an entire mapping f with a fixed Baker domain, using
the general framework given by [18]. We will see that the dimension of this set is
infinite if the Baker domain is hyperbolic or simply parabolic, and from this we will
deduce that the quasiconformal deformation space of f is infinite dimensional. For
some preliminaries on quasiconformal mappings see Section 2.

Let V be an open subset of the complex plane or more generally a one dimensional
complex manifold and f a holomorphic endomorphism of V. Define an equivalence
relation ∼ on the set of quasiconformal homeomorphisms on V by identifying φ :
V → V ′ with ψ : V → V ′′ if there exists a conformal isomorphism c : V ′ → V ′′

such that c ◦ φ = ψ, i.e. the following diagram commutes.

V

ψ ���
��

��
��

�
φ �� V ′

c

��
V ′′

It then follows that φ ◦ f ◦φ−1 and ψ ◦ f ◦ψ−1 are conformally conjugate (although
the converse is not true in general). Then the deformation space of f on V is

Def(f, V ) = {φ : V → V ′ quasi conformal | µφ is f -invariant }/ ∼ .

As a consequence of the Measurable Riemann Mapping Theorem (see [1] or The-
orem 1) one obtains a bijection between Def(f, V ) and

B1(f, V ) = {f − invariant Beltrami forms µ ∈ L∞ with ||µ||∞ < 1},
and this is used to endow Def(f, V ) with the structure of a complex manifold.
Indeed, B1(f, V ) is the unit ball in the Banach space of f -invariant Beltrami forms
equipped with the infinity norm.

We denote by QC(f, V ) the set of quasiconformal automorphisms of V that
commute with f. A family of q.c. mappings is called uniformly K-q.c. if each
element of the family is K-q.c.
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A hyperbolic Riemann surface V is covered by the unit disk; in fact V is isomor-
phic to D/Γ where Γ is a Fuchsian group. Let Ω ⊆ S

1 denote the complement of
the limit set of Γ. Then (D∪Ω)/Γ is a bordered surface and Ω/Γ is called the ideal
boundary of V. A homotopy ωt : V → V, 0 ≤ t ≤ 1 is called the rel ideal boundary
if there exists a lift ω̂t : D → D that extends continously to Ω as the identity. If V
is not hyperbolic then the ideal boundary is defined to be the empty set.

We denote by QC0(f, V ) ⊆ QC(f, V ) the subgroup of automorphisms which are
homotopic to the identity the rel ideal boundary of V through a uniformly K-q.c.
subset of QC(f, V ).

Earle and McMullen [10] prove the following result for hyperbolic subdomains of
the Riemann sphere.

Theorem 3. Suppose V ⊆ Ĉ is a hyperbolic subdomain of the Riemann sphere.
Then a uniformly quasiconformal homotopy ωt : V → V, 0 ≤ t ≤ 1 can be extended
to a uniformly quasiconformal homotopy of Ĉ by letting ωt = Id on the complement
of V. Conversely, a uniformly quasiconformal homotopy ωt : V → V such that each
ωt extends continuously as the identity to the topological boundary ∂V ⊆ Ĉ is a
homotopy rel ideal boundary.

Proof. The proof can be found in [10]: Proposition 2.3 and the proof of Corollary
2.4 imply the first statement. Theorem 2.2 implies the second.

The group QC(f, V ) acts on Def(f, V ) by ω∗φ = φ ◦ ω−1. Indeed if φ and ψ
represent the same element in Def(f, V ) then ω∗φ = ω∗ψ as elements of Def(f, V ).

Definition 5. The Teichmüller space T (f, V ) is the deformation space Def(f, V )
modulo the action of QC0(f, V ), i.e. T (f, V ) = Def(f, V )/QC0(f, V ). If V is a one
dimensional complex manifold we denote by T (V ) the Teichmüller space T (Id, V ).

Teichmüller space can be equipped with the structure of a complex manifold and
a (pre)metric (we refer to [18]).

Let us give a rough idea of Teichmüller space and the motivation for studying it.
In holomorpic dynamics one is often interested in studying the set F of holomorphic
mappings that are quasiconformally conjugate to a given holomorhic map f : V → V
modulo conjugacy by conformal isomorphisms. Such a mapping can be written as
φ ◦ f ◦ φ−1 for a φ ∈ Def(f, V ). Now φ ◦ f ◦ φ−1 and ψ ◦ f ◦ ψ−1 are conformally
conjugate exactly when they represent the same element in Def(f, V )/QC(f, V ). So
we can study F by looking at Def(f, V )/QC(f, V ). Clearly the Teichmüller space
is related to this space, and it can be shown to be, at least morally, a covering of
it. Because of the nice properties of Teichmüller space, this space is often more
convenient to study than F .

Sullivan and McMullen prove stronger versions of the following two theorems.

Theorem 4. Let f be an entire mapping, and suppose that Uα is a family of
pairwise disjoint completely invariant open subsets of C. Then

T (f,∪Uα) 

∏

T (f, Uα).

Proof. This follows from Theorem 5.5 in [18].

Theorem 5. Suppose every component of the one-dimensional manifold V is hy-
perbolic, f : V → V is a holomorphic covering map, and the grand orbit relation of
f is discrete. If V/f is connected then V/f is a Riemann surface and

T (f, V ) 
 T (V/f).
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Proof. This is a consequence of Theorem 6.1 in [18].

After these general definitions, we return to the case where f is an entire mapping
with a Baker domain U. By definition f : U → U is conjugate to its inner function
BU : D → D, with a non-repelling fixed point at 1.

We now show that the grand orbit of the set of singular values is formed by
dynamically distinguished points. More precisely we have the following proposition.

Proposition 3. Let f be an entire mapping and U a totally invariant open set
whose connected components are simply connected and hyperbolic. Denote by S the
set of singular values of f in U . Then any ω ∈ QC0(f,U) restricts to the identity
on the closure of the grand orbit of S in U .

To prove the proposition we need the following lemma.

Lemma 2. Let V be a simply connected hyperbolic subset of C, and f : V →
C \ {a, b} be a holomorphic map into the thrice punctured sphere. Suppose γ :
[0,+∞] → Ĉ is a curve such that

1. γ([0,+∞)) ⊂ V,
2. γ(+∞) ∈ ∂V ∪ {∞}, and
3. limτ→+∞ f ◦ γ(τ) = x0 ∈ Ĉ.

Let (zn) ⊂ V be a sequence converging to the boundary of V in Ĉ and satisfying
that dV (zn, γ) ≤ C for some C. Then, if f(zn) converges to a point in Ĉ this point
must be x0.

Proof. Set x1 = lim f(zn). We must show that x1 = x0. Let φ : H → V be a
Riemann mapping that sends the upper half plane H conformally onto V. By [21]
(Proposition 2.14) the curve γ̃ = φ−1 ◦ γ|[0,+∞) extends continuously to a curve
γ̃ : [0,+∞] → H ∪ {∞}, with γ̃(+∞) ∈ ∂H ∪ {∞}. By replacing φ with another
Riemann mapping we can suppose γ̃(∞) = 0. Let wn = φ−1(zn) and let τn ≥ 0 be a
sequence such that dD(γ̃(τn), wn) ≤ C; we must have tn → +∞. Let Ln denote the
affine mapping that maps H onto itself and sends γ(τn) to i. Set gn = f ◦ φ ◦ L−1

n :
H → C \ {a, b}. By Montel’s theorem gn is a normal sequence and by passing to a
subsequence we suppose that gn converges to a map g∞ : H → Ĉ, locally uniformly
in H. Clearly g∞(i) = x0.

We claim that g∞ is the constant mapping. Let r ∈ (0, 1) be arbitrary. Take
τ ′n > τn such that

|Ln ◦ γ̃(τ ′n) − Ln ◦ γ̃(τn)| = |Ln ◦ γ̃(τ ′n) − i| = r.

Such τ ′n exists since Im(Ln ◦ γ̃(τ)) → 0 as τ → +∞. Now, gn ◦Ln(γ̃(τ ′n)) = γ(τ ′n) →
x0 and it follows that there exists a point on the circle with center i and radius r
that g∞ maps to x0 (any accumulation point of {Ln(γ̃(τ ′n))} will do). Since r was
arbitrary, the Identity Theorem implies that g∞ is the constant map w �→ x0.

Note that Ln(wn) is contained in the closure of the hyperbolic disk {dH(ζ, i) <
C}. On the one hand gn(Ln(wn)) → x0. On the other hand gn(Ln(wn)) = f(zn) →
x1. We conclude that x0 = x1.

Proof of Proposition 3. We first show that ω restricts to the identity on the set of
critical values, then that it restricts to the identity on the set of asymptotic values,
and finally to the closure of the grand orbit of these two sets.

Let ωt be a path in QC(f,U) that connects ω0 = Id to ω1 = ω. Since ωt commutes
with f, the set of critical points is ωt invariant. So, if c ∈ U is a critical point, the
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path t �→ ωt(c) is a subset of the critical points. Since this set is discrete ωt(c) = c
for all t. Since ωt commutes with f we immediately get that every ωt fixes the
critical values.

Now let x0 ∈ U be an asymptotic value, and γ : [0,+∞) → U a correspond-
ing asymptotic path; i.e. a curve with the property that limτ→∞ γ(τ) = ∞ and
limτ→∞ f ◦ γ(τ) = x0. Let V denote the component of U that contains γ. Then V
is simply connected and hyperbolic, [12]. By assumption ωt|V : V → V fixes the
ideal boundary of V . Set

xt = ωt(x0) = lim
τ→∞ f ◦ ωt ◦ γ(τ)

We must show that xt = x0. Let τn > 0 be a sequence tending towards +∞
and set zn = ωt ◦ γ(τn) By Lemma 1 there exists a constant C such that the
hyperbolic distance in V satisfies dV (γ(τn), zn) ≤ C. Since f(V ) is contained in
a component of U which is hyperbolic, we can apply Lemma 2 and we get that
xt = limn→+∞ f(zn) = x0. So ωt fixes the asymptotic values of f in U .

Since every singular value is in the closure of the set of asymptotic and critical
values, we get by continuity that ωt fixes the singular values of f in U . Since ωt
commutes with f we get that ωt restricts to the identity on the forward orbit of
this set. Now suppose ωt(y) = y for all t and that fn(x) = y. Then ωt(x) must map
into f−n{y}. Since this set is discrete we get that ωt(x) = x for all x. It follows that
ωt restricts to the identity on the grand orbit of S for all t and by continuity this is
also true on the closure.

We can now prove our main theorem whose statement we recall here.

Main Theorem. Let U be a proper fixed Baker domain of the entire function f

and U its grand orbit. Denote by S the set of singular values of f in U , and by Ŝ
the closure of the grand orbit of S taken in U . Then T (f,U) is infinite dimensional
except if U is doubly parabolic and the cardinality of Ŝ/f is finite. In that case the
dimension of T (f,U) equals #Ŝ/f − 1.

Proof. By Lemma 3 every element of QC0(f,U) restricts to the identity on Ŝ. Hence

T (f,U) 
 B1(f,U)/QC0(f,U) 

(
B1(f, Ŝ) × B1(f,U − Ŝ)

)
/QC0(f,U)


 B1(f, Ŝ) ×
(
B1(f,U − Ŝ)/QC′

0(f,U)
)
,

where we denote by QC′
0(f,U) the group formed by the restriction of each element

in QC0(f,U) to U − Ŝ. Since the elements in QC0(f,U) are the identity on Ŝ, it
follows from Theorem 3 that

QC′
0(f,U) = QC0(f,U − Ŝ).

Therefore,
T (f,U) 
 T (f,U − Ŝ) × B1(f, Ŝ).

By Proposition 1, W = U/f is an annulus of finite modulus when U is hyper-
bolic, one-sided infinite modulus when U is simply parabolic and two-sided infinite
modulus when U is doubly parabolic. The subset T = Ŝ/f ⊂W is relatively closed
in W, so W − T is an open set. We denote the components of W by Vi. Then each
Vi = Vi/f for a completely invariant open subset Vi of C and ∪Vi = U − Ŝ. By
Theorem 4 we have

T (f,U − Ŝ) 

∏
i

T (f,Vi),
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and by Theorem 5 we have ∏
i

T (f,Vi) 

∏
i

T (Vi).

If T contains interior points, then B1(f, Ŝ) is infinite dimensional, so we can
suppose it does not. Then T is a proper subset of W. If T has infinitely many
components then a component Vi of W − T is either of infinite connectivity or
has ideal boundary (or both). In both cases the Teichmüller space is infinite (see
[14]). So we can assume that T has only finitely many components. If one of these
components is not a point then the presence of ideal boundary forces the dimension
of the Teichmüller space to be infinite. Consequently we can assume that T is a
finite set. Then W −T has only one component; it is an annulus with finitely many
punctures. If W is of finite or one-sided infinite modulus, again the presence of
ideal boundary will force the dimension to be infinite. So we can suppose that W is
an annulus of doubly infinite modulus and U is a doubly parabolic Baker domain.

Since T is finite B1(f, Ŝ) is trivial and

T (f,U) 
 T (W − T ).

FinallyW−T is conformally equivalent to the sphere with 2+#T punctures. It is
well known that the dimension of Teichmüller space of the sphere with n punctures
is n − 3. So the dimension of T (f,U) equals 2 + #T − 3 = #T − 1. The proof is
finished recalling that #T = #Ŝ/f.

We conclude this section by remarking that the dimension of the Teichmüller
space of f on the grand orbit of a Baker domain gives a lower bound of the Te-
ichmüller space of f. Indeed, with U denoting the grand orbit of a Baker domain,
J(f) the boundary of U and V the complement of U ∪ J(f) we get

T (f,C) 
 T (f,U) × B1(f, J(f)) × T (f,V).

So in general we expect T (f,C) to be high dimensional. It may then come as
a surprise, that we can give an example of an entire function f with fixed proper
Baker domains which is rigid, in the sense that the Teichmüller space T (f,C) is
trivial. We will exhibit such an example in the next section.

6. A rigid example; proof of Proposition 2. In this section we shall show that
the doubly parabolic example

f(z) = z + e−z,

is rigid. More precisely, we show the following.

Proposition 1. The map f(z) = z + e−z is rigid, i.e., if f̃ is a holomorphic map
which is quasiconformally conjugate to f , then f̃ is conjugate to f by an affine map.

We need the following preliminary lemma which follows easily from work by
Eremenko and Lyubich.

Lemma 3. Let f(z) = z + e−z. The Julia set J(f) has measure zero.

Proof. The mapping z �→ e−z semi conjugates f to g(z) = ze−z, and J(f) is the
preimage of J(g) under z �→ e−z (see [7]). So to show J(f) has measure zero, it will
suffice to show that J(g) has measure zero. The entire function g has exactly one
critical point ω = 1 and exactly one asymptotic value a = 0. Since the asymptotic
value is absorbed by the parabolic fixed point at the origin, and the critical point is
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being attracted by the parabolic fixed point, Proposition 4 and Theorem 8 in [12]
imply that J(g) has zero measure.

Proof of Proposition 2. Let Uj , j ∈ Z, denote the Baker domains of f , and Uj their
grand orbit. The boundary of each open set Uj coincides with with the Julia set
J(f). Since the Julia set is contained in the closure of dynamically distinguished
points (periodic points for example), and since f has no other Fatou components
we get:

T (f,C) 
 T (f,∪Uj) × B1(f, J(f)).
By Theorem 4

T (f,∪Uj) =
∏
j

T (f,Uj).

Since f has no asymptotic values, and each doubly parabolic Baker domain Uj
contains exactly one critical point, we get from the Main Theorem that each T (f,Uj)
is trivial. So

T (f,C) 
 B1(f, J(f)).
In view of Lemma 3 J(f) has measure 0 and so B1(J(f)) is trivial. In other words
T (f,C) 
 Def(f,C)/QC0(f,C) is formed by one point. Since QC0(f,C) is a sub-
group of QC(f,C) also Def(f,C)/QC(f,C) has cardinality one. Finally this set
is in one to one correspondance with the set of entire mappings quasiconformally
conjugate to f modulo conjugacy by affine isomorphisms, and the proposition fol-
lows.
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