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DEFORMATION OF POLAR METHODS

by D.B. MASSEY and D. SIERSMA

0. Introduction.

In [Ma2], [Ma3], and [Ma4], Massey defines and investigates a collec-

tion of analytic invariants which can be attached to a hypersurface singu-

larity, regardless of the dimension of the singular locus. These numbers are

the Le numbers and, in many ways, they appear to be a good generaliza-

tion of the Milnor number of an isolated singularity. The Le numbers are
defined and investigated in a manner that falls under the general heading

of "polar" methods.

Of course, from the topological point of view, it is the Betti numbers

of the Milnor fibre that are the interesting invariants. But only in a very

few special cases one can explicitly calculate these Betti numbers.

However, in the case that the hypersurface has a one-dimensional

singular locus, there are certain other analytic invariants which play an

important role in the study of singularities. These invariants are the

numbers of certain special types of singularities that occur in generic

deformations of the original hypersurface. In some cases, one can determine

from this information the Betti numbers, or even the homotopy type, of

the Milnor fibre.

Such deformation invariants are studied by de Jong [Jol], [Jo2],

Pellikaan [Pel], [Pe2], Siersma [Sil],[Si2],[Si3], and de Jong and van Straten

The first author was partially supported by NSF grants # DMS-9003498 and #DMS-
8807216.
Key words : Perverse sheaves - Characteristic cycle - Vanishing cycles - Polar varieties.
A.M.S. Classification : 32C42 - 32B30 - 32C40.
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[JoStI], [JoSt2], [JoSt3] in the context of deforming the defining equation of

the hypersurface, and are studied by Gaffney [Gal], Mond [Mol],[Mo2], and

Gaffney and Mond [GaMo], in the context of deforming parametrizations

of the original hypersurface.

In this paper, the authors show the connection between these two

approaches in the case of a one-dimensional critical locus. This connection

arises from the fact that the alternating sum of the Le numbers equals the

reduced Euler characteristic of the Milnor fibre [Ma2],[Ma3]. Specifically,

we derive a formula involving the Le numbers, the number of special points

in a deformation, and the Euler characteristic of the deformed singular set.

In order to state the theorem, we must first fix some terminology.

Let fs : (U,0) —> (C,0) be a family of analytic germs, where U is

an open subset of C7^1. Suppose that the dimension of the critical locus,

S/o? of the germ of /o at the origin equals 1 and that the deformation fs

is equi-transversal (see 1.10) - this last condition means essentially that

the generic tranverse Milnor number is constant in the family fs. In this

situation, we have

THEOREM (1.11 and 2.2). — For all e > 0 sufficiently small, if B^

is the closed ball of radius e around the origin in C
71

^
1
 and a is a small

complex number with 0 < |a| <€ e, then

bn(F) - bn-l{F) = ̂ 6n(Fp) + ̂  (&n(Fq) - ̂ -l(Fq))

P q

-E^(x(^)- E i),
k q € SS

where \ denotes the Euler characteristic, bi denotes the reduced Betti

number, F denotes the Milnor fibre of fo at the origin, Fx denotes the

Milnor fibre of fa — /a(x) at the point x, the p ' s are summed over all

p e Be H S/a which are not contained in V{fo) '.= fa
1
^) , the q's

are summed over those q in B^ H S/a which are contained in V(fa)

and at which fa has generic polar curve, the {S^ : k = 1,2,... } are the

irreducible components of the singular set, T,V{fa), ofV{fa) in B^, and u^

is the generic transverse Milnor number of S^.

While this formula seems to give a comparison of the two methods, in

the proofs we wish to contrast the two methods. Hence, we give two proofs

of the formula. In the first author's proof, we use the dynamic properties
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of intersection numbers coupled with some easy stratified Morse theory to

conclude the result. In the second author's proof, one uses the notion of
vanishing homology in a deformation, as developed in [Si2] and [Si3], to
derive a formula involving the Euler characteristic of the Milnor fibre of
the original hypersurface, the number of special points in a deformation,
and the Euler characteristic of the deformed singular set.

In section 3, we give a slightly improved version of the formula of

Le and lomdine [Le2], [Io2], together with the sharpest possible bound for

the validity of the formula. This formula enables one to calculate the Euler

characteristic of the Milnor fibre of a one-dimensional singularity in terms
of the multiplicity of the Jacobian scheme and the Milnor number of an
associated isolated singularity.

In section 4, we give some important special cases and some non-

trivial examples. The examples in section 4 include the transverse A\

case, line singularities, plane curve singularities, homogeneous and quasi-
homogeneous singularities, and composed singularities.

In the final remarks, we discuss - among other things - how to
effectively calculate these invariants with the aid of a computer.

The first author would like to thank The University of Utrecht for
their hospitality - this paper is the result of a week long visit there in

February 1990. Also, the first author must thank T. Gaffney for a series of
very helpful conversations.

1. Le numbers and deformations.

In this section, we shall define and investigate a collection of analytic
cycles - the Le cycles - which live in the critical set of a analytic map
h : (C77'4'1,0) —> (C, 0). Our intention is to generalize the information given
by the Milnor number in the case of an isolated singularity. In [Ma2] , we
defined the Le varieties as schemes. However, it appears that only their
structure as cycles is important, and this structure is much easier to define
and calculate.

Throughout this section, we let h: (C^^O) -^ (C,0) be an analytic
map and z be a linear choice of coordinate systems for C^

1
.

We shall be considering schemes, cycles, and sets; for clarification of

what structure we are considering, we shall at times enclose cycles in square
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brackets, [ ] , and analytic sets in a pair of vertical lines, ||. Occasionally,

when the notation becomes cumbersome, we shall simply state explicitly

whether we are considering V as a scheme, a cycle, or a set.

By the intersection of a collection of closed subschemes, we mean the

scheme denned by the sum of the underlying ideal sheaves. By the union of

a finite collection of closed subschemes, we mean the scheme defined by the

intersection (not the product) of the underlying ideal sheaves. We say that

two subschemes, V and W , are equal up to embedded component provided

that, in each stalk, the isolated components of the defining ideals (those

corresponding to minimal primes) are equal. Our main concern with this

last notion is that it implies that the cycles [V] and [W] are equal. We say

that two cycles are equal at a point, p , provided that the portions of each

cycle which pass through p are equal.

We will use the notation of [Ma2]. Let W be a scheme and let a be

an ideal in A. We wish to consider scheme-theoretically those components

of V(a) which are not contained in \W\.

Let S be the multiplicatively closed set A—|jp where the union is over
all prime ideals p <E Ass(A/a) with \V{p)\ ^ \W\. Then, we define a/W

to equal S~
l
a^\ A. Thus, a/W is the ideal consisting of the intersection

of those primary components, q , (possibly embedded) , of a such that

\V{q)\ ^ \W\. If V = V{a), we let V/W denote the scheme V(a/W).

It is important to note that the scheme V/W does not depend on the

structure of W as a scheme, but only as an analytic set. This definition

coincides with that of a gap-sheaf - a notion which is normally encountered

in the analytic context [SiTr]. The gap sheaf notation for V/W is y[TV].

We shall not use this notation here. In the analytic situation, one does the

primary decomposition above on the level of stalks, and must then show

that the construction above yields a coherent sheaf.

DEFINITION 1.1. — For 0 ^ k ^ TZ, the k-th (relative) polar variety,

r^, of / i with respect to z is the scheme V { ——,.... —— ] / E/i (see
^Ozk Qzn) /

[Ma2] , [Ma3]). If the choice of the coordinate system is clear, we will
sometimes simply write F^.
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Thus, on the level of defining ideals, F^ ^ consists of those components
of

/^ 9h\
" \ r\ 5 • • • 5 n |\^/, a^y

which are not contained in |S/z|. Note, in particular, that F^ ^ is empty and,

/ Qh 9h\
at a point p where dinipS/^ < A;, we must have F^ = V \ — — , . . . , —— ) .

\^9zk 9znj

We naturally refer to the cycle F^ as the k-th polar cycle of h

with respect to z.

The key point of this definition is that the dimension of the singular

set of h is allowed to be arbitrary.

Our ideal structure is somewhat non-standard, as we allow for embed-

ded subvarieties. Also, it is important to note that we index by the generic

dimension instead of the codimension.

Clearly, as sets, 0 = F^ C F^ C ... C r^1
 = C^. In fact,

by 0.1. i) of [Ma2] , we have that :

PROPOSITION 1.2. — (r^1 H V [-^-^ /S/i = r^ as schemes,

and thus the cycle F^1 H V ( -^— ) — F^ J has only components which
[_ ' \OZk ) \ L ' -I

are contained in the critical set of the map h.

oh oh
As the ideal ( — — , . . . , ——) is invariant under any linear change of

OZk 9Zn

coordinates which leaves V(zo,..., Zk-i) invariant, we see that the scheme
r^ ^ depends only on h and the choice of the first k coordinates. At times,
it will be convenient to subscript the A;-th polar variety with only the first

k coordinates instead of the whole coordinate system.

While it is immediate from the number of defining equations that

every component of the analytic set 1̂  ^ has dimension ^ A;, one

usually requires that the coordinate system be suitably generic so that

dimple ^ = k at some point, p. When this is the case, we have :

PROPOSITION 1.3. — If dimple = k, then F^ has no embedded

subvarieties through p.
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Proof. — This follows from 1.3 of [Ma2]. D

DEFINITION 1.4. - If the intersection of r^ ^ and

V(zo -po,...,Zk-i -pk-i)

is zero-dimensional, or empty, at a point p, then we say that the k-th polar

number, 7^z(p)? ls denned and we set 7^z(p) equal to the intersection
number

(r^- V{zQ-pQ,...,Zk-l -J?fc-l))p.

Thus, if 7^z(p) is defined, then F^ must be purely ^-dimensional,

or empty, at p and so - by 1.3 - r^ has no embedded components at p.

We now wish to define the Le cycles. Unlike the polar varieties and

cycles, the Le cycles are supported on the critical set of h itself. These

cycles demonstrate a number of properties which generalize the data given

by the Milnor number for an isolated singularity.

DEFINITION 1.5. — For 0 ^ k ^ n, we define the k-th Le cycle ofh

with respect to z, A^J , to be

^••^S PI,]
If the choice of coordinate system is clear, we will sometimes simply

write [A^]. Also, as we have given the Le cycles no structure as schemes,

we will sometimes omit the brackets and write A^ ^ to denote the Le cycle

- unless we explicitly state that we are considering it as a set only.

Note that as every component of F^1 has dimension ^ k +1, that

every component of A^ ^ has dimension ^ k. We say that the cycle, A^ ,

or the set, A^ ^ , has correct dimension at a point p provided that A^ ^

is purely /^-dimensional, or empty, at p.

We define the k-th Le number ofhatp with respect to z ,A^(p),

to equal the intersection number (A^ • V{zo — p o ^ . . . ,2^-1 — pk-i)} ?
V ' / p

provided this intersection is zero-dimensional, or empty, at p. If this
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intersection has dimension ^ 1 at p, then we say that the A;-th Le number

(of h at p with respect to z ) is undefined. Here, when k = 0, we mean that

W«..c-)^ rl,.nvg)]̂ ,.]. vg)^

(this last equality holds whenever A^z(p) is denned, for then F^ has

embedded components by 1.3).

Note that if A^ ^(p) is denned, then A^ ^ must have correct dimen-

sion at p. Also note that, since r^1 and F^ ^ depend only on the choice

of the coordinates ZQ through ^, the A*-th Le cycle, \A^ J, depends only

on the choice of (zo? • • • i ^ k ) '

PROPOSITION 1.6. — The Le cycles are all non-negative and are

contained in the critical set ofh. Every component of A^ ^ has dimension

at least k. If s = dinipS/i then, for all k with s < k < n - ^ - l , p i s not

contained in A^ ^ , i.e. A^ ^ is empty at p.

Proof. — The first statement follows from 1.2. The second statement

follows from the definition of the Le cycles and the fact that every

component of F^1 has dimension at least k + 1. The third statement

follows from the first two. D

Remark 1.7. — As we demonstrated in example 1.7 of [Ma2] , in the

case of an isolated singularity, A^ ^ is nothing other the Milnor number.

In the general case, it is tempting to think of A^(p) as the local

(generic) degree of the Jacobian map of h at p, i.e. the number of points
in

oh oh '
Be n v [ ^—— - ^0, • . • , 7—— - ̂ n

9zo OZr,

o

where Be is a small open ball centered at p and a is a generic point with

length that is small compared to e\ unfortunately, there is no such local
degree.
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Consider the example h = zj + {zo - z^)
2 and let p be the origin.

Then,

_ _ ( 9 h 9h 9h \
BE n v \^~ ~ a0' ~^~ ~a^ ^~ ~ a ^ }y9zo 9z^ 9z^ j

= Be n V(2{zo - zi) - ao, 2(^o-^)(-2^i)-ai, 2^2-02).

The solutions to these equations are

2
O'Q QI ai a2

zo=^+^ 2 1 =-2ao' ^T

The number of solutions of these equations inside any small ball does not
just depend on picking small, generic ao,ai, and 02, but also depends on

the relative sizes of ao and ai. If a\ is small relative to OQ, then there will
be one solution inside the ball; if ao is small relative to ai, then there will
be no solutions inside the ball.

Do either of these numbers actually agree with A^(0)? Yes, with
these coordinates, A^(0) = 1. This can be seen from the above calculations

together with the discussion below, which shows how "close" A^ ^ is to being
the generic degree of the Jacobian map of h.

We claim that, if dimple = 1, then A^z(p) exists and equals the
number of points in

, ( 9h 9h \
B£n v { ^ - - a ^ " ^ ^ - a n ] ^^9zo 9zn j

o

where Be is a small open ball centered at p, ao ^ 0 is small compared to
e, and a i , . . . , an are generic, with length that is small compared to that of
do.

To see this, note that this number of points equals the sum of the
intersection numbers given by

^( ( 9 h 9h\ 9h \

^^^•••^J-^-^
-i \ \ / Q

where the sum is over all q in

_ , / 9 h 9h 9h\
B£n v

[^~~
a
^ TT"5"-^ •\ 9zo <9zi 9zn ]
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But, for CLQ ^ 0, these points, q , do not occur on the critical locus
of /i, and so this sum equals

E f^z • ^
q \
-<-'

/
 qq

This last sum is none other than

^-(^'vi^}} .v \^°y7p
It is also possible to give a more intuitive characterization of A^ ^(p)

where s = dinipE/i. Namely, (see Prop. 2.8 of [Ma2])

^,z(P) =^1W^

y

where v runs over all 5-dimensional components of S/i at p, n^ is the

local degree of the map (^o, . . . , Zg-i) restricted to v at p, and ̂  denotes

the generic transverse Milnor number of h along the component v in a

neighborhood of p. In particular, if the coordinate system is generic enough
so that ny is actually the multiplicity of v at p for all v, then A^(p) is

merely the multiplicity of the Jacobian scheme of h at p.

For the remainder of the paper, we shall restrict our attention to the

case where dimoE/i = 1. In this case, there are only two (possibly) non-

vanishing Le numbers :

A,,z(p) = IM • V
9h_

9zQ

and

^(p) =Y^
n
^'

Correspondingly, there are only two (possibly) non-vanishing reduced Betti

numbers of the Milnor fibre, Fp, of h at p; namely, bn(Fp) and bn-i{Fp)

(see [KM]).

In [Ma2],Thm. 2.15, we give a formula for the Euler characteristic of

the Milnor fibre in terms of the Le numbers under the hypothesis that the

coordinate system is polar. In [Ma3], the dominate generic requirement on

the coordinate system is that it be pre-polar - a strictly weaker requirement
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than being polar. However, one has only to go through the proof of 2.15 of

[Ma2] to see that all that is used is that the coordinates are prepolar. In

the case of a one-dimensional singularity, the result is easy to state :

PROPOSITION 1.8. — Suppose that h : (C^^O) -^ (C,0) is an

analytic map and that z is a linear choice of coordinates for C71"1'1 such

that, at some point p , we have dinipS(/i[ _ ) = 0. Then, A^(p) and

A^ ^ (p) are denned and

AUP^UP) = Wp)-w^p),
where bi{Fp) denotes the i-th reduced Betti number of the Milnor fibre of

h at p.

We may use this proposition to calculate A^(p) even when the

coordinate system has been chosen in a very non-generic way.

COROLLARY 1.9. — Suppose that h : (C71"^1,0) —> (C, 0) is an analytic

map and that z is a linear choice of coordinates for C7^1
 such that, at some

point p , dinipS/^ = 1 and dimpS(/i| _p ) = 0. In addition, suppose for

a generic choice of coordinates that h has no polar curve at p. Then, S/i is

itself smooth at p and

AUP) = ^(degp(^o|,J-l),

where fl denotes the generic transverse Milnor number ofh near p (see 1.7)

and degp(^oj^) is the local degree of the map ZQ restricted to S/i at p.

Proof. — That E/i is smooth at p follows from Le's non-splitting result

[Le3]. Using [Le3] again together with the result of [Lei], we also have that

^(Fp) = 0 and &n-i(Fp) = ̂ . By remark 1.7, A^(p) = ̂  (degp(^J).
The formula now follows from 1.8. D

We now wish to study deformations of one-dimensional singular-

ities. For the remainder of this section, we will let fs : C71"^1 —> C de-

note a family of analytic maps in the coordinates (2^0 , . . . ,^n) such that

dimoS/o = 1 and dimoS (/GI^)) = 0. Let f(z,s) = /s(z).

PROPOSITION/DEFINITION 1.10. — The following are equivalent :

i) For all p C S/o — 0 near 0, /| _p has a smooth critical locus

near p and the family fs\y^ _ is /^-constant (i.e. has constant Milnor

number) at p;
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ii) for all components v of S/o through 0, there exists a unique

component v ' of S/ containing v and, moreover, ̂  == /^,.

iii) for all e > 0 sufficiently small, there exist r , rj > 0 such that

9B, x Or H ^- l((D^-0)x Dr)

^ ^-(/^)

(D^ - 0) x Dr

is a proper, stratified submersion.

We call such a deformation of /o an equi-transversal deformation at
the origin.

Proof. — i) and ii) are both equivalent to :

f) for all p € S/o - 0 near 0, S/ is smooth at (0, p) and

^U\V(s-a,ZQ-qo))

is independent of the point (a,q) C S/ near (0,p).

The proof that these three conditions are equivalent is essentially the
argument for the /^-lemma (4.2) of [Mal]. The point is that as a function
of(a,q),

^U\V(s-a,zo-qQ))

is upper semi-continuous and so has a generic value on each component of

the singular set; namely, /^/. All three conditions are equivalent to saying

that /^/ equals the Milnor number of /Q|^ ^ _ at (0,p).

By Proposition 4.1 of [Mal] (or by a double application of Theorem
4.5 of [Ma4]), we see that this implies

ft) for all p € S/o — 0 near 0, S/ is smooth at (0,p) and, if (^,p^)
is a sequence points not in S/ such that T^s^p^V(f — /(^,p^)) converges
to some hyperplane T, then r(o,p)S/ C T. (In the terminology of [Ma3],

this says that V{s) is a pre-polar slice for / at the origin.)

Moreover, ft) certainly implies f), for if ^{f\v(s-a z -q ) ) were not

constant near (0,p), then a generic hyperplane slice through (0,p) would

have polar curve at (0, p) - and this would give a contradiction to ft)-
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Thus, our problem now is to show that f f ) is equivalent to iii).

That ft) implies hi) is the argument of Le in Proposition 2.1 of [Lei]

(or, in a more general setting, is Proposition 2.4.1 of [Ma3].)

To complete the argument, we shall now show that iii) implies i).

Let Bs be a Milnor ball for /o at the origin (i.e. all spheres contained in

Be centered at the origin transversely intersect all the strata of a Whitney

stratification of V(/o)), and let p € 9B^ D S/o. For a particular linear
form, L , we will show that the Milnor number in the family fs\

is constant near (0, p); i) and ii) follow, since they are independent of the

linear form, L , so long as / s | y ^ ^ / o ls a family of isolated singularities.

The linear form, L , that we select is L(v) = (v,(0,p)), where ( , )

denotes the complex inner-product. We choose this linear form because

ker(L) is contained in T(o,p) (C x 9Bs).

Now, suppose that iii) is true, but that ^ f / s | ^ ^ ^ ) is not con-

stant. Then, f\y^-L(o,p)) possesses polar curve with respect to the linear

map 5. This polar curve has dimension 2 over the reals and so its intersec-

tion with C x 9Be is real one-dimensional. This real curve passes through

(0, p) and at each point, q , on this curve, we have that

W/ - /(q), L - L(0, p)) = T^V(s - ̂ (q), L - L(0, p))

whence,

W/ - /(q), s - 5(q)) = T^V(s - ̂ (q), L - L(0, p))

C Tqy(5-5(q))H Tq(Cx QB,).

This contradicts iii). D

Note that for an equi-transversal deformation, one must have that

s/ny(5)=s(/o)

as germs of sets at the origin (though this is certainly not sufficient).

We can now state the main theorem in terms of Le numbers - the

translation to Betti numbers is immediate.

THEOREM 1.11. — Suppose that dimoS (/o| ) = 0 and suppose

that fs is an equi-transversal deformation of fo at the origin. If Be is a
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sufficiently small closed ball around the origin in C7^1
 and a is a small

complex number with 0 < |a| <€ e, then,

A°/o(0) - A}o(0) = E^-^P) + E (^(q) - ̂ .(q))J a — J a V

P q

-E&(x(^)- E i),
fc q G SS

where the p 's are summed over all p C £?e D S/o, which are not contained in

V(fa), the q's are summed over those q € Bg D E/a which are contained

in V{fo) and at which fa has generic polar curve, the {S^ : k = 1,2, . . . }

are the irreducible components of T^V(fa) in Be, and ^ is the generic

transverse Milnor number of S^.

Proof. — We use the coordinate system (s, ZQ, ... , Zn) for /.

We will first show that

(*) A^(o)=(r ) . y(.))o+(A}. v(s))^

for then - by the dynamic properties of intersection numbers - we can
conclude that

^/o^E^- y(•s-a))p+E(A}• ̂ -^^(A)- y(s-a)).
p q r

where the p's and q's are as in the statement of the theorem, and the r's

are summed over all points r € B^ H S/o, which are contained in V{fa)

and at which fa has no generic polar curve.

From this, one concludes - from a local application of (*) or see [Ma2]

- that

(**) ^o(o)= E^(P)(P) + E^q) + E^)-\°,
J a — J a V

P q r

and we will replace the r-term to derive the theorem. First though, we

show (*).

By definition,

^J^.vf^}} Jy^9L,...SL^.v(9f-\\
\ v^'^/o v szl 9zn ^li,
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As fs is equi-transversal, S/ H V{s) = S (/o), and so we may use O.l.i of
[Ma2] to conclude that

v{s-^-m)^fo=^n^2f)^
(see also 5.18 of [Ma3]). Hence, we would like to show'that

{v(s) n r2) /s/ = v{s) n r^ = v{s). r2

as cycles - for then we would have

^'((^•^•"(S)),
= v(.). r2,. y

=(v(.). (r}+A})),

from which (*) follows. Thus, to prove (*), it remains for us to show that

(y(s) n r^) /s/ = v(s) n Y}

as cycles. This is where having an equi-transversal deformation is used
strongly.

We must show that

(y{s) n r^) /s/ = v(s) n r^

up to embedded subvariety - that is, we must show that V(s) D r2

has no (isolated) components contained in S/. But, if V{s) H F2 had

a component contained in S/, then fs^ _^ would have polar curve

(see 7.5 of [Ma3]) and, hence, would not have constant Milnor number; a

contradiction of condition i) for an equi-transversal deformation. Therefore,
we have shown (*), from which (**) follows.

We have finished now with the intersection theoretic portion of the
proof. The remainder consists of replacing the term

E^r)
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in (**) with some more topological information. Using 1.9 together with

condition ii) for an equi-transversal deformation, we find that

(+) IX (^E^ E (^r(^)-l),
r k r € ES

where each r is counted only once since ^.V(fa) is itself smooth at the r's,
as there is no generic polar curve at these points.

We now use some stratified Morse theory [GoMac] to rewrite

E (^(^J-l).
r e s s

For b small ^ 0, we consider the real valued function ^ = Re(2:o + b)

on E^, and analyze what happens as the value of ^ increases. By the equi-

transversal condition, for ^ ^ 0, our space has the homotopy type of

^dego(2;o|J
v

points, where the sum is over all components, v , of EY(/o) which are

contained in the unique component v ' of EV(/) such that

E^ = B, H V{s - a) H v'.

The critical points of '0 occur precisely at the points q and r which

are contained in E^. Moreover, as we pass through each of these critical

points, we attach (on the level of homology) deg (zo\ ^ — l) one-cells

(this is because, locally, one starts with something which is homotopic to

deg [^o|^fc ) points and end up with something that is contractible). Thus,

we arrive at the following equality of Hurewicz type

X^
k
a)=^deg^)- ^ (degq(^)-l)

v q e ss

- ^ (deg,(^)-l)
r C ES

and, by combining this with f), we obtain

/ ^

(+t) E^-E^ E^o^oiJ-E (deg^o,,J-l)-x(^)
r k \ v q e SS a ^
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But, by definition of A1 and using that /^ = fly i we have

^oW =^&]Cdego(^o|J,
k r

and

^^(^S^ S ^q^OI^)-
q fc g e ES

Combining these two formulas with f f ) and (**) yields the theorem. D

COROLLARY 1.12. - Suppose that dimoS (fo\v^ ) )
 =

 ̂
 an(

^ ^PP
086

that fs is an equi-transversal deformation of fo at the origin. Further,

suppose that the value of ^ is independent of the component v of E/o
through the origin - denote this common value by ^. Then, in the notation

of the theorem, we have

^o(O) - A^(0) = E^-/.(P)(P) + E ( /̂.(q) - W + ̂ )
P q

-^ . x(^n SY(/J).

Proof. — A quick Euler characteristic calculation (using, say, a

simplicial decomposition in which all q's are vertices) gives

x(B,n Ey(/ j)-^i=^(x(^)- ^ i ) .
q k \ qe ES /

Combining this with the theorem yields the result. D

2. Vanishing homology and the main theorem.

In this section, we will re-prove the main theorem as stated in theorem
1.11, but now - instead of polar methods - we shall use purely topological

methods.

As in section 1, we let /o : (C^^O) —> (C,0) be a germ of a

holomorphic function such that dimoS(/o) = 1- Choose a representative
fo:X—> D satisfying the conditions of the Milnor fibration. More pre-

cisely, D = Dyy and X = /(^(D^) n ^e ^or r
]
 ana e small enough, ./(^(O)
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transversely intersects OBe as a stratified set, and /o"1^) transversely inter-
sects 9B^ for 0 < \t\ ^ T}. The Milnor construction implies that fo:X—> D
is a locally trivial fibre bundle over D* == D — {0}.

We next consider a holomorphic deformation of /o :

f : X x S^ D

where S = Bp C C7' (mostly we shall take r = 1 ) and we require

f{x, 0)=fo(x). We define F : X x S -^ D x S by F(x,s) = {f(x,s),s).

Recall the equivalent characterizations of an equi-transversal defor-

mation as given in 1.10.

LEMMA 2.1. — Let f be an equi-transversal deformation of fo. Let

SF be the critical locus of F : X x S -» D x S and let A(F) be the

image F(SF).

Then,

F^ x.W.)) : F-l (D x ̂ W) - ° X WF)

is a locally trivial fibration.

Proof. — By l.lO.iii, F is a proper stratified submersion on 9Be. Thus,
it suffices to show that F is submersion at all interior points. However, this

is the case, as we have explicitly removed the interior critical points. D

We will also need :

LEMMA 2.2. — Let f be an equi-transversal deformation of fo. Then,

for all a sufficiently small,

i) /^(Dy,) H Bs is homeomorphic to /o'^D^) H Be and is therefore

contractible,

ii) ./a"1^) transversely intersects OB^ (in a stratified sense) for all

small ^.

Proof. — i) : We will show that

B, x C H f-\D^

I s

C
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is a proper, stratified submersion for all s small.

Certainly, in a neighborhood of the origin, we may Whitney stratify

/-W by f-1
^) and f-1

^).

That s is a stratified submersion on Bg x C D /^(Dn) requires
nothing.

o

That s is a submersion on Be x C D /^(cX)^) follows from the

fact that the intersection of the polar curve, F^ , with Be x 0 is just {0}.

Finally, that s is a submersion on 9Be x C H /^((XJU follows
from condition iii) of being equi-transversal.

This proofs i).

ii) Except where / = 0, this follows from condition iii) for being equi-

transversal. We will now show that it is also true along V(/).

Equi-transversality implies that V(s) transversely intersects V(f)

~
 s^(/) in a neighborhood of the origin and that QB^ x 0 transversely

intersects SY(/), where ^V(f) is smooth along this intersection by equi-
transversality.

Using nothing, it follows then that QB^ x {s} transversely intersects
SV(/) for all s small.

We would like to see that V(fso) - SV(/so) transversely intersects
9Bs x {so} for all SQ small.

Now, 9B^ x {so} misses F^ for SQ small. Hence, along the

intersection in which we are interested, V(s - so) transversely intersects
V(f) - ̂ V(f) and

y(/,j - sv(/,j = v(s - so) n (v(f) - sv(/)).

Thus, what we want to show is that

9B, x C n {V(f) - SV(/))

i s

C

is a submersion for all s small.
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Suppose not. We would have a sequence of points

(Pz^i)^ (q,0) € 9B, x 0,

where p, e <9B,,/(p,,^) = 0, T^^V(f) -^ T, and

(*) ^p^)^/)0 (C^x 0)C rp,9B, x 0.

If (q, 0) is a smooth point of V(f), then T = T(q^o)^(/) and (*) would

imply that TqV(/o) c Tq<9£^. However, we could have initially chosen Be

so as to make this impossible.

If (q,0) C SY(/), then by ft of 1.10, T^o^V(f) C T. Hence, as

9Be x 0 transversely intersects EV(/), we are finished. D

We now give our second proof of the main theorem.

THEOREM 2.3. — Let B^ be a sufficiently small closed ball around the

origin in C71"1'1 and let a be a small value of the deformation parameter.

Then,

bn{F) - bn^(F) = ̂  ̂ (Fp) + ̂  (^(Fq) - ̂ -l(Fq))

P q

-E&(^)- E 1 ) -
k q G ES

where F denotes the Milnor fibre of fo at the origin, Fx denotes the Milnor

fibre of fa — /a(x) at the point x, the p ' s are summed over all p G Bg D S/a

which are not contained in V{fo) , the q's are summed over those q in

Be D S/a which are contained in V{fa) and at which fa has generic polar

curve, the {S^ : k = 1, 2 , . . . } are the irreducible components of^V(fa) in

Bs, and ̂  is the generic transverse Milnor number of S^.

Proof. — We consider the critical locus S(/a) of fa. Let S(/a) =

SaU P where Sa is the 1-dimensional piece of S(/a) and P = { p i , . . . , prn}

is the set of isolated points of S(/a).

First define for every p € P pairs (-Ep,Pp) consisting of a local Mil-

nor ball, Ep, and a local Milnor fibre, Pp. This construction is also used in

[Si3].

We next consider a neighborhood of the 1-dimensional piece

So = E^ U ... U E^.
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Let {q i , . . . , q^} be the following collection of special points on So :

• all points where Sa is non-smooth

• the smooth points of So where there is a non-void generic polar in
curve.

Let Q = Qi U ... U Qd be the union of well-chosen distinct local

Milnor balls around each q. Then, there exists a neighborhood, E° , of Sa
together with F° = /^(to) H E°, where to is close to /a(Sa), a (piece of
a) Milnor fibre, such that

(F°\Q,F°\Q)^ ^\Q

is a locally trivial fibre bundle pair, where the fibre pair is (Ek^k) - the
Milnor pair of the transversal singularity Y^ on E^ — 0.

Let E == /o^^y?)0
 ^e- According to lemma 2.2.1, E is homeomorphic

to /^(D^) D Be and, according to lemma 2.1, F is homeomorphic to
fa'Wn B,.

Now we use the direct sum formula for the vanishing homology

^(F,F)=e^(Fp,Fp)© ^(F°,F°).
P

This formula already occurs in [Si3] and is stated there for the transversal
type Ai. Under the transversality conditions of lemma 2.2.ii, the formula
holds in general and the proof remains unchanged.

As a corollary, we have

X(E^F) = ̂ x(^p^p) + X(^°),
P

where

X(E^F) = ̂ (-l^dim^.F) = ̂ {E) - x{F) = 1 - ̂ (F).
j

At the isolated singularities, p , we have :

X(^p, Fp) = xW - x(Fp) = (-^^(Fp).

The remaining part is %(E°,F°). We assume that the neighborhood
E° of So is chosen small enough so that it contains So as a deformation
retract. Then, we have :

X(E°, F°) = x(E°) - x(F°) = ̂ (SJ - x(F°).
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Next, cut F° into pieces, according to the components of Q and of
^\Q. So,

x(F
O
)=^^

k
a\Q)x XW + ^x(F^

k q

where :

.Fq = the Milnor fibre of the local singularity at q

Yk = the transversal Milnor fibre of S^ - {0}.

Remark that :

X^ka\Q)=X^ka)-^n^

where

_ 0 if q i ̂
711:1(1 ~ 1 if q e E^.

We conclude :

X(F°) = EX(^) • xWc) -^^n^x(Yk) + EX(^).
fc fc q

So:

X(E, F) = ̂ (S,) - ̂  x(S^) • XW + ̂  ̂  nfc,qX(^)

fe fc q

-E^^+E^p'^p)-
q P

One concludes the theorem from this formula by substituting the
following easy identities :

1. x(E, F) = (-l̂ +^F) - ̂ _i(F)}

2. x(Ep,Fp)=(-l)n+lbn(Fp)

3. xW = 1 + (-1)"^

4. X(^q) = (-^"^{Wq) - ̂ n-l^q) + 1}

5. E^^^'+EE^.q-1)- "
A; fc q
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As in section 1, we immediately have the following corollary, which

we now state solely in terms of Betti numbers.

COROLLARY 2.4. — Suppose that dimoS (/o| ) = 0 and suppose

that fs is an equi-transversal deformation of fo at the origin. Further,

suppose that the value of /^ is independent of the component v of E/o

through the origin - denote this common value by ^5. Then, in the notation

of the theorem, we have

W) - b^(F) = ̂ ^(Fp) + ̂  (^(Fq) - &n-l(^) + ̂ )

P q

-^ . x(^n sy (/,)).

3. The Le-Iomdine formula.

We now wish to give a slightly improved version of the formula of

lomdine and Le as found in [Le2] and [Io2]. See also [Ma2], [Ma3], [Ma4],

[Pe3], and [Si5]. The improvement is a more precise bound on how large

the exponent in the formula must be chosen. This new bound is especially

useful in the homogeneous and quasi-homogeneous cases.

PROPOSITION 3.1. — Let h : (C^O) -^ (C,0) be analytic and let

z be a linear choice of coordinates for C714"1 such that dimoSf/ii ) = 0.
v I ^C^o) 7

Let j be an integer ^ 2.

Then, h + ez^ has an isolated singularity at the origin for all but

finitely many e. Moreover, if j is not a polar ratio (for the definition of

polar ratio, see [Si5] or the proof below), then h + ez^ has an isolated

singularity at the origin for all e 7^ 0.

Finally, if j is greater than or equal to the maximum of the polar

ratios and h + ez^ has an isolated singularity at the origin, then

^^W = A^(0) + 0 - l)A^(O) = A^(0)-A^(0)+^(0)

= ^(Fo)-^-i(^o)+^(0),

where A° j (0) is equal to the Milnor number of/i+ ez^.
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Proof. — The proof is the same as that of 3.1.ii and 3.2 of [Ma3] but,

as our statement here is slightly different, we shall recall the proof.

. ( Qh Qh\
Since 1^ ^ is contained in V — — , . . . , —— ,

y0z^ Ozn j

r^n v(^o) c s(/^^).

Thus, it follows from our hypothesis that dimoF^ ^ D V(zo) = 0. It is

(
07 \

immediate then that dimoF^ ^ ^ 1 and dimol^ ^ D V -^— ) = 0.
OZQ J

Now, write the cycle F^ as V^ ^[77], where the T] are the irreducible
r]

components of F^. Consider the intersection number

(r...(^.^-))^E^(.-g.^-1)^.

We would like to impose conditions on j and e so that each

rj • V [ — — ^ j £ z i ~ 1
Qh

OZQ

actually equals

v ^h\\rj • V .—

< \^°//o

for then we would have

(+) (^^•v(^+^~l}) -(^•^.H) =xohw•
\ \^° / / o \ \^°//o

By [Fu], if we let a^(t) be a parametrization of 77, we may calculate

the intersection number

r] • V^——+j£z3o 1
oh

OZQ

(
r\r \

by taking the t-multiplicity of ^— + jez^~
1 ) \a^{t)'

Using this same method of calculating the intersection number twice

more, we conclude that
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i y(^^^-})
^ v92' I I ,

S)).(-^-1)),== min ^ 77 • V

\\ \^°/^o

with the exception of the single value of e which makes the lowest degree

(
a? \

terms of , j |̂ ) and n^^ \^^) add up to zero.

Thus, using that

(r, . y^-1))^-!)(»? • ^o))o,

we find that if we have

(^fe))
(*) 3 ^ ' ' / / 0 + 1u 3 - (r, . V(^o))o

for all T/, then (f) holds for all but a finite number of e. In addition, if we
choose strict inequalities in (*), then (f) holds for every value of e.

Now, the Milnor number of h + ez^ at the origin equals

9h . _i 9h 9h\\I ^ I V „ __ 1 \JIV \J I t, I I

V{——+3ez3o \ — — , . . . , — — \ \
\ \9zo 9zi 9zn) j ^

( , , ( Q h . , i \ ^ ( 9 h 9h\\
=('/^+^ ^y(^•••^})„

=(V(^+JC^)•^+^)

'(-e-0-')-^/^-64-1)-^.

(
^, \

But, as A^ is contained in V -— \, if e -^ 0 then we have
9zo )

(v (^ +^^l) • A^) = °" - 1) ̂  • y(^o))° •
\ \ / / o
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Combining this with the above and (f), one obtains the result - with the
condition given in (*).

Finally, we need to show that (*) is equivalent to the more usual
requirement on the polar ratios. As was shown in [Lei] and [Ma3], a quick
application of the chain rule yields that, for every component rj of F^,

(^ VW^=^ MJ^) ) +(^ ^o))o.

Therefore (*) can be re-written as

. > ^ • vW)p
(r, • V(^))o'

where the right-hand side gives precisely the polar ratios (or, as is frequently
done, one may push everything down into the Cerf diagram). D

The maximum of the polar ratios as a bound already occurs (in a
slightly hidden form) in section 3 of [Si5]. In that paper, the Le-Iomdine

formula is generalized to the eigenvalues of the monodromy. For the same

kind of statements for the spectrum we refer to Steenbrink[St] and M. Saito
[Sa].

Remark 3.2. — Examining the above proof or section 3 of [Si5] slightly
closer, it is possible to show that :

A^(0)<^(0)-A^O)+^(0)'

provided that j is smaller than the maximum of the polar ratios (see, also,

the closing remarks). This shows that our bound is sharp.

4. Examples and special cases.

4.A. Transverse A\ singularities.

In this sub-section, we will restrict ourselves to the case where the

generic transverse singularity of /o is of type Ai.

COROLLARY 4.A.I. — Suppose that fs is a family of analytic maps

such that, as germs of sets at the origin, S/D V{s) = S(/o)- Suppose
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also that dimoS [fo\y^ . ) =0 and ̂  = 1 for every component v ofS/o

through the origin. Then, fs is an equi- trans versal deformation of fo and

^o(O) - A}JO) = E^-A^P) + E (^(q) - ̂ (q) + ̂
P q

-x(B, nsv(/,)).

In terms of Betti numbers, this says

bn{F) - bn-l(F) =^~bn{Fp) + ̂  (^(Fq) - ̂ _l(Fq) + l)

P q

-X{B,D sy(/o)),

where the notation is the same as that of theorems 1 . 1 1 and 2.3.

Proof. — That fs must be an equi-transversal deformation follows

from the upper-semicontinuity of the Milnor number - if the generic

transverse Milnor number of /o is 1, then for s -^ 0 small the generic

transverse Milnor number must be 0 or 1. But it can not be 0 since

S/ H V(s) = S(/o)- Thus, the deformation is equi-transversal.

Now, the equations follow immediately from 1.11 and 2.3. D

Example 4.A.2. — Suppose that S = S(/o) is a 1-dimensional,

isolated complete intersection singularity. This situation is studied in detail

in [Si3]. In this case, there exist equi-transversal deformations with So

smooth (equal to the Milnor fibre of the singular curve S) and with fa

having only Aoo and Doo singularities on Sa, and the isolated singularities

of fa are all of type Ai.

The main theorem of [Si3] is :

In this case, the homotopy type of the Milnor fibre, -F, of /o is a

bouquet of spheres; there are two cases :

if #Doc > 0, then F ^ 5^ V . . . V ^n;

if ^D^ = 0, then F ^ 5'n-l V ^ V . . . V 571.

Moreover,

bn(F) - ̂ _i(F) = fi(^) - 1 + 2#D^ + #Ai,

where /^(S) is the Milnor number of S.

Note that this formula agrees with that of our main theorem.
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The same statement on the homotopy type of the Milnor fibre is true

in all cases where / allows a deformation with only Aoo,.Doo, and A\ -

singularities. The example Too^co,oo? given by / = xyz, shows that such

deformations do not always exist.

There exist the following formulas [Pel],[Pe2] relating #Ai and i^Doo

to the dimension of a certain local ring :

j ( / ) = d i m — — # A i + # A ^
^ U )

where I is the reduced ideal defining S and J(f) is the Jacobian ideal of

/; and (still under the assumption that S is a complete intersection)

6{f) = d im° |— = #D^
det(hij)

where / = S/^^j and {g\,... ,gn} define S as a reduced 1-dimensional

icis.

In the next two examples, we remain in the transverse A i-case,

but consider the case where there exists a deformation of /o with only

Ace ^DOQ .TOOOOOQ, and AI singularities. In this case, we have

COROLLARY 4. A. 3. — Suppose that fs is a family of analytic maps

such that, as germs of sets at the origin, S/ H V{s) = S(/o)- Suppose

also that dimoS (fo\y^ ) )
 =

 ̂
 an(

^ ̂
 =

 ̂  ^
or ^^y component v ofS/o

through the origin. In addition, suppose that the deformation fs has only

AI singularities off V {ft) and only Aoo.Doo, and Too, 00,00 singularities on

V{ft), then

A^(0) - A^(0) = bn(F) - ̂ -i(F) = #Ai + 2#D^ - x (B, H ̂ V(fa)) .

Proof. — This follows from 4.A.1 and some quick calculations. A° = 1

at a quadractic singularity, \° = 2 and A^ = 1 at a Dyo point, and A^ = 2

and A^ = 3 at a To^oo,oo point. D

Example 4.A.4. — In his papers [Mol],[Mo2], D. Mond considers

finitely ^4-determined map germs F : (C2,0) —^ (C3,0). The image F(C2)

is a hypersurface germ at the origin, given by some / = 0, and has a

1-dimensional singular locus E with transversal type Ai on E — {0}.
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One can consider the versal unfolding

G : C2 x C^ -. C3 x C<

Let G(a-, s) = (Gs{x), s) and let the image Gg(C2) be the hypersurface
germ with denning equation gs = 0. According to Mond, near the origin,
the map gs : C3 —)• C has for all s € C^ only one fibre with non-isolated
singularities and for generic s e C

d the only singularities are of types

AOO t ^00 5-^0000005 BUG A.\.

It is shown in [Mo2] and [Si7] that the special (non-isolated) fibre is
homotopy equivalent to a bouquet of 2-spheres

^(0)^ ^V ... V 52,

where the number of spheres is equal to #Ai.

Moreover, the Milnor fibre of gs is, in this case, also a bouquet of
spheres :

F^ S
2
^ . . . V S

2
.

The number of spheres is, according to [Si7], equal to :

bn(F) = 2#Doo - 1 + 2#r^o, - x(S,) + #Ai,

where Ss is the normalization of Es.

This formula agrees with the formula of our main theorem since

x(s,)=^(s,)+2#r^oo.

A list of these very interesting examples appears in [Mol],

Example 4.A.5. — In [Pel] and [Pe2], Pellikaan considers the poly-

nomial /o = ^y^ + y^z
2 + 42;2.^2. There exist two totally different equi-

transversal deformations of /o-

• fs = x^y
2 + y

2
z

2 4- 4^2a•2 + sxyz,

in which Eg consists of the three coordinate axes, and

#Ai = 4 #D^ = 6 #T^oooo = 1 ^(E,) = 1.

Therefore, b^(F) - &i(F) = -1 + 12 + 4 = 15. We remark that, by using

a computer, this Euler characteristic calculation can be produced quickly

via the lomdine-Le formula - see the closing remarks.
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• fa == {xy - a^x - a^y)2 + (yz + a^y - a^z)2 + (2xz + 030: - a^)2.

This deformation is induced by the miniversal deformation of (S , 0),
which can be defined by the vanishing of the 2 x 2 minors of the matrix ?

(
 x

 y z \

\ .r+ai 2z/+a2 S z + a s } '

Here, Sa is a Milnor fibre of E, and /^(S) = 2.

#Ai = 6 #1̂  = 4 #Jo^ = 0 ^(S,) = -1.

Therefore, ^(^) - h(F) = 6 + 8 + 1 = 15.

Since the deformation has only A^, D^, and Ai -points, we conclude
that

F^ S
2
^ . . . V S'2,

where the number of spheres is exactly 15.

Note that, despite the ease with which they may be calculated, the
Le numbers and the formula of lomdine and Le provide no indication that
the homology is trivial in dimension 1.

Remark 4.A.6. — We should mention here one other formula for the
Euler characteristic of the Milnor fibre in the transversal Ai case. In [Jo2],
de Jong gives the following formula :

bn{F) - bn-i(F) = j{f) + VD^ + /,(E) - 1,

where F, p . , and S are as before, VD^ is the virtual number of D^ points,

and j(f) = dime __, where J(f) is the Jacobian ideal and I is its radical.

While it seems that this formula should follow directly from ours, we
have yet to show that this is, in fact, the case.

4.B. Line singularities.

The topology of line singularities is studied in [Sil] for transversal
type Ai and in [Jol] for the transversal types

S e {Ai,A2, As, ̂ 4,^6,^7(^=2), Es(n=2)}.
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De Jong produced a list of elementary non-trivial line singularities,

FiS , of type S\ a list which is complete up to stable equivalence.

Next, he constructed an equi-transversal deformation with only FiS

points and A\ points as special points. His main theorem states :

Let f : (C7^1, 0) -^ (C, 0) be a line singularity of type S. Then, the

Milnor fibre F of f has the homotopy type of a bouquet of spheres :

\j S^V \j S"

e /-t+e

with

/. = ^(F)-^-i(F)=^a^+#Ai-^,

where hi is the number of FiS points in the above-mentioned equi -

transversal deformation and ai and e can be computed explicitly. Only

in exceptional cases is e -^ 0 and in these cases e is small, e = 0,1, or fji.

The formula for JJL above is connected with those in 4.A.I. In fact, if

q is a point of FiS, then

a,=U^q)-^-iWi)+^

in our notation. Thus, the formulas are all equivalent in the cases considered

by de Jong.

4.C. Plane curve singularities.

Example 4.C.I. — Let h be an analytic map in the variables x and y ,

and suppose that h = P ]~[ Q^, where P and n QT
 are relatively prime

and Oi ^ 2, i.e. h gives a non-reduced curve singularity. We wish to calculate

the Le numbers of h at the origin.

Let ZQ = ax + by, where a -^ 0, and let z\ = y . Then,

V
oh

Oz,
V

oh -b

ox

-E^^r1)] + v

oh

9y ^

f9h

9x

-b\ <9/i \

a ) 9y

HQ
,Q,-1

= AL + ri,^,z /l,Z-
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Thus, whenever

V

( 9h

9x

\

(
n^̂

)a )
+

-1

9h \

~Qy

1.

has no components contained in the critical locus of h (an easy argument

shows that this is the case for a generic choice of (a, b) ), we have that

^,z = E(^ - ̂  (y^) • ̂  + ̂ ))o
and

f Qh

9x

nc?-

'-(

^
V a

9h\

9zo)

b\
•)+

}=v

Qh\

9y

)

(Qh

\Qx

9h

~Qx

\o __
^h.z — V V

\ \

where we have used that V

Note that the formula

^,z = ̂ (^ - 1) (V(Q,) . V(ax + by))^

agrees with our earlier formula

\ 1 V^ o
^z = Z^^^,

v

since we clearly have r^ = (V(Qi) • V(ax + by))^ and ̂  = a, - 1.

Example 4.C.2. — Deformation of non-reduced plane curve singulari-

ties are studied by Schrauwen in [Sc]. Among others, he considers especially

deformations where the singularity splits up into D[p,q] singularities only,
having local equation x

p
y

q == 0.

Let E23 be the curve consisting of all branches with multiplicity p. We
give S^ the reduced structure. Then, Schrauwen gives

FORMULA. — Let fa be an equi- transversal deformation which makes

each S75
 smooth. Then,

b,(F)-bo(F)

= $> + ^ - ̂ ^ q] + W, 1] + ̂ (k - 1) {^
k
) - 1) - 1,

P<9 k
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where the first summation is over the D\p^q}-points with p < q, and the

second is over all multiplicities k.

This formula is now a direct consequence of our main theorem, once

you have noticed that the zero Betti numbers, &o ? have to be replaced by

the reduced Betti numbers, 60, and use that b-^(Fq) — bo(Fq) = 1 for each

D[p,g]-point, and x(^) = 1 - ̂ k
).

Schrauwen considers in his paper also a second kind of deformation,

called a network map deformation. Such deformations arise as follows.

Deform first the reduced singularity fp in such a way that one gets the

maximal number of normal crossings <$, the (virtual) number of double

points.

The branches of fp and (/s)a are in one-to-one correspondence. We

get the network map deformation by giving the branches of (/^)a the

correct multiplicity of /. Then, we have :

FORMULA FOR NETWORK MAP DEFORMATIONS

61 (F) - bo(F) = ̂ (p+q)#D°[p^] - 5,

where the first sum runs over all D\p^ q\ -points on fa
1
^) with p < q and

S = ̂  mi = the number of all branches counted with multiplicities.

This formula is similar to fi = 26 — r + 1 in the case of an isolated

singularity. It has a very easy topological proof, which has no direct relation

with our main formula.

4.D. Homogeneous and quasi-homogeneous singularities.

Example 4.D.I. — We now turn to the case where h : (C^^O) —>

(C,0) is a homogeneous polynomial of degree d with dimoS(/i| ) = 0.

As h is homogeneous, S/i is a collection of lines which are transversely

intersected by V(zo) (since dimoS(/ij ) = 0 ). Hence,

\l V^ °>h=^^-
v

To calculate A^ we proceed in a manner similar to [MiOr]. We consider

the partial derivatives of h as defining a collection of hypersurfaces in P"^
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with homogeneous coordinates {zo:...: Zn:w). Then, if a is not zero, we

have that the hypersurfaces (in P"+1)

/9h , \ ( 9h\ ( 9h
v {^-+awd~l}^v .-.•••^hr-

^zo ;' V9^'" \^"/

intersect in a finite number of points with total intersection multiplicity

(d-1)^1.

Now, on the patch w ̂  0 , one immediately sees that the number of

intersection points (counted with multiplicity) is precisely A^. It remains

for us to count the number of intersection points where w = 0.

But, the intersection points where w = 0 correspond exactly to the

lines making up the singular locus. Thus, all of these points occur on the

patch ZQ -^ 0 , and the contribution of these points to the total intersection

multiplicity was

deg (9h-} x V (v (ah^} . . V (9h^}}
^oj x^[v[ 9., ) - v[ 9^ ) ) ^

where the sum is over all p in V(ZQ — 1) D S/i. But, this equals

(d- l )^^=(d-l)At
V

Therefore, we find that A^ = (d - l)^ - (d - 1)A^, and so

b^F) - ̂ _i(F) = A^ - \\ = (d - l)^1 - d\\.

Remark 4.D.2. — As was shown in [Si5], this agrees with the formula

that one would attain by applying the lomdine-Le formula in 3.1, using

that the polar ratios are each exactly d and that the Milnor number of a

homogeneous degree d polynomial in n + 1 variables is {d — l)^1 [MiOr].

(That the polar ratios are all d follows from the fact that the polar curve

is homogeneous and is, hence, a collection of lines.)

In 4.D.I, we saw that the Euler characteristic of the Milnor fibre

of a homogeneous polynomial depends only on the degree, the number of

variables, and A1. However, the homotopy type of the Milnor fibre is more

sensitive and depends on more data. Famous in this context are the Zariski-

examples of curves of degree 6 with 6 cusps on a conic or not on a conic.

The homology of the complement of the space is related to the eigenspaces

of the monodromy with eigenvalue 1 (cf Dimca [Dil]).



770 D.B. MASSEY, D. SIERSMA

Example 4.D.3. — Continuation of Pellikaan example (example
4.A.5).

Let / = xyz then d = 3 and transversal type is 3 times A\ and so

b^(F)-b^F)=8-9=-l.

Let / = x^y
2 + y^z

2 + 4^2a:2 then d = 4 and the transversal type is

again 3 times Ai and now : b^F) - bt(F) = 27 - 12 = 15.

Example 4.D.4. — Zariski example with 6 cusps on a conic. The degree

is 6, the transversal type is 6 times A^. So b^ (F) — b^(F) = 125 — 72 = 53.

Example 4.D.5. — In case / is a quasi-homogeneous polynomial with

weights WQ, • • • ,w^ and of degree d it is sometimes possible to compute

bn{F) — bn-i{F) by using the Le-Iomdine formula. This is especially the

case if x can be embedded in a quasi-homogeneous coordinate system :

x = XQ with d/wo C N and if moreover fd/wo = f + ̂ /wo defines an

isolated singularity. Similar cases are considered by Dimca [Di2] with the

help of differential forms.

We find the following formula :

^)-^w=n^-^E^
Wi ^ Ky

with kv = gcd(wi\Xi 7^ 0 on E^).

Note that all terms in this formula are independent from x.

4.E. Composed singularities.

Example 4.E.1. — Let / : (C72^1,0) —^ (C, 0) be a holomorphic germ,

which can be written as the composition

f=P{gi^2)

where

^(^^(C^.O)-^2^)

defines an isolated complete intersection singularity and

P:(C\0)^(C,0)

is a holomorphic germ.
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This situation is studied by A. Nemethi in his paper [Ne2]. This paper

contains information about the homotopy type of the Milnor fibre and the

monodromy of these composed singularities. If P has an isolated singularity

then the singular locus of / is (n — l)-dimensional. In case n = 2 we have

a 1-dimensional singular locus and we can try to apply the methods of our

paper.

Consider the deformation

fa = P(gi -^1,^2 -^>)

for generic values a = (ai, 02) of g. The singular locus of fa consists of the

1-dimensional set

^=g-\a)

and some isolated singularities. Moreover the deformation is equi-transver-

sal. Consider for this purpose a generic linear function ZQ , which is at the

point p € S/o — 0 transversal to g~
l
(0). Near p we can use z ^ ^ g ^ ^ g ^ as

a system of coordinates. The functions g i ^ g ' 2 are coordinates on the slice

V(zo —po). On this set we have near 0 :

^IV(.O-PO) = ̂ 1-^1^2-^2).

This shows that the family fa\v^ _p ls /^-constant at p. The transversal
type is given by the plane curve singularity P. Since there are no special

points on So, our main formula is in this case :

W) - b,(F) = ̂  Wp) - w(Sa).
p

Nemethi gives the following formula :

x(F)=(l-^)x(Sa)+(7/(S)J)o.

The last expression is an intersection number of the 1-dimensional compo-

nents of the critical set E (with a non-reduced structure) and /''^(O). For

more details cf. [Ne2].

Example 4.E.2. (Generalized Zariski examples).

j(x^z) = (^ + z^Y + (^ + z^.

This is a composed singularity with

g^x,y,z)=yq+zq
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g^{x,y,z) =x
p +2^

P{u,v) =up +Z'9.

Since / is homogeneous of degree pq the equation f{x, y , z) = 0 defines a

curve Cp^q in the projective plane P^C).

The curve has exactely pq critical points, each with local equation

P(u^v) = u
p + v

q
. These curves are studied by Oka [Ok], who computed

the fundamental group of the complement, see also Nemethi [Nel]. I f p = 2

and q = 3 the curve is just Zariski's example with six cusps on a conic.

Following the above recipe we get the following equi-transversal
deformation :

fa(x, y, z) = W + ̂  - a^Y + (^ + ̂  - a^Y.

In this case, it is not difficult to compute the critical set of /a, including

the multiplicities of the isolated critical points :

pq — 1 points with multiplicity (p — l)(q — 1),

p points with multiplicity {q — I)3,

q points with multiplicity (p — I)3.

This implies :

^ Wp) - (pq - 1)(P - 1)(9 - 1) + P(q - I)3 + q(p - I)3.
p

The singular locus of fa has Ea == ^"^(a) as 1-dimensional component. So
is the Milnor fibre of S = ̂ "^(O). The map g is (quasi)-homogeneous with

weights wi = W2 = W3 = 1 and degrees a\ = p and a^ = q. We can apply

GiustFs formula [Gil], [Gi2], [Si4] :

/^(S) = 1 + (^a, -Y^wi)
1
^ = 1 + (p+ q - 3)pq.

11̂

The last ingredient we need is

^=(P-1)(9-1).

Therefore,

b^F) - bi(F) = (pq - l)(p - l)(g - 1) +p(q - I)3 + q(p - I)3

+(p-l)(q-l)(p+q-3)pq.
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There is also an other way to derive the same answer, using the

formula for homogeneous singularities from 4.D.2 :

W) -b,(F) = (d- I)3
 -dj^^ = (pq-lf -p\\p- l)(g- 1).

v

After expansion you find out that the two answers coincide.

5. Remarks and questions.

It is reasonable to ask just how effectively calculable our numerical

invariants are. In particular, one would like to know if a computer can be
of any assistance in calculations for specific examples.

For the Le numbers the answer is definitely : yes. Any computer pro-

gram which can calculate the multiplicities of ideals in a polynomial ring,

given a set of generators, can calculate the Le numbers of a polynomial. (A

number of programs have this capability, but by far the most efficient that

we know of is Macaulay - a public domain program written by Michael
Stillman and Dave Bayer.)

Given such a program and a polynomial, / , with a one-dimensional

singular set, one proceeds as follows to calculate the Le numbers, A° and
A1 , at the origin with respect to a generic set of coordinates.

As we saw in 1.7, A1 is nothing other than the multiplicity of the

Jacobian scheme of /. So, one can have the program calculate it.

Now, we need a hyperplane that is generic enough so that its inter-

section number (at the origin) with the (reduced) singular set is, in fact,

equal to the multiplicity of the singular set. Usually, one knows the singular

set (as a set) well enough to know such a hyperplane. (Alternatively, there

are programs which can find the singular set for you - though how they

present the answer is not always helpful.) We shall assume now, in addition

to having A1 , that we also have such a hyperplane, V(L) , for some linear
form, L.

By the work of lomdine [Io2] and Le [Le2] (or our generalization in

3.1), we have that : for all k sufficiently large, / + L
k has an isolated

singularity at the origin and the Milnor number ^{f + Z^) equals A° + (k -

1)A1. But, the Milnor number is again nothing other than the multiplicity of

the Jacobian scheme, and so we may use our program to calculate it. Thus,

we can find A° - provided that we have an effective method for knowing
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when we have chosen k large enough so that the formula of lomdine and
Le holds.

However, we have such a method. If /+I^ has an isolated singularity,

let i^k denote its Milnor number. (Given a particular k , one must either

check by hand whether f+L
1
^ has an isolated singularity or have a program

do it. Macaulay will tell you the dimension of the singular set in the course

of calculating the multiplicity of the Jacobian scheme.) A quick look at

the proof of the lomdine-Le formula in 3.1 shows that the formula holds
provided that

^ k - ( k - 1)A1 ^ k - 2.

Therefore, to find A° , one starts with a relatively small k and checks

whether /^ ^ k - 2 + (k - 1)A1. If the inequality is false, pick a larger k.

Eventually, the inequality will hold and then

A° =^k-(k-l)\\

There is a similar alternative method for calculating not only the

Le numbers but also the maximum polar ratio of /. Extending remark

3.2 slightly more, it is not difficult to see that, if /^ is as above, then

/-A/c+i — l^k = A1 if and only if k ^ the maximum polar ratio.

Hence, to find the maximum polar ratio, one calculates /^ for succes-

sive values of k - looking for a difference of A1. Once this occurs, k > the

maximum polar ratio and, as before, we conclude that

A°=^- ( / c - l )A 1 .

While this method requires one to calculate at least two Milnor

numbers, /z/c, it will still be a more efficient way of calculating A° - provided

that the maximum polar ratio is significantly smaller than A° itself. This

would be the case, for instance, if the polar curve had a large number of
components.

As an example of using this last method to calculate the maximum

polar ratio and the Le numbers, consider the polynomial / == xy
3
 + x^y

2
.

Using the notation above, we find

k =

^k =

2

3
3
6

4
9

5
11

6
13

7
15

8
16
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As one easily checks, A1 = 1 and so, from the table, we see that the

maximum polar ratio is 7 and A°=15-(7-l)l=9. One can verify directly

that, in fact, the polar curve has two components, with polar ratios 4 and

7. To apply the first method above, one would have to use a value for k

that is > 2 + A° = 11.

As we saw in example 4.A.5, the Le numbers are less sensitive

invariants than are the number of special points in generic deformations.

However, this means that requiring the Le numbers to be constant in a

family is a less stringent condition. Despite the apparent weakness of this

assumption, the main result of [Ma3] - stated in the case of one-dimensional

singularities - is that, for families of n-dimensional hypersurfaces with

one-dimensional singularities, the constancy of the Le numbers implies the

constancy of the fibre-homotopy type of the Milnor fibrations if n ̂  3, and

implies the constancy of the diffeomorphism type of the Milnor fibrations
if n ̂  4.

Related to the result discussed in the last paragraph, T. Gaffney has

shown the following [Ga2] :

PROPOSITION. — Suppose that ft : (C^O) -^ (C^O) is a family of

finitely determined germs with rank 1 at the origin, and suppose that the

Le numbers, at the origin, of the images are independent of t. Then, the

family ft is Whitney equisingular.

In general, however, the relationship between the Le numbers and the

Whitney conditions is very unclear.
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