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Deflections of partially prestressed concrete 

beams are analyzed on the basis of bending 

theory with plane cross sections, taking illlo 
account not only plasticity of steel and nonlin­

earity of concrete in compression, but also 
the tensile strain softening of concrete. The 
results agree with previous experiments quite 

well, and better than calculations in which the 
tensile stresses in concrete are neglected. 

However, their effect is not very large and is 
much less than that previously found in 

Satan! and Oh's analysis of nonprestressed 

concrete beams. The effect of tensile strain 
softening is found to be significant only in the 

initial post·cracking response (cracked elastic 
stage) and vanish near the ultimate load. The 

effect of tension stiffening of steel due 10 the 
surrounding concrete and the associated 

bond slip is neglected, since the discrepancy 
from test data which could be ascribed /0 this 

phenomenon is quite small and adequate 
agreement with tests in the initial post-crack· 

ing slage is found without tension stiffening. 
Comparisons are also made with the /-effec­

tive method of Branson and Trost, although 

generally these predictions are softer than 
measured and become unacceptable near 

the ultimate load. Comparisons of calcula­
tions as well as measurements be/ween 
beams with bonded and unbonded reinforce­

ment show a relatively small difference. 
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I
n partially prestressed concrete structures, the prestressed 

reinforcement is mixed with a significant amount of non­

prestressed reinforcement, either unstressed prestressing 

steel or ordinary reinforcing steel. Such a design approach, 

whose essence was implied already in a suggestion by 

Emperger,l makes it possible to keep the effective prestress 

lower than its maximum allowable value. 

In contrast to fully prestressed concrete structures, this 

results in some cracking under the service loads, although 

only the infrequently occurring maximum loads.2-4 The 

advantages gained include an increased ductility and energy 

absorption capability, as well as improved economy. Another 

advantage is reduction of the camber due to prestress. 

The standard assumptions for the analysis of reinforced 

(nonprestressed), fully prestressed and partially prestressed 

concrete beams are identical and lead to good results for the 

ultimate load capacity. They include the use of bending 

theory with plane cross sections remaining plane, and neglect 

of tensile resistance of concrete and of bond slip. These 

assumptions, however, yield an erroneous prediction of beam 

curvatures and deflections above the service load range. 

Various improved simplified methods for deflection calcu­

lations were proposed by Shaikh and Bransons and Basu et 

a1.6•
7 The latest state-of-the-art in the simplified curvature and 

deflection analysis is perhaps represented by the formulas of 

Branson and Tros~·9 and of Tadros, Ghali and Meyer.1O Their 

practical solutions, based on semiempirical adjustment of 

bending stiffness after the start of cracking, yield relatively 

good predictions of the initial post-cracking deflections, but 

are not intended to be used near the ultimate load range. 

From research on nonprestressed reinforced concrete 

beams, it is known that neglect of the tensile resistance of 

concrete, customary in ultimate load calculations, leads to 

significant underestimations of deflections. The actual behav­

ior is stiffer, due to the capability of concrete to transmit 

stresses in tension even after cracking begins. To explain this 

stiffening, two different mechanisms have been proposed: 

1. Tensile strain softening of concrete, i.e., the fact that, 

after reaching the strength limit, the tensile stress does not 

drop suddenly to zero but declines gradually at increasing 

strain. 

2. Tension stiffening of steel bars due to the tensile resis­

tance of the concrete layer surrounding the bar, which is 

forced by bond stresses to extend simultaneously with the bar. 

Design engineers have generally ignored the first mecha­

nism, while many material researchers, driven by the results of 

fracture mechanics research, attach to it primary importance. 

The existing tension stiffening theory implies the assumption 

that the stress drops suddenly to zero as soon as the strength 

limit is reached, and that continuous tension-free cracks, nor­

mal to the bar, form immediately at a certain spacing. 

After that, part of the bar force is assumed to be transmit­

ted into the concrete between the cracks by means of bond 

stresses (and, conversely, the tensile resistance of concrete 

between the cracks restrains the steel bar against axial exten­

sion). The development of bond stresses, of course, requires 

a finite bond slip." However, the neglect of strain softening 

in the existing tension stiffening theory (i.e., the assumption 

of a sudden drop of stress to zero), is not realistic. 
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As became clear from recent fracture mechanics research, 

strain softening takes place because of the phenomenon of 

crack bridging by aggregate pieces and fragments that 

remain anchored at both surfaces of the crack. and because 

the cracks that start to form at the peak stress are discontinu­

ous and do not become continuous until the stress gets 

reduced to zero. A stability analysis of the fracture also 

showed that a sudden stress drop from the peak stress point 

occurs only as an instability (of snapback type), e.g .. when a 

tensile specimen that is not sufficiently short is tested in an 

ordinary testing machine that is not adequately stiff. In a 

beam, however, such instabilities, which would be mani­

fested as dynamic events, are not observed. which is due to 

the fact that concrete is restrained by the bars. 

Therefore, strain softening must be expected to take place 

in the reinforced concrete beam. Continuous. tension-free 

cracks can be expected to form only after a large increase of 

strain in the steel bar occurs. This suggests that the strain 

softening should be a primary mechanism. occurring first. 

and tension stiffening should come into play only much later, 

after the concrete tensile stress is reduced to nearly zero. 

A fully consistent theory should obviously take into 

account both the strain softening and the tension stiffening 

with bond slip. However, this might be unnecessarily com­

plicated. We, therefore, restrict our attention to only one 

mechanism, especially since both mechanisms have a simi­

lar effect. Due to the foregoing observation that the strain 

softening is primary and tension stiffening is secondary. we 

consider only the strain softening. Besides, this has also the 

advantage of simplicity, since the cross sections may still be 

assumed to remain plane, while for the latter mechanism 

they cannot. Whether this simplification is adequate will be 

decided by comparison with test data; if a significant dis­

crepancy is found, of course, it would have to be attributed 

to tension stiffening. 

From a preceding study by BaZant and Oh,12 dealing with 

post-cracking curvature and deflections up to the ultimate 

load in nonprestressed beams, it transpired that acceptable 

agreement with test results can be obtained even if exclu­

sively the tensile strain softening of concrete is taken into 

account. It should further be noted that consideration of ten­

sile strain softening is also essential for a realistic modeling 

of shrinkage stresses and the effect of drying on concrete 
creep. I)." 

Nonlinear analysis of concrete beams that takes into 

account the actual nonlinear stress-strain relations for steel 

and concrete is by now well established; see, for example, 

the excellent survey by Scordelis. IS 

ANALYSIS WITH STRAIN SOFTENING 

As usual, plane cross sections are assumed to remain 

plane and normal during bending, which implies that defor­

mations due to shear forces are neglected. The concrete and 

steel, prestressed as well as nonprestressed, are assumed to 

be perfectly bonded. Geometrically nonlinear effects are 

neglected. 

For the purpose of analysis, the beam is longitudinally 

subdivided into segments (Fig. I), and each cross section is 
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As used by Bahmt and Oh, u the stress-strain diagram of 

Cf. Saenz is adopted for concrete in compression (£c < 0): 

1.: 2 M 

Fig. 1. Arrangement of beam segments along the test beam 
used in deflection analysis. 

subdivided int~ ml concrete layers of areas A/I and depth 

d/I (Figs. 2a and 2b); i = 1, 2, , .. mi' The net areas of con­

crete, not including the area of steel, are considered. The 

reinforcing bars (nonprestressed reinforcement) are grouped 

into m2layers with areas A/I and depths ds(j); j = 1,2, ... . m2 

(Fig.2c). 

For prestressing tendons, all the tendons located at the 

same depth and having the same effective prestress are 

grouped into one layer. Several such layers may occur; the 

area of each is All and the depth is dll; k = 1, 2, ... m3 (Fig. 

2d). Except for the initial effective prestressing force, the 

treatment of prestressed and nonprestressed steel is identical. 

At! 
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Furthermore: 

For 0 < £c S £,p: 

For £Ip < £c < £tf 

For £c > £,i 

In the above equations: 

O'c = EcEc 

O'c = f; - (£c - £tp) (-E,) 

O'c = 0 

= uniaxial stress and strain of concrete 

= f~ 
= peak compressive stress (compressive strength) 

= strain at peak compressive stress 

= Young's elastic modulus of concrete 

=" direct tensile strength 

(2) 

= tangent strain softening modulus (negative value) 

= strain at peak tensile stress 

= final strain when the tensile stress is reduced to 

zero 

The strain of concrete at any point of the coordinate z is 

£ i::: - Kz + A, where K is the beam curvature and A is the 

strain at the chosen reference axis of the beam. 

The strain in prestressing steel is £ = -Kz + A + f pe/Ep, 

t::=======:j Ac (i) 
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Fig. 2. Layered finite element for: (a-b) concrete cross section with regular or irregular shape; (c) reinforcing bars; (d) 
prestressing tendons; Ap(3) and AP(4) represent prestressing tendons subjected to different magnitudes of effective prestress. 
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Fig. 3. Assumed uniaxial stress-strain relations for: (a-b) concrete in tension and compression; (c) reinforcing steel; and (d) 
prestressing steel. 

where fpe is the effective prestress and Ep is Young's elastic 

modulus of prestressing steel. 

The nonprestressed reinforcing steel is assumed to be 

elastic-perfectly plastic, characterized by Young's elastic 

modulus Es and uniaxial yield stress fy (Fig. 3c). For the 

prestressing tendons, the stress-strain formula proposed by 

Menegotto and Pinto,16 which was shown by Naaman2 to be 

realistic, is adopted for the analysis. It has the form (see 

Fig. 3d): 

(3) 

(4) 

where fpy is the yield stress; fpu and Epu are the ultimate 

stress and strain, respectively; and N, K, and Q are empirical 

parameters whose values are recommended by Naaman as 

6.06, 1.0325, and 0.00625, respectively. 

The conditions of eqUilibrium of stresses with the axial 

force N and bending moment M are: 

January-February 1992 

The moment-curvature or load-deflection diagram IS cal­

culated by a step-by-step procedure which is described in 

Appendix A. The procedure starts from an initial state char­

acterized by the initial curvature leo and the initial axial 

strain ~ produced at the beam axis by the initial prestress 

load from the tendons on the beam (see Fig. 4). 

In each step of this procedure, the increments of curvature 

and the corresponding actual strains are determined on the 

basis of the previous step and successive iterations are used 

to satisfy the equilibrium relations. The midspan deflection 

5 is evaluated according to the unit load method (principle 

of virtual work): 

(7) 

in which M(x) is the bending moment distribution corre­

sponding to unit load in the direction of deflection 5. 
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Fig. 4. Stress and strain distribution over the cross section of beam. 

The foregoing integral is evaluated by Simpson's rule 

(same as Ref. 12). Alternatively, and with more general 

applicability, the deflections can, of course, be calculated by 

the finite element method. 

NUMERICAL EXAMPLES AND 
COMPARISONS WITH TEST DATA 

To evaluate and verify the proposed method, comparisons 

with two extensive groups of static tests by Tao and Du17 on 

partially prestressed concrete beams and reinforced concrete 

beams have been made. Tao and Du conducted first a series 

of tests (Series A) to investigate the effects of varying 

amounts of nonprestressed reinforcement on the stress in 

unbonded prestressing tendons in partially prestressed con­

crete beams at ultimate load. 

All the test beams (Fig. 5) were 160 x 280 mm (6 x 11 in.) 

in cross section and 4400 mm (173 in.) in length, and were 

tested with third point loading over 4200 mm (165 in.) span. 

The span-to-depth ratio, Ud, was 19.2. Each beam contained 

one straight tendon consisting of two to eight high-strength 

wires 5 mm (0.197 in.) in diameter. All the beams were ten­

sioned prior to testing and the effective prestress of the ten­

dons was 55 to 65 percent of the yield strength of the wires. 

Tao and Du added two to four nonprestressed deformed 

bars to each beam. These categories of reinforcement were 

selected such that the nonprestressed steel would carry at 

failure about 30, 50 and 70 percent of the total load. The 

reinforcement was characterized by the combined reinforce­

ment index, qo, which was defined as follows: 

in which: 

qpe = prestressing steel index 

q s = nonprestressed steel index 

Asly 

qs = btl I' 
p c 

Ap = area of unbonded prestressed reinforcement 

As = area of bonded nonprestressed reinforcement 

b = width of beam 

(8) 

dp = effective depth of beam to centroid of prestressing steel 

1 fH = effective prestress in unbonded tendon prior to loading 

Iy = yield stress of nonprestressed reinforcement 

1 ~ = compressive strength of concrete 

The index qo fell into three categories: low (qo < 0.15), 

medium (qo = 0.15 to 0.25) and high (qo > 0.25). 

The detailed characteristics of the test beams and data used 

for predictions are listed in Table 1. Fig. 6 shows the mea-

1400mm P/2 1400mm P/2 1400mm 

E E 

I x: STRAIN GAUGES ON WIRES E E 
~ 0 0 

STRAIN GAUGES ON TOP SURFACE co It) ('oj -. 
N N 0 

OF BEAMS 

16 mm 

Fig. 5. Loading arrangement and instrumentation on test beams of Tao and Du (see Ref. 17). 
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Table 1. Details of test beams and data used for analysis using proposed method. 

Beam I~ A, P, I,. A, P, I, 
No. MP. mm' x 10"' MP. mm' x 10" MPa 9,. 9, 90 

A·I 30.6 58.8 1.67 960 157 4.46 267 0.0524 0.0389 0.0913 

A·2 30.6 98.0 2.78 904 157 4.46 430 0.0822 0.0627 0.1450 

A·3 30.6 156.8 4.45 820 236 6.70 430 0.1194 0.0942 0.2135 

A-4 30.6 58.8 1.67 869 157 4.46 430 0.0464 0.0613 0.1077 

A·5 30.6 78.4 2.23 810 308 8.75 400 0.0590 0.1144 0.1734 

A-6 30.6 156.8 4.45 854 462 13.13 400 0.1243 0.1716 0.2959 

A·7 30.6 39.2 l.ll 885 308 8.75 400 0.0322 0.1144 0.1466 

A·8 33.1 58.8 1.67 894 462 13.13 400 0.0451 0.1586 0.2033 

A·9 33.1 156.8 4.36 920 804 22.33 395 0.1211 0.2665 '0.3876 

0-0 35.6 0.0 0.00 0 603 17.13 395 

0·1 35.6 58.8 1.67 924 157 4.46 267 

0-3 35.6 156.8 4.45 879 236 6.70 430 

1,,= 1465 MPa 

1,..= 1790MPa 

1,= 1360MPa 

1.= 1660MPa E,. = 0.087 
&p=O.OO23 Ep = 205 GPa, E, = 200 GPa 

Ec = 14.5GPa E, = -2606 MPa 

Note: 1 MPa = 145 psi; 1 GPa = 1000 MPa; 1 mm' = 0.00167 in.' 

sured load-deflection curves for beams with varying amounts 

of reinforcement. Also shown are comparisons with: 

1. The numerical results based on the proposed model 

which considers the effect of tensile strain softening. 

2. The numerical results obtained with the proposed 

model assuming that concrete resists no tension (which is 

called the no-tension theory). 

3. The numerical results obtained by the I-effective 

method of Branson and Trost. 

A summary of the I-effective method in calculating 

deflections of partially prestressed beams is given in 

Appendix C. 

In Appendix B an illustrative example is given to demon­

strate how the proposed method is applied to determine the 

load-deflection relation of the beam. 

It can be seen that the numerical results obtained with the 

proposed method agree with the test data quite well. Both 

the tests and the analysis show that the load-deflection 

curves exhibit three stages, namely, (1) elastic, (2) cracked­

elastic and (3) plastic (Fig. 7). The transition from the fIrst 

to the second stage is caused by the development of cracks 

at the bottom of the beam. The transition from the second 

stage to the third stage is caused by yielding of the bonded 

nonprestressed steel. 

Beams with lower values of qo exhibit all the three stages; 

they are rather ductile and fail at relatively large deflections. 

However, beams having a high value of qo do not exhibit the 

third stage and fail at relatively small deflections since the 

bonded reinforcement is still in the elastic range of the steel. 

The effects of strain softening on the load-deflection 

behavior of partially prestressed concrete beams can be 

summarized as follows: 

1. There exists the usual elastic stage in which tensile 

strain softening of concrete is prevented by prestress. This 

range, however, is much smaller than for fully prestressed 

beams, as is well known. 

January·February 1992 

2. The cracked elastic stage begins by development of 

cracking at the bottom of the beam. From the diagrams it is 

apparent that consideration of tensile strain softening gives a 

distinctly higher flexural stiffness than the no-tension the­

ory, i.e., a higher bending moment for the same deflection. 

The difference between these two theories, however, is not 

very large, and is much less than that previously docu­

mented for nonprestressed reinforced concrete beams. 12 The 

diagrams also show that the I-effective method usually over­

estimates the deflection in this stage, i.e., the method gives a 

softer response than the measurements; see Beams A-2, A-

3, A-5 and A-8. 

3. In the last, plastic stage, the diagrams obtained with 

and without strain softening are nearly the same and indicate 

the same ultimate load carrying capacity. The effect of ten­

sile strain softening essentially disappears, which is no 

doubt explained by large tensile strains corresponding to rel­

atively large cracks in concrete. The I-effective method fails 

to predict this stage, and it, of course, was not intended for 

this purpose. 

4. Comparisons with the test data in Fig. 6 show that the 

calculations with tensile strain softening match the test data 

better than those for the no-tension theory; see Beams A-I, 

A-2, A-3, A-4, A-5 and A-9. 

5. The post-peak descent of the calculated load-deflection 

diagram is not as steep as measured. This is no doubt due to 

localized instabilities caused by strain softening in beams, 

which are not taken into account in the present calculation. 

(For their analysis, see Refs. 18 and 19.) The end point of 

the measured load-deflection curves corresponds to failure 

by crushing of the concrete on top of the beam. 

Tao and Du l7 have also tested another series (Series D) 

consisting of bonded partially prestressed beams D-l and D-

3 and an ordinary (nonprestressed) reinforced concrete beam 

D-O. These results are compared with the calculations made 

with and without strain softening, and with the predictions 
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Fig. 6. Comparisons of proposed theory with Branson's formula, with no tension theory, and with test data by Tao and Du 

(Beam A series). Note: 1 kN = 1000 N; 1 N = 0.225Ibf; 1 mm = 0.0394 in. 

(continued on page 81) 
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Fig. 6 (cont.). Comparisons of proposed theory with 
Branson's formula, with no tension theory, and with test data 
by Tao and Du (Beam A series). 
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STAGE 1 

(elastic) 

o 
c( 

o ..... 

STAGE 2 (cracked-elastic) 

STAGE 3 (plastic) 

'-- YIELDING OF 

NON PRESTRESSED STEEL 

'-CRACKING OF CONCRETE 

DEFLECTION 

Fig. 7. Sketch showing load-deflection curve for unbonded 
prestressed beam with additional bonded reinforcing steel. 

of the I-effective method in Fig. 8. From these comparisons, 

the following observations can be made: 

1. Both the test results and the calculations show that the 

load-deflection diagrams for pretensioned beams with 

bonded prestressed steel are very similar to those for the 

unbonded prestressed beams. 

2. The calculations give again a fairly good agreement 

with the test data, but they underestimate the load capacity 

of Beam D-l. The results with strain softening are better 

than those for the no-tension theory, although the difference 

is relatively minor. Again, the I-effective method overesti­

mates the deflection in the cracked elastic stage, and is inap­

plicable in the plastic stage. 

Finally, we should consider again a possible role of ten­

sion stiffening associated with bond slip. From Figs. 6 to 8, 

it is observed that in most cases the calculated response is 

slightly stiffer than the measured curves. This difference 

might be attributed to an additional effect of the tension 

stiffening mechanism. Since inclusion of such a mechanism 

would make the response still softer than calculated here, 

the fit of the data would be improved. However, the analysis 

would become considerably more complicated, and the dis­

crepancies seen from the figures are rather small. 

CONCLUSIONS 

1. Beam analysis that takes into account the nonlinear 

behavior of concrete in compression and the plasticity of 

steel in tension, and neglects bond slip, gives relatively good 

predictions of the load-deflection diagrams of partially pre­

stressed concrete beams. 

2. Consideration of tensile strain softening in concrete 

improves the predictions compared to classical theory in 

which the tensile resistance of concrete is neglected. How­

ever, the effect is not large, mainly because the results of the 

classical theory are much closer to measurements than found 

in BaZant and Oh' s study of nonprestressed concrete beams. 

81 



z 
x: 

64 

o 48 

C3 
..J 

o 
!:!:! 32 
..J 

a. 
a. 
« 

16 

-.-.- Bronson & Trost 

-- Present Theory 

---- No Tension Theory 

- Tao,Ou 1985 

Beam 00 

25 50 75 100 125 150 
MIDSPAN DEFLECT.(mm) 

(a) 

60~-----------------~ 

z 
x: 

48 

036 

C3 
..J 

o 
~ 24 
..J 
a. 
a. 
« 

12 

I 
I 

_.-.- Bronson & Trost 

--- Present Theory 

---- No Tension Theory 

--- Tao,Ou 1985 

Beom 01 

25 5075 100 125 
MIDSPAN OEFLECT.(mm) 

(b) 

150 

100~------------------, 

z 
x: 

80 

o 60 

~ 
..J 

o 
!:!::! 40 
..J 
a. 
a. 
« 

20 

-'-'- Branson & Trost 

-- Present Theory 

---- No Tension Theory 

~ Tao,Ou 1985 

Beam 03 

15 30 45 60 75 90 
MIDSPAN DEFLECT.(mm) 

(e) 

Fig. 8. Comparisons of proposed theory with Branson's 

formula, with no tension theory, and with test data by Tao 
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3. The effect of tensile strain softening of concrete is 

manifested chiefly in the initial post-cracking stage of 

deflection. For the prediction of the load-deflection diagram 

near the ultimate load, consideration of tensile strain soften­

ing is not needed, which confirms what is already known. 

4. Consideration of tension stiffening of steel bars with 

bond slip, in addition to strain softening of concrete, could 

be expected to further improve the fit of test data. However, 

the discrepancy observed is rather small and does not seem 

to be worth complicating the analysis further, especially 

since the assumption of plane cross sections would have to 

be abandoned. (One must caution, though, that there might 

be other types of beams for which the tension stiffening of 

bars could prove to be important.) , 

5. The I-effective method of Branson and Trost gives 

acceptable predictions for the initial post-cracking stage 

(cracked elastic stage), although the predicted response is 

generally somewhat softer than measured. This method, 

however, cannot be used for predicting deflections near the 

ultimate state. 

6. The difference in deflections between the beams with 

bonded and unbonded prestressed tendons is relatively 

small, both according to calculations and experiments. 
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APPENDIX A - NUMERICAL ALGORITHM TO CALCULATE THE 
DEFLECTION OF PARTIALLY PRESTRESSED CONCRETE BEAMS 

1. Find the initial axial strain and initial curvature: 

Use successive iterations to fmd the initial axial strain ~ 

and initial curvature !Co so that equilibrium with the axial 

force and the moment due to the initial effective prestress 

force will be achieVed. 

2. Determine the relation between the resisting moment 

and the curvature at each cross section: 

Given a small increment of curvature, adjust the axial 

strain £ so that Eq. (5) will be satisfied. Then, obtain the 

internal resisting moment M at a specific cross section 

according to Eq. (6). Repeating the same procedure, deter­

mine the relation between the resisting moment and the cur-

January-February 1992 

vature at each cross section. 

3. Calculate the curvature at each cross section: 

Starting from the midspan cross section of the beam, find 

the corresponding bending moment due to a small increment 

of curvature. Using this moment and the moment-curvature 

relation at each cross section due to the applied load, deter­

mine the corresponding bending moment at each cross sec­

tion and then evaluate the curvature at that section. 

4. Find the midspan deflection of the beam: 

Based on the principle of virtual work and the curvatures 

at all cross sections, determine the midspan deflection using 

Eq. (7). 
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APPENDIX B - ILLUSTRATIVE EXAMPLE 

For illustration Table 81. Moment values for various 
purposes, consider curvatures. 

Curvature (l/mm) Moment (kN-m) 

~.()()()()()()786 0 

~.()()()()()()306 2.66\ 

~.()()()()()() 170 4.959 

~.000000650 7.272 

: : 

: : 

0.000003569 33.179 

: : 

Beam A-4 of Ref. 

17. The cross sec­

tion dimensions, 

locations of rein­

forcement and other 

details of the beam 

are shown in Fig. 5. 

The beam is simply 

supported and has a 

span length L = 42 

m (137.8 ft). It is 

loaded by two one-

third point concen-
Note: 1 mm = 0.0394 in.; 1 kN-m = 8.850 kip-in. 

trated loads. The beam is post-tensioned by a tendon having 

a straight profile. The basic material properties of the mem­

ber are given in Table 1. 

The objective of this example is to determine the load­

deflection relation of the beam. 

Solution: 

1. The beam is divided into 16 segments of equal length, 

262.5 mm (10.32 in.). Note that due to symmetry, only the 

left eight segments need to be analyzed. 

2. By the trial-and-error procedure indicated, find the ini­

tial curvature at every cross section, e.g., at midspan, Ko = 
-0.000000786 per mm (-0.00001996 per in.). Using the 

principle of virtual work, find the camber at midspan, 00 = 
1.732 mm (0.0682 in.). 

3. The moment-curvature relation at each cross section is 

determined by iteration. Since all the cross sections have the 

same section properties, the moment-curvature relation for 

the midspan can be used as a reference. The values are listed 

in Table B1. 

4. The initial curvature at midspan is set equal to 

-0.000000786 and the first increment of curvature as 

£\1C = 0.00000048. 
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s. The total accumulated curvature is found to be 1C = Ko = 
.1.1C = -0.000000306. Based on the moment-curvature rela­

tion calculated in Step 3, the bending moment of the first 

increment at midspan can be obtained, Mo = 2.66 kN-m 

(23.54 kip-in.). 

6. Next, calculate the bending moment at each cross sec­

tion M(i) from the midspan moment Mo using equilibrium 

conditions (i = 1,2,3, .... 8): 

M(l) = 0.1875 Mo 

M(2) = 0.375 Mo 

M(5) = 0.9375 Mo 

M(8)=Mo 

7. Using the moment-curvature relation at each cross sec­

tion, determine the curvature of the beam at each cross sec­

tion x (i): 

x (1) = -0.000000696 

x (2) = -0.000000606 

x (3) = -0.000000516 

x (4) = -0.000000426 

x (5) = -0.000000336 

x (6) = -0.000000306 

x (7) = -0.000000306 

x (8) = -0.000000306 

8. Based on the principle of virtual work, compute the 

deflection of the beam: 

£\5 = (V/192)[.x(I) + .x(2) + 3.x(3) + 2.x(4) + 5.x(5) + 3.x(6) 

+ 7.x(7) + 2.x(8)] 

The calculated deflection of the beam is: 

-0.8318 mm (-0.0327 in.) 

The total deflection at midspan at this stage is: 

5 = 50 + .1.5 = 0.90 mm (0.0354 in.) 

9. Repeating Steps 5 to 8, determine the complete loa 

deflection relation as shown in Fig. 6d. 
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