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Abstract: Techniques, such as micropipette aspiration and optical tweezers, are widely used

to measure cell mechanical properties, but are generally labor-intensive and time-consuming,

typically involving a difficult process of manipulation. In the past two decades, a large number

of microfluidic devices have been developed due to the advantages they offer over other techniques,

including transparency for direct optical access, lower cost, reduced space and labor, precise control,

and easy manipulation of a small volume of blood samples. This review presents recent advances in the

development of microfluidic devices to evaluate the mechanical response of individual red blood cells

(RBCs) and microbubbles flowing in constriction microchannels. Visualizations and measurements of

the deformation of RBCs flowing through hyperbolic, smooth, and sudden-contraction microchannels

were evaluated and compared. In particular, we show the potential of using hyperbolic-shaped

microchannels to precisely control and assess small changes in RBC deformability in both

physiological and pathological situations. Moreover, deformations of air microbubbles and droplets

flowing through a microfluidic constriction were also compared with RBCs deformability.

Keywords: red blood cells; deformation index; microfluidic devices; air bubbles; droplets; blood flow

1. Introduction

Blood flow behavior in microcirculation is strongly influenced by red blood cell (RBC) deformability

as they occupy almost half of whole blood volume. When RBCs are subjected to large external flow

forces, they elongate without rupture and tend to return to their original shape when the external
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forces are removed. Some major determinants of RBC deformability include external flow forces,

cell geometry, cell internal viscosity, and membrane viscoelastic properties [1]. RBC-related diseases,

such as malaria, sickle cell disease, and diabetes, can also promote significant alteration in the RBC

deformability. Ever since the deformability of RBCs became a potential biomarker for several blood

diseases, various experimental techniques have been developed to measure the deformation of blood

cells (see Table 1). There have been several reviews discussing different techniques for measuring

RBC deformability under a variety of experimental and diseased conditions [1–4]. The recent

progress in microfabrication and high-speed microvisualization technology made it possible to produce

microfluidic devices able to directly visualize and characterize the mechanical properties of individual

cells flowing through constriction microchannels [5,6]. However, there are still few reviews focusing

on the use of these kinds of microfluidic devices to measure cell deformability. Most of the recent

reviews, performed by Zheng et al. [7], Tomaiuolo [8], and Xue et al. [9], have focused on single-cell

devices, cylindrical glass capillaries, and in microdevices, where the shear effect is dominant. Due to the

growing interest of combining the shear and extensional effect to perform deformability measurements,

this review focuses on the most recent findings performed by our research group related to the

deformation of RBCs flowing through hyperbolic, smooth, and sudden-contraction microchannels.

Moreover, deformations of air microbubbles flowing within in vitro blood microfluidic devices are

also measured and compared with RBC deformability.

Table 1. Techniques to measure RBC deformability under different diseased conditions.

Measurement Technique Human Diseases Main Key Features References

Micropipette aspiration Sickle cell anemia, malaria

Enables accurate mechanical response of
single RBCs, labor-intensive,
time-consuming, and involves a typically
difficult process of manipulation.

[4,10–12]

Optical tweezers
Malaria, sickle cell anemia,

diabetes mellitus

Ability to obtain a mechanical response of
single RBCs down to the piconewton level;
labor-intensive, time-consuming and special
human technical skills are required.

[4,13,14]

Atomic force microscopy
Cancer, spherocytosis,

thalassemia, diabetes mellitus,
sickle cell anemia

Ability to apply forces to RBC surfaces at the
nanoscale level; labor-intensive;
time-consuming, and requires
expensive equipment.

[4,15–17]

Microfluidic ektacytometer Diabetes mellitus

Homogenous flow, ability to differentiate
healthy and diseased cells, labor-intensive
and time-consuming process. It is required to
label the RBCs to identify them. This latter
process may change the RBCs‘
mechanical properties.

[18,19]

Microfluidic constriction channel
Diabetes mellitus, malaria,

cancer, abdominal obesity and
metabolic syndrome

Reduced space, homogenous flow, label-free,
ability to measure a large amount of cells in
one single run, potential to precisely control
and detect small deformability changes,
needs a high-speed video microscopy system
combined with an image analysis technique;
blockage is likely to happen at constriction
microchannels with dimensions similar to the
RBC diameter.

[18–24]

2. Deformation of RBCs in Microfluidic Devices

Most of the proposed microfluidic devices to perform RBC deformability characterization

focus on the shear effect. Some examples from the literature are the measurements of the RBCs’

deformation under a transient high shear stress in a sudden-contraction microchannel [25] and the

RBCs’ deformability through a microfluidic device with a microchannel diameter comparable to RBC

size [26]. In addition to the shear effect, the extensional effect and the combination of both can be

encountered in the human body, e.g., in microstenosis, in microvascular networks composed of small,

irregular vessel segments, in pulmonary microvessels, and in medical instrumentation, such as the
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flow through syringes and syringe needles. Hence, it is important to understand the RBC mechanical

properties under both shear and extensional effect.

Flows of blood cells through microfluidic contractions generate complex flow phenomena despite

their simple geometry. The flow involves a reduction in the cross-sectional area, which generates

strongly-converging flows as the fluid goes through the contraction and the blood cells exhibit a variety

of shapes, such as circular, ellipse, and parachute, which depend on the rheological properties of

the fluid, geometric configuration, and dimensions of the contraction. The schematic illustration in

Figure 1 shows the fluid flow behavior in different kinds of microfluidic constriction channels through

which the RBCs travel. In general, the flow exhibits mixed kinematics with strong extensional flow

(the fluid accelerates as it is going through the contraction) along the centerline and shear flow close

to the walls. The major advantage of microfluidic hyperbolic-shaped contraction (Figure 1c) is the

ability to impose a constant strain rate along the centerline of the contraction, as well as to achieve

high extensional and shear flows. Relevant works in the context of blood flow and RBC deformability

are those performed by Sousa et al. [27], Lee at al. [28], Yaginuma et al. [29], Rodrigues et al. [30–32],

Faustino et al. [33], Pinho et al. [19], and Calejo et al. [34], who studied the effects of the extensional

flow in hyperbolic converging microchannels using blood analog fluids and in vitro blood containing

different kinds of blood cells. Other works have used cross-slot microfluidic devices to investigate the

deformability of different kinds of cells under the application of extensional flows [35–37].

Figure 1. Blood flow and RBC deformability in microfluidic contractions at different geometries:

(a) sudden contraction; (b) smooth contraction; and (c) hyperbolic contraction, adapted from [38].

RBCs flowing through microfluidic contractions are, most of the time, subjected to high shear and

extensional effects and, as a result, they tend to elongate into ellipsoid shapes with their major axis

aligned to the flow direction. When the cells leave the constriction region, the fluid shear forces created

by the wall are removed and, consequently, RBCs tend to return to their normal resting biconcave disc

shape. The deformation under controlled flow conditions provides an efficient method to generate

cellular-scale mechanical stimuli. Hence, microfluidic constrictions due to the ability of performing

precise control and manipulation of a small volume of samples have been gaining increasing interest

to measure the deformability of RBCs for clinical proposes [5,7,8,19,28–33].

The classical method to quantify the degree of deformability is by using an ellipse-fitting program.

The deformation index (DI), also known as elongation index, most of the times is calculated by

(X − Y)/(X + Y) where X and Y represent the major and minor lengths of the ellipse, respectively

(see Figure 2). However, in microchannel capillaries, where the dimensions of the channels are smaller

than the diameters of the cells, the degree of deformability should be measured as the ratio between

the length of the major axis and the length of the minor axis as the RBC tends to deform in a parachute

shape, as shown in Figure 2 [20,39]. This latter definition is designated as the deformation ratio (DR).
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Figure 2. Schematic diagram of the deformation index (DI) and deformation ratio (DR) definition,

adapted from [17].

2.1. Deformation of RBCs in Hyperbolic Contractions

Since RBC deformability became a potential clinical biomarker, several single-cell microfluidic

methodologies have been developed to perform flow measurements on RBCs [6–9]. The majority of the

methods to measure the RBCs’ deformability have focused on the response of the cells under simple

shear flow. However, it is well known that extensional flow also plays an important role in the blood

cells’ flow dynamics in both in vivo and in vitro environments. Extensional effects, or a combination

of shear and extensional effects, can happen in several situations, such as in micro-contractions (due to

velocity transition), in bifurcations (around the apex region and small branch), and when cells flow

from a wide blood vessel to a narrow catheter or needles. This latter situation can generate extremely

high extensional flows, which can promote hemolysis and, as a result, can lead to clogging and

jamming within the devices [28,35]. Hence, recently, several extensional flow studies have been

performed not only to assess cell deformability [19,28,29,31–33], but also to separate blood cells from

plasma [29,30]. The majority of these studies were performed at hyperbolic converging microchannels

where single-cell deformability was assessed under a controlled homogeneous extensional flow field.

Figure 3 shows RBCs flowing through the expansion region (A) and hyperbolic contraction region (B)

for two different flow rates, i.e., 9.45 µL/min and 66.15 µL/min. These qualitative flow visualizations

clearly show that the RBC deformability is higher in the hyperbolic contraction region (B) where the

RBCs are subjected to a strong extensional flow. Right after the exit of the contraction, RBCs tend to

recover their initial shape (A), which corresponds to a minimal value of the deformation and where

the RBCs are no longer exposed to a strong extensional flow. Another expected result is that the RBCs

have a tendency to increase the deformation as the flow rate increases. More detailed information can

be found in the work performed by Yagimuma et al. [29] where they have investigated the influence

of the extensional flow on the motion and deformability of individual RBCs in the full length of a

hyperbolic microchannel.

Figure 3. RBC deformability in a hyperbolic converging microchannel at two different regions (A) and

(B) and flow rates (9.45 µL/min and 66.15 µL/min) (adapted from [40]).
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Figure 4 shows a quantitative description of the degree of deformation of human RBCs under

a homogenous extensional flow field. We have measured the DI, as well as the velocity of the RBCs

flowing through the expansion and hyperbolic contraction regions, for two different flow rates. For an

inlet flow rate of 9.45 µL/min the RBCs do not suffer any significant deformation and the DI values

are fairly constant along the full length of the microchannel. However, for a flow rate of 66.15 µL/min

it is clear that when the RBCs enter the contraction region, RBCs start to elongate and, consequently,

their DI values start to increase until the end of the hyperbolic contraction region. The latter results

clearly show that when the RBCs are subjected to strong extensional flows RBCs tend to elongate

up to a maximum value. Another interesting result shown in Figure 4b is that when RBCs reach the

hyperbolic contraction region their velocities increase almost linearly, which corresponds to a constant

strain rate. This phenomenon happens for the both tested flow rates. These in vitro blood experiments

show the potential of using hyperbolic-shaped microchannels to precisely control and assess changes in

RBC deformability in physiological and pathological situations. However, the selection of the geometry

and the identification of the most suitable region to evaluate the changes on the RBC deformability

under strong extensional flows are crucial and further studies need to be performed in more detail in

the near future.

Figure 4. Individual RBCs’ (a) DI and (b) velocity flowing through a hyperbolic contraction microchannel

for two different flow rates: 9.45 µL/min and 66.15 µL/min.

Lee and his collaborators [28] have compared the deformability response of the RBCs to simple

shear and extensional flows. Their results have shown that extensional flows generate higher RBC

deformability than simple shear flows. Recently, Faustino and her colleagues [33,38] have performed

RBC deformation measurements in a hyperbolic-shaped contraction with a low aspect ratio (AR),

where RBCs were submitted to both extensional and shear flow. By comparing the DI results

performed by Faustino et al. [33,38] with the results obtained with extensional flows [29,40] it is

clear that the combination of both extensional and shear flow promote higher RBC deformability.

Although hyperbolic converging microchannels with low AR show the most suitable approach to

assess the clinical meaning of RBC deformability, further studies should be performed with different

flow rates and microchannel dimensions.

2.2. Deformability in Smooth and Sudden Contractions

During the years, a large number of studies on in vitro blood rheology and particularly in the

deformation of RBCs under a simple shear flow were performed by using rotational rheometers [4,19,41–43].

However, RBCs flowing in microvessels, due to the confined microenvironment, deform not only

due to shear effect but also to extensional effect. Hence, from the beginning of the 21st century,

and due to the progress in microfabrication [6,7,44,45], microflow visualization techniques [46–57],
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and image analysis methods [58–63], several microfluidic devices containing microchannels have been

proposed to study RBC deformability in environments closer to in vivo microcirculation. Most of

the proposed microfluidic devices to perform RBC deformability characterization can be classified

as fluid-induced deformation microchannels (when the dimensions of the channels used to generate

deformability are larger than the tested cells) and as structure-induced deformation microchannels

(constriction channels with dimensions similar or smaller than the diameter of tested cells). To the

best of our knowledge, the first application of a microfluidic constriction channel to perform RBC

deformability measurements was done by Tsukada et al. [20]. In this study they measured RBC

deformability of diabetic RBCs flowing through constriction microchannels and they reported that

the deformability of diabetic RBCs was lower than healthy RBCs. A few years later, Shelby et al. [21]

used a polydimethylsiloxane constriction microchannel to investigate the deformability changes between

malaria infected RBCs and healthy RBCs. As expected, they have confirmed that the deformation of the

infected RBCs decreases as the parasite progresses. After these two deformability research studies several

microfluidic devices, having constriction microchannels, were proposed to measure the deformation of

RBCs [5,8,19,26,28,29,32,33,64,65], white blood cells (WBCs) [31,35,66], and cancer cells [22,37].

Although, the majority of the proposed microfluidic devices to perform RBC deformability

characterization have focused on the strong shear effects created by the walls, these kinds of

devices, due to the extremely small dimensions of the microchannels, have several critical difficulties,

including fabrication complexity, flow control, and microflow visualizations. One way to overcome

such experimental difficulties is by using fluid-induced deformation microfluidic devices. These kinds

of devices are easier to fabricate [6] and, most of the time, produce a combination of shear and

extensional flows. Some successful examples, by using abrupt or sudden contractions, are the studies

performed by Zhao et al. [25], Forsyth et al. [67], and Fujiwara et al. [68]. Zhao et al. [69] have

performed measurements of the RBCs’ deformation in a sudden-contraction microchannel and they

have reported that under different flow rates, RBC elongation reached a maximum value and could not

deform any further. Forsyth et al. [67], by using a microfluidic constriction channel, have studied the

deformability and dynamic behavior of both healthy and hardened RBCs and they have found different

types of flow motion due to the increased shear rate in the constriction microchannel. The effect of

RBCs deformability on the cell-free layer (CFL) thickness, by hardening RBCs, was also investigated

at an abrupt microfluidic constriction channel by Fujiwara et al. [68]. They have found that the RBC

deformability plays an important role on the asymmetry of the CFL thickness and they have reported

that the motions of RBCs are strongly affected by the deformability, haematocrit, and the channel

geometry. However, abrupt constriction microchannels fail to produce homogeneous extensional

flows and, as a result, several researchers have been assessing RBC deformability using hyperbolic

converging microchannels [19,28–34]. RBC deformability changes in response to shear and extensional

flows strongly depend on the geometric configuration and dimensions of the constriction. For instance,

the motion and deformation of a RBC passing through a sudden constriction is different from a

RBC passing through a smooth or hyperbolic constriction. Pinho et al. [65] have developed a partial

cell separation microfluidic device, where RBC deformability was assessed in different kinds of

constriction channels. Figure 5 shows RBCs flowing through a smooth and a sudden (or abrupt)

constriction microchannel.

In Figures 6 and 7 it is possible to observe the DIs and velocities of two individual RBCs flowing

through a smooth and a sudden constriction microchannel, respectively. These results show that

for both situations when the RBCs start to enter the constriction region the cells velocities increase

and, consequently, they deform up to a maximum value. The measurements performed in a sudden

contraction (see Figure 7) show that the RBCs’ elongation tends to reach to a maximum value and,

afterwards, do not deform any further due to the constant velocity that cells possess when they

flow within the contraction. These latter results are in accordance with the findings performed

by Zhao et al. [25]. However, recent results performed by Zeng and Ristenpart [69] have shown

that the deformability of the RBCs tend to decrease slightly as they progress within the contraction
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region. Hence, these contradictory results show that there is a need for further research in this field.

However, it is clear that the RBCs flowing through this kind of contraction are not subjected to constant

strain rates. This is in contrast to the flow phenomenon that happens in hyperbolic contractions.

Figure 5. RBCs flowing through a microchannel with (a) a smooth and (b) a sudden (or abrupt)

contraction (adapted from [65]).

Figure 6. Individual RBCs (a) DI and (b) velocity flowing through a smooth contraction microchannel

for the same flow rate. The X axis correspond to the main flow direction.

Figure 7. Individual RBCs (a) DI and (b) velocity flowing through a sudden contraction microchannel

for the same flow rate. The X axis correspond to the main flow direction.

It is known that RBCs’ rigidity has been correlated with malaria, sickle cell disease, diabetes mellitus,

and others haematological disorders and diseases that affect RBC deformability [1,2,4]. Therefore, several

flow studies with rigid RBCs [19,67], or with microparticles that simulate rigid RBCs, have been

investigated due to the important role that they play in clarifying the hemodynamic behavior of
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diseased cells in microcirculation. Pinho et al. [70] have performed a study in order to clarify the flow

behavior of both healthy RBCs and rigid microparticles when subjected to high shear rates. In this study,

they have investigated the trajectories and DI in a microchannel with a pronounced microstenosis

(75%). By using a microfluidic device fabricated by a soft lithography technique, they have used

a solution of Dextran 40 containing a mixture of 0.5% polystyrene (PS) latex microspheres (10 µm),

that mimic rigid RBCs (arRBCs) mixed with 1% of healthy ovine RBCs (diameter: ~5 µm). The in vitro

experiments were performed under different flow rates (1, 10, 20 µL/min) and the DI of both arRBCs

and healthy RBCs were measured and compared. More detailed information about the experimental

setup can be found elsewhere [70].

In Figure 8 it is shown that, for both RBCs (rigid and healthy), the maximum DI was obtained at

the highest flow rate used in this study and within the stenosis region (represented by Sections 2–4).

As expected, healthy RBCs had higher DIs when compared with rigid microparticles (arRBCs).

In addition, it was at the highest flow rate of 20 µL/min that healthy RBCs obtaining a maximum

DI of 0.38 in comparison to the 0.09 obtained by the arRBCs. These results are consistent with the

ones obtained by Pinho et al. [65], where healthy human RBCs were investigated using different kinds

of constrictions. Additionally, in this study, they have observed that some of the ovine RBCs have

changed their normal shape to a parachute or umbrella shape when passing through the sudden

constriction microchannel. In contrast, the rigid microparticles did not exhibit any noteworthy change

from their original shape. Note that the measured residual values of the arRBC DIs were mainly due

to image distortions of the high-speed microparticles.

Figure 8. DI measured at five different sections of the stenosed microchannel for different flow rates:

(a) healthy ovine RBCs; and (b) particles mimicking rigid RBCs (arRBCs). Error bars represent a 95%

confidence interval (adapted from [70]).

2.3. Deformability in Rectangular PDMS Microcapillaries and Micropillars

Although it is difficult to fabricate and control the flow in constriction microchannels with

dimensions similar to RBC diameters, this kind of geometry is one the most popular ways to

measure the deformability of RBCs. As it is possible to observe in Figure 9, RBCs flowing through

structure-induced deformation microchannels, the RBCs tend to deform into a parachute shape or

umbrella shape. Researchers, such as Tsukada et al. [20], Jeong et al. [39], and Tomaiuolo et al. [26],

have calculated the RBCs’ deformability by applying the formula L/D, where L and D represent the

length and diameter of a deformed RBC, respectively (see Figure 9). Note that, in the present study,

this measurement approach is designated as the deformation ratio (DR). By following this approach,

we have analyzed and measured the DR of two individual RBCs flowing through a structure-induced

deformation microchannel (see Figure 10).
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Figure 9. RBCs flowing through (a) rectangular PDMS microcapillary (b) divergent region upstream of

a rectangular PDMS microcapillary; and (c) micropillars, adapted from [31].

Figure 10 shows the DRs and correspondent velocities of two individual RBCs flowing through

a microchannel with dimensions similar to the RBC diameter. The results clearly show an abrupt

decrease of both DRs and velocities when the RBCs leave the constriction and enter into an expansion

region. It is worth mentioning that as soon as the RBC leaves the constriction region, the RBC changes

from a parachute to a nearly circular shape. However, this latter behavior is not always true as it is

possible to visualize in Figure 9. In Figure 9a, due to the low local haematocrit and abrupt expansion

when the RBC leaves the constriction region, the RBC changes its shape to a circle. In contrast, when the

RBC flows within a high local haematocrit and smooth expansion, the RBC tends to keep its parachute

shape for a certain period of time. Eventually, when the shear stress induced by the walls decrease the

RBC tend to change to a nearly circular shape. Figure 9c shows that, besides the effect of the geometry

and local haematocrit, the orientation is also a parameter that plays an important role on the RBC

deformability. Although several numerical blood flow studies [71–78] have been proposed to better

understand the RBCs’ flow behavior in microchannels and microvessels, our understanding of the

RBC motion, orientation, and deformability at the microcirculation level is still far from complete.

Figure 10. Individual RBCs’ (a) DR and (b) velocity flowing through a rectangular PDMS microcapillary

for the same flow rate. The X axis corresponds to the main flow direction.

2.4. Comparison of Cells’ Deformability Studies

Table 2 shows a summary comparing the main features of several cells deformability studies

performed in microfluidic devices. Representative features for comparison are the microfluidic

technique, blood cell types, main flow phenomenon and the used approach to measure the degree of

deformability of the cells.
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Table 2. Comparison of several cells deformability studies performed in microfluidic devices.

Microfluidic
Technique

Cell Types
Main Flow

Phenomenon
Approach to Measure the
Degree of Deformability

Main Advantages Main Disadvantages References

Fluid-induced
deformation channel

Human RBCs Poiseuille flow
Homogenous flow; ability to
measure large amount of cells in one
single run.

The extensional flow is not
homogenous; expensive
micro-visualization equipment.

[25]

Fluid-induced
deformation channel

Human&rabbit
RBCs, WBCs

Extensional flow
(hyperbolic channel)

Homogenous extensional flow;
high-sensitivity tool; potential to
precisely control&detect small
deformability changes; ability to
measure large amount of cells in one
single run.

Expensive
micro-visualization equipment.

[19,28,29,32,33,38,40]

Fluid-induced
deformation channel

RBCs and WBCs
Extensional flow

(cross slot channel)

Extensional flow; capacity to
differentiate healthy and diseased
cells; ability to measure large
amount of cells in one single run.

Expensive micro-visualization
equipment; the numerical models
may need to be validated with
in vitro experiments.

[35,36]

Fluid-induced
deformation channel

RBCs Poiseuille flow
Homogenous flow; ability to
measure large amount of cells in one
single run.

The extensional flow is not
homogenous; expensive
micro-visualization equipment.

[67,69]

Structure-induced
deformation channel

RBCs Poiseuille flow
Homogenous flow; ability to
differentiate healthy and
diseased cells.

Complex to control the flow;
difficult fabrication; blockage is
likely to happen; expensive
micro-visualization equipment.

[20,26]

Structure-induced
deformation channel

Cancer cells Poiseuille flow
Homogenous flow; ability to
differentiate healthy and
diseased cells.

Complex to control the flow;
difficult fabrication; blockage is
likely to happen; expensive
micro-visualization equipment.

[22]
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3. Deformation of Bubbles and Droplets

The deformation of a gas bubble in a simple shear flow depends on the viscosity ratio, λ, and on

the capillary number, Ca [79].

The viscosity ratio is defined as:

λ =

µg

µl
(1)

where µg is the gas viscosity and µl the viscosity of the liquid.

The capillary number is defined as:

Ca =

W
.
γµl

σ
(2)

where σ is the surface tension, W the characteristic dimension of the flow and
.
γ the flow shear rate.

For Ca ≪ 1 and λ ≪ 1, the deformation is very small and changes linearly with the capillary number.

Müller-Fischer et al. [79] have analyzed the deformation and breakup of bubbles in a parallel

band apparatus to understand the influence of the viscosity ratio and the capillary number. The size

of the bubbles was approximately 1 mm. The bubbles were subject to deformation under a simple

shear flow. By increasing the capillary number, deformation indices of about 0.9 were obtained. As a

result, an empirical relation for the deformation index versus the capillary number was obtained and

compared with correlations from the literature. Anderl et al. [80] developed a numerical method to

predict the deformation of bubbles and were able to predict the results of Müller-Fischer et al. [79].

Wei et al. [81] have used the Lattice Boltzmann method to simulate the deformation of a bubble and

were able to correctly predict the shape of the bubble under a simple shear flow.

Bubble deformation has also been studied in T-junction divergent flows. Fu et al. [82] identified

three types of symmetric breakup of bubbles. The first one was controlled by the pressure increase in

the liquid phase and the second type was controlled by the pressure increase and viscous effects. In the

third type a scaling law for the minimum neck was observed. During the experiments, non-breakup

bubbles were observed. As a result, the authors have proposed phase diagrams (capillary number

versus normalized bubble length) showing the different conditions to observe various types of bubble

behavior. Liu et al. [83] have studied this flow by numerical methods, obtaining detailed velocity and

pressure fields, in addition to the bubble shapes and breakup conditions. These authors observed

breakup regimes similar to the ones observed by Fu et al. [82].

In microvessels, the flow of air microbubbles may block arterioles and capillaries and, as a result,

may stop the supply of blood to certain regions of the human body. Pathological events caused

by microbubbles trapped in blood vessels need to be better understood. The shape and velocity of

microbubbles in microchannels is known to be dependent on the capillary number and Reynolds

number [84]. However, the blood cells present an additional complication. Hence, it is important to

improve our understanding of the motion and deformation of microbubbles flowing in microchannels

with dimensions similar to in vivo microvessels. A microfluidic system capable of generating air

microbubbles was used to investigate the effect of a constriction microchannel on the deformation of

individual air microbubbles flowing within in vitro blood. The fabrication technique of a flow-focusing

device and the flow conditions of in vitro blood containing microbubbles are presented and discussed

in more detail elsewhere [85,86]. Briefly, the microbubbles were produced in the following way:

the dispersed phase (air) was squeezed by two counter-streaming blood flows of the carrier phase,

forcing the gas to break up and, consequently, the bubbles were generated. Two kinds of bubbles were

observed in this microfluidic device: Taylor bubbles and spherical bubbles (Figure 11). The·Taylor

bubbles were formed and have preserved their shape until they reach the smooth expansion, where they

acquired a circular shape. These Taylor bubbles flow through the microfluidic channel separated from

each other by liquid slugs and from the wall by a thin liquid film. As expected, the bubbles flowing

through the contraction region have higher velocities when compared with the spherical bubbles
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flowing within the expansion region of the device. Note that the formation of large bubbles in the

expansion region of the microchannel was also observed. These latter bubbles are formed mainly

due to the collision between them, which led to coalescence. Another point of interest is not only the

formation of a cell-free layer around the bubbles, but also the effect of bubbles on the variation of the

local hematocrit. This phenomenon is presented and discussed in more detail elsewhere [85].

Figure 11. (a) Schematic representation of the microchannel contraction region and flow direction of a

device to study gas embolisms [85]. The region of interest is indicated by a dotted rectangle; and (b)

the mean deformation index of bubble flowing through the contraction region.

Figure 11 shows the transition of the DI of a microbubble flowing through the contraction region.

Eight individual microbubbles were measured frame by frame and DI values were averaged for

10 different regions (A–J) along the microchannel. Around Region A, the slug bubble is generated.

From Region B to D, the DI values are approximately constant, and when the bubble approaches the

expansion region it starts decreasing. At Regions I and J, the bubble shapes correspond to an almost

perfect circle and tends to keep its shape through this region.

Overall, it is possible to observe certain similar features when the air bubbles and RBCs leave

the contraction and enter the expansion region. However, it is also clear that, at the contraction

region, the bubbles’ deformability shape significantly differ from the RBCs. For instance, in these

experiments the air bubbles do not deform into a parachute shape as it is possible to observe with

the RBCs. The capillary number of the experiments is 1.4 × 10−4. Bubbles in this range of capillary

numbers (Ca < 0.05) occupy almost all the available channel and do not deform [84].

An overview of the methods used to study bubble and drop deformation is presented in

Table 3. Some techniques usually applied to bubbles, such as the imposition of shear flow by

moving plates and the use of T-junction divergent flows, have also been applied to drops [87,88].

Hoang et al. [87] have used stop-flow numerical simulations to study the deformation and breakup

of droplets in a T-junction divergent flow. They have identified two breakup phases, the first was

the deformation dependent on the external flow and, the second, a surface tension-driven rapid

pinching leading to breakup. Additionally, drops have been studied in a cross-slot divergent flow

in a microfluidic device [89]. The deformation of the drop was dependent on Ca·δ2, where Ca is the

capillary number and δ is a confinement parameter equal to the ratio between the drop size and the

microchannel depth. Hyperbolic contractions have also been used to study not only the deformation

of drops in systems with different surfactants [89], but also the deformation and breakup of Pickering

droplets [86]. In this configuration the drop deformation depends on the capillary number and on the

confinement parameter.
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Table 3. Comparison of several deformability studies performed in microfluidic devices for bubbles

and droplets.

Microfluidic
Technique

Fluid
Main Flow

Phenomenon
Configuration References

parallel band/plate
apparatus

Bubbles and drops Shear flow [79,80,88]

T-junction divergence Bubbles and drops Extensional flow [82,83,87]

Fluid-induced
deformation channel

Drops
Extensional flow

(hyperbolic channel)
[90,91]

Fluid-induced
deformation channel

Drops Extensional flow [89]

4. Conclusions and Future Directions

Microfluidic devices have the advantage of being suitable to deal with single-cell deformability

while testing large numbers of cells in one single run. This high throughput ability, together with the

ability to achieve a controlled flow, make it possible to detect small changes in RBC deformability in a

more efficient and less time-consuming way when compared with other deformability measurement

techniques, such as micropipette aspiration, rheoscope, and optical tweezers. This review has shown

RBC deformability measurements at both fluid- and structure-induced deformation microfluidic

devices. Hence, visualizations and measurements of the deformation of RBCs flowing through hyperbolic,

smooth, and sudden-contraction microchannels were investigated and compared. Our comparative

results show that RBCs flowing through a hyperbolic contraction experience a strong extensional

flow with a region of homogeneous strain rate along the centerline. Hence, hyperbolic-shaped

microchannels have shown the potential to precisely control and detect small changes in RBC

deformability in pathological situations. A recent haemocompatibility study of RBCs in contact

with nanoparticles, has shown that these kinds of microfluidic devices were able to detect small

changes of RBC deformability where traditional biocompatibility tests did not show any influence [32].

In conclusion, the hyperbolic-shaped constriction microchannels could be a promising tool to perform

sensitive cell deformability measurements and, consequently, to be used as a clinical tool for early

detection and diagnosis of blood diseases. However, this technique still facing many challenges, such as

the use of low-cost micro-visualization equipment to quantitatively measure the RBC deformability

and the development of fast and reliable image analysis methods able to measure both RBC motion

and deformation in an automatic manner.

PDMS microfluidic devices have also proved to be an extremely powerful method to better

understand the effect of the flowing air microbubbles on several blood flow phenomena happening at

the micro-scale level. Our flow measurements and visualizations have shown that the microbubbles
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promote the formation of a cell-free layer around it and, as a consequence, the local haematocrit

was affected. In the near future we plan to compare the obtained experimental in vitro results with

multi-phase numerical models to better understand the effect of the air microbubbles on the blood

flow behavior in microchannels and microvessels.
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in diabetes mellitus studied with atomic force microscope. Clin. Hemorheol. Microcirc. 2006, 35, 273–276.

[PubMed]

17. Maciaszek, J.L.; Lykotrafitis, G. Sickle cell trait human erythrocytes are significantly stiffer than normal.

J. Biomech. 2011, 44, 657–661. [CrossRef] [PubMed]

18. Shin, S.; Ku, Y.-H.; Ho, J.-X.; Kim, Y.-K.; Suh, J.-S.; Singh, M. Progressive impairment of erythrocyte deformability

as indicator of microangiopathy in type 2 diabetes mellitus. Clin. Hemorheol. Microcirc. 2007, 36, 253–261.

[PubMed]

19. Pinho, D.; Campo-Deaño, L.; Lima, R.; Pinho, F.T. In vitro particulate analogue fluids for experimental studies of

rheological and hemorheological behavior of glucose-rich RBC suspensions. Biomicrofluidics 2017, 11, 054105.

[CrossRef] [PubMed]

20. Tsukada, K.; Sekizuka, E.; Oshio, C.; Minamitani, H. Direct measurement of erythrocyte deformability in

diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system.

Microvasc. Res. 2001, 61, 231–239. [CrossRef] [PubMed]

21. Shelby, J.P.; White, J.; Ganesan, K.; Rathod, P.K.; Chiu, D.T. A microfluidic model for single-cell capillary

obstruction by plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA 2003, 100, 14618–14622.

[CrossRef] [PubMed]

22. Hou, H.W.; Li, Q.; Lee, G.; Kumar, A.; Ong, C.; Lim, C.T. Deformability study of breast cancer cells using

microfluidics. Biomed. Microdevices 2009, 11, 557–564. [CrossRef] [PubMed]

23. Huang, S.; Undisz, A.; Diez-Silva, M.; Bow, H.; Dao, M.; Han, J. Dynamic deformability of plasmodium

falciparum-infected erythrocytes exposed to artesunate in vitro. Integr. Biol. 2013, 5, 414–422. [CrossRef]

[PubMed]

24. Zeng, N.F.; Mancuso, J.E.; Zivkovic, A.M.; Smilowitz, J.T.; Ristenpart, W.D. Red blood cells from individuals

with abdominal obesity or metabolic abnormalities exhibit less deformability upon entering a constriction.

PLoS ONE 2016, 11, e0156070. [CrossRef] [PubMed]

25. Zhao, R.; Antaki, J.F.; Naik, T.; Bachman, T.N.; Kameneva, M.V.; Wu, Z.J. Microscopic investigation of

erythrocyte deformation dynamics. Biorheology 2006, 43, 747–765. [PubMed]

26. Tomaiuolo, G.; Barra, M.; Preziosi, V.; Cassinese, A.; Rotoli, B.; Guido, S. Microfluidics analysis of red blood

cell membrane viscoelasticity. Lab Chip 2011, 11, 449–454. [CrossRef] [PubMed]

27. Sousa, P.C.; Pinho, F.T.; Oliveira, M.S.; Alves, M.A. Extensional flow of blood analog solutions in microfluidic

devices. Biomicrofluidics 2011, 5, 14108. [CrossRef] [PubMed]

28. Lee, S.S.; Yim, Y.; Ahn, K.H.; Lee, S.J. Extensional flow-based assessment of red blood cell deformability

using hyperbolic converging microchannel. Biomed. Microdevices 2009, 11, 1021–1027. [CrossRef] [PubMed]

29. Yaginuma, T.; Oliveira, M.S.N.; Lima, R.; Ishikawa, T.; Yamaguchi, T. Human red blood cell behavior

under homogeneous extensional flow in a hyperbolic-shaped microchannel. Biomicrofluidics 2013, 7, 054110.

[CrossRef] [PubMed]

30. Rodrigues, R.O.; Lopes, R.; Pinho, D.; Pereira, A.I.; Garcia, V.; Gassmann, S.; Sousa, P.C.; Lima, R. In vitro

blood flow and cell-free layer in hyperbolic microchannels: Visualizations and measurements. BioChip J.

2016, 10, 9–15. [CrossRef]

31. Rodrigues, R.O.; Pinho, D.; Faustino, V.; Lima, R. A simple microfluidic device for the deformability

assessment of blood cells in a continuous flow. Biomed. Microdevices 2015, 17, 108. [CrossRef] [PubMed]

32. Rodrigues, R.O.; Bañobre-López, M.; Gallo, J.; Tavares, P.B.; Silva, A.M.; Lima, R.; Gomes, H.T.

Haemocompatibility of iron oxide nanoparticles synthesized for theranostic applications: A high-sensitivity

microfluidic tool. J. Nanopart. Res. 2016, 18, 194. [CrossRef]

33. Faustino, V.; Pinho, D.; Yaginuma, T.; Calhelha, R.C.; Ferreira, I.C.F.R.; Lima, R. Extensional flow-based

microfluidic device: Deformability assessment of red blood cells in contact with tumor cells. BioChip J. 2014, 8,

42–47. [CrossRef]

34. Calejo, J.; Pinho, D.; Galindo-Rosales, F.; Lima, R.; Campo-Deaño, L. Particulate blood analogues reproducing

the erythrocytes cell-free layer in a microfluidic device containing a hyperbolic contraction. Micromachines

2016, 7, 4. [CrossRef]

http://dx.doi.org/10.1016/j.jbbm.2005.11.003
http://www.ncbi.nlm.nih.gov/pubmed/16443279
http://www.ncbi.nlm.nih.gov/pubmed/16899942
http://dx.doi.org/10.1016/j.jbiomech.2010.11.008
http://www.ncbi.nlm.nih.gov/pubmed/21111421
http://www.ncbi.nlm.nih.gov/pubmed/17361027
http://dx.doi.org/10.1063/1.4998190
http://www.ncbi.nlm.nih.gov/pubmed/28966701
http://dx.doi.org/10.1006/mvre.2001.2307
http://www.ncbi.nlm.nih.gov/pubmed/11336534
http://dx.doi.org/10.1073/pnas.2433968100
http://www.ncbi.nlm.nih.gov/pubmed/14638939
http://dx.doi.org/10.1007/s10544-008-9262-8
http://www.ncbi.nlm.nih.gov/pubmed/19082733
http://dx.doi.org/10.1039/C2IB20161E
http://www.ncbi.nlm.nih.gov/pubmed/23254624
http://dx.doi.org/10.1371/journal.pone.0156070
http://www.ncbi.nlm.nih.gov/pubmed/27258098
http://www.ncbi.nlm.nih.gov/pubmed/17148857
http://dx.doi.org/10.1039/C0LC00348D
http://www.ncbi.nlm.nih.gov/pubmed/21076756
http://dx.doi.org/10.1063/1.3567888
http://www.ncbi.nlm.nih.gov/pubmed/21483662
http://dx.doi.org/10.1007/s10544-009-9319-3
http://www.ncbi.nlm.nih.gov/pubmed/19434498
http://dx.doi.org/10.1063/1.4820414
http://www.ncbi.nlm.nih.gov/pubmed/24404073
http://dx.doi.org/10.1007/s13206-016-0102-2
http://dx.doi.org/10.1007/s10544-015-0014-2
http://www.ncbi.nlm.nih.gov/pubmed/26482154
http://dx.doi.org/10.1007/s11051-016-3498-7
http://dx.doi.org/10.1007/s13206-014-8107-1
http://dx.doi.org/10.3390/mi7010004


Micromachines 2018, 9, 151 16 of 18

35. Gossett, D.R.; Henry, T.; Lee, S.A.; Ying, Y.; Lindgren, A.G.; Yang, O.O.; Rao, J.; Clark, A.T.; Di Carlo, D.

Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA

2012, 109, 7630–7635. [CrossRef] [PubMed]

36. Henon, Y.; Sheard, G.J.; Fouras, A. Erythrocyte deformation in a microfluidic cross-slot channel. RSC Adv.

2014, 4, 36079–36088. [CrossRef]

37. Guillou, L.; Dahl, J.B.; Lin, J.-M.G.; Barakat, A.I.; Husson, J.; Muller, S.J.; Kumar, S. Measuring cell viscoelastic

properties using a microfluidic extensional flow device. Biophys. J. 2016, 111, 2039–2050. [CrossRef] [PubMed]

38. Faustino, V.; Pinho, D.; Yaginuma, T.; Calhelha, R.; Oliveira, M.; Ferreira, I.; Lima, R. Flow of red blood

cells suspensions through hyperbolic microcontractions. Visualization and simulation of complex flows in

biomedical engineering. In Visualization and Simulation of Complex Flows in Biomedical Engineering Lecture

Notes in Computational Vision and Biomechanics; Springer: Berlin, Germany, 2014; Volume 12, pp. 151–163.

39. Jeong, J.H.; Sugii, Y.; Minamiyama, M.; Okamoto, K. Measurement of rbc deformation and velocity in

capillaries in vivo. Microvasc. Res. 2006, 71, 212–217. [CrossRef] [PubMed]

40. Yaginuma, T.; Oliveira, M.; Lima, R.; Ishikawa, T.; Yamaguchi, T. Red blood cell deformation in flows through

a pdms hyperbolic microchanne. In Proceedings of the Techconnect World 2011—Microtech Conference and

Expo, Boston, MA, USA, 13–16 June 2011; p. 505.

41. Muñoz-Sánchez, B.; Silva, S.; Pinho, D.; Vega, E.; Lima, R. Generation of micro-sized pdms particles by a flow

focusing technique for biomicrofluidics applications. Biomicrofluidics 2016, 10, 014122. [CrossRef] [PubMed]

42. Pinho, D.; Rodrigues, R.O.; Faustino, V.; Yaginuma, T.; Exposto, J.; Lima, R. Red blood cells radial dispersion

in blood flowing through microchannels: The role of temperature. J. Biomech. 2016, 49, 2293–2298. [CrossRef]

[PubMed]

43. Sousa, P.C.; Pinho, F.T.; Alves, M.A.; Oliveira, M.S. A review of hemorheology: Measuring techniques and

recent advances. Korea-Aust. Rheol. J. 2016, 28, 1–22. [CrossRef]

44. Wong, K.H.; Chan, J.M.; Kamm, R.D.; Tien, J. Microfluidic models of vascular functions. Ann. Rev. Biomed.

Eng. 2012, 14, 205–230. [CrossRef] [PubMed]

45. Rodrigues, R.O.; Lima, R.; Gomes, H.T.; Silva, A.M. Polymer microfluidic devices: An overview of fabrication

methods. U. Porto J. Eng. 2015, 1, 67–79.

46. Kim, G.B.; Lee, S.J. X-ray piv measurements of blood flows without tracer particles. Exp. Fluids 2006, 41,

195–200. [CrossRef]

47. Lima, R.; Wada, S.; Tsubota, K.-i.; Yamaguchi, T. Confocal micro-piv measurements of three-dimensional

profiles of cell suspension flow in a square microchannel. Measur. Sci. Technol. 2006, 17, 797–808. [CrossRef]

48. Vennemann, P.; Kiger, K.T.; Lindken, R.; Groenendijk, B.C.; Stekelenburg-de Vos, S.; ten Hagen, T.L.;

Ursem, N.T.; Poelmann, R.E.; Westerweel, J.; Hierck, B.P. In vivo micro particle image velocimetry

measurements of blood-plasma in the embryonic avian heart. J. Biomech. 2006, 39, 1191–1200. [CrossRef]

[PubMed]

49. Lima, R.; Wada, S.; Tanaka, S.; Takeda, M.; Ishikawa, T.; Tsubota, K.; Imai, Y.; Yamaguchi, T. In vitro blood

flow in a rectangular pdms microchannel: Experimental observations using a confocal micro-PIV system.

Biomed. Microdevices 2008, 10, 153–167. [CrossRef] [PubMed]

50. Lima, R.; Ishikawa, T.; Imai, Y.; Takeda, M.; Wada, S.; Yamaguchi, T. Measurement of individual red blood cell

motions under high hematocrit conditions using a confocal micro-PTV system. Ann. Biomed. Eng. 2009, 37,

1546–1559. [CrossRef] [PubMed]

51. Williams, S.J.; Park, C.; Wereley, S.T. Advances and applications on microfluidic velocimetry techniques.

Microfluid. Nanofluid. 2010, 8, 709–726. [CrossRef]

52. Kikuchi, K.; Mochizuki, O. Micro-piv (micro particle image velocimetry) visualization of red blood cells

(rbcs) sucked by a female mosquito. Measur. Sci. Technol. 2011, 22, 064002. [CrossRef]

53. Garcia, V.; Dias, R.; Lima, R. In vitro blood flow behaviour in microchannels with simple and complex

geometries. In Applied Biological Engineering-Principles and Practice; InTech: London, UK, 2012.

54. Lima, R.; Ishikawa, T.; Imai, Y.; Yamaguchi, T. Blood flow behavior in microchannels: Past, current and

future trends. Single Two-Phase Flows Chem. Biomed. Eng. 2012, 513–547.

55. Pitts, K.; Mehri, R.; Mavriplis, C.; Fenech, M. Micro-particle image velocimetry measurement of blood flow:

Validation and analysis of data pre-processing and processing methods. Measur. Sci. Technol. 2012, 23, 105302.

[CrossRef]

http://dx.doi.org/10.1073/pnas.1200107109
http://www.ncbi.nlm.nih.gov/pubmed/22547795
http://dx.doi.org/10.1039/C4RA04229H
http://dx.doi.org/10.1016/j.bpj.2016.09.034
http://www.ncbi.nlm.nih.gov/pubmed/27806284
http://dx.doi.org/10.1016/j.mvr.2006.02.006
http://www.ncbi.nlm.nih.gov/pubmed/16624342
http://dx.doi.org/10.1063/1.4943007
http://www.ncbi.nlm.nih.gov/pubmed/27042245
http://dx.doi.org/10.1016/j.jbiomech.2015.11.037
http://www.ncbi.nlm.nih.gov/pubmed/26671221
http://dx.doi.org/10.1007/s13367-016-0001-z
http://dx.doi.org/10.1146/annurev-bioeng-071811-150052
http://www.ncbi.nlm.nih.gov/pubmed/22540941
http://dx.doi.org/10.1007/s00348-006-0147-4
http://dx.doi.org/10.1088/0957-0233/17/4/026
http://dx.doi.org/10.1016/j.jbiomech.2005.03.015
http://www.ncbi.nlm.nih.gov/pubmed/15896796
http://dx.doi.org/10.1007/s10544-007-9121-z
http://www.ncbi.nlm.nih.gov/pubmed/17885805
http://dx.doi.org/10.1007/s10439-009-9732-z
http://www.ncbi.nlm.nih.gov/pubmed/19521772
http://dx.doi.org/10.1007/s10404-010-0588-1
http://dx.doi.org/10.1088/0957-0233/22/6/064002
http://dx.doi.org/10.1088/0957-0233/23/10/105302


Micromachines 2018, 9, 151 17 of 18

56. Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research.

Nature 2014, 507, 181. [CrossRef] [PubMed]

57. Stauber, H.; Waisman, D.; Korin, N.; Sznitman, J. Red blood cell dynamics in biomimetic microfluidic

networks of pulmonary alveolar capillaries. Biomicrofluidics 2017, 11, 014103. [CrossRef] [PubMed]

58. Kim, S.; Kong, R.L.; Popel, A.S.; Intaglietta, M.; Johnson, P.C. A computer-based method for determination

of the cell-free layer width in microcirculation. Microcirculation 2006, 13, 199–207. [CrossRef] [PubMed]

59. Pinho, D.; Lima, R.; Pereira, A.I.; Gayubo, F. Automatic tracking of labeled red blood cells in microchannels.

Int. J. Numer. Methods Biomed. Eng. 2013, 29, 977–987. [CrossRef] [PubMed]

60. Chenouard, N.; Smal, I.; De Chaumont, F.; Maška, M.; Sbalzarini, I.F.; Gong, Y.; Cardinale, J.; Carthel, C.;

Coraluppi, S.; Winter, M. Objective comparison of particle tracking methods. Nat. Methods 2014, 11, 281.

[CrossRef] [PubMed]

61. Taboada, B.; Monteiro, F.; Lima, R. Automatic tracking and deformation measurements of red blood cells

flowing through a microchannel with a microstenosis: The keyhole model. Comput. Methods Biomech. Biomed.

Eng. Imaging Vis. 2016, 4, 229–237. [CrossRef]

62. Bento, D.; Pereira, A.; Lima, J.; Miranda, J.; Lima, R. Cell-free layer measurements of in vitro blood flow in a

microfluidic network: An automatic and manual approach. Comput. Methods Biomech. Biomed. Eng. Imaging Vis.

2017, 1–9. [CrossRef]

63. Mehri, R.; Niazi, E.; Mavriplis, C.; Fenech, M. An automated method for dynamic red blood cell aggregate

detection in microfluidic flow. Physiol. Meas. 2018, 39, 01NT02. [CrossRef] [PubMed]

64. Forsyth, A.M.; Wan, J.; Owrutsky, P.D.; Abkarian, M.; Stone, H.A. Multiscale approach to link red blood cell

dynamics, shear viscosity, and atp release. Proc. Natl. Acad. Sci. USA 2011, 108, 10986–10991. [CrossRef]

[PubMed]

65. Pinho, D.; Yaginuma, T.; Lima, R. A microfluidic device for partial cell separation and deformability

assessment. BioChip J. 2013, 7, 367–374. [CrossRef]

66. Rosenbluth, M.J.; Lam, W.A.; Fletcher, D.A. Analyzing cell mechanics in hematologic diseases with

microfluidic biophysical flow cytometry. Lab Chip 2008, 8, 1062–1070. [CrossRef] [PubMed]

67. Forsyth, A.M.; Wan, J.; Ristenpart, W.D.; Stone, H.A. The dynamic behavior of chemically “stiffened” red

blood cells in microchannel flows. Microvasc. Res. 2010, 80, 37–43. [CrossRef] [PubMed]

68. Fujiwara, H.; Ishikawa, T.; Lima, R.; Matsuki, N.; Imai, Y.; Kaji, H.; Nishizawa, M.; Yamaguchi, T. Red blood

cell motions in high-hematocrit blood flowing through a stenosed microchannel. J. Biomech. 2009, 42, 838–843.

[CrossRef] [PubMed]

69. Zeng, N.F.; Ristenpart, W.D. Mechanical response of red blood cells entering a constriction. Biomicrofluidics

2014, 8, 064123. [CrossRef] [PubMed]

70. Pinho, D.; Rodrigues, R.O.; Yaginuma, T.; Faustino, V.; Bento, D.; Fernandes, C.S.; Garcia, V.; Pereira, A.I.;

Lima, R. Motion of rigid particles flowing in a microfluidic device with a pronounced stenosis: Trajectories

and deformation index. In Proceedings of the 11th World Congress on Computational Mechanics, 5th European

Conference on Computational Mechanics and 6th European Conference on Computational Fluid Dynamics,

Barcelona, Spain, 20–25 July 2014; pp. 6234–6240.

71. Yamaguchi, T.; Ishikawa, T.; Tsubota, K.; Imai, Y.; Nakamura, M.; Fukui, T. Computational blood flow

analysis—New trends and methods. J. Biomech. Sci. Eng. 2006, 1, 29–50. [CrossRef]

72. Lima, R.; Fernandes, C.S.; Dias, R.; Ishikawa, T.; Imai, Y.; Yamaguchi, T. Microscale flow dynamics of red

blood cells in microchannels: An experimental and numerical analysis. In Computational Vision and Medical

Image Processing; Springer: Dordrecht, The Netherlands, 2009; pp. 203–220.

73. Nakamura, M.; Bessho, S.; Wada, S. Spring-network-based model of a red blood cell for simulating

mesoscopic blood flow. Int. J. Numer. Methods Biomed. Eng. 2013, 29, 114–128. [CrossRef] [PubMed]

74. Bento, D.; Lima, R.; M Miranda, J. Computation of a three-dimensional flow in a square microchannel:

A comparison between a particle method and a finite volume method. Micro Nanosyst. 2015, 7, 142–147.

[CrossRef]

75. Omori, T.; Imai, Y.; Kikuchi, K.; Ishikawa, T.; Yamaguchi, T. Hemodynamics in the microcirculation and in

microfluidics. Ann. Biomed. Eng. 2015, 43, 238–257. [CrossRef] [PubMed]

76. Gambaruto, A.M. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross

section. J. Biomech. 2016, 49, 2229–2240. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature13118
http://www.ncbi.nlm.nih.gov/pubmed/24622198
http://dx.doi.org/10.1063/1.4973930
http://www.ncbi.nlm.nih.gov/pubmed/28090238
http://dx.doi.org/10.1080/10739680600556878
http://www.ncbi.nlm.nih.gov/pubmed/16627362
http://dx.doi.org/10.1002/cnm.2526
http://www.ncbi.nlm.nih.gov/pubmed/23345054
http://dx.doi.org/10.1038/nmeth.2808
http://www.ncbi.nlm.nih.gov/pubmed/24441936
http://dx.doi.org/10.1080/21681163.2014.957868
http://dx.doi.org/10.1080/21681163.2017.1329029
http://dx.doi.org/10.1088/1361-6579/aaa0ad
http://www.ncbi.nlm.nih.gov/pubmed/29227278
http://dx.doi.org/10.1073/pnas.1101315108
http://www.ncbi.nlm.nih.gov/pubmed/21690355
http://dx.doi.org/10.1007/s13206-013-7408-0
http://dx.doi.org/10.1039/b802931h
http://www.ncbi.nlm.nih.gov/pubmed/18584080
http://dx.doi.org/10.1016/j.mvr.2010.03.008
http://www.ncbi.nlm.nih.gov/pubmed/20303993
http://dx.doi.org/10.1016/j.jbiomech.2009.01.026
http://www.ncbi.nlm.nih.gov/pubmed/19268948
http://dx.doi.org/10.1063/1.4904058
http://www.ncbi.nlm.nih.gov/pubmed/25553197
http://dx.doi.org/10.1299/jbse.1.29
http://dx.doi.org/10.1002/cnm.2501
http://www.ncbi.nlm.nih.gov/pubmed/23293072
http://dx.doi.org/10.2174/1876402908666160106000131
http://dx.doi.org/10.1007/s10439-014-1180-8
http://www.ncbi.nlm.nih.gov/pubmed/25398331
http://dx.doi.org/10.1016/j.jbiomech.2015.11.023
http://www.ncbi.nlm.nih.gov/pubmed/26822224


Micromachines 2018, 9, 151 18 of 18

77. Imai, Y.; Omori, T.; Shimogonya, Y.; Yamaguchi, T.; Ishikawa, T. Numerical methods for simulating blood

flow at macro, micro, and multi scales. J. Biomech. 2016, 49, 2221–2228. [CrossRef] [PubMed]

78. Ye, T.; Phan-Thien, N.; Lim, C.T. Particle-based simulations of red blood cells—A review. J. Biomech. 2016, 49,

2255–2266. [CrossRef] [PubMed]

79. Müller-Fischer, N.; Tobler, P.; Dressler, M.; Fischer, P.; Windhab, E.J. Single bubble deformation and breakup

in simple shear flow. Exp. Fluids 2008, 45, 917–926. [CrossRef]

80. Anderl, D.; Bauer, M.; Rauh, C.; Rüde, U.; Delgado, A. Numerical simulation of bubbles in shear flow. PAMM

2014, 14, 667–668. [CrossRef]

81. Wei, Y.k.; Qian, Y.; Xu, H. Lattice boltzmann simulations of single bubble deformation and breakup in a

shear flow. J. Comput. Multiph. Flows 2012, 4, 111–117. [CrossRef]

82. Fu, T.; Ma, Y.; Funfschilling, D.; Li, H.Z. Dynamics of bubble breakup in a microfluidic T-junction divergence.

Chem. Eng. Sci. 2011, 66, 4184–4195. [CrossRef]

83. Liu, X.; Zhang, C.; Yu, W.; Deng, Z.; Chen, Y. Bubble breakup in a microfluidic T-junction. Sci. Bull. 2016, 61,

811–824. [CrossRef]

84. Rocha, L.A.M.; Miranda, J.M.; Campos, J.B.L.M. Wide range simulation study of taylor bubbles in circular

milli and microchannels. Micromachines 2017, 8, 154. [CrossRef]

85. Bento, D.; Sousa, L.; Yaginuma, T.; Garcia, V.; Lima, R.; Miranda, J.M. Microbubble moving in blood flow

in microchannels: Effect on the cell-free layer and cell local concentration. Biomed. Microdevices 2017, 19, 6.

[CrossRef] [PubMed]

86. Pinto, E.; Faustino, V.; Rodrigues, R.; Pinho, D.; Garcia, V.; Miranda, J.; Lima, R. A rapid and low-cost

nonlithographic method to fabricate biomedical microdevices for blood flow analysis. Micromachines 2014, 6,

121–135. [CrossRef]

87. Hoang, D.; Portela, L.; Kleijn, C.; Kreutzer, M.; Van Steijn, V. Dynamics of droplet breakup in a T-junction.

J. Fluid Mech. 2013, 717. [CrossRef]

88. Sibillo, V.; Pasquariello, G.; Simeone, M.; Cristini, V.; Guido, S. Drop deformation in microconfined shear

flow. Phys. Rev. Lett. 2006, 97, 054502. [CrossRef] [PubMed]

89. Ulloa, C.; Ahumada, A.; Cordero, M.L. Effect of confinement on the deformation of microfluidic drops.

Phys. Rev. E 2014, 89, 033004. [CrossRef] [PubMed]

90. Mulligan, M.K.; Rothstein, J.P. Deformation and breakup of micro-and nanoparticle stabilized droplets in

microfluidic extensional flows. Langmuir 2011, 27, 9760–9768. [CrossRef] [PubMed]

91. Mulligan, M.K.; Rothstein, J.P. The effect of confinement-induced shear on drop deformation and breakup in

microfluidic extensional flows. Phys. Fluids 2011, 23, 022004. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jbiomech.2015.11.047
http://www.ncbi.nlm.nih.gov/pubmed/26705108
http://dx.doi.org/10.1016/j.jbiomech.2015.11.050
http://www.ncbi.nlm.nih.gov/pubmed/26706718
http://dx.doi.org/10.1007/s00348-008-0509-1
http://dx.doi.org/10.1002/pamm.201410317
http://dx.doi.org/10.1260/1757-482X.4.1.111
http://dx.doi.org/10.1016/j.ces.2011.06.003
http://dx.doi.org/10.1007/s11434-016-1067-1
http://dx.doi.org/10.3390/mi8050154
http://dx.doi.org/10.1007/s10544-016-0138-z
http://www.ncbi.nlm.nih.gov/pubmed/28092011
http://dx.doi.org/10.3390/mi6010121
http://dx.doi.org/10.1017/jfm.2013.18
http://dx.doi.org/10.1103/PhysRevLett.97.054502
http://www.ncbi.nlm.nih.gov/pubmed/17026105
http://dx.doi.org/10.1103/PhysRevE.89.033004
http://www.ncbi.nlm.nih.gov/pubmed/24730934
http://dx.doi.org/10.1021/la201523r
http://www.ncbi.nlm.nih.gov/pubmed/21732665
http://dx.doi.org/10.1063/1.3548856
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Deformation of RBCs in Microfluidic Devices 
	Deformation of RBCs in Hyperbolic Contractions 
	Deformability in Smooth and Sudden Contractions 
	Deformability in Rectangular PDMS Microcapillaries and Micropillars 
	Comparison of Cells’ Deformability Studies 

	Deformation of Bubbles and Droplets 
	Conclusions and Future Directions 
	References

