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Abstract: We investigate the structure of certain protected operator algebras that arise
in three-dimensional N = 4 superconformal field theories. We find that these algebras
can be understood as a quantization of (either of) the half-BPS chiral ring(s). An im-
portant feature of this quantization is that it has a preferred basis in which the structure
constants of the quantum algebra are equal to the OPE coefficients of the underlying su-
perconformal theory. We identify several nontrivial conditions that the quantum algebra
must satisfy in this basis. We consider examples of theories for which the moduli space
of vacua is either the minimal nilpotent orbit of a simple Lie algebra or a Kleinian singu-
larity. For minimal nilpotent orbits, the quantum algebras (and their preferred bases) can
be uniquely determined. These algebras are related to higher spin algebras. For Kleinian
singularities the algebras can be characterized abstractly—they are spherical subalge-
bras of symplectic reflection algebras—but the preferred basis is not easily determined.
We find evidence in these examples that for a given choice of quantum algebra (defined
up to a certain gauge equivalence), there is at most one choice of canonical basis. We
conjecture that this is the case for general N = 4 SCFTs.
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1. Introduction

An important feature of conformal field theories — and one that has received increased
attention in recent years — is that they admit a nonperturbative algebraic formulation
in terms of the operator product expansion (OPE) of local operators. This formulation
makes no explicit reference to elementary fields or path integrals. Instead, the basic data
is taken to be the collection of local operators — organized into representations of the
conformal algebra and any additional symmetry algebras — and the OPE coefficients that
serve as structure constants for the operator algebra. This information is often referred
to as the CFT data of the theory, and any correlation function of finitely many local
operators is determined algorithmically in terms of it.

The CFT data is strongly constrained by the requirement that the OPE be associa-
tive. This associativity condition is normally presented as the requirement that crossing
symmetry hold for four-point functions. The project of extracting useful results from
crossing symmetry is known as the conformal bootstrap (see, e.g., [1] and references
therein). The difficulty of the conformal bootstrap approach stems from the very compli-
cated form of the constraints of crossing symmetry. Indeed, outside of rational theories
in two dimensions, the list of local operators always involves an infinite number of rep-
resentations of the symmetry algebra, and the crossing symmetry equations amount to
an infinite number of coupled functional equations depending on an infinite amount of
the CFT data. Starting with [2], spectacular progress has been made extracting bounds,
and sometimes precise estimates, for certain operator dimensions and OPE coefficients
using numerical methods (see, e.g., the paradigmatic application of these methods to
the critical Ising model in three dimensions [3–5]). Furthermore, the crossing equations
become more tractable in the Lorentzian lightcone limit, making it possible to extract
interesting asymptotic results for operators with large spin [6–9]. Nevertheless, it re-
mains the case that the OPE algebra as a whole is too difficult to treat analytically in any
holistic fashion.

In supersymmetric theories, there is a well-established mechanism to extract a more
tractable algebraic structure from the full OPE algebra dating back to [10]. The trick is
to identify a nilpotent supersymmetry transformation and treat it as a differential act-
ing on the space of local operators, and then pass to cohomology with respect to that
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differential. The OPE algebra descends to an algebra defined for cohomology classes
of local operators, with certain OPE coefficients of the full theory appearing as struc-
ture constants of this cohomological algebra. Generally the cohomological algebra is a
simpler object than the full OPE algebra. The observables that survive the passage are
independent of various arguments — e.g., coupling constants or operator positions —
and this is usually enough to render the OPE algebra much more tractable.

The simplest version of this procedure takes place when the supercharge in question
is the scalar supercharge in a topologically twisted theory. In such a case, the coho-
mology class of a local operator is completely independent of its position in spacetime.
The resulting operator algebra is a kind of d-dimensional topological algebra, which is
more or less a commutative associative algebra.1 While these topological algebras are
interesting for many purposes — especially since they can be defined in non-conformal
theories as well — they don’t participate in a powerful truncation of the bootstrap prob-
lem, in the sense that imposing associativity doesn’t lead to strong constraints on the
CFT data of the theory.

By considering more general nilpotent supersymmetries, it is possible to isolate more
intricate algebraic structures for which the reduced bootstrap problem is still very in-
teresting. A prime example of this phenomenon was presented in [11], where it was
shown that in four-dimensional N � 2 SCFTs there is a cohomological truncation that
has the structure of a two-dimensional chiral algebra (a similar truncation appears in
six-dimensional theories with (2, 0) superconformal symmetry [12]). Aside from being
a surprising connection between two- and four- (or six-)dimensional physics, the appear-
ance of chiral algebras in the context of higher dimensional SCFTs is exciting because
chiral algebras are strongly and tractably constrained by associativity. This means that a
wealth of CFT data can potentially be recovered from limited input by solving the chiral
algebra bootstrap problem for the theory in question, see for example [13,14]. Indeed,
this “mini-bootstrap” problem associated to chiral algebras provides an essential starting
point for the more laborious numerical bootstrap analysis of four- and six-dimensional
theories with extended supersymmetry [15,16].

In this paper we study an analogous algebraic structure that arises in three-dimensional
theories with N � 4 superconformal symmetry. It was observed already in [11] that with
this much supersymmetry one can identify a cohomological reduction of the OPE alge-
bra that takes the form of a one-dimensional topological algebra. Here a one-dimensional
topological algebra means a not-necessarily-commutative, associative algebra that ad-
ditionally has an evaluation map (i.e., one can take expectation values by evaluating
the corresponding correlation functions in the full SCFT). In this paper, we will refer
to this algebra as the protected associative algebra of an N = 4 SCFT. This structure
was developed and exploited successfully in [17] to determine a large number of OPE
coefficients in several N = 8 superconformal field theories and to derive a number
of relations amongst OPE coefficients that must hold in any N = 8 theory.2 These
analytic results were then used to improve the numerical analysis of [19]. Our aim is
to understand the general properties of these associative algebras and to investigate the
corresponding bootstrap problem.

Our first observation is that the operators that participate in the protected associative
algebra are in one-to-one correspondence with the highest weight states of half-BPS

1 In fact, there is more structure in this truncation than just a commutative associative algebra. Topological
descent allows one to define additional operations on local operators. For the case of topologically twisting,
this leads to what mathematicians call an Ed algebra. We thank David Ben-Zvi for discussions on this point.

2 See also [18] for a discussion in N = 6 theories.
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representations of the superconformal algebra. These are the Higgs or Coulomb branch
chiral ring operators; there is a separate truncation for each. The multiplication of these
operators in the associative algebra is no longer simply chiral ring multiplication, but
rather is a noncommutative deformation thereof. A key observation is that the leading
order deformation is determined by the Poisson bracket of the appropriate chiral ring,
so we are dealing with deformation quantization of the chiral ring. It is worth noting
that quantizations of the chiral ring of supersymmetric gauge theories have appeared in
a variety of contexts in recent years [20–23]. The connection between supersymmetric
field theory and quantization goes back further still [24–26]. A connection between
these two sets of references is provided by [27]. While it is interesting to ask whether the
present work can be tied into this extant circle of ideas, the appearance of the algebraic
structure of interest in those references has a somewhat different flavor to ours. We
briefly comment on this in the conclusions.

Deformation quantization of hyperkähler cones has been a subject of considerable
study by mathematicians, particularly in the context of geometric representation theory
[28,29].3 At first blush, this appears to be a major boon, since there is a classification
theorem for these algebras that suggests a finite-dimensional space of solutions to our
bootstrap problem. However, we will see that this classification provides only the starting
point for us, because the algebras classified in the theorem are defined up to an infinite-
dimensional group of equivalence relations — referred to as gauge equivalence — that
do not define equivalences in the physical context. Thus, while a first approximation
of our problem suggests a finite-dimensional classification of its solutions, the next
approximation involves an infinite-dimensional space of solutions!

A more careful consideration of the problem reveals that the situation is somewhere
in between. Certain selection rules and unitarity conditions in the parent SCFT imply
a number of properties for structure constants of the protected associative algebra that
are not traditionally imposed in the mathematics literature and that are not preserved by
gauge transformations. This suggests that these extra conditions may play the role of
gauge fixing conditions. It is not clear whether these gauge fixing conditions should be
perfect, or if they should even be feasible for any given point in the space of algebras-
modulo-gauge-equivalence.

We develop our intuition in a few examples. Because the deformation quantization
problem is naturally formulated using the data of the Higgs or Coulomb branch of the
SCFT in question, our examples are organized according to a choice of hyperkähler
cone. The first class of examples are theories that have the minimal nilpotent orbit of a
complex, simple Lie algebra g as a branch of their moduli space. The quantum algebra
for these theories has the special property that the g-symmetry is already enough to
completely fix the gauge redundancy, meaning that for these cases the classification
theorem can be applied directly to the bootstrap problem. When g = sl2, this means that
the bootstrap problem has at most a one-dimensional space of solutions, while for g �= sl2
the bootstrap problem has (at most) a unique solution. Interestingly, these algebras have
already made an appearance in the physics literature; they are (generalized) higher spin
algebras.

3 In the literature, the problem is usually described as deformation quantization of symplectic singularities,
and the essential features of the problem can be understood in a single complex structure. As we will see,
superconformal operator algebra suggests that taking the full hyperkähler structure of these singularities more
seriously may be worthwhile.
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A more difficult class of examples to analyze are the A-type Kleinian singularities
C2/Zn�3.4 In these cases it is easy to characterize the quantum algebra up to gauge
equivalence, but the space of gauge transformations is genuinely infinite dimensional so
the power of our gauge fixing conditions comes into question. We have not been able
to solve the complete set of gauge fixing conditions exactly, but we can systematically
solve them for operators of increasing dimension up to some cutoff. Our results sug-
gest that imposing selection rules without unitarity is enough to cut down the infinite
dimensional equivalence classes to an affine finite dimensional space. What’s more, we
find convincing evidence in the examples we analyze that the additional requirements
of unitarity are sufficient to completely fix the gauge freedom for allowed algebras (and
also rule out other algebras). This leads us to make the following ambitious conjecture:

Conjecture 1. The superconformal selection rules and unitarity conditions given in Sect.

3 of this paper, when solvable, are perfect gauge fixing conditions for the deformation

quantization of hyperkähler cones.

From a mathematical point of view, this would be a surprising result and should provide
significant motivation to investigate the canonical bases that satisfy these conditions.
From the physics point of view, this would provide a succinct characterization of the data
necessary to completely determine the protected associative algebra via the bootstrap.

The organization of the rest of the paper is as follows. In Sect. 2, we recall the details
of the osp(4|4, R) superconformal algebra and describe the cohomological reduction
that leads to the protected associative algebra. We emphasize the precise relationship
between the structure constants of the associative algebra and the OPE coefficients of the
full SCFT. In Sect. 3, we describe the properties that the associative algebra must possess.
These conditions make it clear that the associative algebra will be a special instance of
deformation quantization of the (Higgs or Coulomb branch) chiral ring. In Sect. 4, we
review the basic structure of deformation quantization as an algebra problem as well as
describing simplifications and mathematical results relevant to the case of coordinate
algebras of hyperkähler cones. We further point out how the bootstrap problem for the
protected associative algebra relates to and expands upon the more standard mathematical
problem. In Sect. 5, we consider our first class of examples: theories that have minimal
nilpotent orbits as branches of their moduli spaces of vacua. We find an intriguing
connection between these algebras and higher spin algebras. In Sect. 6, we consider
the examples of A-type Kleinian singularities. Our results lead us to Conjecture 1. We
conclude by pointing out a number of open questions and interesting directions in which
to extend the present work. In two appendices we provide background about the algebraic
geometry of hyperkähler cones and details of the calculations of moment map two-point
functions using supersymmetric localization.

2. Superconformal Algebra and Cohomology

The cohomological truncation of [11,17] follows from the structure of the three-
dimensional N = 4 superconformal algebra. Here we recall the structure of this su-
perconformal algebra and how it gives rise to the truncation of interest. Most of the
content of the first two subsections was already presented in [17], and greater detail
about the superconformal algebra can be found in [30]. We include the full discussion
for completeness and to establish notation.

4 The case C2/Z2 is special because it has enhanced symmetry. In fact, it is the same as the minimal
nilpotent orbit of sl2, and so it falls into the previous category.
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2.1. The superconformal algebra and its half BPS representations. The superconformal
algebra in question is osp(4|4, R). This is a lie superalgebra whose even part is given by

so(4)R × sp(4, R) ∼= (su(2)H ⊕ su(2)C ) × so(3, 2). (2.1)

The first factor is the R-symmetry and the second is the three-dimensional conformal
algebra in Lorentzian signature. The subscripts C and H indicate that the corresponding
R-symmetries act as isometries of the Coulomb and Higgs branches of the moduli space
of vacua, respectively.5 While Lagrangian constructions treat the Coulomb and Higgs
branches differently, our focus is purely on superconformal fixed points and as such
there is no meaningful difference between these two factors.

The odd part of this superalgebra is spanned by Poincaré supercharges {Qaã
α } and

special conformal supercharges {Sα
aã

}. These all transform in the (2, 2, 2) of su(2)H ×
su(2)C × so(2, 1)L . When quantizing on the two-sphere, hermitian conjugation is de-

fined for the supercharges according to
(
Qaã

α

)† = Sα
aã

.6 Anticommutators of these odd
generators take the form7

{Qaã
α , Qbb̃

β } = 2ǫabǫãb̃ Pαβ ,

{Sα
aã, S

β

bb̃
} = 2ǫabǫãb̃

K αβ ,

{Qaã
α , S

β

bb̃
} = 2δa

bδã

b̃

(
M β

α + δβ
α D
)
− 2δβ

α (Ra
bδ

ã

b̃
+ δa

b R̃ã

b̃
),

(2.2)

where the generators of so(2, 1) ∼= sl(2, R), su(2)H , and su(2)C are respectively defined
as

M β
α =

(
J3 J+
J− −J3

)
, Ra

b =
(

R R+
R− −R

)
, R̃ã

b̃
=
(

R̃ R̃+

R̃− −R̃

)
. (2.3)

Unitary highest weight representations of osp(4|4, R) have been classified in [30].
Of particular interest to us are the half-BPS multiplets, denoted there as (2, B,±). The
shortening conditions for these multiplets are such that their superconformal primaries
are annihilated by four supercharges and obey certain restrictions on their quantum
numbers:

(2, B, +) : Q1ã
α |ψscp〉 = 0, � = r, r̃ = 0,

(2, B,−) : Qa1̃
α |ψscp〉 = 0, � = r̃ , r = 0,

(2.4)

where �, r , and r̃ are the respective eigenvalues of D, R, and R̃. The superconformal
primaries in these multiplets are Higgs or Coulomb branch chiral ring operators, i.e., their
expectation values parameterize the Higgs and Coulomb branches of vacua, respectively.
For ease of discussion, we will refer to (2, B, +) multiplets as Higgs branch multiplets

and (2, B,−) multiplets as Coulomb branch multiplets in the remainder of the paper.
We will refer to the full su(2)H/C representations of the superconformal primaries in

5 Recall that in three-dimensional N = 4 superconformal field theories, both Coulomb and Higgs branches
are hyperkähler cones and admit su(2)C and su(2)H isometries, respectively, that rotate their complex struc-
tures as a triplet. See Appendix A for additional details.

6 Note that relative to [17] our supercharges are rescaled by a factor of
√

2, and for S also a factor of i :
Qthere =

√
2Qhere and Sthere = i

√
2Shere.

7 Here we are adopting gamma-matrix conventions of [30]. In particular Pαβ =
(

P0+P2 P1
P1 P0−P2

)
, K αβ =

(−K0+K2 K1
K1 −K0−K2

)
and M

β
α = i

(
M02 M01−M12

M01+M12 −M02

)
.
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these multiplets as Higgs branch operators and Coulomb branch operators, respectively.
Finally, we will refer to the highest weight states in those representations (for a given
choice of Cartan decomposition) as Higgs branch chiral ring operators and Coulomb

branch chiral ring operators, respectively.
The structure of conformal primaries in a Higgs branch multiplet with r > 1 is dis-

played in (2.5), with operators labelled according to their quantum numbers (�; j3; r, r̃).
For r = 1 the multiplet is smaller and is illustrated in (2.6). This multiplet contains a con-
served current as a level-two superconformal descendant. If an N = 4 SCFT possesses
additional global symmetries that act upon the Higgs branch, then the corresponding
conserved currents will lie in these multiplets. For r = 1

2 the multiplet is smaller still as
illustrated in (2.7). This multiplet contains a free complex scalar and complex fermion,
which are the elementary fields that constitute a free half-hypermultiplet.

The Coulomb branch multiplets take an analogous form upon exchanging su(2)H

and su(2)C . For r̃ = 1/2 one finds a free twisted half-hypermultiplet and for r̃ = 1 one
finds a conserved current multiplet that acts on the Coulomb branch. More generally in
a Lagrangian theory the Coulomb branch operators will come from dressed monopole
operators in the UV. From the point of view of the conformal fixed point, the Coulomb
branch is on exactly equal footing with the Higgs branch, so without loss of generality we
will adopt the language of the Higgs branch henceforth. The corresponding constructions
for the Coulomb branch can be obtained by appropriate linguistic substitutions.

(r; 0; r, 0)

(r + 1
2 ; 1

2 ; r − 1
2 , 1

2 )

(r + 1; 1; r − 1, 0) (r + 1; 0; r − 1, 1)

(r + 3
2 ; 1

2 ; r − 3
2 , 1

2 )

(r + 2; 0; r − 2, 0)

(2.5)

(1; 0; 1, 0)

( 3
2 ; 1

2 ; 1
2 , 1

2 )

(2; 1; 0, 0)cons. (2; 0; 0, 1)

(2.6)

( 1
2 ; 0; 1

2 , 0)free

(1; 1
2 ; 0, 1

2 )free

(2.7)
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2.2. Protected associative algebra in cohomology. We are interested in the cohomolog-
ical truncation of the operator algebra described in [11,17]. This truncation works by
restricting operators to lie on a straight line in spacetime and treating them at the level
of cohomology with respect to a particular nilpotent supercharge. To this end, consider
a line Rtop ⊂ R2,1, which we will take to be the line x0 = x2 = 0. This line is mapped
to itself by either of the following subalgebras of osp(4|4, R):

psu(1, 1|2)H ⊕ u(1)C ⊕ so(1, 1) , or psu(1, 1|2)C ⊕ u(1)H ⊕ so(1, 1), (2.8)

where su(1, 1) ∼= so(1, 2) is the one-dimensional conformal algebra acting on the chosen
line, and so(1, 1) is generated by the rotation (boost) generator in the plane orthogonal
to Rtop. The algebra psu(1, 1|2)H is actually centrally extended by the (anti-)diagonal
combination of u(1)C ⊕ so(1, 1), and similarly for psu(1, 1|2)C . The existence of a
geometrically acting su(1, 1|2) subalgebra allows one to define the aforementioned
cohomology. For concreteness, we choose to work with the first preserved subalgebra
in (2.8).

For our choice of line, the bosonic generators of this subalgebra are L−1 ≡ P+−,
L0 ≡ D, L+1 ≡ K +−, and Ra

b, and as supercharges of su(1, 1|2)H we take

Qa ≡ Qa1̃
+

Q̃a ≡ Qa2̃
−

Sb ≡ S+
b1̃

,

S̃b ≡ S−
b2̃

.

(2.9)

The algebra is centrally extended byZ = 2(R̃−J3); the non-vanishing anti-commutation
relations among the supercharges are given by

{Qa, Q̃b} = 2ǫab P+−,

{Sa, S̃b} = 2ǫab K +−,

{Qa,Sb} = 2δa
b

(
J3 + D − R̃

)
− 2Ra

b,

{Q̃a, S̃b} = 2δa
b

(
−J3 + D + R̃

)
− 2Ra

b.

(2.10)

We next need to choose the nilpotent supercharge(s) that will define our cohomology.
In a slight departure from the presentation in [11,17], we take these supercharges to
depend on an arbitrary nonzero complex number ζ ∈ C⋆:

Q 1 ≡ Q1 − ζ S̃1, Q 2 ≡ S1 + 1
ζ
Q̃1. (2.11)

Note that ζ can be set to any value by the action of an inner automorphism of the
superconformal algebra, so we can set it to our favorite constant value without loss of
generality. Nevertheless, we will see below that for book keeping purposes it is useful
to keep ζ undetermined.

These supercharges have the property that a particular diagonal combination of
su(1, 1) and su(2)H is Q i -exact:
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{Q 1 , 1
2 Q̃2} = {Q 2 , − ζ

2 Q2} = P+− + ζ R− ≡ L̂−1,

{Q 1 , 1
2ζ

S2} = {Q 2 , 1
2 S̃2} = K +− − ζ−1 R+ ≡ L̂+1,

1
4 {Q 1 , S1 − ζ−1Q̃1} = 1

4 {Q 2 , Q1 + ζ S̃1} = D − R ≡ L̂0.

(2.12)

The generators L̂0,±1 obey sl(2) commutation relations, and we will refer to this subal-

gebra as ŝl(2). Also note that

{Q 1,Q 2} = 4(J3 − R̃) = −2Z. (2.13)

The nontrivial cohomology classes of local operators with respect to the Q i can be
characterized in two steps. We first characterize the operators that give rise to nontrivial
Q i cohomology classes when inserted at the origin. We can then employ the Q i -exact
translation operator L̂−1 to transport operators to other points on Rtop.

Cohomology at the origin. When considering local operators situated at the origin,
we may restrict ourselves without loss of generality to definite eigenspaces of the
operators L̂0 and Z . It follows from (2.12) and (2.13) that operators inserted at the
origin that are Q i -closed but not Q i -exact must satisfy

D = R and R̃ = J3. (2.14)

In fact, a simple cohomological argument parallel to the one in [11] demonstrates
that these are also sufficient conditions. Note that the second equality follows from
the first by unitarity. Indeed,

{Q11̃
+ , S+

11̃
} = 2

(
D − R + J3 − R̃

)
� 0, (2.15)

{Q12̃
− , S−

12̃
} = 2

(
D − R − (J3 − R̃)

)
� 0, (2.16)

and thus D − R � |J3 − R̃|. It further follows that operators at the origin must be in
their su(2)H highest weight states to define a nontrivial cohomology class.
A complete classification of the operators satisfying (2.14) can be obtained from the
detailed accounting of osp(4|4, R) superconformal multiplets in [30]. The result is
that only the su(2)H highest weight state of the superconformal primaries of Higgs
branch multiplets — i.e., Higgs branch chiral ring operators — are allowed.

Full cohomology. The nilpotent supercharges Q i include special conformal super-
charges, so they do not commute with any ordinary translation operators. They do
commute with L̂−1, which can then be used to transport operators along Rtop with-
out removing them from the kernel of the Q i . Since L̂−1 is Q i -exact, the operators
transported in such a fashion will be independent of their position at the level of
cohomology. Concretely, let O

(11...1)
k (0) be a dimension k/2 chiral ring operator.

Exponentiating the action of the translation operator L̂−1 results in

Ok(s) = ua1(s)ua2(s) . . . uak
(s) O

(a1a2...ak)
k (s) , ua(s) =

(
1
ζ s

)
. (2.17)

Because the twisted translation operator is Q i -exact, the operator defined above is
independent of s at the level of cohomology. Nevertheless, the ordering of operators
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along Rtop remains meaningful as operators can not be moved around each other
without leaving the kernel of the Q i . For the time being we will therefore retain the
coordinate s as a label for Q i -cohomology classes of operators, while recognizing
that the dependence on s is locally constant:8

O
(s)
k ≡ [Ok(s)]Q. (2.18)

Familiar arguments about cohomology classes of local operators imply that OPEs
and correlation functions of Q -closed operators are well-defined at the level of Q -
cohomology classes, so the OPE algebra of the full SCFT will reduce to a well-defined
cohomological operator algebra. This algebra will necessarily still be associative, since
we can perform OPEs using the associative algebra of the full SCFT and then pass to
cohomology at the end. Thus the output of this machinery is an associative algebra of
operators that are labelled by their position on a line, with the multiplication depending
only on (at most) the ordering of the operators on the line. In addition there is an
evaluation operation that comes from taking expectation values, or equivalently, picking
out the coefficient of the identity operator after taking the OPE. This is what we called
a “one-dimensional topological algebra” in the introduction.

2.3. The free hypermultiplet. To illustrate this construction in a completely tractable
example, let us analyze the simplest example of an N = 4 SCFT in three dimensions:
the free hypermultiplet. The fields in this theory are dimension one-half scalars and a
dimension one fermion,

qa
i (x), ψ ã

α,i (x). (2.19)

Here a is an su(2)H doublet index, ã is an su(2)C doublet index, i an su(2)F flavor
doublet index, and α is a spacetime spinor index. The complete set of local operators
in this theory comes from normal ordered products of (derivatives of) these fields and
their complex conjugates. Since this is a free field theory, the quantum numbers of these
operators behave additively under normal ordered products, so it is simple to determine
which operators obey the relevant conditions (2.14). They are products of the scalars q1

i ,
which of course are just the Higgs branch chiral ring operators.

The OPE of the scalar fields takes the following covariant form:

qa
i (x)qb

j (y) = εabǫi j

|x − y| + (qa
i qb

j )(y) + · · · , (2.20)

where the ellipsis represents conformal descendants and we use conventions that ǫ12 =
ε12 = 1. From here we can determine the OPEs of the corresponding twisted-translated
operators defined in (2.17). We define the cohomological local operators corresponding
to the elementary scalars as

q
(s)
i ≡ [q1

i (s) + sζq2
i (s)]Q. (2.21)

The OPEs are easiest to calculate by positioning one of the operators at the origin (though
this is by no means essential). We find

q
(0)
i q

(s)
j = ζ ǫi j sgn(s) + (qi q j )

(0), (2.22)

8 Because the cohomologies of the two superchargesQ i are isomorphic and we have chosen representatives
that are well-defined with respect to both, we will drop the explicit i from now on. One could equally well
restrict attention to a single choice of i (or a linear combination).
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where (qi q j )
(0) is the cohomology class of the operator (q1

i q1
j )(0), and because we are

working in cohomology we have omitted Q -exact terms.
Let us introduce the notation ⋆ to denote the multiplication ofQ cohomology classes

of local operators that are ordered left to right on Rtop, i.e.,

O1 ⋆ O2 ≡ O
(s1)
1 O

(s2)
2 , s1 < s2. (2.23)

Then the above example gives the following simple star product for the elementary
scalars,

qi ⋆ q j = ζ ǫi j + (qi q j ). (2.24)

We see immediately that this product is indeed noncommutative. It is an exercise in
Wick contractions to work out the corresponding expression for the star products of
more general composite chiral ring operators. The result takes an elegant form:

(qi1 . . . qik
) ⋆ (q j1 . . . q jl ) = (qi1 . . . qik

) exp

[
ζ ǫκλ

←
∂qκ

→
∂qλ

]
(q j1 . . . q jl ). (2.25)

This is the famous Moyal-Weyl-Groenewold star product, which appears when quan-
tizing the R2

[x,p] phase space of a single nonrelativistic particle. This observation fore-
shadows the general structure we will find in the coming sections.

2.4. General form of the twisted OPE. The twisted OPE for operators in more general
(interacting) theories is determined in a simple way in terms of certain OPE coefficients
for half BPS operators. Let us first introduce our conventions for these OPE coefficients.
For a Higgs branch operator in the spin ℓ/2 representation of su(2)H , we define

O(x, y) ≡ O(a1···aℓ)(x)ya1 . . . yaℓ
, (2.26)

where ya is a commuting polarization variable in the two-dimensional representation
of su(2)H . The su(2)H transformation properties of correlation functions and OPEs of
these operators can be treated efficiently in terms of these variables. The forms of the
two- and three-point functions of Higgs branch operators are determined by conformal
and su(2)H invariance and are given by

〈Oi (xi , yi )O j (x j , y j )〉 = ηi j 〈yi , y j 〉ℓ
|xi − x j |ℓ

,

〈Oi (xi , yi )O j (x j , y j )Ok(xk, yk)〉 = ci jk〈yi , y j 〉ℓi jk 〈y j , yk〉ℓ jki 〈yi , yk〉ℓki j

|xi − x j |ℓi jk |x j − xk |ℓ jki |xk − xi |ℓki j
,

(2.27)

where 〈y, ỹ〉 ≡ ǫab ya ỹb = y1 ỹ2 − y2 ỹ1 and ℓi jk ≡ ℓi +ℓ j −ℓk

2 . In particular, with these
conventions the matrix ηi j and the three-point couplings ci jk can be understood in terms
of explicit correlators of certain components of the Higgs branch operators,

〈O(1···1)
i (xi )O

(2···2)
j (x j )〉 = ηi j

|xi − x j |ℓ
,

〈O(1···1)
i (xi )O

(1···12···2)
j (x j )O

(2···2)
k (xk)〉 = ci jk

|xi − x j |ℓi jk |x j − xk |ℓ jki |xk − xi |ℓki j
.

(2.28)
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This turns out to be useful for manipulations involving twisted-translated operators. Note
also that with these conventions, we have ci jk = (−1)ℓi jk c j ik and ci j0 = ηi j .

It is useful to have a covariant expression for the way that a Higgs branch opera-
tor appears in the OPE of two other Higgs branch operators. The form of the OPE is
completely determined by (2.27), and is given by

Oi (x, y)O j (x̃, ỹ) ∼
c

k

i j 〈y, ỹ〉ℓi jk

|x − x̃ |ℓi jk
O

(a1···aℓk
)

k (x̃)ya1 . . . yaℓki j
ỹaℓki j +1 . . . ỹaℓk

. (2.29)

The OPE coefficients above and the previously introduced two- and three-point coeffi-
cients are related in a natural way,

ci jk = c
k′

i j ηk′k . (2.30)

These OPE coefficients and two- and three-point functions are related directly to the
structure constants and correlation functions that control the algebra of Q cohomology
classes of local operators. To observe this coincidence, note that the twisted translated
operators in (2.17) can be written as

Ok(s) = Ok(s; y1 = 1, y2 = ζ s). (2.31)

The terms in the OPE on the right hand side of (2.29) then take a simplified form

Oi (s)O j (s
′) ∼ c

k
i j ζ ℓi jk

(
s′ − s

|s′ − s|

)ℓi jk

Ok(s
′) + · · · ,

∼ c
k

i j ζ ℓi jk sgn(s′ − s)ℓi jk Ok(s
′) + · · · ,

(2.32)

where the ellipses areQ -exact operators.9 Adopting the conventions from our discussion
of the free hypermultiplet, we thus have a noncommutative, but associative, star product
defined on the vector space of Higgs branch chiral ring operators given by

Oi ⋆ O j =
∑

k

c
k

i j ζ ℓi jk Ok . (2.33)

Additionally this operator algebra determines correlation functions by keeping just the
coefficient of the identity operator in the above product. For convenience, let us define
a bracket operation for collections of operators of definite degree that strips off the
inessential factors of ζ that appear in the star product,

〈Oi1 · · ·Oin 〉 ≡ ζ− 1
2 (ℓ1+···+ℓn)C.T.

(
Oi1 ⋆ · · · ⋆ Oin

)
, (2.34)

where C.T. means taking the constant term. With this definition we have the natural
expressions

〈OiO jOk〉 = ci jk, 〈OiO j 〉 = ηi j . (2.35)
We would like to use the associativity of this algebra (and additional conditions

that follow from three-dimensional physics) to bootstrap the structure constants of this
algebra for specific theories of interest. However, from our general discussion so far it is
not clear how plausible this goal is. In the next section we describe additional properties
of the star product that follow from the structure of the superconformal OPE. This allows
us to refine our expectations by characterizing the general form of the bootstrap problem
for these algebras.

9 Computing this OPE is made easier by choosing s′ = 0, but of course the result is independent of the
value of s′.
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3. Properties of the Protected Associative Algebra

The star product defined above can be thought of as a noncommutative multiplication
operation on the vector space of Higgs (or Coulomb) branch chiral ring operators in
a three-dimensional N = 4 SCFT.10 This multiplication is defined by the structure
constants appearing in the OPE (2.29). While the algebra can be defined for any numerical
value of ζ ∈ C⋆, we will keep ζ as an indeterminate parameter, in which case we have
a C[ζ ]-linear noncommutative algebra on the vector space of power series in ζ with
coefficients in the chiral ring A:

⋆ : A[ζ ] ⊗ A[ζ ] �→ A[ζ ]. (3.1)

We will denote this noncommutative algebra by Aζ . This algebra has a number of special
features that follow from the structure of the underlying superconformal OPE. Below we
enumerate these properties in order to define a self-contained algebra problem – which
we will call the bootstrap problem—that the OPE coefficients of our SCFT must solve.

3.1. Equivariance, selection rules, and symmetry. Let us introduce the Z�0 grading on
A by su(2)H charge, or equivalently by conformal dimension,11

A =
⊕

p∈Z�0

Ap. (3.2)

The star product violates this grading because the twisted translated operators involve
lower components of the su(2)H multiplet. Since this violation always comes from
multiplication by operators with lower charge than the chiral ring operator, the star
product preserves the associated filtration, i.e.,

Ap ⋆ Aq ⊂
p+q⊕

k=0

Ak[ζ ]. (3.3)

In fact, we have a stronger condition than this filtration. In the twisted translated oper-
ators, each unit of violation of su(2)H charge is compensated by a power of ζ 1/2. This
means that our star product is C⋆ equivariant, i.e.,

Ap ⋆ Aq ⊂
⊕

k

ζ kAp+q−2k . (3.4)

This amounts to endowing ζ with a scaling dimension of two and demanding that ⋆ be
a graded multiplication on A[ζ ], and indeed ζ does scale with an effective dimension
of two when we act on the supercharges Q i with the su(2)H Cartan.

Furthermore, though su(2)H is not a symmetry at the level of Q -cohomology, the
underlying OPEs and correlation functions of the CFT obey selection rules for su(2)H

representations. This means that an operator Ok can only appear in Oi ⋆O j if the su(2)H

representation of Ok in the full theory appears in the tensor product of the representations

10 As in Appendix A, we will generally denote the chiral ring by A. When we want to emphasize the
connection to the coordinate algebra of the moduli space M, we may write A = C[M].

11 We are adopting conventions where the spin one-half representation of su(2)H has unit grading. This
allows us to work with integral, instead of half-integral, gradings at the expense of a slight disconnect with
the most popular physics conventions.
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of Oi and O j . This truncates the sequence of vector spaces appearing on the right hand
side of (3.4) as follows,

Ap ⋆ Aq ⊂
min(p,q)⊕

k=0

ζ kAp+q−2k . (3.5)

This means that compared to the most general C⋆-equivariant star product, the ζ -
expansion of our star product will truncate prematurely.

Finally, we recall that the OPE coefficients in (2.32) had definite symmetry properties
under the exchange of operators, and these are inherited by the structure constants of
the star algebra. The result is the requirement that even terms in the ζ -expansion are
symmetric under interchange of the two multiplied operators, while odd powers are
antisymmetric. A fancy, but succinct, way of expressing this is that the opposite algebra12

with ζ negated is the same as the original algebra,

A
op
−ζ = Aζ . (3.6)

Alternatively, if we consider Oi ∈ Ap and O j ∈ Aq , then we have

Oi ⋆ O j + O j ⋆ Oi ⊂
⊕

k=0,2,...

ζ kAp+q−2k,

Oi ⋆ O j − O j ⋆ Oi ⊂
⊕

k=1,3,...

ζ kAp+q−2k .
(3.7)

3.2. Leading terms. Most of the structure constants of our algebra encode unknown
two- and three-point functions of Higgs branch operators, and we do not know how
to determine them in advance before performing some additional bootstrap analysis.
However, the leading and first subleading terms in the ζ expansion can be understood
in terms of the algebraic geometry of the Higgs branch, and this will form the seed for
any subsequent analysis.

The leading term in the star product comes directly from the multiplication of Higgs
branch chiral ring operators in the expansion of the twisted translated operators. These
leading terms are thus controlled by the coordinate ring of the Higgs branch of vacua
C[MH ]. In many cases of interest this ring is known. Denoting by O f the operator
whose Higgs branch chiral ring is associated to the function f ∈ C[MH ], we have

O f ⋆ Og = O f ·g + O(ζ ), (3.8)

where we have introduced · as the multiplication in C[MH ]. We see that the star product
can be thought of as a noncommutative deformation of the Higgs branch chiral ring, with
ζ the deformation parameter.

The first subleading term turns out to also be controlled by the Higgs branch. This is
more subtle to see, but follows from the formalism of topological descent in Rozansky-
Witten theory [31].13 In the Rozansky-Witten twist of a three-dimensional N = 4 theory

12 The opposite of any algebra is an algebra where the order of multiplication is reversed, so f ⋆op g ≡ g⋆ f .
13 The following argument regarding the appearance of the poisson bracket in Rozansky-Witten theory here

were alluded to in [22]. A more detailed analysis of this and related constructions is the subject of work in
progress by the first author in collaboration with David Ben-Zvi, Mathew Bullimore, Tudor Dimofte, and
Andy Neitzke.
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we can build a two-form operator associated to each Higgs branch chiral ring operator
(a zero-form operator in the topological theory) O f via descent,

dO f = {QRW,O
(1)
f },

dO
(1)
f = [QRW,O

(2)
f ],

(3.9)

with the property that the integral of O
(2)
f over a closed two-cycle is a physical operator

in the topological theory. This leads to a secondary algebraic operation in the Rozansky-
Witten theory defined by

(O
(0)
f ,O(0)

g ) =
∫

S2
0

O
(2)
f O(0)

g . (3.10)

One can verify by explicit calculation that when the theory being twisted is represented
as a sigma model onto a hyperkähler manifold, then this secondary algebraic operation
gives the poisson bracket of the functions f and g.

Now there are two key observations that connect this discussion to our star product.
The first is that the equation for the secondary product in the Rozansky-Witten theory is an
operator equation up to QRW-exact terms, so even when we are dealing with an SCFT
whose Higgs branch is a singular hyperkähler space we can compute the secondary
product in a Higgs branch vacuum where locally the theory is a sigma model at low
energies.

The second observation is that this secondary product in the Rozansky-Witten twisted
version of an SCFT controls the first subleading term in the ζ -expansion of the star
product. Though this is not quite obvious, it becomes clear when one recalls that in the
two- and three-point functions of half-BPS operators in a three-dimensional N = 4
SCFT there is a unique superspace structure and the only freedom is in the coefficients
appearing in the correlation functions of the superconformal primaries [32]. We then
see that (up to an overall universal constant determined by supersymmetry) both the
secondary product of the twisted theory and the first subleading term in the star product
are measuring the Higgs branch operator of dimension p + q − 2 appearing in the OPE
of Higgs branch operators of dimension p and q, so we have14

O f ⋆ Og = O f ·g +
ζ

2
O{ f,g} + O(ζ 2). (3.11)

3.3. Reality and positivity. The associative algebra also inherits reality and positivity
properties that follow from unitarity of the underlying SCFT. The first of these is a con-
sequence of CPT symmetry. In Appendix A we introduce the C-antilinear conjugation
operation on the chiral ring ρ : A �→ A. This operation is a combination of the CPT
operator � and an su(2)H rotation by π . It is implemented by an anti-unitary opera-
tor in the SCFT, so leads to a relation on correlation functions that acts by complex
conjugation. At the level of three-point functions, we therefore have15

〈Oρ(i)Oρ( j)Oρ(k)〉 = 〈OiO jOk〉. (3.12)

14 Note that because of the scaling symmetry of the chiral ring, the poisson bracket is only defined up to an
overall constant. In this expression we have implicitly fixed this constant by demanding that the subleading
term in the OPE be given by the poisson bracket with unit coefficient.

15 Note that although the CPT operator will switch the order of the operators on Rtop, it will not change the
sign of the explicit factors of s in the expression for the twisted translated operators, so this change of ordering
has no effect. Alternatively, we can think of it as changing the total order and also changing the sign of ζ .
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Or in terms of structure constants in a fixed basis,

ρ i ′
i ρ

j ′

j ρ k′
k ci ′ j ′k′ = ci jk . (3.13)

This condition can be improved to a true reality condition under certain circumstances.
One scenario where this takes place is if there is a basis for A in which ρ acts as the
identity on some operators. In this case, the three-point function of any such operators will
be real by the above equation. More generally, suppose that there is a unitary symmetry
C in the SCFT that acts identically to ρ in some basis. This is also enough to ensure the
reality of three-point functions (and structure constants) in said basis, since we will have

〈OiO jOk〉
�◦Rπ−−−→ 〈Oρ(i)Oρ( j)Oρ(k)〉 = ci jk,

C−−−→ 〈Oρ(i)Oρ( j)Oρ(k)〉 = ci jk .

(3.14)

In other words, when an anti-unitary and a unitary symmetry act the same way on
some observable, then that observable must be real. In all of the examples considered
in this paper we will have a basis in which the above relations hold, so the algebra will
have a basis with all real structure constants. It is an interesting question whether all
three-dimensional N = 4 theories have this property.

Additional constraints arise from the positivity of two-point functions of identical
operators in a unitary CFT. In particular, for any complex scalar operator in a CFT we
have

〈O(x)O†(y)〉 = nO

|x − y|2�O

, nO > 0, (3.15)

and this leads to a positivity requirement in the associative algebra. To formulate this
requirement, let us introduce the following sesquilinear form on A = C[M]:

θ( f, g) = 〈Oρ( f )Og〉. (3.16)

Recall that ρ2 = (−1)2R , so for f, g ∈ Ap we have

θ(g, f ) = 〈Oρ(g)O f 〉,
= (−1)p〈O f Oρ(g)〉,
= (−1)p〈Oρ( f )Oρ2(g)〉,
= 〈Oρ( f )O(g)〉,

(3.17)

so this is form is Hermitian, and the positivity requirement in (3.15) (or more generally
the positive definiteness of the norm of the Hilbert space in the SCFT) translates directly
into the positive definiteness of this Hermitian form.

These are nontrivial constraints. We will see in our examples that while the reality
conditions are easily satisfied, the positivity conditions are very difficult to impose. They
may in fact play a key role in making the solution to the bootstrap problem nearly unique.
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3.4. Summary of the bootstrap problem. We can now succinctly state the algebra prob-
lem that we would like to solve. Ideally, its solution will completely, or nearly completely,
determine the structure constants of the protected associative algebra. In the rest of the
paper we will refer to this as the bootstrap problem. It takes the following form:

Suppose we are given the coordinate algebra of a hyperkähler cone (presumably the
moduli space of vacua of a known three-dimensional N = 4 SCFT) as a (graded) poisson
algebra with conjugation (A , {·, ·} , ρ). The problem is to find a noncommutative star
product ⋆ : A[ζ ]⊗A[ζ ] → A[ζ ] such that the following conditions are satisfied. Below,
we will always take f ∈ Ap and g ∈ Aq :

Associativity

( f ⋆ g) ⋆ h = f ⋆ (g ⋆ h),

Equivariance

f ⋆ g =

⌊ p+q
2

⌋
∑

k=0

ζ kCk( f, g), with Ck : Ap ⊗ Aq �→ Ap+q−2k .

Truncation

Ck( f, g) = 0 for k > min(p, q),

Leading terms

C0( f, g) = f · g, C1( f, g) = 1

2
{ f, g},

Evenness

Ck( f, g) = (−1)kCk(g, f ),

CPT

C.T.( f ⋆ g ⋆ h) = C.T.(ρ( f ) ⋆ ρ(g) ⋆ ρ(h)),

Positivity

θ( f, g) := C p(ρ( f ), g) for f, g ∈ Ap a positive definite Hermitian form.

We will see that some of these conditions are much more easily satisfied than others.

4. Relationship to Deformation Quantization

Our bootstrap problem is very similar to the problem of deformation quantization. In-
deed, as we will review below, the associativity, equivariance, and leading term con-
ditions precisely define the problem of C⋆-equivariant deformation quantization of a
graded poisson algebra. There is a significant literature about deformation quantization
as a problem in pure mathematics—see, e.g., [33,34] and references therein. There are,
however, important differences between the bootstrap problem and deformation quanti-
zation problem as it is usually formulated. Below we review the conventional formulation
of deformation quantization and mention some results about the deformation quantiza-
tion of hyperkähler cones, which is the case relevant to our goals. We conclude with a
comparison of the deformation quantization problem and the bootstrap problem.



362 C. Beem, W. Peelaers, L. Rastelli

4.1. Deformation quantization. The starting point in deformation quantization is a com-
mutative poisson algebra (A, {·, ·}). Often (particularly in physics) this is the algebra of
smooth functions on a symplectic manifold, though the case of more general poisson al-
gebras is also well-studied. The goal is to find an associative deformation of the product
on A, usually denoted ⋆, defined on the vector space A��� of formal power series in �

with coefficients in A. Such a product is determined by its action on elements of A and
extended by linearity to A���. The star product can be written as

f ⋆ g =
∞∑

k=0

Ck( f, g)�k, (4.1)

where the Ck are bilinear maps Ck : A ⊗ A → A, and C0 is defined as the original
commutative multiplication on A.16 The requirement that the star product be associative
amounts to the following requirement for the Ck ,

∑

i+ j=n

C i (C j ( f, g), h) =
∑

i+ j=n

C i ( f, C j (g, h)), f, g, h ∈ A. (4.2)

Without too much trouble one can show that associativity requires that the antisymmetric
part of the leading term in the star product defines a poisson bracket—i.e., it is an
antisymmetric bilinear map satisfying the Leibniz rule and Jacobi identities:

{ f, g}⋆ ≡ C1( f, g) − C1(g, f ). (4.3)

To be a deformation quantization of the original poisson algebra, this poisson bracket
should agree with the original one {·, ·}. This situation is sometimes described by saying
that deformation quantization is a noncommutative deformation of A in the direction of
the poisson bracket.

Solutions to the deformation quantization problem are generally organized into large
equivalence classes. The origin of such equivalence classes is as follows. Suppose we
are given an associative star product. Then consider an arbitrary C���-linear map T :
A��� �→ A��� that takes the form

T ( f ) = f + � f (1) + �2 f (2) + · · · ,

T (�) = �(1 + a1� + a2�2 + · · · ),
(4.4)

where f (i) ∈ A and ai ∈ C. Then one can define another associative star product with
different structure constants that also satisfies the conditions for deformation quantiza-
tion by taking

f ⋆̃ g = T −1(T ( f ) ⋆ T (g)). (4.5)

Because this new product arises from an �-dependent change of basis for A���, it can
be (and often is) considered an equivalent deformation quantization. In the mathematics
literature, this type of change of basis is referred to as a gauge transformation, and
the deformation quantization problem is normally treated up to gauge equivalence. In
physics, these kinds of ambiguities are familiar as ordering ambiguities that arise in the
definition of composite operators.

16 When A is an algebra of smooth functions on some manifold, the Ck are often taken to be bi-differential
operators. This is not an essential requirement, and we will not explicitly make such an assumption in our
version of the problem.



Deformation Quantization and Superconformal Symmetry in Three Dimensions 363

A more constraining version of deformation quantization is strict deformation quanti-
zation, in which the series in � appearing in the above discussion are required to converge
for some sufficiently small value of �.17 These are then honest deformations of the orig-
inal poisson algebra (not just as an algebra over C���). Strict deformation quantization
is generally a more difficult problem to analyze than formal deformation quantization.
We note that in both the formal and the strict cases, the “gauge group” associated with
transformations of the form given in (4.5) is infinite-dimensional.

There are many beautiful theorems about the solution of the deformation quantization
problem in different contexts—again, see [34]. Fortunately for us, we will not need to
use the full technology developed to address the general problem. This is because of the
many simplifications that occur for precisely the case in which we are interested: the
quantization of hyperkähler cones.

4.2. Deformation quantization of hyperkähler cones and classification. When the pois-
son algebra of interest has additional structure, one can demand more of the quantization.
We are interested in the case where (A , {·, ·}) is the coordinate algebra of a hyperkähler
cone. In this case A is Z�0 graded,

A =
∞⊕

p=0

Ap, Ap · Aq ⊂ Ap+q , (4.6)

and the poisson bracket on A has degree −2 with respect to this grading,

{Ap,Aq} ⊂ Ap+q−2. (4.7)

We can then ask for a C∗-equivariant deformation quantization by demanding that

Ck(Ap,Aq) ⊂ Ap+q−2k . (4.8)

This is equivalent to giving � a scaling dimension of two and demanding that ⋆ be a
graded multiplication on A���.

If the star product is C⋆-equivariant, only finitely many terms can appear in the �

expansion of the product of any two elements of A. A C⋆-equivariant quantization will
therefore necessarily give rise to an instance of strict deformation quantization. The
equivalence classes of equivariant quantizations are more restricted—they are induced
by maps of the form

T ( f ) = f +

⌊ p
2 ⌋∑

k=1

�k f (k), where f ∈ Ap and f (k) ∈ Ap−2k,

T (�) = �.

(4.9)

This is still an infinite dimensional group of transformations, but crucially, only a finite
number of terms can appear in the redefinition of a given operator.

Deformation quantization for hyperkähler cones has been studied extensively in
[28,29], building on [35,36]. The key result for us is a classification theorem.18 The

17 In contrast, deformation quantization over C��� is called formal.
18 The classification theorem applies most directly to symplectic resolutions. These are singular holomorphic

symplectic varieties that can be resolved into smooth holomorphic symplectic manifolds. In three-dimensional
superconformal field theories, we often have moduli spaces of vacua that cannot be resolved into symplectic
manifolds. In this case, the analogous classification theorem can still be established [28].
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classification says that the C⋆-equivariant quantizations of A = C[M] are in one-to-
several correspondence with elements of H2(M̃, C), where M̃ → M is a (universal)
smooth symplectic resolution of M. In the context of quantum field theory, this is the
space of FI parameters that resolve the Higgs branch into a smooth variety. The element
of λ ∈ H2(M̃, C) that corresponds to a given quantization is known as the period of
the quantization.

The reason the correspondence is one-to-several is that there is a discrete group
W —known as the Namikawa Weyl group—that acts on H2(M̃, C) such that different
periods that are on the same orbit give equivalent quantizations.19 This group is just the
Weyl group of the global symmetry that acts as hyperkähler isometries on the Coulomb

branch. Indeed, the FI parameters that deform the Higgs branch come from turning
on scalars in the background vector multiplet that couples to conserved currents for
the (topological) Coulomb branch symmetries, so the action of this Weyl group is not
surprising. Consequently, the space of inequivalent quantizations of the coordinate ring
of a hyperkähler cone, up to gauge transformation, is given by H2(M̃, C)/W .

4.3. Deformation quantization in SCFT and preferred bases. We can now see the rela-
tionship between the bootstrap problem of Sect. 3 and traditional deformation quanti-
zation. Indeed, upon exchanging � and ζ many of the points in the previous subsection
were replicas of conditions appearing in the bootstrap problem. The leading term and
equivariance conditions in the bootstrap problem mean that the algebra we are dealing
with is a C⋆-equivariant deformation quantization of the chiral ring. Consequently the
algebras satisfying these conditions are classified up to gauge equivalence by the theorem
mentioned above, and this classification yields a finite-dimensional space of algebras!

We can also make contact with the mathematical literature on the point of the evenness
condition. Indeed, there is a notion of an even quantization introduced in [36], which is
a quantization that obeys

A
op

−�
= A�. (4.10)

But this is just our evenness condition!20 By Propositions (3.2) and (3.10) of [28], the
quantization can only be even if the period of the quantization λ ∈ H2(M̃, C) lies on
the same Weyl orbit with its negative, −λ = w · λ for some w ∈ W . This is a nontrivial
condition that will cut down on the space of algebras under consideration.

The remaining conditions—namely the truncation condition, as well as the reality
and positivity conditions—are not standard in the deformation quantization literature.
But this comes as no surprise since these properties are not invariant under the changes
of basis described by (4.4), and deformation quantization is usually only studied up to
such changes of basis. It is fortunate that we have these additional conditions because
we care about the precise form of the structure constants of our algebra and the gauge
transformations do not correspond to physical equivalences in the SCFT.21 Thus what we

19 We should mention here that what we call a “quantization” here is actually a more basic object than
that treated in the aforementioned papers. There, a quantization is a sheaf of associative algebras on M with
certain good properties. What we call a quantization is the algebra of global sections of this sheaf.

20 This is actually a variation on the notion of an even quantization given in [36]. The difference is that
in [36] the quantizations being constructed are sheaves of algebras as described in footnote 19. This makes
evenness in the sense defined here a slightly weaker condition than evenness in the sense of [36]. In particular,
with the stronger notion the quantizations with periods related by the Namikawa Weyl group are inequivalent,
and as a result the only even quantization is the one with zero period.

21 To be more specific, if we were to try to interpret them as such they would come from changes of basis
in the chiral ring that mix operators of different scaling dimension. While we are certainly free to do such a
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have are some kind of gauge-fixing conditions. Purely in terms of the algebra problem,
it isn’t obvious that these conditions should be solvable. If they are solvable, then it isn’t
obvious that the space of solutions should be finite dimensional. Our bootstrap problem
can now be broken down into a few subproblems:

1. Identify the quantum algebra (up to gauge equivalence). Ideally this will take the
form of a generators-and-relations definition of the algebra.

2. Determine the period of the quantization relevant for the theory under consideration.
3. Solve the gauge fixing conditions for the appropriate value of the period. Hopefully

the solution will be unique.

It is perhaps worth considering why it is hard to solve these gauge fixing conditions.
The source of difficulty is that when the algebra is presented abstractly in terms of non-
commutative generators and relations, we do not know a priori the one-point functions of
the various operators (when written in terms of the generators). The one point functions
of the operators that correspond to CFT operators of nonzero conformal dimension, on
the other hand, will all be zero. Our ignorance of one-point functions manifests in the
possibility of adding a constant to our operators in the redefinitions of (4.4). Without
such an ambiguity, fixing the basis would be a simple matter of choosing operators so as
to diagonalize the matrix Mi j = C.T.

(
ρ( fi ) ⋆ f j

)
. The additional truncation, evenness,

and positivity conditions would then have to be satisfied “accidentally”.
In the examples that follow, we will see that in the absence of a knowledge of one-

point functions, the first problem is straightforward, while the second two are harder. In
the examples of minimal nilpotent orbits, the gauge fixing conditions are irrelevant, while
the period can be determined by a localization calculation. For the Kleinian singularities,
the period and gauge fixing problems are hard to disentangle, since only some values of
the period allow a basis that satisfies the gauge fixing.

5. Examples: Nilpotent Orbits

The major complication in the bootstrap problem relative to the deformation quantization
problem is that the latter works modulo a large group of gauge transformations that are
not invariances of the bootstrap problem. For our first class of examples, we will therefore
consider cases in which there is no gauge ambiguity even in the deformation quantization
problem.

There is a general mechanism for avoiding the ambiguity due to gauge transforma-
tions. Suppose that a hyperkähler cone M has a nontrivial hyperkähler isometry group

G : M → M.

Then the coordinate ring can be decomposed as a vector space into subspaces transform-
ing in the distinct irreducible representations of G:

A =
⊕

R

AR. (5.1)

Now suppose that for any representation R of G, AR is supported entirely in a single
graded component of A,

∀ R, ∃ p ∈ Z�0 s.t. AR ⊂ Ap. (5.2)

Footnote 21 continued
thing, we also know that there is a canonical basis where we choose operators of definite scaling dimension,
and it is in this basis that we are interested in the structure constants of the associative algebra.
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In such a case, a change of basis of the type described by (4.4) cannot be G-equivariant
simply because the correction terms involve only terms of strictly lower degree than the
operator being corrected. This means that in a G- and C⋆-equivariant quantization of
such a hyperkähler cone, the basis for the quantum algebra will be uniquely determined.

There exists an infinite family of hyperkähler cones whose coordinate algebras satisfy
precisely the property (5.2), and they all occur as moduli spaces of vacua for known three-
dimensional SCFTs [37]. These are the minimal nilpotent orbits Omin(g) of any simple
Lie algebra g. In the coordinate algebra of minimal nilpotent orbits, the C∗ grading and
the decomposition according to R are related in a very simple way,

A⊚nad = A2n, dim A2n = dim R⊚nad, (5.3)

where ⊚ is the Cartan product of representations, which simply adds Dynkin labels.
In other words, for each n ∈ Z, A2n consists of a single element transforming in the
representation of G whose Dynkin labels are n times those of the adjoint. The minimal
nilpotent orbits can be constructed as algebraic varieties by starting with the polynomial
algebra of the Lie algebra in question and then modding out by a certain ideal known as
the Joseph ideal [38].

The quantization of minimal nilpotent orbits is a fairly well-studied subject (see, e.g.,
[39,40] and references therein). For g �= sln , the minimal nilpotent orbit of a simple
Lie algebra g admits a unique g-equivariant deformation quantization, while for g = sln
there is a one-parameter family of deformation quantizations [40]. Furthermore, for
g = sln�3 it was found in [39] that only one value of this parameter is compatible with
our evenness condition (called “parity” in that work). This result is in accordance with
the classification theorem mentioned above, since for sln the minimal nilpotent orbit
admits a one-dimensional space of deformations, while for the other simple Lie algebras
the minimal nilpotent orbit is rigid. It is only for sl2 that a generic value of the period
satisfies the Weyl group condition, however.

This leads to the immediate conclusion that the protected associative algebra of

an SCFT whose Higgs branch is the minimal nilpotent orbit of g �= sl2 is completely

determined by the bootstrap. On the other hand, for g = sl2 we need a single parameter
to determine the entire algebra. Fortunately, when we have a Lagrangian realization of
these theories we can always compute a single number (in our conventions it will be
the two-point function of a generator of the associative algebra) using supersymmetric
localization, so the algebra will be exactly determined.

Although these formal results are very satisfactory, it would be better if we had closed
form expressions for the structure constants of these (nearly) unique algebras. Here we
are in luck, because precisely these algebras appear as (generalized) higher spin algebras,
and the structure constants for the classical groups have been worked out by physicists
in [41]. For the special case of sl2, this is the higher spin algebra hs[λ],22 which has a
longer history. The structure constants of hs[λ] were determined in the original work
of [42,43]. Below we describe this case in detail and consider various N = 4 theories
that realize the algebra for different values of λ. The other classical groups can also be
analyzed using the results of [41]. We do not consider them in any detail here.

5.1. Omin(sl2) and hs[λ]. There is only one nilpotent orbit in sl2, so the (closure of
the) minimal orbit is the same thing as the full nilpotent cone, i.e., the set of two-by-two

22 Rather, it is the associative algebra whose commutator algebra is hs[λ]. We will not be careful about this
distinction.
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traceless complex matrices with vanishing determinant. As a complex algebraic variety
we therefore have

Omin(sl2) = {C3
[X,Y,Z ]/〈XY − Z2〉}. (5.4)

Alternatively, this space may be thought of as the orbifold C2/Z2. The poisson bracket
and conjugation operations are determined entirely by their action on the generators X ,
Y , and Z ,

{Z , X} = X, {Z , Y } = −Y, {Y, X} = 2Z ,

ρ(X) = Y, ρ(Y ) = X, ρ(Z) = −Z .
(5.5)

We see that X , Y , and Z are the moment maps for a hamiltonian SU (2) action on
Omin(sl2), with Z corresponding to the Cartan and X and Y the raising and lowering
operators, respectively. The algebra (5.4) decomposes as described in (5.3), with one
multiplet in each integer spin representation of sl(2). In particular, we can define

O
j
m :=

{
Z j−m Xm, m > 0,

Z j+mY −m, m < 0,
(5.6)

and the O
j
m with |m| � j transform in the spin j representation.

Any star product for these operators is restricted by sl2 selection rules to take the
form

Oi
m ⋆ O

j
n =

i+ j∑

k=0

ζ k g
i j
k (m, n)O

i+ j−k
m+n , (5.7)

where the structure constants are constrained by sl2 covariance to take the form

g
i j
k (m, n) = K (i, m)K ( j, n)

K (i + j − k, m + n)
C

i, j,i+ j−k
m,n,m+n χ

i j
k , (5.8)

where C
i, j,i+ j−k
m,n,m+n are Clebsch-Gordan coefficients and the K (i, m) are normalization

factors related to our choice of basis in (5.6),

K (i, m) =
√

(i + m)!(i − m)!. (5.9)

The problem of determining the structure constants χ
i j
k that make this star product

associative was solved in [43]. The solution is parameterized by a single numerical
coefficient μ, and takes the form

χ
i j
k (μ) =

(−1

4

)k

φ
i j
k (μ)

√
(2i + 2 j − k + 1)!

k!(2i − k)!(2 j − k)!(2i + 2 j − 2k + 1)
, (5.10)

where

φ
i j
k (μ) ≡ 4 F3

[− 1
2 − 2s 3

2 + 2s − k
2 − k

2 + 1
2

1
2 − i 1

2 − j i + j − k + 3
2

; 1

]
, (5.11)

with μ ≡ s(s + 1).23 In most of the literature the structure constants are expressed in a
different form that doesn’t make the Clebsch-Gordan coefficients manifest. In particular,
one has

g
i j
k (m, n) =

(−1

4

)k φ
i j
k (μ)

(k!) N
i j
k (m, n;μ), (5.12)

23 The structure constants are invariant under s ↔ −1 − s, making them well-defined functions of μ.
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where24

N
i j
k (m, n) =

k∑

a=0

(−1)a

(
k

a

)
(i + m)!(i − m)!( j + n)!( j − n)!

(i + m + a − k)!( j − n + a − k)!(i − m − a)!( j + n − a)! .

(5.13)
The two-dimensional higher spin algebra hs[λ] is defined as the commutator algebra of
this associative algebra with μ = 1

4 (λ2 − 1).
It is straightforward to verify that these structure constants obey most of the conditions

enumerated in Sect. 3. In particular, the truncation condition—which would normally
be a nonstandard additional condition to impose in deformation quantization—is here
guaranteed by sl2 covariance, since all of the operators in the coordinate ring are in
the same sl2 and su(2)H representations. The CPT and positivity properties are not
completely automatic; they impose minor constraints on the possible values of λ. The
CPT constraint requires μ to be real, while positivity for this algebra requires that

(−1) j−m C.T.

(
O

j
−m ⋆ O

j
m

)
> 0, ∀ j, m. (5.14)

It is easy to check that this requirement amounts to μ � 0. This can be contrasted with
the case of higher spin algebras, where one normally requires μ � − 1

4 so that there
exist unitary representations of the algebra. It is interesting that there is a small overlap
between our allowed values of μ and those of interest for higher spin studies.

The only freedom in determining the structure constants of this algebra is in the
choice of μ. As it happens, there are several N = 4 SCFTs with C2/Z2 as their Higgs
branch of vacua, and they will realize the hs[λ] as their protected associative algebra for
different values of λ. For ease of comparison, here we display a few star products (in
our conventions) as a function of μ:

Z ⋆ Z = Z2 + 1
3μζ 2,

Z ⋆ X = Z X + 1
2 Xζ,

Z ⋆ Y = ZY − 1
2 Y ζ,

X ⋆ Y = Z2 − Zζ − 2
3μζ 2.

(5.15)

Below we consider three different examples of theories that realize this algebra for two
different values of μ.

Z2 gauge theory. The simplest theory that has the minimal nilpotent orbit of sl2 as its
Higgs branch is the Z2 gauge theory of the free hypermultiplet (Q, Q̃). This is also
a subsector of the U (1)2 × U (1)−2 ABJM theory studied in [17]. The Higgs branch
chiral ring is the Z2-invariant restriction of the Higgs branch chiral ring of the free
hypermultiplet. We take it’s generators to be given by25

Z = 1
4 Q Q̃, X = 1

4 Q2, Y = 1
4 Q̃2. (5.16)

24 The reader should beware that these structure constants are related to those in the higher spin literature
by a shift in many of the arguments.

25 To alleviate the burden of too many indices, we use different naming conventions for the free hypermul-
tiplet scalars than in Sect. 2. The relation is Q̃ ↔ q1

1 , Q ↔ q1
2 .



Deformation Quantization and Superconformal Symmetry in Three Dimensions 369

We can directly compute star products using the Moyal-Weyl-Groenewold product
(2.25). For example, the star products of these generators of the chiral ring are given by

Z ⋆ Z = Z2 − 1
16ζ 2,

Z ⋆ X = Z X + 1
2 Xζ,

Z ⋆ Y = ZY − 1
2 Y ζ,

X ⋆ Y = Z2 − Zζ + 1
8ζ 2.

(5.17)

Comparing with the structure constants above, we see that this is an instance of the
algebra with μ = − 3

16 , or λ = 1
2 . Incidentally, the fact that hs[ 1

2 ] can be formulated in
terms of a Moyal product is well-known—see, e.g., [44,45] for a review.

SQED with N f = 2. The next theory is the N = 4 SCFT obtained as the IR fixed point
of a U (1) gauge theory with two charged hypermultiplets (Qi , Q̃i ) with i = 1, 2—see
Appendix B. In this theory we take the gauge invariant operators that generate the Higgs
branch chiral ring to be

Z = 1
2

(
Q1 Q̃1 + Q2 Q̃2

)
, X = Q1 Q2, Y = Q̃1 Q̃2, (5.18)

and there is an F-term relation Q1 Q̃1 − Q2 Q̃2 = 0. For this theory we can compute
the two-point function of the Z operator, which is the moment map operator for the
Cartan subalgebra of the SU (2) hyperkähler isometry. We perform this computation in
Appendix B, and we find that with an appropriate normalization of operators, we have

Z ⋆ Z = Z2 − 1
12ζ 2,

Z ⋆ X = Z X + 1
2 Xζ,

Z ⋆ Y = ZY − 1
2 Y ζ,

X ⋆ Y = Z2 − Zζ + 1
6ζ 2.

(5.19)

This is the higher spin algebra with μ = − 1
4 , i.e., λ = 0. It may be of interest to

note that along with λ = 1
2 , this is the other value for λ that had special properties in

the investigation of [42]. In particular, for precisely λ = 0 one can define an infinite
extension of the higher spin algebra to a W∞ algebra without including any negative
spins. This is also the “free fermion” value for λ [46]. We are not certain whether this
coincidence has deeper significance.

U (2)2×U (1)−2 ABJ theory. Finally, the U (2)2×U (1)−2 ABJ theory, which is believed
to describe the IR fixed point of N = 8 supersymmetric Yang-Mills theory with SO(3)

gauge group, has the same “Higgs branch chiral ring”.26 The su(2) flavor symmetry
of the Higgs branch is actually an R-symmetry of the extended supersymmetry of the
theory, and the moment map two-point function is related by supersymmetry to the
central charge cT . This was computed using supersymmetric localization in [19]. The
conventions for normalizing operators used in that work were different than for us—we

26 Here we use scare quotes because the enhanced supersymmetry of the theory makes the distinction of
Higgs versus Coulomb branch chiral ring nonstandard. Our terminology is appropriate if we treat the theory
as a special case of an N = 4 theory.



370 C. Beem, W. Peelaers, L. Rastelli

have set the coefficient of the leading term in the star product to be one, while they
normalized their operators to have unit two-point functions. This means that we have

λCLPY
2i,2 j,2i+2 j−2k = g

i j
k (i,− j)

√√√√ gkk
2k (k,−k)

gi i
2i (i,−i)g

j j

2 j ( j,− j)
. (5.20)

With this change of conventions, we find that in this theory the protected associative
algebra is exactly the same as that for the quiver gauge theory described above, i.e.,

μ = −1

4
, λ = 0. (5.21)

It is then straightforward to reproduce the values shown in Table 4 of [17].
It may be interesting to note that while the unitarity bounds for this algebra only

require μ < 0, we have found in all three examples that we have − 1
4 � μ < 0. The

relevance is that in the context of higher spin gravity, one restricts attention to μ � − 1
4

due to the absence of unitary representations of the higher spin algebra for smaller values
[44]. This may hint at an important role for representations of the protected associative
algebra in the analysis of our bootstrap problem.

6. Examples: Affine Quiver Theories

Our second class of examples are two-complex-dimensional hyperkähler cones—the
Kleinian singularities,

MŴ = C2/Ŵ, Ŵ ∈
{

An�1, Dn�4, E6,7,8
}
. (6.1)

The special case of Ŵ = A1 ≡ Z2 is the same as the minimal nilpotent orbit of sl(2),
but for other choices of discrete group these are not nilpotent orbits. These singularities
are realized as the Higgs branches of N = 4 quiver gauge theories whose quivers are in
the shape of the affine quiver diagrams of type Ŵ, with the ranks of each unitary gauge
group equal to the Dynkin index of the corresponding node. For example, the An cases
are realized by considering a circular quiver of Abelian gauge groups of n + 1 nodes.

These hyperkähler cones can be realized as algebraic varieties in C3, i.e., C2/Ŵ =
{(X, Y, Z) ∈ C3 | φŴ(X, Y, Z) = 0} where φŴ is a polynomial in the variables X, Y, Z

determined by Ŵ. Concretely,

Ŵ = An : φAn = XY − Zn+1,

Ŵ = Dn : φDn = Xn−1 + XY 2 + Z2,

Ŵ = E6 : φE6 = X2 + Y 3 + Z4,

Ŵ = E7 : φE7 = X2 + Y 3 + Y Z3,

Ŵ = E8 : φE8 = X2 + Y 3 + Z5.

(6.2)

Such a description arises naturally when MŴ is realized as a hyperkähler quotient.
All of these spaces can also be realized in simple discrete gauge theories of a single
hypermultiplet. The poisson bracket for each of these examples can be written succinctly
in terms of the defining polynomial,

{X, Y } = ∂φŴ

∂ Z
, {Y, Z} = ∂φŴ

∂ X
, {Z , X} = ∂φŴ

∂Y
. (6.3)
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Table 1. C∗ grading � and U (1)F charges qF of the generators of the An singularity

� qF

Z 2 0
X n + 1 +1
Y n + 1 −1

Compared to the Dn and E6,7,8 cases, deformation quantization for the An singular-
ities is substantially simplified thanks to the presence of a U (1) flavor symmetry, which
imposes additional selection rules and thus restricts the number of operators that can
appear in any given star product. We will therefore focus on these examples. It would
be interesting to attack the more challenging Dn and En theories in the future.

We will henceforth be focusing on the A series of Kleinian singularities. Our con-
ventions for the C⋆ grading and U (1) flavor charges of the generators of the coordinate
algebras are summarized in Table 1. Note that Z plays the role of a moment map for
the flavor symmetry, and it will correspond to the U (1) moment map operator for any
SCFT realizing one of these singularities as its moduli space.

We can define a complete basis for A = C[MAn ] as follows,

Oi, j :=
{

X j Z i− j , j � 0,

Y − j Z i+ j , j < 0,
(6.4)

where j ∈ Z and i � | j |. Here �i j := �(Oi, j ) = 2i +(n−1)| j | and qF (Oi, j ) = j . The
goal is to define a star product on the vector space spanned by these operators that obeys
all of the conditions outlined in our formulation of the bootstrap problem in Sect. 3.

6.1. A note on strategy. Before considering individual examples, let us briefly comment
on the strategies that we can employ in trying to solve the bootstrap problem for these
algebras.

The first—and perhaps most obvious—strategy is to simply write down the most
general possible star product that quantizes the (known) chiral ring and obeys the ap-
propriate truncation and evenness properties. In these examples it should also respect
U (1)F charge conservation. This product will then take the form

Oi, j ⋆ Ok,l =
min(�i j ,�kl )∑

m=0

ζm c
(i, j),(k,l)
m O

�i j +�kl
2 −m− n−1

2 | j+l|, j+l , (6.5)

where the truncation condition is implemented in the range of the sum on the right hand
side, and evenness requires that

c
(i, j),(k,l)
m = (−1)mc

(k,l),(i, j)
m . (6.6)

Operators Oi, j appearing on the right hand side of (6.5) not satisfying i � | j | are set
to zero. Without loss of generality, the composite operators in (6.4) can be normalized
such that the structure constants c

(i, j),(k,l)
0 have value one:

c
(i, j),(k,l)
0 = 1. (6.7)
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Additionally, we can impose normalization conditions such that the poisson bracket
appears in the leading term with the desired normalization,

c
(1,0),(1,1)
1 = 1

2
, c

(1,0),(1,−1)
1 = −1

2
, c

(1,1),(1,−1)
1 = −n + 1

2
. (6.8)

This completely fixes the normalizations of all of our operators.
The star product will not be associative for general values of the structure constants.

In true bootstrap fashion, we can then impose associativity conditions for every triple of
operators and see how the structure constants are constrained. In practice, this involves
ordering all triples of operators according to their total dimension and imposing the
associativity conditions in order. It is difficult to build the positivity conditions into this
process, so they must be checked after the fact. It is not at all obvious, but nevertheless
turns out to be true in our examples, that the solutions to the resulting associativity
problem are completely determined by a finite number of free coefficients. We will return
to the examples after considering an alternative perspective for solving this problem.

A second strategy is available in examples where we know how to solve the defor-

mation quantization problem but not the bootstrap problem. Indeed, for the Kleinian
singularities this is the case, and the relevant noncommutative algebras are known as
spherical subalgebras of symplectic reflection algebras [47,48]. These algebras can be
understood very concretely as finitely generated noncommutative algebras with cer-
tain relations imposed. In this case the associativity conditions are already solved, and
the remaining problem is to find an appropriate basis for the noncommutative algebra
where the solution to deformation quantization is upgraded to a solution of the bootstrap
problem.

For all of the A-series Kleinian examples, the relevant noncommutative algebra is
generated by noncommutative variables X̂ , Ŷ , and Ẑ that obey commutation relations
of the form

[X̂ , Ŷ ] = −ζ P(Ẑ), [Ẑ , X̂ ] = ζ X̂ , [Ẑ , Ŷ ] = −ζ Ŷ , (6.9)

where P(Ẑ) is a polynomial in Ẑ of degree n (with appropriate powers of ζ inserted)
with leading term given by P(Ẑ) = (n + 1)Ẑn + · · · . This algebra has a center generated
by [49]

�̂ = 1

2
(X̂ Ŷ + Ŷ X̂) − 1

2
(Q(Ẑ + ζ ) + Q(Ẑ)), (6.10)

where Q(Ẑ) is a polynomial in Ẑ of degree n + 1 such that

Q(Ẑ + ζ ) − Q(Ẑ) = ζ P(Ẑ). (6.11)

The condition (6.11) uniquely determines the coefficients of Q in terms of the coefficients
of P except for the lowest order term, i.e., the coefficient of ζ n+1. The non-commutative
algebra generated by X̂ , Ŷ , Ẑ , with commutation relations (6.9), quotiented by the two-
sided ideal generated by �̂ is the associative algebra that solves the C⋆-equivariant
deformation quantization problem for the Kleinian singularities, and the coefficients in
Q (alternatively, the coefficients in P) parameterize the period of these quantizations.

The evenness condition in the bootstrap problem implies that if we take the opposite
algebra and change the sign of ζ then the algebra should be unchanged. This already im-
poses constraints on the parameters appearing in P and Q. In particular, the polynomials
P(Ẑ) and Q(Ẑ + ζ )+ Q(Ẑ), being invariant under passing to the opposite algebra, must
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only contain terms with even powers of ζ . This is the incarnation for these examples of
the requirement from Sect. 4 that the period live on the same Namikawa Weyl orbit with
its negative, and it reduces the number of parameters determining the algebra to ⌊ n+1

2 ⌋.
Now our second step is to start with such an associative algebra and determine a basis

for the vector space of operators that solves the bootstrap problem. It is helpful to first
note that any monomial in X̂ , Ŷ , Ẑ can always be expressed as a sum of terms of the
form

Ôi, j :=
{

X̂ j Ẑ i− j , j � 0,

Ŷ − j Ẑ i+ j , j � 0.
(6.12)

This will be our canonical ordering.27 We can then write down the most general basis
of operators of the form

Oi, j → Ôi, j +
i−1∑

k=| j |
ζ i−k α

i, j
k Ôk, j , (6.13)

with a priori arbitrary coefficients α
i, j

k . An inverse map can be obtained by mapping the
highest dimensional non-commutative operator back one by one. We then demand that
in this basis, the evenness and truncation conditions hold.

It is straightforward to show that these conditions will hold for all products if they
do so for the following simple products:

Oi, j ⋆ O1,0, O1,0 ⋆ Oi, j and Oi, j ⋆ O1,±1, O1,±1 ⋆ Oi, j . (6.14)

The second strategy is therefore to constrain the coefficients appearing in (6.13) using the
conditions just introduced. We found this strategy to be somewhat more computationally
efficient. We will see that in addition to the parameters determining the period of the
quantization, only a finite number of free coefficients associated to the choice of basis
survive.

6.2. Revisiting the Kleinian singularity MA1 = C2/A1. In the previous section, the
solution to the deformation quantization of Omin(sl2) was presented and seen to solve
the bootstrap problem for μ < 0. In some sense, the approach described there was
that of our first strategy above. It may be illuminating to reconsider this case from the
point of view of the second strategy outlined above. For this case evenness requires the
polynomial P(Ẑ) to be given by P(Ẑ) = 2Ẑ after suitably normalizing the operators,
so we have the commutation relations

[X̂ , Ŷ ] = −2ζ Ẑ , [Ẑ , X̂ ] = ζ X̂ , [Ẑ , Ŷ ] = −ζ Ŷ , (6.15)

which one readily recognizes as the standard commutation relations of an sl2 algebra.
The polynomial Q(Ẑ) takes the form Q(Ẑ) = Ẑ Ẑ − ζ Ẑ + κζ 2 and thus the relation
�̂ = 0 reads

�̂ = 0 ⇐⇒ 1

2
(X̂ Ŷ + Ŷ X̂) − Ẑ Ẑ = κζ 2. (6.16)

The upshot is clear: we are setting the quadratic Casimir operator Ĉ2 = 1
2 (X̂ Ŷ + Ŷ X̂)−

Ẑ Ẑ of sl(2) equal to κζ 2. The full non-commutative algebra can then be understood

27 There is nothing special about this choice of ordering. It is just one choice of many that could be made.
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as the central quotient of the universal enveloping algebra of sl2: U(sl2)/〈Ĉ2 − κζ 2〉.
We have rediscovered the fact that this quantum algebra will be the higher spin algebra
hs[λ], where our κ is the same as μ. As we explained in Sect. 5, the SU (2) symmetry
of this algebra renders the choice of basis unique, so all structure constants follow from
the value of μ.

6.3. The Kleinian singularity MA2 = C2/A2. This is our first example of an algebra for
which the gauge invariance associated to changes of basis becomes a real problem. We
have pursued both of the above strategies to analyze this example with similar successes
in both cases. Here we will focus on the second strategy.

As in the A1 case, there is a single free coefficient κ that determines the polynomials P

and Q—though in this case there are two potential parameters and the evenness condition
eliminates one of them. The noncommutative algebra has commutation relations

[X̂ , Ŷ ] = −3ζ Ẑ2 + κζ 3, [Ẑ , X̂ ] = ζ X̂ , [Ẑ , Ŷ ] = −ζ Ŷ , (6.17)

and we quotient by the two-sided ideal generated by

�̂ = 1

2

(
X̂ Ŷ + Ŷ X̂

)
− Ẑ3 +

2κ − 1

2
ζ 2 Ẑ . (6.18)

We find a one-parameter family of bases that satisfy the evenness and truncation con-
straints, with the parameter appearing in the definition of the Z2 operator,

Z2 ≡ Ẑ2 + αζ 2. (6.19)

With normalizations (6.7) and (6.8), we find the following expressions for the star prod-
ucts of the Higgs branch generators,

Z ⋆ Z = Z2 − αζ 2,

Z ⋆ X = Z X +
1

2
ζ X,

Z ⋆ Y = ZY − 1

2
ζY,

X ⋆ Y = Z3 − 3

2
ζ Z2 − 3α + κ

4α
ζ 2 Z +

3α + κ

2
ζ 3.

(6.20)

Note that α appears directly as the constant term in the Z ⋆ Z . Since Z is the moment
map operator in these theories, we will be able to compute α using supersymmetric
localization when we have a path integral realization of the theory.

By imposing the truncation and evenness constraints we have reduced the infinite-
dimensional space of gauge-equivalent algebras for a given period to a one-dimensional
space of algebras for a given period. Our remaining constraint is that of unitarity, which
requires that the constant terms in certain star products have definite sign. In particular,
for this algebra we have ρ(X) = Y , ρ(Y ) = −X , and ρ(Z) = −Z , so our constraints
are all given by

C.T.

(
(−1)i+ j X i Z j ⋆ Y i Z j

)
> 0. (6.21)
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Fig. 1. Regions in the (κ, α) plane that are not excluded by the constraints of unitarity for operators of
dimension less than or equal to two (top left), three (top right), four (bottom left), and five (bottom right)

We computed the constant terms appearing in the following star products:

Z i ⋆ Z i for i = 1, 2, . . . , 6,

X Z i ⋆ Y Z i for i = 0, 1, 2, 3, 4,

X2 Z i ⋆ Y 2 Z i for i = 0, 1, 2, 3,

X3 Z i ⋆ Y 3 Z i for i = 0, 1,

X4 ⋆ Y 4.

(6.22)

By requiring28 that each constant term have the correct sign we find that many values of
(κ, α) are excluded by unitarity. The exclusion plots of this type are displayed in Figs.
1 and 2. The most salient feature of these plots is that the allowed region in the (α, κ)

plane appears to collapse to a one dimensional region that includes points for all values
of κ � 0. In this sense, the addition of unitarity appears to give us a perfect gauge fixing
condition for these noncommutative algebras (for an appropriate range of κ).

28 To facilitate the rendering of these plots, we have superposed the curve of Fig. 2 for small α.
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Fig. 2. Allowed values of (κ, α) after imposing unitarity bounds for the operators listed in the text. The
horizontal dotted black line is at α = (18 − 144

π2 )/72, which is the value of α in the A2 affine quiver gauge

theory. The black dot corresponds to the Z3 gauging of a free hypermultiplet

Let us now consider two specific theories that have C2/Z3 as their Higgs branch. The
first one is the Z3 gauge theory built from a free hypermultiplet. Its Higgs branch chiral
ring is obtained by restricting oneself to the Z3 invariant subsector of the Higgs branch
chiral ring operators of the free hypermultiplet described in Sect. 2.3. We define

Z = 1

6
Q Q̃, X = 1

6
3
2

Q3, Y = 1

6
3
2

Q̃3, (6.23)

which indeed satisfy XY = Z3. Star products can be computed using the Moyal-Weyl-
Groenewold star product (2.25). One straightforwardly obtains the following example
star products:

Z ⋆ Z = Z2 − 1

36
ζ 2

Z ⋆ X = Z X +
1

2
ζ X

Z ⋆ Y = ZY − 1

2
ζY

X ⋆ Y = Z3 − 3

2
ζ Z2 +

1

2
ζ 2 Z − 1

36
ζ 3.

(6.24)

We find in terms of our parameterization that this algebra has α = 1
36 and κ = − 5

36 .

These values are indicated in Fig. 2 by the black dot. Zooming in around these values,
one finds the left plot in Fig. 3.

The other theory we would like to consider is the IR fixed point of the N = 4 quiver
gauge theory whose quiver is the A2 affine Dynkin diagram with U (1) gauge groups
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Fig. 3. Close up views of the unitarity bounds for coefficients κ and α near the points of interest for the free
(left) and affine quiver (right) theories. The allowed values lie in the shaded region. The black dot in the left
plot indicates the location of the Z3 gauge theory of the free hypermultiplet. The dotted black line denotes
value of α for the affine A2 quiver gauge theory

at each node. In Appendix B we compute the two-point coefficient τ for canonically
normalized flavor symmetry currents in this theory using supersymmetric localization
[50]. In terms of the normalizations used in the appendix, we have

Z ⋆ Z = −τ

2
ζ 2 + Z2, (6.25)

while since X and Y have charge ±3 in those conventions, we also have

Z ⋆ X = 3ζ X + Z X, Z ⋆ Y = −3ζY + ZY. (6.26)

Rescaling Z → Z
6 brings us back to the conventions of this section and we then have

Z ⋆ Z = − τ

72
ζ 2 + Z2, (6.27)

from which we can read off α = − τ
72 . In Appendix B, τ was computed to be τ = 18− 144

π2

and thus

α =
144
π2 − 18

72
. (6.28)

Given this value, the coefficient κ is strongly constrained by unitarity, as can be seen in
Fig. 2 and in particular in the right plot of Fig. 3. It must take its value in the range

−.2500015 < κ < − .2499965. (6.29)

It is hard to ignore the presence of the rational value − 1
4 within this range. Assuming

that this is the true value, this seems to be a strong indication that the value of κ should
be exactly computable. This is an interesting direction for future study.
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Fig. 4. Constraints imposed by unitarity on the parameters of the A3 star product. The allowed regions satisfy
unitarity bounds for operators of dimension up to two (upper left), three (upper right), and four (lower left). In
the lower right we show at higher resolution the intersection of the allowed region with the plane representing
the value of α relevant to the affine A3 quiver gauge theory

6.4. The Kleinian singularity MA3 = C2/A3. The analysis for C2/A3 is analogous to
the A2 case. Here we find that the allowed even, truncated star products depend on three
free coefficients—two associated with the space of even periods of the corresponding
quantum algebra, and one additional free coefficient associated with the choice of basis.

The quantum algebra is defined by

[Ẑ , X̂ ] = ζ X̂ , [Ẑ , Ŷ ] = −ζ Ŷ , [X̂ , Ŷ ] = −4ζ Ẑ3 − 2(λ − 1)Zζ 3, (6.30)

where we quotient by the two-sided ideal generated by

�̂ = 1

2

(
X̂ Ŷ + Ŷ X̂

)
− Ẑ4 − λẐ2ζ 2 − κζ 4. (6.31)

The additional coefficient associated to the choice of basis again appears in the definition
of the Z2 operator,

Z2 ≡ Ẑ2 + αζ 2. (6.32)



Deformation Quantization and Superconformal Symmetry in Three Dimensions 379

In the normalizations of (6.7) and (6.8), we then find for the ⋆-products of generators

Z ⋆ Z = Z2 − αζ 2

Z ⋆ X = Z X +
1

2
ζ X

Z ⋆ Y = ZY − 1

2
ζY

X ⋆ Y = Z4 − 2ζ Z3 − f (α, κ, λ)ζ 2 Z2 +
−2κ + α + λα

5α
ζ 3 Z − 2

−2κ + α + λα

5
ζ 4,

(6.33)
where

f (α, κ, λ) = −2κ(λ − 4α) + (1 + λ)(−5 + 6λ − 14α)α

7(κ + α(2 − 3λ + 5α))
, (6.34)

All the other ⋆-products we computed can be expressed in terms of the same three
coefficients.

We have derived unitarity bounds on these parameters associated to the two-point
functions of operators of dimension less than or equal to five. In Fig. 4 we display the
allowed region in parameter space after imposing unitarity bounds for various numbers
of dimensions. The main observation to make is that as the number of unitarity bounds
imposed is increased, the allowed region appears to collapse to a codimension one
subspace of the naive parameter space, with at most one point allowed for each value of
κ and λ. We take this as experimental support of our gauge fixing conjecture.

As in the previous example, we can realize a point in this space with the Z4 gauge
theory of a free hypermultiplet. The Higgs branch chiral ring is given by the Z4 singlet
sector of the free hypermultiplet Higgs branch chiral ring. Its generators can be taken to
be

Z = 1

8
Q Q̃, X = 1

64
Q4, Y = 1

64
Q̃4, (6.35)

and satisfy XY = Z4. Star products can be computed in this theory using the Moyal-
Weyl-Groenewold star product (2.25), and read

Z ⋆ Z = Z2 − 1

64
ζ 2

Z ⋆ X = Z X +
1

2
ζ X

Z ⋆ Y = ZY − 1

2
ζY

X ⋆ Y = Z4 − 2ζ Z3 +
9

8
ζ 2 Z2 − 3

16
ζ 3 Z +

3

512
ζ 4.

(6.36)

From this we can identify the parameters of (6.33) in this theory as κ = 105
4096 , λ = 43

32
and α = 1

64 .
Another point should be realized by the quiver gauge theory with the A3 affine

Dynkin diagram as its quiver with U (1) nodes. In the A3 gauge theory, α is given equal
to τ

128 , where τ was computed in Appendix B using supersymmetric localization. The
constraints of unitarity for algebras with α equal to this value are shown in Fig. 5. We see
that the two-dimensional parameter space collapses to a single curve as more unitarity
bounds are included. We do not know how to compute where on this curve the actual
algebra should sit.
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Fig. 5. Allowed values of the period parameters for the A3 theory when α is set equal to its value for the A3
affine quiver gauge theory. The bounds correspond to requiring the correct sign for two-point functions of
operators up to dimension two (top left), three (top right), four (bottom left), and five (bottom right)

Comment on C2/A4. Finally, let us mention the case of C2/A4 without going into detail.
Here, like in the A3 case, the space of even periods is two-dimensional, and we might
hope that again there would be a one dimensional space of even, truncating bases which
could further be reduced by unitarity to a unique basis for each allowed quantum algebra.

Alas, it is not so simple, and our preliminary investigations indicated that for these
algebras there is a two-dimensional space of even, truncating bases for each choice of
even period. However, for an assortment of values of the even period we then found that
unitarity conditions restrict the basis parameters to a bounded domain. This gives us
hope that ultimately unitarity will prove sufficient to collapse the allowed basis for each
allowed period to a single point, in agreement with Conjecture 1. However, it is clear
that there are plenty of sharp tests of this conjecture within reach. We hope to return to
some of them in the near future.
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7. Future Directions

There are a number of interesting directions for extending the present work. Let us
mention several of them here.

Localization. It is natural to ask whether the algebras studied here are accessible by
supersymmetric localization in theories that have Lagrangian descriptions. It is not im-
mediately obvious that such an approach should work, because the supercharges used
to define the protected associative algebra involve superconformal generators, which
are absent in the ultraviolet description of any three-dimensional gauge theory. What’s
more, the transcendentality of the structure constants described in our Kleinian singu-
larity examples make it implausible that the correlators encoded in our algebra can be
computed simply in a free UV theory. A possible exception to these objections is for
theories, such as the ABJM theories, that are described with actions that are classically
superconformally invariant. It would be very interesting to see whether the cohomology
described in this paper can be investigated directly in those theories using the classical
Lagrangian.29

Omega deformation. A more promising direction for accessing the structure introduced
in this paper with path integral techniques involves the omega deformation. Indeed, in
[21,22] it has been observed that turning on an omega deformation in three-dimensional
N = 4 gauge theories leads to a quantization of the chiral ring. There is a puzzle
involved in understanding this coincidence more deeply. The omega deformation is a true
deformation of the theory, so the exact relationship between observables in the deformed
theory and the original theory are obscured. Nevertheless, the similarity between the
two constructions may hint at a deeper connection between the omega background and
observables at the superconformal fixed point [52].

Local quantization on the moduli space. Our approach in the examples to solving for
the protected associative algebra (in the physical basis) was rather inelegant. This is
much different from the approach used in the mathematics literature to prove theorems
about these quantizations. There one works locally on M (or on a larger space fibered
over the space of resolutions of M) and builds a sheaf of noncommutative algebras that
are easy to define locally. The algebra of interest to us is then roughly the algebra built
out of global sections of this sheaf. It would be interesting to know whether the details
of our problem—in particular the properties required to define the physical basis—can
be understood in such a framework.

Inclusion of conformal defects. The cohomological construction that gives rise to the
protected associative algebra can be extended to configurations where conformal defect
operators are present in such configurations that the relevant supercharge is still a sym-
metry. This allows for the inclusion of BPS line operators lying on Rtop and/or BPS

29 After the first version of this paper appeared, it was demonstrated by Dedushenko, Pufu, and Yacoby that
the algebras described in this paper can be computed using supersymmetric localization on the three-sphere
[51]. This evades the problem of the lack of superconformal invariance by realizing the relevant conformal
supercharge as a rigid supercharge on the curved background.
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boundary conditions or domain walls filling the plane transverse to Rtop and intersecting
it at the origin. On general grounds, the algebra supported on the line defects will still
be a deformation quantization of the chiral ring, but the evenness constraint will no
longer hold. Boundaries will need to furnish bi-modules and modules, respectively, for
the quantized algebra. Most of these general comments also hold in the case where the
quantization in question arises due to an omega deformation [53]. It would be interest-
ing to see if in the superconformal construction there are additional strong constraints
analogous to those defining the physical basis in the present work.

Extensions of the algebra. In a similar vein, the associative algebra we have described
can be realized in a configuration in which the three-dimensional N = 4 theory is
supported on the worldvolume of a conformal defect in a higher-dimensional SCFT. The
only case where we are certain this can be arranged is in the case of a four-dimensional
N = 4 SCFT with a conformal boundary or domain wall. Again one can see without
much work what sort of algebraic structure must arise from such a configuration. In
particular, the half-BPS chiral ring operators of the bulk N = 4 theory will be able to
interact with the quantized algebra on the boundary, and they will necessarily form a
subalgebra that is central to the full noncommutative algebra.

More generally, we have found in this paper that the properties of superconformal
field theories suggest a new viewpoint from which to consider an already well-studied
subject in mathematics—namely the quantization of symplectic singularities. At least
some of the conditions we have studied seem rather natural from the point of view of the
hyperkähler structure of these singularities. Indeed, the construction of twisted translated
operators in the three-dimensional SCFT looks like it could be understood as a nontrivial
fibration of spacetime over the twistor sphere of the Higgs branch. It seems likely that
developing the theory surrounding the physical bases for such quantum algebras could
lead to a great deal of interesting mathematics as well as a additional exact results for
interesting superconformal field theories.
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A. Hyperkähler Geometry and Chiral Rings

This purpose of this appendix is to provide a collection of relevant facts about hyperkähler
cones and their connections to three-dimensional superconformal field theory. Most of
the discussion here appears in [54], with additional mathematically precise exposition
available in [55]. The present appendix is included for the reader’s convenience and to
emphasize the specific structures that play a role in the present work. In addition we

http://creativecommons.org/licenses/by/4.0/
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collect the relevant data for the A-type Kleinian singularities to set up the bootstrap
problem described in the text.

Hyperkähler manifolds and cones. A hyperkähler manifold M is a manifold possessing
three inequivalent complex structures—denotedJ 1,2,3—obeyingJ 1J 2 = J 3 such that
M is kähler with respect to all three complex structures. We denote the corresponding
kähler forms ω1,2,3. In a given complex structure, say J 3, one has kähler form ω3 and
the other kähler forms combine into a holomorphic symplectic form �(2,0) := ω1 + iω2.
For this reason, from the point of view of complex geometry hyperkähler manifolds are
often treated essentially as holomorphic symplectic manifolds.

The moduli spaces of three-dimensional N = 4 SCFTs are singular hyperkäh-
ler spaces. As additional structure they admit a dilatation (homothety) and a non-
holomorphic SU (2)R isometry rotates the complex structures as a triple.30 The dilatation
symmetry makes M into a cone, with the SU (2)R isometry acting on the base.

In general a hyperkähler manifold can look much different as a holomorphic sym-
plectic manifold depending on the choice of which complex structure one considers.
However for a hyperkähler cone, because the complex structures are all rotated into one
another under the action of SU (2)R , things look the same regardless of the choice of
complex structure. Thus it will not be essential to specify in which complex structure
we are considering our cones. Any choice will be equally good.

Coordinate algebras. Our interest in hyperkähler cones is mainly related to their alge-
braic structure. In particular, all of the examples considered in the present paper—and
to the best of our knowledge all hyperkähler cones that occur as the moduli spaces of
three-dimensional N = 4 SCFTs—are affine algebraic varieties. We can then focus on
the coordinate algebra A ≡ C[M] of the hyperkähler cone, which will be a finitely
generated, reduced, commutative C-algebra. On a generic hyperkähler manifold, the co-
ordinate algebra might depend on a choice of complex structure, but as we just mentioned
all complex structures are equivalent on a hyperkähler cone, and one may meaningfully
discuss the coordinate algebra.

Two totally standard features of the coordinate algebra of a hyperkähler cone are the
following:

• Z�0 Grading—A choice of complex structure picks out a Cartan subalgebra U (1)R ⊂
SU (2)R that leaves the complex structure fixed. The dilatation isometry on M is then
complexified by that cartan to give a holomorphic C⋆ action on the coordinate algebra
of M. The elements of the coordinate algebra are half-integrally graded under this
action—but we will use conventions in this paper such that the grading is defined with
an extra factor of two so that the algebra is graded by non-negative integers,

A =
⊕

p∈Z�0

Ap, (A.1)

where A0 is just the constant functions. Additionally, A2 comprises moment maps
for hyperkähler isometries of M.

30 The SU (2)H and SU (2)C symmetries of an SCFT act as isometries on the Higgs and Coulomb branches
of vacua, respectively. Here we are just dealing with a single hyperkähler cone, and we will call whichever is
the relevant symmetry SU (2)R .
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• Poisson bracket—The holomorphic symplectic two-form has charge two (in our con-
ventions) with respect to the C⋆ action. This turns the coordinate algebra into a Poisson
algebra with Poisson bracket of degree negative two, which in local coordinates takes
the form

{ f, g} = (�−1)i j∂i f ∂ j g. (A.2)

Note that the holomorphic two-form doesn’t have a preferred overall normalization,
so neither does this poisson bracket. In the text we generally choose a convenient
normalization for the poisson bracket as a way of fixing the normalizations of chiral
ring operators in N = 4 SCFTs.

The above conditions only involve knowledge of M as a holomorphic symplectic man-
ifold. There is an additional structure that can be described at the level of the coordinate
algebra that encodes more of the hyperkähler structure of M.

• Conjugation—The coordinate algebra admits a privileged order-four C-antilinear
endomorphism. We can think of this as follows. Every holomorphic function lives in
a finite-dimensional SU (2)R multiplet of functions on M. A holomorphic function is
the highest weight state in its multiplet with respect to the Cartan decomposition in-
troduced earlier. The lowest weight state in same multiplet is anti-holomorphic. Let us
introduce the notation σ( f ) to denote the anti-holomorphic function obtained thusly.
Then there is a complex anti-linear map endomorphism of the space of holomorphic
functions that can be defined as

ρ : A → A,

ρ( f ) = (σ ( f )). (A.3)

This conjugation operation has the property that ρ2 = (−1)2R , so it is order at most
four, though in some examples it will be of order two and so an involution. It is natural
to adopt a basis for the coordinate algebra that diagonalizes the action of ρ2.

Using the information about this conjugation operation on M as a holomorphic
symplectic variety, one can almost completely reconstruct M as a hyperkähler manifold
via its twistor space [54]. Although we will not make use of any twistor space technology
in the present paper, there are many hints that the algebraic construction we are discussing
is closely connected to it.

Translation to physics. The properties of hyperkähler coordinate algebras are closely
connected with the properties of half-BPS local operators in three-dimensional N = 4
SCFTs. This is because the half-BPS operators are in one to one correspondence with
the elements of the coordinate ring. In the text, we often label half-BPS operators by the
holomorphic function f : M → C that describes the expectation value of that operator
at each point in the moduli space. Chiral ring multiplication is then just the multiplication
of holomorphic functions in the coordinate algebra,

O f Og = O f ·g. (A.4)

The grading of the coordinate algebra corresponds in the obvious way to the grading of
the chiral ring by R-charge. We further have argued in Sect. 3 that the poisson bracket
is reflected in certain singular terms in the OPE between Higgs (or Coulomb) branch
operators. We will not repeat the argument here.
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The conjugation operation on the coordinate algebra lifts to an anti-unitary symmetry
of an N = 4 SCFT. This symmetry is simply the composition of the CPT operator, �,
and an SU (2)R rotation by π , Rπ that sends (ω1, ω2, ω3) → (ω1,−ω2,−ω3). We then
have

[(� ◦ Rπ ),O f ] = Oρ( f ). (A.5)

Of course, one could make other choices for a rotation by π if so desired. This would
amount to improving the action of ρ with the action of any unitary Z2 symmetry, or in
geometric language, any C-linear involution of M.

Examples. To make the above discussion completely clear, we start with the simplest
example of a hyperkähler cone, C2. This is the Higgs branch of the theory of a free
hypermultiplet. Taken in a complex structure with complex coordinates (z, w), we have

�(2,0) = dw ∧ dz,

ω(1,1) = i

2
(dw ∧ dw̄ + dz ∧ dz̄) ,

�(0,2) = dw̄ ∧ dz̄, (A.6)

The coordinate algebra is just C[z, w], and we take z and w to each have scaling dimen-
sion one. The Poisson bracket induced by the holomorphic symplectic form is given by

{w, z} = 1. (A.7)

The real structure and the corresponding anti-linear conjugation take the following form,

σ(z) = w �⇒ ρ(z) = w,

σ(w) = −z �⇒ ρ(w) = −z.
(A.8)

The next simplest example is a quotient of the first example, the cone C2/Z2. We can
realize this space as the algebraic variety defined by {XY = Z2} ⊂ C3. If we want, we
may think of the generators of the coordinate ring in terms of the coordinates z and w

on the covering space as

X = z2, Y = w2, Z = zw. (A.9)

The holomorphic symplectic form is now given by

�(2,0) = d X ∧ dY

−2Z
, (A.10)

which encodes the following Poisson brackets for the generators of the coordinate ring,

{Y, X} = 2Z ,

{Z , X} = X,

{Z , Y } = −Y.

(A.11)

Conjugation now acts according to

ρ(Z) = −Z ,

ρ(X) = Y,

ρ(Y ) = X.

(A.12)
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We include one more example that appears in the paper and that illustrates a subtle
phenomenon that will be important. This is the cone C2/Z3. We can again realize this
as an algebraic variety in C3 defined by the homogeneous equation XY = Z3. In terms
of generators on the C2 cover, we have

X = z3, Y = w3, Z = zw. (A.13)

The holomorphic symplectic form is given by

�(2,0) = d X ∧ dY

−3Z2 , (A.14)

the Poisson brackets of the generators are

{Y, X} = 3Z2,

{Z , X} = X,

{Z , Y } = −Y.

(A.15)

Conjugation now acts according to

ρ(Z) = −Z ,

ρ(X) = Y,

ρ(Y ) = −X.

(A.16)

The thing to notice here is that there is a meaningful correspondence between signs in
the poisson bracket and signs appearing in the conjugation operation. If we changed
the poisson bracket to have have a minus sign in front of X and a plus sign in front
of Y on the right hand side of (A.15) without making a similar change in (A.16), it
would be a meaningful change to the hyperkähler data of this manifold that could not be
cancelled by any redefinition of variables.31 This means that one needs to be very careful
in defining the conjugation operation—indeed, the unitarity bounds that we derive and
study in Sect. 6 depend in a detailed manner on these choices.

B. Moment Map Norms from Localization

In this appendix we describe the calculation of two-point functions for moment map
operators—that is, for half-BPS operators of dimension one. These necessarily have
conserved currents for global flavor symmetries as descendants. Their expectation values
on the Higgs branch are those of the moment map for the Hamiltonian flavor symmetry
action.

These two-point functions can be computed because they are related to the canoni-
cally normalized current two-point functions by supersymmetry, and these current two-
point functions can be computed using supersymmetric localization [50]. We proceed
as follows. First we consider the N = 4 theory as a special case of an N = 2 theory
by choosing an embedding of O Sp(2|4, R) →֒ O Sp(4|4, R). The SO(2)r

∼= U (1)r

symmetry of the N = 2 theory depends on the chosen embedding and is an abelian sub-
group of the N = 4 R-symmetry—its commutant in SU (2)C × SU (2)H is realized as
additional flavor symmetries. We then define a supersymmetric coupling of the N = 2
theory to the round three-sphere background using an r -symmetry that is an arbitrary

31 We would like to particularly thank Davide Gaiotto and Andy Neitzke for discussions on this topic.
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mixture of the true r -symmetry with an abelian subgroup of the flavor symmetry. The
current two-point function is then the second derivative of this free energy with respect
to the mixing coefficient, evaluated when the mixing coefficient vanishes.

Let us first establish conventions and normalizations. In an N = 2 SCFT with abelian
flavor currents j

(a)
μ , the current two-point function is fixed by conformal invariance to

take the form 〈
j (a)
μ (x) j (b)

ν (0)

〉
= τ ab

16π2

(
δμν∂

2 − ∂μ∂ν

) 1

x2 , (B.1)

where τ ab is a positive definite matrix. The normalization is chosen such that in the
theory of a single free chiral multiplet Q of unit flavor charge, we have

〈Q(x)Q†(0)〉 = 1

|x | ,∫

S2
0

(
n̂ · j(x)

)
Q(0) = i Q(0),

〈
jμ(x) jν(0)

〉
= 1

16π2

(
δμν∂

2 − ∂μ∂ν

) 1

x2 ,

(B.2)

so that τchiral = 1.
To relate the coefficient τ to the moment map two-point function coefficient, we

consider a single free N = 4 hypermultiplet. It decomposes in two free chiral multiplets
(Q, Q̃)—to which we assign U (1) flavor symmetry charges +1 and −1 respectively—so
τhyper = 2.32 Let μ(ab)(x) denote the SU (2)H triplet moment map operator for this U (1)

flavor symmetry, which we normalize according to

μ(12)(x)Q(0) ∼ Q(0)

|x | + · · · , μ(12)(x)Q̃(0) ∼ − Q̃(0)

|x | + · · · . (B.3)

Concretely, our normalizations amount to defining μ11 = 2Q Q̃, μ(12) = (Q Q†−Q̃ Q̃†),
and μ22 = −2Q† Q̃†. It is straightforward to then compute

〈μ(12)(x)μ(12)(0)〉 = 2

|x |2 , 〈μ11(x)(μ11(0))†〉 = 4

|x |2 , (B.4)

where μ11, μ22 complete the SU (2) triplet and satisfy (μ11)† = −μ22. Superconformal
symmetry then guarantees that with these normalizations for the moment map operators
in terms of the flavor charges, there is a general relation

〈
μ(12),a(x)μ(12),b(0)

〉
= τ ab

|x |2 ,

〈
μ11,a(x)

(
μ11,b(0)

)†
〉

= 2τ ab

|x |2 . (B.5)

Now consider an N = 2 supersymmetric Lagrangian theory and denote the UV
U (1)r charges of the bottom components of its chiral multiplets Qi as r0(Qi ). Let us
further denote its abelian flavor symmetry charges as Fa . The U (1)r charges of the
infrared conformal field theory, which equal the conformal dimensions, are generally
obtained by mixing with flavor symmetries, r(Qi )(t) = r0(Qi ) +

∑
ta Fa(Qi ). Let t∗

denote the values of the mixing parameters corresponding to the infrared r -charges.

32 The full flavor symmetry of the free hypermultiplet is U Sp(2). We focus on its (rescaled) Cartan com-
ponent here.
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U(1) U(1)

Fig. 6. Quiver diagram for the A1 gauge theory

The three-sphere partition function ZS3(t) can be computed exactly via supersymmetric
localization [56–58] and is a function of the mixing parameters; its free energy F(t) =
− log ZS3(t) satisfies

∂

∂ta
Re F(t)

∣∣∣
t=t∗

= 0,
∂2

∂ta∂tb
Re F(t)

∣∣∣
t=t∗

= −π2

2
τab. (B.6)

Here the first equation encodes the use of F-maximization [56] to determine the infrared
r -charges, i.e., to fix the mixing parameters t∗. In our N = 4 examples there is no mixing
and we will always have t∗ = 0. When the first equation is satisfied, the second one
simplifies to

τab = 2

π2 Re
1

Z(t∗)

∂2

∂ta∂tb
Z(t)

∣∣∣
t=t∗

. (B.7)

Free chiral multiplet. Let us consider the simplest example of a single free, massless
chiral multiplet. The theory is conformal, with the complex scalar having r0 = 1

2 . Mixing
with the U (1) flavor symmetry is parameterized as r(t) = r0 + t – obviously we will
have t∗ = 0. The three-sphere partition function obtained via localization is given by

ZS3(t) ∼ eℓ(1−r(t)) = e
ℓ

(
1
2 −t
)

. (B.8)

The function ℓ(z) was introduced in [56] and satisfies the useful properties

ℓ′(z) = −π z cot(π z), ℓ

(
1

2
− i z

)
+ ℓ

(
1

2
+ i z

)
= − log (2 cosh(π z)) . (B.9)

We have neglected prefactors in the partition function since they play no role in deter-
mining the flavor current two-point function coefficient τ . Indeed, we have

τ = 2

π2 Re
1

Z(0)

∂2 Z(t)

∂t2

∣∣∣
t=0

= 2

π2 Re
1

eℓ(1/2)

π2

2
eℓ(1/2) = 1, (B.10)

as expected.

A1 theory. The first nontrivial example relevant for the text is the N = 4 superconformal
field theory whose Higgs branch is the A1 singularity. Microscopically it is a U (1) gauge
theory with two charged hypermultiplets. The symmetry rotating the two hypermultiplets
constitutes an SU (2) flavor symmetry. In light of generalizing the computation to other
Kleinian singularities, it will be convenient to think of the theory as a U (1)2/U (1)

gauge theory with two bifundamental N = 4 hypermultiplets, which can be encoded
in the quiver in Fig. 6 The corresponding N = 2 chiral multiplets Qi , Q̃i for i = 1, 2
have their U (1)2 × U (1)F charges given in Table 2. We have omitted the free, neutral
chiral multiplets arising from the N = 4 vector multiplets as they are irrelevant for the
computation of the current two-point function coefficient.
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Table 2. Charges under the U (1)2 gauge symmetry and U (1)F flavor symmetry

U (1)1 U (1)2 U (1)F

Q1 1 −1 1
Q2 1 −1 −1
Q̃1 −1 1 −1
Q̃2 −1 1 1

Note that the fields are uncharged under the diagonal U (1)

Table 3. Charges of matter fields in the A2 quiver theory

U (1)1 U (1)2 U (1)3

Q1 1 −1 0
Q2 0 1 −1
Q3 −1 0 1
Q̃1 −1 1 0
Q̃2 0 −1 1
Q̃3 1 0 −1

All fields are uncharged under the diagonal U (1)

We now need to compute the partition function ZS3(t), where t parametrizes the
mixing of the U (1)F symmetry with the U (1)r charges of the chiral multiplets. Con-
cretely, the bottom components of the chiral superfields Q1 and Q̃2 are given r -charge
r f (t) = 1

2 + t , while the bottom components of the chiral superfields Q2 and Q̃1 are
given r -charge ra(t) = 1

2 − t . Thanks to N = 4 supersymmetry, the infrared r -charges
are specified by t∗ = 0. We find

ZS3(t) ∼
∫

dσ1dσ2 δ(σ1 + σ2) eℓ(1−r f (t)±i(σ1−σ2))+ℓ(1−ra(t)±i(σ1−σ2))

∼
∫

dx eℓ(1−r f (t)±i x)+ℓ(1−ra(t)±i x).

(B.11)

The delta function implements the modding out of the diagonal U (1) and we used
shorthand notation to denote a product over all signs independently in the integrand. We
also omitted overall factors: they will not be important, since the coefficient τ can be
computed using (B.7),

τ = 2

π2 Re
1

Z(0)

∂2 Z(t)

∂t2

∣∣∣
t=0

= 8

3
. (B.12)

A2 theory. This theory has a microscopic description as a quiver gauge theory with
quiver given by the affine Dynkin diagram of A2, whose nodes are U (1) gauge groups.
In N = 2 language, this means that we have six chiral matter multiplets Qi , Q̃i for
i = 1, 2, 3 whose bottom components have U (1)3 charges as in Table 3. The fields
are uncharged under the diagonal U (1) gauge symmetry, which should be modded out.
Furthermore, the theory has a U (1)F flavor symmetry which assigns charge +1 to the Qi

and charge −1 to the Q̃i . The vector multiplets decompose into a U (1)3/U (1) neutral
chiral multiplet, which will not play a role, and U (1)3/U (1) N = 2 vector multiplets.

Mixing in the flavor symmetry, the bottom components of the chiral superfields Qi

are assigned r -charge r(t) = 1
2 +t , while the bottom components of the chiral superfields
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Q̃i are assigned r -charge r̃(t) = 1
2 − t . Again one has t∗ = 0. The partition function

ZS3(t) as a function of the parameter t is then computed by the following integral

Z(t) ∼
∫

dσ1dσ2dσ3 δ(σ1+σ2+σ3) eℓ(1−r(t)+i(σ1−σ2))+ℓ(1−r(t)+i(σ2−σ3))+ℓ(1−r(t)+i(σ3−σ1))

× eℓ(1−r̃(t)−i(σ1−σ2))+ℓ(1−r̃(t)−i(σ2−σ3))+ℓ(1−r̃(t)−i(σ3−σ1)). (B.13)

Again, the delta function removes the diagonal U (1) and we omitted unimportant overall
constants. Changing variables to x1 = σ1 − σ2, x2 = σ2 − σ3 and x3 = σ1 + σ2 + σ3,
we find

Z(t) ∼
∫

dx1dx2 eℓ(1−r(t)+i x1)+ℓ(1−r(t)+i x2)+ℓ(1−r(t)+i(−x1−x2))

× eℓ(1−r̃(t)−i x1)+ℓ(1−r̃(t)−i x2)+ℓ(1−r̃(t)−i(−x1−x2)).

(B.14)

From this integral representation we can compute the current two-point function analyt-
ically, and we find

τ = 2

π2 Re
1

Z(0)

∂2 Z(t)

∂t2

∣∣∣
t=0

= 18 − 144

π2 . (B.15)

A3 theory. Finally, we consider theory with quiver given by the A3 affine Dynkin di-
agram. Following the same steps as in the previous examples, we arrive at an integral
representation for the current two-point function that can be performed analytically.
Ultimately, we obtain the following expression for the current two-point function:

τ = 512(π2−6)

51π2+18 ∂a

(
1

Ŵ(a) 3 F2

[
1,2,2
3,a

;−1

])
−36 ∂b

(
1

Ŵ(b) 2 F1

[
1,2
b

;−1

])
−36

∣∣∣∣∣∣∣∣
a→2, b→3

(B.16)
Since this is a somewhat inscrutable expression, we note that numerically this is τ ≈
4.1821109 . . .
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