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Abstract We exhibit a probabilistic symbolic algorithm for solving zero-dimensional
sparse systems. Our algorithm combines a symbolic homotopy procedure, based on a
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flat deformation of a certain morphism of affine varieties, with the polyhedral defor-
mation of Huber and Sturmfels. The complexity of our algorithm is cubic in the size
of the combinatorial structure of the input system. This size is mainly represented by
the cardinality and mixed volume of Newton polytopes of the input polynomials and
an arithmetic analogue of the mixed volume associated to the deformations under
consideration.
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1 Introduction

This paper deals with the symbolic computation of all solutions to zero-dimension-
al multivariate polynomial equation systems, i.e., systems with a finite number of
common complex zeros. We focus our attention on systems of sparse polynomials,
namely, polynomials with nonzero coefficients only at a prescribed set of monomi-
als.

The algorithms presented in this paper rely on deformation techniques. Roughly
speaking, a deformation method to solve a zero-dimensional polynomial system
obtains a perturbation of the given system. This perturbation consists of a para-
metric family of zero-dimensional systems with a parametric instance easy to
solve, enabling one to recover the solutions of the original system by continua-
tion.

Deformation methods for computing all solutions of a given zero-dimensional
polynomial system have been applied extensively in the numeric solving framework
(see, e.g., [1, 7, 37, 53]). This kind of algorithm has also appeared (both for symbolic
and numeric solving) in a number of recent research papers (see, e.g., [8, 17, 25, 26,
28, 32, 34, 41, 46, 52, 56, 57]). The cost of such algorithms is usually determined by
geometric invariants associated to the family of systems under consideration, typi-
cally in the form of a suitable (arithmetic or geometric) Bézout number (for instance,
the product of the degrees of the polynomials, the mixed volume of their Newton
polytopes, etc.; see [24, 26, 27, 35, 38, 45, 49]).

From the symbolic point of view, every instance of a deformation procedure is
regarded as a fiber of a suitable morphism π (customarily a flat linear projection
with generic finite fiber) of an affine variety W . In this case, the continuation step is
achieved by a symbolic Newton–Hensel lifting. This method, implicitly considered
in the papers [20, 21], is isolated in [25] and refined in [8, 52] (see also [24, 41]). The
cost of this procedure can be roughly estimated by the product of two geometric in-
variants: the number of points in a typical fiber of π and the degree of the variety W .
This technique is nearly optimal in the worst case [13], and has good performance
over certain well-posed families of polynomial systems of practical interest (see
[8, 12, 25, 41, 52]).
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The origins of sparse elimination theory can be traced back to the results by
D.N. Bernstein, A.G. Kushnirenko and A.G. Khovanski ([5, 29, 30]) that bound
the number of solutions of a polynomial system in terms of a combinatorial invari-
ant associated to the set of exponents of the monomials arising with nonzero co-
efficients in the defining polynomials. More precisely, the Bernstein–Kushnirenko–
Khovanski (BKK for short) theorem asserts that the number of isolated solutions in
the n-dimensional complex torus (C∗)n of a polynomial system of n equations in n

unknowns is bounded by the mixed volume of the family of Newton polytopes of the
corresponding polynomials.

Numeric (homotopy continuation) methods for sparse systems are typically based
on a specific family of deformations called polyhedral homotopies ([26, 48, 56, 57]).
Polyhedral homotopies preserve the Newton polytope of the input polynomials and
yield an effective version of the BKK theorem (see, e.g., [26, 27]).

In this paper we combine the homotopic procedures of [26] with the above men-
tioned symbolic deformation techniques, particularly in the version of [8], in order to
derive a symbolic probabilistic algorithm for solving sparse zero-dimensional poly-
nomial systems with cubic cost in the size of the combinatorial structure of the input
system. Our main result may be stated as follows (see Theorem 6.2 below for a pre-
cise statement).

Main Theorem Let f1, . . . , fn be polynomials in Q[X1, . . . ,Xn] such that the sys-
tem f1 = 0, . . . , fn = 0 defines a zero-dimensional affine subvariety V of C

n. Denote
by �1, . . . ,�n ⊂ Z

n
≥0 the supports of f1, . . . , fn, and assume that 0 ∈ �i for 1 ≤

i ≤ n and the mixed volume D of the Newton polytopes Q1 := Conv(�1), . . . ,Qn :=
Conv(�n) is nonzero.

Then, we can probabilistically compute a geometric solution of the variety V

using O (̃NDD′) arithmetic operations in Q, with N := ∑

1≤i≤n #�i and D′ :=
∑

1≤i≤n M(�,Q1, . . . ,Qi−1,Qi+1, . . . ,Qn), where � denotes the standard n-di-
mensional simplex and M stands for mixed volume.

Here O˜ refers to the standard Soft-Oh notation which does not take into ac-
count logarithmic terms. Further, we have ignored terms depending polynomially
on n and the size of certain combinatorial objects associated to the polyhedral defor-
mation.

Our algorithms are of Monte Carlo or BPP type (see, e.g., [3, 59, 61]), i.e.,
they return the correct output with probability at least a fixed value strictly greater
than 1/2. This means that the error probability can be made arbitrarily small by
iteration of the algorithms. On the other hand, our algorithms do not seem to
be of Las Vegas or ZPP type, i.e., we have no means of checking the correct-
ness of our output results. We observe that the probabilistic aspect of our algo-
rithms is related to the random choice of points outside certain Zariski closed
subsets of suitable affine spaces, whose probability of success is explicitly esti-
mated.

We assume that the combinatorics of the polyhedral deformation mentioned above
are known. More precisely, we assume that we are given a certain collection of sub-
sets of the input supports �1, . . . ,�n, which defines a fine-mixed subdivision of
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�1, . . . ,�n, together with the lifting function which yields such a subdivision (for
precise definitions see [26, Sect. 2] or Sect. 2.1 below). For an efficient algorithm
computing these objects see, for instance, [33].

The input of our algorithm is the standard sparse representation of the polynomi-
als f1, . . . , fn ∈ Q[X1, . . . ,Xn], that is, the list of exponents of all nonzero mono-
mials arising in f1, . . . , fn together with the corresponding coefficients. Neverthe-
less, n-variate polynomials which arise as intermediate results of our algorithm will
be usually represented by an algorithm which allows their evaluation at a generic
value of C

n by means of a sequence of arithmetic operations or straight-line program
(see Sect. 2.2). We observe that in our setting there are no significant differences be-
tween the sparse and the straight-line program representation. Indeed, any polynomial
f ∈ Q[X1, . . . ,Xn] of degree at most d > 0 having support � ⊂ Z

n
≥0 can be evalu-

ated with O(n#� logd) arithmetic operations in C. In this sense, we see that f has
a straight-line program representation whose size is of the same order as its standard
sparse representation, and can be efficiently obtained from the latter. On the other
hand, from a straight-line program which evaluates a polynomial f ∈ Q[X1, . . . ,Xn]
of (known) support � with L arithmetic operations, the corresponding sparse repre-
sentation can be easily obtained by a process of multipoint evaluation and interpola-
tion with cost O(L#�), up to logarithmic terms. Since the routines of our procedure
are of black-box type (cf. [13]), that is, they only call the input polynomials and their
first derivatives for substitutions of the variables X1, . . . ,Xn into values belonging to
suitable commutative zero-dimensional algebras, we conclude that the straight-line
program representation of intermediate results is better suited than the sparse one. In
particular, we note that computing the first derivatives of a multivariate polynomial
can be done more efficiently for polynomials given by straight-line programs than by
their sparse encoding (cf. [4]).

The output of the algorithm is a geometric solution (also called a rational univari-
ate representation) of the zero-dimensional variety V . Roughly speaking, the points
of V are parametrized by the values of the image of a linear projection V → C de-
fined by a generic linear form with rational coefficients. In order to obtain a “ratio-
nal” algorithm, we compute a univariate polynomial with rational coefficients whose
roots are precisely these values (see Sect. 2.3 for a precise definition of this no-
tion).

The complexity of our algorithm is mainly expressed in terms of three quan-
tities which measure the size of the combinatorial structure of the input system:
the number of nonzero coefficients N := ∑

1≤i≤n #�i and the mixed volumes
D := M(Q1, . . . ,Qn) and D′ := ∑

1≤i≤n M(�,Q1, . . . ,Qi−1,Qi+1, . . . ,Qn).
While D represents the (optimal) number of paths which are followed during
our homotopy, the quantity D′ is an arithmetic analogue of D (see [43, 44])
which measures the “precision” at which the paths of our homotopy must be fol-
lowed. We observe that the invariant D′ is also optimal for a generic choice of
the coefficients of the polynomials f1, . . . , fn (see Lemma 2.3 below; compare
also with [45, Theorem 1.1]). Therefore, we may paraphrase our complexity esti-
mate as saying that it is cubic in the combinatorial structure of the input system,
with a geometric component, an arithmetic component and a component related
to the size of the input data. In this sense, we see that the cost of our algorithm
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strongly resembles the cost O(NDμ2) of numerical continuation algorithms, where
μ is the highest sparse condition number arising from the application of the Im-
plicit Function Theorem to the points of the paths which are followed (cf. [15];
see also [36] for a probability analysis of the condition numbers of sparse sys-
tems).

Our result improves and refines the estimate of [8] in the case of a sparse sys-
tem, which is expressed as a fourth power of D and the maximum of the degrees of
two varieties associated with the input (we observe that this maximum is an upper
bound for the parameter D′). On the other hand, it also improves [46, 47], which
solve a sparse system with a complexity which is roughly quartic in the size of
the combinatorial structure of the input system. Finally, throughout the paper we
provide explicit estimates of the error probability of all the steps of our algorithm.
This might be seen as a further contribution to the symbolic stage of the proba-
bilistic seminumeric method of [26], which lacks such analysis of error probabil-
ity.

The algorithm proceeds in two main steps: in the first step, the polyhedral de-
formation introduced in [26] is applied to solve an auxiliary generic sparse system
with the same structure as the input polynomials (Sect. 5; see also Sect. 4 for a dis-
cussion on the genericity conditions underlying the choice of the coefficients of the
corresponding polynomials). In the second step, the solutions of this generic system
enable us to recover the solutions of the given system by means of a standard homo-
topic deformation (see Sect. 6).

In the first step, in order to solve a generic sparse system h1 = 0, . . . , hn = 0 with
supports �1, . . . ,�n, the polyhedral homotopy of [26] introduces a new variable T

and deforms the polynomial hi by multiplying each nonzero monomial of hi by a
power of T (which is determined by the given lifting function). The roots of the
resulting parametric system are algebraic functions of the parameter T whose expan-
sions as Puiseux series can be obtained by “lifting” the solutions to certain associated
zero-dimensional polynomial systems that can be easily solved due to their specific
structure (see Sect. 5.2 for details). This enables us to compute a geometric solution
of the zero set of this parametric system (Sect. 5.3). Substituting 1 for T in the com-
puted polynomials, a geometric solution of the set of common zeros of h1, . . . , hn is
obtained (Sect. 5.4).

For the sake of comprehensiveness, throughout Sects. 4 and 5 the whole first step
of the algorithm will be illustrated with a bivariate polynomial example borrowed
from [26, Example 2.7].

After solving the system h1 = 0, . . . , hn = 0, in the second step the solutions to
the input system f1 = 0, . . . , fn = 0 are recovered by considering a second homotopy
of type Tf1 + (1 − T )h1, . . . , Tfn + (1 − T )hn (see Sect. 6). As in the first step,
the algorithm first solves this parametric system (Sect. 6.1) and then, substituting 1
for T , a complete representation of the solution set of the input system is obtained.
This representation eventually includes multiplicities, which are removed in a further
computation (Sect. 6.2).
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2 Preliminaries

2.1 Sparse Elimination

Here we introduce some notions and notations of convex geometry and sparse elimi-
nation theory (see, e.g., [19, 26, 48]) that will be used in the sequel.

2.1.1 Basic Notions

Let X1, . . . ,Xn be indeterminates over Q and write X := (X1, . . . ,Xn). For q :=
(q1, . . . , qn) ∈ Z

n, we use the notation Xq := X
q1
1 · · ·Xqn

n . Let f :=∑

q cqXq be a

Laurent polynomial in Q[X,X−1] := Q[X1,X
−1
1 , . . . ,Xn,X

−1
n ]. By the support of f

we understand the subset of Z
n defined by the elements q ∈ Z

n for which cq 	= 0
holds. The Newton polytope of f is the convex hull of the support of f in R

n.
A sparse polynomial system with supports �1, . . . ,�n ⊂ Z

n
≥0 is defined by poly-

nomials

fi(X) :=
∑

q∈�i

ai,q Xq (1 ≤ i ≤ n),

with ai,q ∈ C \ {0} for each q ∈ �i and 1 ≤ i ≤ n.
For a finite subset � of Z

n, we denote by Q := Conv(�) its convex hull in R
n.

The usual Euclidean volume of a polytope Q in R
n will be denoted by VolRn(Q).

Let Q1, . . . ,Qn be polytopes in Rn. For λ1, . . . , λn ∈ R≥0, we use the notation
λ1Q1 + · · · + λnQn to refer to the Minkowski sum λ1Q1 + · · · + λnQn := {x ∈ R

n :
x = λ1x1 + · · · + λnxn with x1 ∈ Q1, . . . , xn ∈ Qn}. Consider the real-valued func-
tion (λ1, . . . , λn) 
→ VolRn(λ1Q1 + · · · + λnQn). This is a homogeneous polynomial
function of degree n in the λi (see, e.g., [14, Chap. 7, Proposition §4.4.9]). The mixed
volume M(Q1, . . . ,Qn) of Q1, . . . ,Qn is defined as the coefficient of the monomial
λ1 · · ·λn in VolRn(λ1Q1 + · · · + λnQn).

For i = 1, . . . , n, let �i be a finite subset of Z
n
≥0 and let Qi := Conv(�i) de-

note the corresponding polytope. Let f1, . . . , fn be a sparse polynomial system
with respect to �1, . . . ,�n. The BKK theorem ([5, 29, 30]) asserts that the sys-
tem f1 = 0, . . . , fn = 0 has at most M(Q1, . . . ,Qn) isolated common solutions
in the n-dimensional torus (C∗)n, with equality for generic choices of the coeffi-
cients of f1, . . . , fn. Furthermore, if the condition 0 ∈ Qi holds for 1 ≤ i ≤ n, then
M(Q1, . . . ,Qn) bounds the number of solutions in C

n (see [35]).

Example Let �1 := {(0,0), (2,0), (0,2), (2,2)} and �2 := {(0,0), (1,2), (2,1)}
in Z

2. A sparse polynomial system with supports �1,�2 is a system defined by
polynomials of the following type:

{

f1 = a(0,0) + a(2,0)X
2
1 + a(0,2)X

2
2 + a(2,2)X

2
1X

2
2,

f2 = b(0,0) + b(1,2)X1X
2
2 + b(2,1)X

2
1X2,

(2.1)

with aq , bq ∈ C \ {0}.
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Let Q1 := Conv(�1) and Q2 := Conv(�2). Then M(Q1,Q2) = VolR2(Q1 +
Q2) − VolR2(Q1) − VolR2(Q2) = 8.

The pictures of Q1, Q2 and Q1 + Q2 are, respectively,

2.1.2 Mixed Subdivisions

Assume that the union of the sets �1, . . . ,�n affinely generates Z
n, and consider

the partition of �1, . . . ,�n defined by the relation �i ∼ �j if and only if �i = �j .
Let s ∈ N denote the number of classes in this partition, and let A(1), . . . , A(s) ⊂ Z

n

denote a member in each class. Write A := (A(1), . . . , A(s)). For � = 1, . . . , s, let
k� := #{i : �i = A(�)}. Without loss of generality, we will assume that �1 = · · · =
�k1 = A(1), �k1+1 = · · · = �k1+k2 = A(2) and so on.

A cell of A is a tuple C = (C(1), . . . ,C(s)) with C(�) 	= ∅ and C(�) ⊂ A(�) for
1 ≤ � ≤ s. We define

type(C) := (

dim
(

Conv
(

C(1)
))

, . . . ,dim
(

Conv
(

C(s)
)))

,

Conv(C) := Conv
(

C(1) + · · · + C(s)
)

,

#(C) := #
(

C(1)
) + · · · + #

(

C(s)
)

,

VolRn(C) := VolRn

(

Conv(C)
)

.

A face of a cell C is a cell C = (C(1), . . . , C(s)) of C with C(�) ⊂ C(�) for 1 ≤ � ≤ s

such that there exists a linear functional γ : R
n → R that takes its minimum over C(�)

at C(�) for 1 ≤ � ≤ s. One such functional γ is called an inner normal of C.
A mixed subdivision of A is a collection of cells C = {C1, . . . ,Cm} of A satisfying

conditions (1)–(4) below:

(1) dim(Conv(Cj )) = n for 1 ≤ j ≤ m.
(2) The intersection Conv(Ci) ∩ Conv(Cj ) ⊂ Rn is either the empty set or a face of

both Conv(Ci) and Conv(Cj ) for 1 ≤ i < j ≤ m.
(3)

⋃m
j=1 Conv(Cj ) = Conv(A).

(4)
∑s

�=1 dim(Conv(C
(�)
j )) = n for 1 ≤ j ≤ m.

If C also satisfies the condition:

(5) #(Cj ) = n + s for 1 ≤ j ≤ m

we say that C is a fine-mixed subdivision of A. Observe that, as a consequence of
conditions (4) and (5), for each cell Cj = (C

(1)
j , . . . ,C

(s)
j ) in a fine-mixed subdivision
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the identity dim(Conv(C
(�)
j )) = #C

(�)
j − 1 holds for 1 ≤ � ≤ s. In the sequel, we are

going to consider only those cells of type (k1, . . . , ks) in a fine-mixed subdivision.
We point out that a mixed subdivision C of A enables us to compute the mixed vol-

ume of the family Q1 = Conv(�1), . . . ,Qn = Conv(�n) by means of the following
identity (see [26, Theorem 2.4]):

M(Q1, . . . ,Qn) =
∑

Ci∈C

type(Ci )=(k1,...,ks )

k1! . . . ks ! · VolRn(Ci). (2.2)

A fine-mixed subdivision of A can be obtained by means of a lifting process as
explained in what follows. For 1 ≤ � ≤ s, let ω� : A(�) → R be an arbitrary function.
The tuple ω := (ω1, . . . ,ωs) is called a lifting function for A. Once a lifting function ω

is fixed, the graph of any subset C(�) of A(�) will be denoted by ̂C(�) := {(q,ω�(q)) ∈
Rn+1 : q ∈ C(�)}. Then, for a sufficiently generic lifting function ω, the set of cells C

of A satisfying the conditions:

(i) dim(Conv(̂C(1) + · · · + ̂C(s))) = n; and
(ii) (̂C(1), . . . , ̂C(s)) is a face of ( ̂A(1), . . . , ̂A(s)) whose inner normal has positive last

coordinate

is a fine-mixed subdivision of A (see [26, Sect. 2]).

Example We continue with the example introduced at the end of the previous sub-
section. Here A := (A(1), A(2)), where A(1) := �1 and A(2) := �2.

Following [26, Example 2.7], the lifting function ω = (ω1,ω2) defined by

ω1(q) :=
{

0 for q = (0,0),

1 for q ∈ A(1)\{(0,0)}, and ω2(q) := 0 for every q ∈ A(2), (2.3)

induces a fine-mixed subdivision of A. More precisely, such a fine-mixed subdivision
consists of the set of cells satisfying conditions (i) and (ii) above, which are listed
below together with the inner normals of the faces they come from:

• C1 := {{(0,0), (0,2)}, {(0,0), (1,2)}}, γ (1) := (2,−1,2).
• C2 := {{(0,0), (2,0)}, {(0,0), (2,1)}}, γ (2) := (−1,2,2).
• C3 := {{(0,0), (2,2)}, {(1,2), (2,1)}}, γ (3) := (−1,−1,4).
• C4 := {{(0,0)}, {(0,0), (1,2), (2,1)}}, γ (4) := (0,0,1).
• C5 := {{(0,0), (0,2), (2,2)}, {(1,2)}}, γ (5) := (0,−1,2).
• C6 := {{(0,0), (2,0), (2,2)}, {(2,1)}}, γ (6) := (−1,0,2).

The pictures below show the lower envelope of ̂A(1)+ ̂A(2) ⊂ R
3 and its projection

to R
2, respectively.
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Note that the cells of type (k1, k2) = (1,1) are C1,C2 and C3.

The following result (cf. [26, Sect. 2]) states a generic condition for a lifting func-
tion to induce a fine-mixed subdivision.

Lemma 2.1 The lifting process associated to a lifting function ω yields a fine-mixed
subdivision of A if the following condition holds: for every r1, . . . , rs ∈ Z≥0 with
∑s

�=1 r� > n and every cell (C(1), . . . ,C(s)) with C(�) := {q�,0, . . . , q�,r�} ⊂ A(�)

(1 ≤ � ≤ s), if

V (C) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q1,1 − q1,0
...

q1,r1 − q1,0
· · ·
· · ·

qs,1 − qs,0
...

qs,rs − qs,0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and V
(

̂C
) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q1,1 − q1,0 ω1(q1,1) − ω1(q1,0)
...

...

q1,r1 − q1,0 ω1(q1,r1) − ω1(q1,0)

· · · · · ·
· · · · · ·

qs,1 − qs,0 ωs(qs,1) − ωs(qs,0)
...

...

qs,rs − qs,0 ωs(qs,rs ) − ωs(qs,0)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

then rank(V (C)) = n implies rank(V (̂C)) = n + 1.

Proof Notice that (1)–(3) are automatically satisfied by the set of cells defined by
conditions (i)–(ii). Assume that the condition of the statement of the lemma is met
and consider a cell C = (C(1), . . . ,C(s)) of A satisfying conditions (i) and (ii)
above. ̂C being a lower facet of A, the identity dim(Conv(C(1) + · · · + C(s))) =
dim(Conv(̂C(1) + · · · + ̂C(s))) must hold. Write C(�) = {q�,0, . . . , q�,r�} for 1 ≤
� ≤ s. Then we have that rank(V (C)) = dim(〈q�,j − q�,0 : 1 ≤ � ≤ r�, 1 ≤ j ≤
rj 〉) = dim(Conv(C(1) + · · ·+ C(s))) = n and rank(V (̂C)) = dim(Conv(̂C(1) + · · · +
̂C(s))) = n. Now, the condition stated on ω implies that

∑s
�=1 r� ≤ n and, taking

into account that the
∑s

�=1 r� many vectors q�,j − q�,0 (1 ≤ � ≤ s, 1 ≤ j ≤ r�) span
a linear space of dimension n, we conclude that the equality

∑s
�=1 r� = n holds,

which shows that condition (5) in the definition of a fine-mixed subdivision is met.
Moreover, as

∑s
�=1 dim(Conv(C(�))) ≥ dim(Conv(C(1) + · · · + C(s))) holds for an

arbitrary cell C, we see that dim(Conv(C(�))) = r� holds for every 1 ≤ � ≤ s, which
implies that condition (4) is also valid. This finishes the proof of the lemma. �

Note that the condition rank(V (̂C)) = n + 1 can be restated as the nonvanishing
of the maximal minors of the matrix V (̂C). Since rank(V (C)) = n, these maximal
minors are nonzero linear forms in the unknown values ω�(q�,j ) of the lifting func-
tion. Thus, if N� = #A(�) for every 1 ≤ � ≤ s, a sufficiently generic lifting function
can be obtained by randomly choosing the values ω�(q�,j ) of ω at the points of A(�)

from the set {1,2, . . . , ρ2N1+···+Ns }, with probability of success at least 1 − 1/ρ for
ρ ∈ N.

In this paper we shall assume that a sufficiently generic lifting function and the
induced fine-mixed subdivision of A are given.
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2.2 Complexity Model and Complexity Estimates

In this section we describe our computational model and briefly mention efficient
algorithms for some basic specific algebraic tasks.

2.2.1 Complexity Model

Algorithms in computational algebraic geometry are usually described using the stan-
dard dense or sparse complexity model, i.e., encoding multivariate polynomials by
means of the vector of all or of all nonzero coefficients. Nevertheless, for algorithms
of black-box type (cf. [13]), that is, algorithms that only call the input polynomi-
als for substitutions of their variables into values belonging to suitable commutative
zero-dimensional algebras, other representations more suitable for evaluation may be
convenient. In this paper we are going to use an alternative encoding of intermediate
results of our computations by means of straight-line programs (cf. [11, 23, 40, 55]).
A straight-line program β in Q(X) := Q(X1, . . . ,Xn) is a finite sequence of ratio-
nal functions (f1, . . . , fk) ∈ Q(X)k such that for 1 ≤ i ≤ k, the function fi is an
element of the set {X1, . . . ,Xn}, or an element of Q (a parameter), or there ex-
ist 1 ≤ i1, i2 < i such that fi = fi1 ◦i fi2 holds, where ◦i is one of the arithmetic
operations +,−,×,÷. The straight-line program β is called division-free if ◦i is dif-
ferent from ÷ for 1 ≤ i ≤ k. A natural measure of the complexity of β is its time or
length (cf. [11, 51]), which is the total number of arithmetic operations performed
during the evaluation process defined by β . We say that the straight-line program β

computes or represents a subset S of Q(X) if S ⊂ {f1, . . . , fk} holds.
Our model of computation is based on the concept of straight-line programs. How-

ever, a model of computation consisting only of straight-line programs is not expres-
sive enough for our purposes. Therefore we allow our model to include decisions
and selections (subject to previous decisions). For this reason we shall also consider
computation trees, which are straight-line programs with branchings. Time of the
evaluation of a given computation tree is defined similarly to the case of straight-line
programs (see, e.g., [11, 58] for more details on the notion of computation trees).

2.2.2 Probabilistic Identity Testing

A difficult point in the manipulation of multivariate polynomials given by straight-
line programs is the so-called identity testing problem: given two elements f and g

of C[X] := C[X1, . . . ,Xn], decide whether f and g represent the same polynomial
function on C

n. Indeed, all known deterministic algorithms solving this problem have
complexity at least max{degf,degg}Ω(1). In this paper we are going to use proba-
bilistic algorithms to solve the identity testing problem, based on the following result.

Theorem 2.2 [59, Lemma 6.44] Let f be a nonzero polynomial of C[X] of degree
at most d and let S be a finite subset of C. Then the number of zeros of f in S n is at
most d(#S)n−1.

For the analysis of our algorithms, we shall interpret the statement of Theorem 2.2
in terms of probabilities. More precisely, given a fixed nonzero polynomial f in



Found Comput Math (2009) 9: 1–50 11

C[X1, . . . ,Xn] of degree at most d , we conclude from Theorem 2.2 that the prob-
ability of choosing randomly a point a ∈ S n such that f (a) = 0 holds is bounded
from above by d/#S (assuming a uniform distribution of probability on the elements
of S n).

2.2.3 Basic Complexity Estimates

In order to estimate the complexity of our procedures we shall frequently use the no-
tation M(m) := m log2 m log logm. Here and in the sequel log will denote logarithm
to the base 2. Let R be a commutative ring of characteristic zero with unity. We recall
that the number of arithmetic operations in R necessary to compute the multiplica-
tion or division with remainder of two univariate polynomials in R[T ] of degree at
most m is O(M(m)/ log(m)) (cf. [6, 59]). Multipoint evaluation and interpolation of
univariate polynomials of R[T ] of degree m at invertible points a1, . . . , am ∈ R can
be performed with O(M(m)) arithmetic operations in R (see, e.g., [9]).

If R = k is a field, then we shall use algorithms based on the Extended Euclidean
Algorithm (EEA for short) in order to compute the gcd or resultant of two univariate
polynomials in k[T ] of degree at most m with O(M(m)) arithmetic operations in k

(cf. [6, 59]). We use Padé approximation in order to compute the dense representa-
tion of the numerator and denominator of a rational function f = p/q ∈ k(T ) with
max{degp,degq} ≤ m from its Taylor series expansion up to order 2m. This also
requires O(M(m)) arithmetic operations in k ([6, 59]).

For brevity, we will denote by Ω the exponent that appears in the complexity
estimate O(nΩ) for the multiplication of two (n×n)-matrices with coefficients in Q.
We remark that the (theoretical) bound Ω < 2.376 is typically impractical and we
prefer to take Ω := log 7 ∼ 2.81 (cf. [6]).

2.3 Geometric Solutions

The notion of a geometric solution of an algebraic variety was first introduced in the
works of Kronecker and König in the last years of the nineteenth century. Nowadays,
geometric solutions are widely used in computer algebra as a suitable representation
of algebraic varieties, especially in the zero-dimensional case.

In this subsection we first introduce this notion in the case of zero-dimensional
varieties and curves. Then we state degree estimates for the polynomials involved in
a geometric solution of a variety defined by a sparse system. Finally, we show how to
extend any algorithm computing generic eliminating polynomials to a procedure for
the computation of a geometric solution.

2.3.1 Geometric Solutions of Zero-Dimensional Varieties and Curves

Let K denote an algebraic closure of a field K of characteristic zero, let A
n(K)

be the n-dimensional space K
n

endowed with its Zariski topology, and let V =
{ξ (1), . . . , ξ (D)} be a zero-dimensional subvariety of A

n(K) defined over K . A geo-
metric solution of V consists of:

• A linear form u = u1X1 + · · · + unXn ∈ K[X] which separates the points of V ,
i.e., satisfying u(ξ (i)) 	= u(ξ (k)) if i 	= k.
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• The minimal polynomial mu := ∏

1≤i≤D(Y − u(ξ (i))) ∈ K[Y ] of u in V (where Y

is a new variable).
• Polynomials w1, . . . ,wn ∈ K[Y ] with degwj < D for every 1 ≤ j ≤ n satisfying

V = {(

w1(η), . . . ,wn(η)
) ∈ K

n : η ∈ K,mu(η) = 0
}

.

In the sequel, we shall be given a polynomial system f1 = 0, . . . , fn = 0 of n-
variate polynomials of Q[X] defining a zero-dimensional affine variety V ⊂ A

n :=
A

n(C). We shall consider the system f1 = 0, . . . , fn = 0 (symbolically) “solved” if
we obtain a geometric solution of V as defined above.

Example Let f1, f2 ∈ Q[X1,X2] be the following polynomials:

f1 := X3
1 − 3X2

1X2 + 3X1X
2
2 − X3

2 − 11X1 + 9X2 + 8,

f2 := X2
1 − 2X1X2 + X2

2 − 3X1 + 2X2 + 1,

which define the zero-dimensional variety V := {(4,1), (0,−1), (9,11)} in C
2. Let

u := X1 − X2 ∈ Q[X1,X2]. Note that u is a separating linear form for V . The geo-
metric solution of V associated with u consists of:

• The minimal polynomial mu := (Y − 3)(Y − 1)(Y + 2) = Y 3 − 2Y 2 − 5Y + 6.
• The polynomials w1 := Y 2 −2Y +1 and w2 := Y 2 −3Y +1, which satisfy the iden-

tities (w1(3),w2(3)) = (4,1), (w1(1),w2(1)) = (0,−1) and (w1(−2),w2(−2)) =
(9,11).

The notion of geometric solution can be extended to equidimensional varieties of
positive dimension. For our purposes, it will be sufficient to consider the case of an
algebraic curve defined over Q.

Suppose that we are given a curve V ⊂ A
n+1 defined by polynomials f1, . . . , fn ∈

Q[X,T ]. Assume that for each irreducible component C of V , the identity I (C) ∩
Q[T ] = {0} holds. Let u be a nonzero linear form of Q[X] and πu : V → A

2 the
morphism defined by πu(x, t) := (t, u(x)). Our assumptions on V imply that the
Zariski closure πu(V ) of the image of V under πu is a hypersurface of A

2 de-
fined over Q. Let Y be a new indeterminate. Then there exists a unique (up to
scaling by nonzero elements of Q) polynomial Mu ∈ Q[T ,Y ] of minimal degree
defining πu(V ). Let mu ∈ Q(T )[Y ] denote the (unique) monic multiple of Mu with
degY (mu) = degY (Mu). We call mu the minimal polynomial of u in V . In these terms,
a geometric solution of the curve V consists of:

• A generic linear form u ∈ Q[X].
• The minimal polynomial mu ∈ Q(T )[Y ].
• Elements v1, . . . , vn of Q(T )[Y ] such that (∂mu/∂Y )(u)Xi ≡ vi(u) mod Q(T ) ⊗

Q[V ] and degY (vi) < degY (mu) holds for 1 ≤ i ≤ n.

We observe that degY mu equals the cardinality of the zero-dimensional variety
defined by f1, . . . , fn over A

n(Q(T )).
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2.3.2 Degree Estimates in the Sparse Setting

In the sequel, we shall deal with curves V := V (f1, . . . , fn) ⊂ A
n+1 as above. The

complexity of the algorithms for solving the systems f1 = 0, . . . , fn = 0 defining
such curves will be expressed mainly by means of two discrete invariants: the de-
gree and the height of the projection π : V → A

1. The degree of π is defined as
the degree degmu = degY Mu of the minimal polynomial of a generic linear form
u ∈ Q[X1, . . . ,Xn] and can be considered as a measure of the “complexity” of the
curve V . On the other hand, the height of π is defined as degT Mu and may be con-
sidered as a measure of the “complexity of the description” of the curve V .

In the sparse setting, we can estimate degY Mu and degT Mu in terms of combina-
torial quantities (namely, mixed volumes) associated to the polynomial system under
consideration (see also [45]).

Lemma 2.3 Let assumptions and notations be as above. For 1 ≤ i ≤ n, let Qi ⊂
Rn be the Newton polytope of fi , considering fi as an element of Q(T )[X]. Let
̂Q1, . . . , ̂Qn ⊂ R

n+1 be the Newton polytopes of f1, . . . , fn, considering f1, . . . , fn

as elements of Q[X,T ], and let � ⊂ R
n+1 be the standard n-dimensional simplex in

the hyperplane {T = 0}, i.e., the Newton polytope of a generic linear form u ∈ Q[X].
Assume that 0 ∈ ̂Qi for every 1 ≤ i ≤ n. Then the following estimates hold:

degY Mu ≤ M(Q1, . . . ,Qn), degT Mu ≤ M
(

�, ̂Q1, . . . , ̂Qn

)

. (2.4)

Furthermore, if there exist c1, . . . , cn ∈ R≥0 such that ̂Qi ⊂ Qi ×[0, ci] for 1 ≤ i ≤ n,
then the following inequality holds:

degT Mu ≤
n

∑

i=1

ci M(�,Q1, . . . ,Qi−1,Qi+1, . . . ,Qn). (2.5)

Proof The upper bound degY Mu ≤ M(Q1, . . . ,Qn) follows straightforwardly from
the BKK bound and the affine root count in [35].

In order to obtain an upper bound for degT Mu, we observe that substituting
a generic value y ∈ Q for Y we have degT Mu(T ,Y ) = degT Mu(T , y) = #{t ∈
C;Mu(t, y) = 0}. Moreover, it follows that Mu(t, y) = 0 if and only if there exists a
point x ∈ An with y = u(x) and (x, t) ∈ V . Therefore, it suffices to estimate the num-
ber of points (x, t) ∈ An+1 satisfying u(x) − y = 0, f1(x, t) = 0, . . . , fn(x, t) = 0.
Since u is a generic linear form, the system

u(X) − y = 0, f1(X,T ) = 0, . . . , fn(X,T ) = 0, (2.6)

has finitely many common zeros in A
n+1. Combining the BKK bound with the affine

root count of [35] we see that there are at most M(�, ̂Q1, . . . , ̂Qn) solutions of (2.6).
We conclude that degT Mu ≤ M(�, ̂Q1, . . . , ̂Qn) holds, showing thus (2.4).

In order to prove (2.5), we make use of basic properties of the mixed volume (see,
for instance, [18, Chap. IV]). Since ̂Qi ⊂ Qi × [0, ci] holds for 1 ≤ i ≤ n, by the
monotonicity of the mixed volume we have

M
(

�, ̂Q1, . . . , ̂Qn

) ≤ M
(

�,Q1 × [0, c1], . . . ,Qn × [0, cn]
)

.
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Note that Qi ×[0, ci] = Si,0 +Si,1, where Si,0 = Qi ×{0} and Si,1 = {0}× [0, ci] for
i = 1, . . . , n. Hence, by multilinearity,

M
(

�,Q1 × [0, c1], . . . ,Qn × [0, cn]
) =

∑

(j1,...,jn)∈{0,1}n
M(�,S1,j1 , . . . , Sn,jn).

(2.7)
If the vector (j1, . . . , jn) has at least two nonzero coordinates, then two of the sets

S1,j1 , . . . , Sn,jn are parallel line segments; therefore, M(�,S1,j1 , . . . , Sn,jn) = 0. On
the other hand, if ji is the only nonzero coordinate, the corresponding term in the
sum of the right-hand side of (2.7) is

M
(

�,Q1 × {0}, . . . ,Qi−1 × {0}, {0} × [0, ci],Qi+1 × {0}, . . . ,Qn × {0})

= ci M(�,Q1, . . . ,Qi−1,Qi+1, . . . ,Qn).

Finally, for (j1 . . . , jn) = (0, . . . ,0) we have M(�,Q1 × {0}, . . . ,Qn × {0}) = 0
since all the polytopes are included in an n-dimensional subspace.

We conclude that the right-hand side of (2.7) equals the right-hand side of (2.5).
This finishes the proof of the lemma. �

Example For the system

{

a(0,0) + a(2,0)X
2
1T + a(0,2)X

2
2T + a(2,2)X

2
1X

2
2T = 0,

b(0,0) + b(1,2)X1X
2
2 + b(2,1)X

2
1X2 = 0,

(2.8)

we have:

• Q1 = Conv({(0,0), (0,2), (2,0), (2,2)}).
• Q2 = Conv({(0,0), (1,2), (2,1)}).
• ̂Q1 = Conv({(0,0,0), (0,2,1), (2,0,1), (2,2,1)}).
• ̂Q2 = Conv({(0,0,0), (1,2,0), (2,1,0)}).
Therefore, the following upper bounds for the degree of the polynomial Mu hold for
any separating linear form u:

degY Mu ≤ M(Q1,Q2) = 8 =: D, (2.9)

degT Mu ≤ M
(

�, ̂Q1, ̂Q2
) = 3 =: E, (2.10)

where � := Conv({(0,0,0), (1,0,0), (0,1,0)}).

2.3.3 Algorithmic Aspects

From the algorithmic point of view, the crucial step towards the computation of a
geometric solution of the variety V is the computation of the minimal polynomial mu

of a generic linear form u which separates the points of V . In the remaining part of
this section we shall show how we can derive an algorithm for computing the entire
geometric solution of a zero-dimensional variety V defined over Q from a procedure
for computing the minimal polynomial of a generic linear form u (cf. [2, 22, 52]).
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Let Λ := (Λ1, . . . ,Λn) be a vector of new indeterminates and let K := Q(Λ).
Denote by IK the ideal in K[X1, . . . ,Xn] which is the extension of the ideal
I := I (V ) ⊂ Q[X1, . . . ,Xn] of the zero-dimensional variety V , and denote by
B := K[X1, . . . ,Xn]/IK the corresponding zero-dimensional quotient algebra. Write
V = {ξ (1), . . . , ξ (D)}.

Set U := Λ1X1 + · · · + ΛnXn ∈ K[X1, . . . ,Xn] and let mU(Λ,Y ) = ∏D
j=1(Y −

U(ξ(j))) ∈ Q[Λ,Y ] be the minimal polynomial of the linear form U in the exten-
sion K ↪→ B . Note that degmU = D holds, and that ∂mU/∂Y is not a zero divisor
in Q[An × V ]. Furthermore, mU(Λ,U) ∈ I (An × V ) ⊂ Q[Λ,X1, . . . ,Xn] holds.
Since I (An × V ) is generated by polynomials in Q[X1, . . . ,Xn], taking the partial
derivative of mU(Λ,U) with respect to the variable Λk for 1 ≤ k ≤ n, we conclude
that

∂mU

∂Y
(Λ,U)Xk + ∂mU

∂Λk

(Λ,U) ∈ I
(

A
n × V

)

. (2.11)

Observe that the degree estimate degY (∂mU/∂Λk) ≤ D − 1 holds.
Assume that a linear form u = u1X1 + · · · + unXn ∈ Q[X1, . . . ,Xn] which sep-

arates the points of V is given. Substituting uk for Λk in the polynomial mU(Λ,Y )

we obtain the minimal polynomial mu(Y ) of u. Furthermore, making the same sub-
stitution in the polynomials (∂mU/∂Y )(Λ,Y )Xk + (∂mU/∂Λk)(Λ,Y ) of (2.11) for
1 ≤ k ≤ n and reducing modulo mu(Y ), we obtain polynomials (∂mu/∂Y )(Y )Xk −
vk(Y ) ∈ I (V ) (1 ≤ k ≤ n). In particular, we have that the identities

∂mu

∂Y
(u)Xk = vk(u) (1 ≤ k ≤ n) (2.12)

hold in Q[V ]. Observe that the minimal polynomial mu(Y ) is square-free, since
the linear form u separates the points of V . Therefore, mu(Y ) and ∂mu/∂Y (Y )

are relatively prime. Thus, multiplying modulo mu(Y ) the polynomials vk(Y ) by
the inverse of (∂mu/∂Y )(Y ) modulo mu(Y ) we obtain polynomials wk(Y ) :=
(∂mu/∂Y )−1vk(Y ) (1 ≤ k ≤ n) of degree at most D − 1 such that

Xk = wk(u) (2.13)

holds in Q[V ] for 1 ≤ k ≤ n. The polynomials mu,w1, . . . ,wn ∈ Q[Y ] form a geo-
metric solution of V .

Now, suppose that we are given an algorithm � over Q(Λ) for computing the
minimal polynomial of the linear form U = Λ1X1 + · · · + ΛnXn. Suppose further
that we are given a separating linear form u := u1X1 + · · · + unXn ∈ Q[X1, . . . ,Xn]
such that the vector (u1, . . . , un) does not annihilate any denominator in Q[Λ] of
any intermediate result of the algorithm � . In order to compute the polynomials
v1, . . . , vn of (2.12), we observe that the Taylor expansion of mU(Λ,Y ) in powers of
Λ − u := (Λ1 − u1, . . . ,Λn − un) has the following expression:

mU(Λ,Y ) = mu(Y ) +
n

∑

k=1

(

∂mu

∂Y
(Y )Xk − vk(Y )

)

(Λk − uk) mod(Λ − u)2.
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We shall compute this first-order Taylor expansion by computing the first-order Tay-
lor expansion of each intermediate result in the algorithm � . In this way, each arith-
metic operation in Q(Λ) arising in the algorithm � becomes an arithmetic operation
between two polynomials of Q[Λ] of degree at most 1, and is truncated up to or-
der (Λ − u)2. Since the first-order Taylor expansion of an addition, multiplication or
division of two polynomials of Q[Λ] of degree at most 1 requires O(n) arithmetic
operations in Q, we have that the whole step requires O(nT) arithmetic operations
in Q, where T is the number of arithmetic operations in Q(Λ) performed by the al-
gorithm � .

Finally, the computation of the polynomials w1, . . . ,wn of (2.13) requires the
inversion of ∂mu/∂Y modulo mu(Y ) and the modular multiplication wk(Y ) :=
(∂mu/∂Y )−1vk(Y ) for 1 ≤ k ≤ n. These steps can be executed with additional
O(nM(D)) arithmetic operations in Q. Summarizing, we have the following result.

Lemma 2.4 Suppose that we are given:

(1) An algorithm � in Q(Λ) which computes the minimal polynomial mU ∈ Q[Λ,Y ]
of U := ΛX1 + · · · + ΛnXn with T arithmetic operations in Q(Λ).

(2) A separating linear form u := u1X1 +· · ·+unXn ∈ Q[X1, . . . ,Xn] such that the
vector (u1, . . . , un) does not annihilate any denominator in Q[Λ] of any inter-
mediate result of the algorithm � .

Then a geometric solution of the variety V can be (deterministically) computed with
O(n(T + M(D))) arithmetic operations in Q.

3 Statement of the Problem and Outline of the Main Algorithm

Let �1, . . . ,�n be fixed finite subsets of Z
n
≥0 with 0 ∈ �i for 1 ≤ i ≤ n and

let D := M(Q1, . . . ,Qn) denote the mixed volume of the polytopes Q1 :=
Conv(�1), . . . ,Qn := Conv(�n). Assume that D > 0 holds or, equivalently, that
dim(

∑

i∈I Qi) ≥ |I | for every nonempty subset I ⊂ {1, . . . , n} (see, for instance,
[39, Chap. IV, Proposition 2.3]).

Let f1, . . . , fn ∈ Q[X] be polynomials defining a sparse system with respect to
�1, . . . ,�n and let d1, . . . , dn be their total degrees. Let d := max{d1, . . . , dn}. Sup-
pose that f1, . . . , fn define a zero-dimensional variety V in A

n. As in the previous
section, we group equal supports into s ≤ n distinct supports A(1), . . . , A(s). Write
A := (A(1), . . . , A(s)) and denote by k� the number of polynomials fi with support
A(�) for 1 ≤ � ≤ s.

From now on we assume that we are given a sufficiently generic lifting func-
tion ω := (ω1, . . . ,ωs) and the fine-mixed subdivision of A induced by ω. We as-
sume further that the function ω� : A(�) → Z takes only nonnegative values and
ω�(0, . . . ,0) = 0 for every 1 ≤ � ≤ s. The lifting function ω and the corresponding
fine-mixed subdivision of A can be used in order to define an appropriate deformation
of the system f1 = 0, . . . , fn = 0, the so-called polyhedral deformation introduced by
Huber and Sturmfels in [26]. Our purpose here is to use this polyhedral deformation
to derive a symbolic probabilistic algorithm which computes a geometric solution of
the system f1 = 0, . . . , fn = 0.
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Since the polyhedral deformation requires that the coefficients of the input poly-
nomials satisfy certain generic conditions, we introduce some auxiliary generic poly-
nomials g1, . . . , gn with the same supports �1, . . . ,�n and consider the perturbed
polynomial system defined by hi := fi + gi for 1 ≤ i ≤ n. The genericity conditions
underlying the choice of g1, . . . , gn and h1, . . . , hn are discussed in Sect. 4. We ob-
serve that if the coefficients of the polynomials f1, . . . , fn satisfy these conditions
then our method can be directly applied to f1, . . . , fn.

Otherwise, we first solve the system h1 = 0, . . . , hn = 0 and then recover the so-
lutions to the input system f1 = 0, . . . , fn = 0 by considering the standard homotopy
f1 + (1 − T )g1 = 0, . . . , fn + (1 − T )gn = 0.

4 The Polyhedral Deformation: Genericity Conditions

4.1 The Polyhedral Deformation

This section is devoted to introducing the polyhedral deformation of Huber and
Sturmfels [26].

Let hi := ∑

q∈�i
ci,qXq for 1 ≤ i ≤ n be polynomials in Q[X] and let V1 denote

the set of their common zeros in A
n. For i = 1, . . . , n, let �i be the (unique) integer

with �i = A(�i ), and let ω̃i := ω�i
be the lifting function associated to the support �i .

In order to simplify notations, the n-tuple ω̃ := (ω̃1, . . . , ω̃n) will be denoted simply
by ω = (ω1, . . . ,ωn). As before, we denote by ̂C(�) := {(q,ω�(q)) ∈ R

n+1 : q ∈ C(�)}
the graph of any subset C(�) of A(�) for 1 ≤ � ≤ s, and extend this notation corre-
spondingly. For a new indeterminate T , we deform the polynomials h1, . . . , hn into
polynomials ̂h1, . . . ,̂hn ∈ Q[X,T ] defined in the following way:

̂hi(X,T ) :=
∑

q∈�i

ci,qXqT ωi(q) (1 ≤ i ≤ n). (4.1)

Let I denote the ideal of Q[X,T ] generated by ̂h1, . . . ,̂hn and let J denote the Ja-
cobian determinant of ̂h1, . . . ,̂hn with respect to the variables X1, . . . ,Xn. We set

̂V := V
(

I : J∞) ⊂ A
n+1. (4.2)

We shall show that, under a generic choice of the coefficients of h1, . . . , hn, the
system defined by the polynomials in (4.1) constitutes a deformation of the input
system h1 = 0, . . . , hn = 0, in the sense that the morphism π : ̂V → A

1 defined by
π(x, t) := t is a dominant map with π−1(1) = V1 × {1}. We shall further exhibit
degree estimates on the genericity condition underlying such choice of coefficients.
These estimates will allow us to obtain suitable polynomials h1, . . . , hn by randomly
choosing their coefficients in an appropriate finite subset of Z.

According to [26, Sect. 3], the solutions over an algebraic closure Q(T ) of Q(T ) to
the system defined by the polynomials (4.1) are algebraic functions of the parameter
T which can be represented as Puiseux series of the form

x(T ) := (

x1,0T
γ1

γn+1 + higher-order terms, . . . , xn,0T
γn

γn+1

+ higher-order terms
)

, (4.3)
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where γ := (γ1, . . . , γn, γn+1) ∈ Z
n+1 is an inner normal with positive last coordinate

γn+1 > 0 of a (lower) facet ̂C = (̂C(1), . . . , ̂C(s)) of ̂A of type (k1, . . . , ks), and x0 :=
(x1,0, . . . , xn,0) ∈ (C∗)n is a solution to the polynomial system defined by

h
(0)
i,γ :=

∑

q∈C(�i )

ci,q Xq (1 ≤ i ≤ n), (4.4)

where, as defined before, �i is the integer with 1 ≤ �i ≤ s and �i = A(�i ). For a
generic choice of the polynomials h1, . . . , hn there are k1! · · ·ks ! · Vol(C) distinct
solutions x0 ∈ (C∗)n to the system defined by the polynomials (4.4) and hence, there
are k1! · · ·ks ! · Vol(C) distinct Puiseux series x(T ) as in (4.3). We shall “lift” each
solution x0 to this system to a solution of the form (4.3) to the system defined by (4.1).
This means that, on input x0, we shall compute the Puiseux series expansion of the
corresponding solution (4.3) truncated up to a suitable order.

Let

V0,γ := {

x ∈ (

C
∗)n : h(0)

1,γ (x) = 0, . . . , h(0)
n,γ (x) = 0

}

. (4.5)

A particular feature of the polynomials (4.4) which makes the associated equation
system “easy to solve” is that the vector of their supports is (C(1))k1 × · · · × (C(s))ks ,
where (C(1), . . . ,C(s)) is a cell of type (k1, . . . , ks) in a fine-mixed subdivision of A.
Therefore, for every 1 ≤ � ≤ s, the set C(�) consists of k� + 1 points and hence, up
to monomial multiplication so that each polynomial has a nonzero constant term, the
(Laurent) polynomials in (4.4) are linear combinations of n + 1 distinct monomials
in n variables.

Denote � ⊂ Z
n+1 the set of all primitive integer vectors of the form γ :=

(γ1, . . . , γn, γn+1) ∈ Zn+1 with γn+1 > 0 for which there is a cell C = (C(1),

. . . ,C(s)) of type (k1, . . . , ks) of the subdivision of A induced by ω such that ̂C has
inner normal γ .

Fix a cell C = (C(1), . . . ,C(s)) of type (k1, . . . , ks) of the subdivision of A induced
by ω associated with a primitive inner normal γ ∈ � with positive last coordinate. In
order to lift the points of the variety V0,γ of (4.5) to a solution of the system defined
by the polynomials in (4.1), we will work with a family of auxiliary polynomials
h1,γ , . . . , hn,γ ∈ Q[X,T ] which we define as follows:

hi,γ (X,T ) := T −mi
̂hi

(

T γ1X1, . . . , T
γnXn,T

γn+1
)

(1 ≤ i ≤ n), (4.6)

where mi ∈ Z is the lowest power of T appearing in ̂hi(T
γ1X1, . . . , T

γnXn,T
γn+1)

for every 1 ≤ i ≤ n. Note that the polynomials obtained by substituting T = 0 into
h1,γ , . . . , hn,γ are precisely those introduced in (4.4). Now we illustrate the objects
introduced in this subsection with a particular sparse polynomial system with the
same structure as the generic system (2.1).

Example Here we illustrate the previous constructions. Consider the polynomials
h1, h2 ∈ Q[X1,X2] defined as

{

h1 := 1 − X2
1 − X2

2 − X2
1X

2
2,

h2 := 1 + X2
1X2 + X1X

2
2.

(4.7)
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Observe that the polynomials above are a specialization of the generic polynomials
introduced in (2.1).

We deform the polynomials h1, h2 using the lifting function ω defined in (2.3),
obtaining thus the following polynomials:

{

̂h1 := 1 − X2
1T − X2

2T − X2
1X

2
2T ,

̂h2 := 1 + X2
1X2 + X1X

2
2.

(4.8)

These polynomials ̂h1, ̂h2 define the curve

̂V := V
((

̂h1,̂h2
) : J∞) = V

(

̂h1,̂h2
)

, (4.9)

where J is the Jacobian determinant of̂h1 and̂h2 with respect to the variables X1,X2.
According to the remark at the end of the example of Sect. 2.1.2, the cells of

type (1,1) in the fine-mixed subdivision of the support sets induced by ω, and the
corresponding inner normals are:

• C1 := {{(0,0), (0,2)}, {(0,0), (1,2)}}, γ (1) := (2,−1,2).
• C2 := {{(0,0), (2,0)}, {(0,0), (2,1)}}, γ (2) := (−1,2,2).
• C3 := {{(0,0), (2,2)}, {(1,2), (2,1)}}, γ (3) := (−1,−1,4).

Therefore, the polynomial systems defined by the polynomials h
(0)
i,γ of (4.4) and their

solution sets V0,γ are

⎧

⎨

⎩

h
(0)

1,γ (1) = 1 − X2
2,

h
(0)

2,γ (1) = 1 + X1X
2
2,

V0,γ (1) = {

(−1,1), (−1,−1)
}

, (4.10)

⎧

⎨

⎩

h
(0)

1,γ (2) = 1 − X2
1,

h
(0)

2,γ (2) = 1 + X2
1X2,

V0,γ (2) = {

(1,−1), (−1,−1)
}

, (4.11)

⎧

⎨

⎩

h
(0)

1,γ (3) = 1 − X2
1X

2
2,

h
(0)

2,γ (3) = X2
1X2 + X1X

2
2,

V0,γ (3) = {

(1,−1),

(−1,1), (i,−i), (−i, i)
}

. (4.12)

Finally, the polynomials hi,γ defined in (4.6) are

{

h1,γ (1) = 1 − X2
1T

6 − X2
2 − X2

1X
2
2T

4,

h2,γ (1) = 1 + X2
1X2T

3 + X1X
2
2,

(4.13)

{

h1,γ (2) = 1 − X2
1 − X2

2T
6 − X2

1X
2
2T

4,

h2,γ (2) = 1 + X2
1X2 + X1X

2
2T

3,
(4.14)

{

h1,γ (3) = 1 − X2
1T

2 − X2
2T

2 − X2
1X

2
2,

h2,γ (3) = T 3 + X2
1X2 + X1X

2
2.

(4.15)
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4.2 On the Genericity of the Initial System

Here we discuss the genericity conditions underlying the choice of the polynomials
g1, . . . , gn that enable us to apply the polyhedral deformation defined by the lifting
form ω to the system h1 := f1 + g1 = 0, . . . , hn := fn + gn = 0.

The first condition we require is that the set of common zeros of the perturbed
polynomials h1, . . . , hn is a zero-dimensional variety with the maximum number of
points for a sparse system with the given structure. More precisely, we require that
the following condition holds:

(H1) The set V1 := {x ∈ A
n : h1(x) = 0, . . . , hn(x) = 0} is a zero-dimensional vari-

ety with D := M(Q1, . . . ,Qn) distinct points.

In addition, we need that the system (4.4) giving the initial points to our first
deformation for every γ ∈ � has as many roots as possible, namely, the mixed volume
of their support vectors.

For each cell C = (C(1), . . . ,C(s)) of type (k1, . . . , ks) of the induced fine-mixed
subdivision, set an order on the n + 1 points appearing in any of the sets C(�), after
a suitable translation so that 0 ∈ C(�) for every 1 ≤ � ≤ s. Assume that 0 ∈ Z

n is
the last point according to this order. Denote γ ∈ Z

n+1 the primitive inner normal of
C with positive last coordinate. Consider the n × (n + 1) matrix whose ith row is
the coefficient vector of h

(0)
i,γ in the prescribed monomial order and set Mγ ∈ Q

n×n

and Bγ ∈ Qn×1 for the submatrices consisting of the first n columns (coefficients
of nonconstant monomials) and the last column (constant coefficients), respectively.
Then the coefficients of g1, . . . , gn are to be chosen so that the following condition
holds:

(H2) For every γ ∈ �, the (n × n)-matrix Mγ is nonsingular and all the entries of
(Mγ )−1 Bγ are nonzero.

Our next results assert that the above conditions can be met with good probability
by randomly choosing the coefficients of g1, . . . , gn in a certain set S ⊂ Z. We ob-
serve that our estimate on the size of S is not intended to be accurate, but to show
that the growth of the size of the integers involved in the subsequent computations is
not likely to create complexity problems.

Let {Ωi,q : 1 ≤ i ≤ n, q ∈ �i} be a set of new indeterminates over Q. For
1 ≤ i ≤ n, write Ωi := (Ωi,q : q ∈ �i) and let Hi ∈ Q[Ωi,X] be the generic poly-
nomial

Hi(Ωi,X) :=
∑

q∈�i

Ωi,qXq, (4.16)

with support �i and Ni := #�i coefficients. Let Ω := (Ω1, . . . ,Ωn) and let N :=
N1 + · · · + Nn be the total number of indeterminate coefficients.

We start the analysis of the required generic conditions with the following quanti-
tative version of Bernstein’s result on the genericity of zero-dimensional sparse sys-
tems (see [5, Theorem B, 26, Theorem 6.1]).

Lemma 4.1 There exists a nonzero polynomial P (0) ∈ Q[Ω] with degP (0) ≤
3n2n+1d2n−1 such that for any c ∈ Q

N with P (0)(c) 	= 0, the system H1(c1,X) =
0, . . . ,Hn(cn,X) = 0 has D solutions in A

n, counting multiplicities.
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Proof Due to [26, Theorem 6.1] combined with [35], the system H1(c1,X) = 0, . . . ,
Hn(cn,X) = 0 has D solutions in A

n counting multiplicities if and only if for every
facet inner normal μ ∈ Z

n of Q1 + · · · + Qn, the sparse resultant Res�
μ
1 ,...,�

μ
n

does

not vanish at c := (c1, . . . , cn). Here �
μ
i denotes the set of points of �i where the

linear functional induced by μ attains its minimum for 1 ≤ i ≤ n.
Therefore, the polynomial P (0) := ∏

μ Res�
μ
1 ,...,�

μ
n

∈ Q[Ω], where the product
ranges over all primitive inner normals μ ∈ Z

n to facets of Q1 + · · · + Qn, satisfies
the required condition.

In order to estimate the degree of P (0), we observe that for every facet inner normal
μ ∈ Z

n the following upper bound holds:

deg(Res�
μ
1 ,...,�

μ
n
) ≤

n
∑

i=1

M
(

�
μ
1 , . . . ,�

μ
i−1,�

μ
i+1, . . . ,�

μ
n

) ≤ ndn−1,

where d := max{d1, . . . , dn}. On the other hand, it is not difficult to see that the num-
ber of facets of an n-dimensional integer convex polytope P ⊂ R

n which has an
integer point in its interior is bounded by n!VolRn(P ). Now, taking P := (n + 1)Q,
we obtain an integer polytope with the same number of facets as Q having an in-
teger interior point. Then, the number of facets of Q is bounded by n!VolRn(P ) =
n!VolRn((n + 1)Q) = (n + 1)n n!VolRn(Q) ≤ (n + 1)n(nd)n, since Q is included in
the n-dimensional simplex of size nd . This proves the upper bound for the degree
of P (0) of the statement of the lemma. �

The next lemma is concerned with the genericity of a smooth sparse system.

Lemma 4.2 With the same notations as in Lemma 4.1 and before, there exists a
nonzero polynomial P (1) ∈ Q[Ω] of degree at most 4n2n+1d2n−1 such that for any
c ∈ Q

N with P (1)(c) 	= 0, the system H1(c1,X) = 0, . . . ,Hn(cn,X) = 0 has exactly
D distinct solutions in A

n.

Proof Consider the incidence variety associated to (�1, . . . ,�n)-sparse systems,
namely,

W :=
{

(x, c) ∈ (

C
∗)n × (

A
N1 × · · · × A

Nn
) :

∑

q∈�i

ci,qxq = 0 for 1 ≤ i ≤ n

}

.

As in [42, Proposition 2.3], it follows that W is a Q-irreducible variety. Let πΩ :
W → A

N1 × · · · × A
Nn be the canonical projection, which is a dominant map.

By [39, Chap. V, Corollary (3.2.1)], there is a nonempty Zariski open set
U (�1, . . . ,�n) ⊂ A

N1 × · · · × A
Nn of coefficients c = (c1, . . . , cn) for which the

polynomials H1(c1,X), . . . ,Hn(cn,X) have supports �1, . . . ,�n, respectively, and
the set of their common zeros in (C∗)n is a nondegenerate complete intersection va-
riety. Then the Jacobian JH := det(∂Hi/∂Xj )1≤i,j≤n does not vanish at any point of
π−1

Ω (c) for every c ∈ U (�1, . . . ,�n).
Let Q(Ω) ↪→ Q(W) be the finite field extension induced by the dominant projec-

tion πΩ . By the preceding paragraph we have that the rational function defined by
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JH in Q(W) is nonzero. Therefore, its primitive minimal polynomial MJ ∈ Q[Ω,Y ]
is well defined and satisfies the degree estimates

degΩ MJ ≤ degW · degJH ≤
n

∏

i=1

(di + 1) ·
n

∑

i=1

di ≤ 2ndn+1n

(see [50, 52]).
Let P (1) := P (0)M

(0)
J , where P (0) is the polynomial given by Lemma 4.1 and

M
(0)
J denotes the constant term of the expansion of MJ in powers of Y . We claim

that P (1) satisfies the requirements of the statement of the lemma. Indeed, let c ∈ Q
N

satisfy P (1)(c) 	= 0. Then P (0)(c) 	= 0 holds and, hence, Lemma 4.1 implies that
H1(c,X) = 0, . . . ,Hn(c,X) = 0 is a zero-dimensional system. Furthermore, M(0)

J (c)

is a nonzero multiple of the product
∏

x∈π−1
Ω (c)

JH (c, x). Thus, the nonvanishing of

M
(0)
J (c) shows that all the points of π−1

Ω (c) are smooth and therefore, from, e.g.,
[39, IV, Theorem 2.2], it follows that π−1

Ω (c) consists of exactly D simple points
in (C∗)n. Moreover, combining the assumption that 0 ∈ �i for 1 ≤ i ≤ n with [35,
Theorem 2.4], we deduce that π−1

Ω (c) consists of D simple points in A
n. The esti-

mate degM
(0)
J ≤ degΩ MJ ≤ 2ndn+1n ≤ n2(n+1)d2n−1 implies the statement of the

lemma. �

Finally, we exhibit a generic condition on the coefficients h1, . . . , hn which im-
plies that assumption (H2) holds.

Lemma 4.3 With the previous assumptions and notations, there exists a nonzero
polynomial P (2) ∈ Q[Ω] with degP (2) ≤ n(n + 1)#� such that for every c :=
(c1, . . . , cn) ∈ Q

N with P (2)(c) 	= 0, the polynomials hi := Hi(ci,X) (1 ≤ i ≤ n)

satisfy condition (H2).

Proof Fix a primitive integer inner normal γ ∈ � to a lower facet of ̂A. Let Mγ ∈
Q[Ω]n×n and Bγ ∈ Q[Ω]n×1 be the matrices constructed from the generic polynomi-
als H1, . . . ,Hn ∈ Q[Ω][X] as explained in the paragraph preceding condition (H2).
Let D0,γ ∈ Q[Ω] be the (nonzero) determinant of Mγ , and for every 1 ≤ j ≤ n, let
Dj,γ be the determinant of the matrix obtained from Mγ by replacing its j th col-
umn with Bγ . Set Pγ := ∏n

j=0 Dj,γ . Finally, take P (2) := ∏

γ∈� Pγ . By Cramer’s

rule, whenever P (2)(c) 	= 0, we have that the system h1, . . . , hn with coefficient vec-
tor c = (c1, . . . , cn) meets condition (H2).

The degree estimate for P (2) follows from the fact that degPγ ≤ n(n + 1) holds
for every γ ∈ �, since each of the entries of the matrices whose determinants are
involved has degree 1 in the variables Ω . �

Now we are ready to state a generic condition on the coefficients of h1, . . . , hn

which implies that (H1) and (H2) hold.

Proposition 4.4 Under the previous assumptions and notations, there exists a
nonzero polynomial P ∈ Q[Ω] with degP ≤ 4n2n+1d2n−1 + n(n + 1)D such that
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for every c ∈ Q
N with P(c) 	= 0, the polynomials hi := Hi(ci,X) (1 ≤ i ≤ n) satisfy

conditions (H1) and (H2).

Proof Set P := P (1)P (2), where P (1) is the polynomial of the statement of
Lemma 4.2 and P (2) is the one defined in the statement of Lemma 4.3. The result
follows from Lemmas 4.2 and 4.3, and the upper bound #� ≤ D for the cardinality
of the set of the distinct inner normal vectors considered (one for each cell of type
(k1, . . . , ks) in the given fine-mixed subdivision). �

5 The Polyhedral Deformation: The Algorithm

5.1 Outline of the Algorithm

Now we have all the tools necessary to give an outline of our algorithm for the
computation of a geometric solution of the (sufficiently generic) sparse system
h1 = 0, . . . , hn = 0.

With notations as in the previous subsections, we assume that a fine-mixed sub-
division of A induced by a lifting function ω is given. This means that we are given
the set � of inner normals of the lower facets of the convex hull of ̂A, together with
the corresponding cells of the convex hull of A. In addition, we suppose that our in-
put polynomials h1, . . . , hn ∈ Q[X] satisfy conditions (H1) and (H2) and denote by
V1 ⊂ A

n the affine variety defined by h1, . . . , hn.
First, we choose a generic linear form u ∈ Q[X] such that:

• u separates the points of the zero-dimensional varieties V1 and V0,γ for every
γ ∈ �. This condition is represented by the nonvanishing of a certain nonconstant
polynomial of degree at most 4D2.

• An algorithm for the computation of the minimal polynomial of u in V0,γ described
below can be extended to a computation of a geometric solution of V0,γ in the sense
of Lemma 2.4 for every γ ∈ �. This condition is represented by the nonvanishing
of a nonconstant polynomial of degree at most 4D3

γ for each γ ∈ �.
• An algorithm for the computation of the minimal polynomial of u in ̂V described

below can be extended to a computation of a geometric solution of ̂V in the sense
of Lemma 2.4. This application of Lemma 2.4 requires that the coefficient vector
of the linear form u does not annihilate a nonconstant polynomial of degree at
most 4D4.

Fix ρ ≥ 2. From Theorem 2.2 it follows that a linear form u satisfying these
conditions can be obtained by randomly choosing its coefficients from the set
{1, . . . ,6ρD4} with error probability at most 1/ρ.

Next we compute the monic minimal polynomial m̂u ∈ Q(T )[Y ] of the linear form
u in the curve ̂V introduced in (4.2). For this purpose, we approximate the Puiseux se-
ries expansions of the branches of ̂V lying above 0 by means of a symbolic (Newton–
Hensel) “lifting” of the common zeros of the zero-dimensional varieties V0,γ ⊂ A

n

defined by the polynomials (4.4) for all γ ∈ � (see Sect. 5).
This in turn requires the computation of a geometric solution of V0,γ for every

γ ∈ �. By means of a change of variables we put the system h
(0)
1,γ = 0, . . . , h

(0)
n,γ = 0
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defining the variety V0,γ into a “diagonal” form (see Sect. 5.2 below), which allows

us to compute the minimal polynomial m
(0)
u,γ of u in V0,γ . Since the linear form u

satisfies condition (2) of the statement of Lemma 2.4, from this procedure we derive
an algorithm computing a geometric solution of V0,γ according to Lemma 2.4.

Then we “lift” this geometric solution to a suitable (non-Archimedean) approxi-
mation m̃γ of a factor mγ (over Q(T )) of the desired minimal polynomial m̂u of u.
In the next step we obtain the minimal polynomial m̂u = ∏

γ∈� mγ from the approxi-
mate factors m̃γ , namely, we compute the dense representation of the coefficients (in
Q(T )) of m̂u, using Padé approximation (see Sect. 5.3 below). Finally, we apply the
proof of Lemma 2.4 to derive an algorithm for computing a geometric solution of the
variety ̂V .

In the last step we compute a geometric solution of the variety V1 by substituting
1 for T in the polynomials that form the geometric solution of ̂V .

The whole algorithm for solving the system h1 = 0, . . . , hn = 0 may be briefly
sketched as follows:

Algorithm 5.1

1. Choose the coefficients of a linear form u ∈ Q[X] at random from the set
{1, . . . ,6ρD4}.

2. For each γ ∈ � :
– Find a geometric solution of the variety V0,γ defined in (4.5).
– Obtain a straight-line program for the polynomials h1,γ , . . . , hn,γ defined

in (4.6) from the coefficients of h1, . . . , hn and the entries of γ ∈ Z
n+1.

– “Lift” the computed geometric solution of V0,γ to an approximation m̃γ of the
factor mγ of m̂u by means of a symbolic Newton–Hensel procedure.

3. Obtain a geometric solution of the curve ̂V :
– Compute the approximation m̃u := ∏

γ∈� m̃γ of m̂u.
– Compute the dense representation of m̂u from m̃u using Padé approximation.
– Find a geometric solution of ̂V applying the proof of Lemma 2.4.

4. Substitute 1 for T in the polynomials which form the geometric solution of ̂V

computed in the previous step to obtain a geometric solution of the variety V1.

5.2 Geometric Solutions of the Starting Varieties

In this subsection we exhibit an algorithm that computes, for a given inner normal
γ ∈ �, a geometric solution of the variety V0,γ ⊂ (C∗)n defined by the polynomials

h
(0)
i,γ (1 ≤ i ≤ n) for polynomials h1, . . . , hn satisfying assumptions (H1) and (H2).

This algorithm is based on the procedure presented in [26].
Fix a cell C = (C(1), . . . ,C(s)) of type (k1, . . . , ks) of the given fine-mixed subdi-

vision of A and let γ ∈ � be its associated inner normal. For 1 ≤ � ≤ s, we denote by
h

(�)
1 , . . . , h

(�)
k�

the polynomials in the set {h(0)
1,γ , . . . , h

(0)
n,γ } that are supported in C(�).

In the sequel, whenever there is no risk of confusion we will not write the subscript
γ indicating which cell we are considering.

Our hypotheses imply that h
(�)
1 , . . . , h

(�)
k�

are Q-linear combinations of precisely
k� +1 monomials in Q[X] and, up to a multiplication by a monomial, we may assume
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one of them to be the constant term. Denote these monomials by Xα�,0, . . . ,Xα�,k� ,
with α�,0 := 0 ∈ Z

n. Let ˜M(�) be the matrix of Q
k�×(k�+1) for which the following

equality holds in Q[X,X−1]k� :

˜M(�)

⎛

⎜

⎝

Xα�,k�

...

Xα�,0

⎞

⎟

⎠
=

⎛

⎜

⎜

⎝

h
(�)
1
...

h
(�)
k�

⎞

⎟

⎟

⎠

, (5.1)

and let M(�) denote the square (k� × k�)-matrix obtained by deleting the last column
from ˜M(�). Set

M :=

⎛

⎜

⎜

⎜

⎝

M(1) 0 · · · 0
0 M(2) · · · 0

0 0
. . . 0

0 0 · · · M(s)

⎞

⎟

⎟

⎟

⎠

,

where 0 here represents different block matrices with all its entries equal to 0 ∈ Q.
Then M is the matrix defined by the coefficients of the nonconstant terms of the
(Laurent) polynomials h

(0)
1,γ , . . . , h

(0)
n,γ , up to a translation.

Due to condition (H2) we have that the matrix M is invertible, which in turn
implies that the square matrices M(�) are invertible for 1 ≤ � ≤ s. Following [26],
we apply Gaussian elimination to the matrix ˜M(�) for 1 ≤ � ≤ s and obtain a set of
k� + 1 binomials

⎛

⎜

⎜

⎜

⎝

1 0 0 . . . −cα�,k�

0 1 0 . . . −cα�,k�−1

...
. . .

0 0 . . . 1 −cα�,1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

Xα�,k�

Xα�,k�−1

...

Xα�,0

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

Xα�,k� − cα�,k�

Xα�,k�−1 − cα�,k�−1

...

Xα�,1 − cα�,1

⎞

⎟

⎟

⎟

⎠

that generate the same linear subspace of Q[X,X−1] as the polynomials in (5.1).
Therefore, for 1 ≤ � ≤ s the set of common zeros in (C∗)n of the polynomials
h

(�)
1 , . . . , h

(�)
k�

is given by the system Xα�,k� = cα�,k�
, . . . ,Xα�,1 = cα�,1 . Putting these s

systems together, we obtain a binomial system defining V0,γ of the form

Xα1 = p1, . . . ,X
αn = pn, (5.2)

with αi ∈ Z
n and pi ∈ Q \ {0} (1 ≤ i ≤ n). Note that the second part of condition

(H2) ensures the nonvanishing of the constants pi for 1 ≤ i ≤ n.
Now let E denote the (n × n)-matrix whose columns are the exponent vec-

tors α1, . . . , αn. Using [54, Proposition 8.10], we obtain unimodular matrices K =
(ki,j )1≤i,j≤n, L = (li,j )1≤i,j≤n of Z

n×n, and a diagonal matrix diag(r1, . . . , rn) ∈
Z

n×n which give the Smith Normal Form for E , i.e., matrices such that the identity

K · E · L = diag(r1, . . . , rn) (5.3)

holds in Z
n×n. We observe that the upper bound

log‖K‖ ≤ (4n + 5)
(

logn + log‖E ‖) (5.4)
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holds, where ‖A‖ denotes the maximum of the absolute value of the entries of a given
matrix A [54, Proposition 8.10].

Let Z1, . . . ,Zn be new indeterminates, and write Z := (Z1, . . . ,Zn). We introduce
the change of coordinates given by Xi := Z

k1,i

1 · · ·Zkn,i
n for 1 ≤ i ≤ n. Making this

change of coordinates in (5.2) we obtain the system

ZKα1 = p1, . . . ,Z
Kαn = pn,

which is equivalent to the “diagonal” system

Z
rj
j =

n
∏

i=1

(

ZKαi
)li,j =

n
∏

i=1

p
li,j
i =: qj (1 ≤ j ≤ n).

Inverting some of the coefficients qj if necessary we may assume without loss of
generality that the integers r1, . . . , rn are positive. We have thus a very convenient
description of the variety V0,γ by a diagonal polynomial system in the coordinate
system of A

n defined by Z1, . . . ,Zn. We shall compute a geometric solution of V0,γ

in such a coordinate system, which will then be used to compute a geometric solution
of V0,γ in the “standard” coordinate system defined by X1, . . . ,Xn.

Example We illustrate the above procedure for the variety V0,γ (3) of (4.12), namely,

⎧

⎨

⎩

h
(0)

1,γ (3) = 1 − X2
1X

2
2,

h
(0)

2,γ (3) = X2
1X2 + X1X

2
2,

V0,γ (3) = {

(1,−1), (−1,1), (i,−i), (−i, i)
}

. (5.5)

Here the binomial system in (5.2) and the corresponding exponent vector matrix E
are

{

X2
1X

2
2 = 1,

X1X
−1
2 = −1,

and E =
(

2 1
2 −1

)

.

Taking K := ( 1 0
1 1

)

and L := ( 0 1
1 −2

)

, we get K · E · L = ( 1 0
0 4

)

and, hence, making
the change of coordinates X1 = Z1Z2, X2 = Z2 we obtain the equivalent diagonal
system

{

Z1 = −1,

Z4
2 = 1.

(5.6)

5.2.1 A Geometric Solution of V0,γ in the Coordinate System Defined by Z1, . . . ,Zn

The algorithm for computing a geometric solution of the variety V0,γ in the coor-
dinate system defined by Z1, . . . ,Zn takes as input the set of polynomials Z

r1
1 −

q1, . . . ,Z
rn
n −qn ∈ Q[Z1, . . . ,Zn] and outputs a linear form ũ ∈ Q[Z1, . . . ,Zn] which

separates the points of V0,γ , the minimal polynomial mũ ∈ Q[Y ] of ũ in V0,γ and the
parameterizations of Z1, . . . ,Zn by the zeros of mũ.
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For this purpose, assume that we are given a linear form ũ := ũ1Z1 +· · ·+ ũnZn ∈
Q[Z1, . . . ,Zn] which separates the points of V0,γ . Observe that the fact that ũ is a
separating linear form for V0,γ implies that ũi 	= 0 holds for i = 1, . . . , n. Let Y,˜Y

be new indeterminates and let m1, . . . ,mn ∈ Q[Y ] be the sequence of polynomials
defined recursively by

m1 := ũ
−r1
1 Y r1 −q1, mi := Res

˜Y

(

ũ
−ri
i

(

Y −˜Y
)ri −qi,mi−1

(

˜Y
))

for 2 ≤ i ≤ n.

(5.7)

We claim that the polynomial mn equals (up to scaling by a nonzero element of Q)
the minimal polynomial mũ ∈ Q[Y ] of the coordinate function induced by ũ in the
Q-algebra extension Q ↪→ Q[V0,γ ]. Indeed, for every 2 ≤ i ≤ n, the polynomial
mi(Y ) is a linear combination of ũ

−ri
i (Y − ˜Y )ri − qi and mi−1(˜Y ) over Q[Y,˜Y ]. Let

u(i) := ũ1Z1 +· · ·+ ũiZi for 1 ≤ i ≤ n. Then the identity ũ
−ri
i (u(i) −u(i−1))ri −qi =

0 holds in Q[V0,γ ]. Thus, assuming inductively that mi−1(u
(i−1)) = 0 in Q[V0,γ ],

it follows that mi(u
(i)) = 0 in Q[V0,γ ] as well. Taking into account that degmn ≤

r1 · · · rn and that mũ is a nonzero polynomial of degree Dγ := r1 · · · rn = #(V0,γ ), we
conclude that our claim holds.

In order to compute the polynomial mũ, we compute the resultants in (5.7). Since
the resultant Res

˜Y (̃u
−ri
i (Y − ˜Y )ri − qi,mi−1(˜Y )) is a polynomial of Q[Y ] of degree

r1 · · · ri , by univariate interpolation in the variable ˜Y we reduce its computation to
the computation of r1 · · · ri + 1 resultants of univariate polynomials in Q[˜Y ]. This
interpolation step requires O(M(r2

1 · · · r2
i )) arithmetic operations in Q and does not

require any division by a nonconstant polynomial in the coefficients ũ1, . . . , ũn (see,
e.g., [9, 10]). Each univariate resultant can be computed using the algorithms in,
e.g., [6, 59] with M(r1 · · · ri) arithmetic operations in Q. Altogether, we obtain an
algorithm for computing the minimal polynomial mũ which performs O(M(D2

γ ))

arithmetic operations in Q.

Example For the system (5.6) defining the variety V0,γ (3) in the coordinate system
Z1,Z2, taking the separating linear form ũ = Z1 + Z2 we obtain:

• m1 := Y + 1.
• m2 := Res

˜Y ((Y − ˜Y)4 − 1,˜Y + 1) = Y 4 + 4Y 3 + 6Y 2 + 4Y .

Then, the minimal polynomial of ũ is mũ = Y 4 + 4Y 3 + 6Y 2 + 4Y .

Next, we extend this algorithm to an algorithm for computing a geometric solution
of V0,γ as explained in Sect. 2.3. We obtain the following result.

Proposition 5.2 Suppose that the coefficients of the linear form ũ are randomly cho-
sen in the set {1, . . . ,4nρD3

γ }, where ρ is a fixed positive integer. Then the algorithm
described above computes a geometric solution of the variety V0,γ (in the coordinate
system Z1, . . . ,Zn) with error probability at most 1/ρ using O(nM(D2

γ )) arithmetic
operations in Q.

Proof Our previous arguments prove that the algorithm described above computes
a geometric solution of V0,γ with the stated number of arithmetic operations in Q.
There remains to analyze its error probability.
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The only probabilistic step of the algorithm is the choice of the coefficients of
the linear form ũ, which must satisfy two requirements. First, ũ must separate the
points of the variety V0,γ . Since V0,γ consists of Dγ distinct points of A

n, from
Theorem 2.2 it follows that for a random choice of the coefficients of ũ in the set
{1, . . . ,4nρD3

γ }, the linear form ũ separates the points of V0,γ with error probability
at most 1/4nρDγ ≤ 1/2ρ.

The second requirement concerns the computation of the univariate resultants of
the generic versions of the polynomials in (5.7). This is required in order to extend
the algorithm for computing the minimal polynomial mũ to an algorithm for comput-
ing a geometric solution of the variety V0,γ . We use a fast algorithm for computing
resultants over Q(Λ) based on the Extended Euclidean Algorithm (EEA for short).
We shall perform the EEA over the ring of power series Q[[Λ − ũ]], truncating all
the intermediate results up to order 2. Therefore, the choice of the coefficients of ũ

must guarantee that all the elements of Q[Λ] which have to be inverted during the
execution of the EEA are invertible elements of the ring Q[[Λ − ũ]].

For this purpose, we observe that, similarly to the proof of [59, Theorem 6.52],
one deduces that all the denominators of the elements of Q(Λ) arising during the ap-
plication of the EEA to the generic version of the polynomials ũ

−ri
i (α −u(i−1))ri −qi

and mi−1(u
(i−1)) are divisors of at most r1 · · · ri−1 polynomials of Q[Λ] of degree

2r1 · · · ri for any α ∈ Q. This EEA step must be executed for r1 · · · ri distinct values
of α ∈ Q, in order to perform the interpolation step. Hence the product of the de-
nominators arising during all the applications of the EEA has degree at most 2nD3

γ .
Therefore, from Theorem 2.2 we conclude that for a random choice of its coefficients
in the set {1, . . . ,4nρD3

γ }, the linear form ũ satisfies our second requirement with
error probability at most 1/2ρ.

The lemma follows putting both error probability estimates together. �

5.2.2 A Geometric Solution of V0,γ in the Coordinate System Defined by X1, . . . ,Xn

Now we compute a geometric solution of the variety V0,γ in the original coordinate
system defined by X1, . . . ,Xn.

For this purpose, we compute the minimal polynomial mu ∈ Q[Y ] of a linear form

u = u1X1 + · · · + unXn ∈ Q[X1, . . . ,Xn] in V0,γ . Let V0,γ := {x(1,γ )

0 , . . . ,x
(Dγ ,γ )

0 }.
Then we have mu(Y ) = ∏Dγ

j=1(Y − u(x(j,γ )

0 )). In order to compute mu, we use the

polynomials mũ, w̃1, . . . , w̃n which form the previously computed geometric solu-

tion of V0,γ in the variables Z1, . . . ,Zn: from the identities Xi := Z
k
(γ )

1,i

1 · · ·Zk
(γ )
n,i

n

(1 ≤ i ≤ n) we deduce that mu equals the minimal polynomial of the image of the

projection ηu : V0,γ → A
1 defined by η

(γ )
u (z1, . . . , zn) := ∑n

i=1 uiz
k
(γ )

1,i

1 · · · zk
(γ )
n,i

n . Now
the identities Zi = w̃i (̃u), which hold in Q[V0,γ ] for 1 ≤ i ≤ n, imply that

u =
n

∑

i=1

ui

(

w̃1
(

ũ
))k

(γ )

1,i · · · (w̃n

(

ũ
))k

(γ )
n,i (5.8)
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holds in Q[V0,γ ], from which we easily conclude that mu satisfies the following iden-
tity:

mu(Y ) = Res
˜Y

(

Y −
n

∑

i=1

ui

(

w̃1
(

˜Y
))k

(γ )

1,i · · · (w̃n

(

˜Y
))k

(γ )
n,i ,mũ

(

˜Y
)

)

. (5.9)

Example We compute a geometric solution of V0,γ (3) in the coordinate system
X1,X2 for the linear form u = X1 − X2 from its geometric solution in the coor-
dinates Z1,Z2 (see Sect. 5.2.1):

• mũ = Y 4 + 4Y 3 + 6Y 2 + 4Y .
• w̃1 = −1.
• w̃2 = Y + 1.

From the change of coordinates X1 = Z1Z2,X2 = Z2 leading to system (5.6), we
have u = Z1Z2 − Z2 and hence u = −2(̃u + 1). Therefore,

mu = Res
˜Y

(

Y + 2
(

˜Y + 1
)

,˜Y 4 + 4˜Y 3 + 6˜Y 2 + 4˜Y
) = Y 4 − 16.

Now we estimate the complexity of this step. We compute the monomials

(w̃1(̃u))
k
(γ )

1,i · · · (w̃n(̃u))
k
(γ )
n,i (1 ≤ i ≤ n) in the right-hand side of (5.8) modulo mũ(Y ),

with O(n2 log(maxi,j |k(γ )

i,j |)M(Dγ )) arithmetic operations in Q. From (5.4) it follows
that

O
(

n2 log
(

max
i,j

∣

∣k
(γ )

i,j

∣

∣

)

M(Dγ )
)

= O
(

n3 log
(

n‖Eγ ‖)M(Dγ )
)

,

where Eγ is the matrix of the exponents of the cell corresponding to the inner nor-
mal γ . Observe that all these steps are independent of the coefficients of the linear
form u we are considering and therefore do not introduce any division by a noncon-
stant polynomial in the coefficients u1, . . . , un.

In the next step we compute the right-hand side of (5.8) modulo mũ(Y ), with
O(nDγ ) arithmetic operations in Q. Then we compute the resultant (5.9) by a process
which interpolates (5.9) in the variable Y to reduce the question to the computation of
Dγ + 1 univariate resultants, in the same way as for the computation of the resultants
in (5.7). This requires O(M(Dγ )2) arithmetic operations in Q.

If the linear form u separates the points of V0,γ , then we can extend the algorithm
for computing mu(Y ) to an algorithm for computing a geometric solution of V0,γ

with the algorithm underlying the proof of Lemma 2.4. This extension requires that
the coefficients u1, . . . , un of the linear form u do not annihilate the denominators in
Q[Λ] which arise from the application of the algorithm described above to the generic
version Λ1X1 +· · ·+ΛnXn of the linear form u. Such denominators arise only during
the computation of the generic version of the resultant (5.9). Hence, with a similar
analysis as in the proof of Proposition 5.2, we conclude that, if the coefficients of
u are chosen randomly in the set {1, . . . ,4ρD3

γ }, then the error probability of our
algorithm is bounded by 1/ρ. In conclusion, we have:

Proposition 5.3 Suppose that we are given a geometric solution of V0,γ in the coordi-
nate system Z1, . . . ,Zn, as provided by the algorithm underlying Proposition 5.2, and
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the coefficients of the linear form u are randomly chosen in the set {1, . . . ,4ρD3
γ },

where ρ is a fixed positive integer. Then the algorithm described above computes
a geometric solution of the variety V0,γ with error probability at most 1/ρ using
O(n3 log(n‖Eγ ‖)M(Dγ )2) arithmetic operations in Q.

Finally, from Propositions 5.2 and 5.3 and the fact that ‖Eγ ‖ ≤ 2Q holds for
Q := max1≤i≤n{‖q‖;q ∈ �i}, we immediately deduce the following result.

Theorem 5.4 Suppose that the coefficients of the linear forms ũ and u of the state-
ment of Propositions 5.2 and 5.3 are chosen at random in the set {1, . . . ,4nρD3},
where ρ is a fixed positive integer. Then the algorithm underlying Propositions 5.2
and 5.3 computes a geometric solution of the varieties V0,γ for all γ ∈ � with error
probability at most 2/ρ using O(n3 log(nQ)M(D)2) arithmetic operations in Q.

Example For the polynomial system (4.7) we are considering and the linear form u =
X1 − X2, the first step of Algorithm 5.1 computes the following geometric solutions
of the varieties of (4.10), (4.11), and (4.12), respectively, as explained above:

V0,γ (1) = {

(−1,−y − 1) ∈ C
2 : y2 + 2y = 0

}

,

V0,γ (2) = {

(y − 1,−1) ∈ C
2 : y2 − 2y = 0

}

,

V0,γ (3) = {( 1
2y,− 1

2y
) ∈ C

2 : y4 − 16 = 0
}

.

(5.10)

5.3 A Geometric Solution of the Curve ̂V

The second step of our algorithm is devoted to the computation of a geometric solu-
tion of the curve ̂V of (4.2). This will be done by “lifting” the geometric solutions of
the varieties V0,γ computed in the previous section for all γ ∈ �.

We recall the definition of the variety ̂V . Let I denote the ideal of Q[X,T ] gener-
ated by the polynomials ̂h1, . . . ,̂hn of (4.1), which form the polyhedral deformation
of the generic polynomials h1, . . . , hn, and let J denote the Jacobian determinant of
̂h1, . . . ,̂hn with respect to the variables X1, . . . ,Xn. Let V (I) be the set of common
zeros in A

n+1 of ̂h1, . . . ,̂hn. Then ̂V := V (I : J∞).
Alternatively, let π : V (I) → A

1 be the linear projection defined by π(x, t) =
t . Consider the decomposition of V (I) into its irreducible components V (I) =
⋃r+s

i=1 Ci . Suppose that the restriction π |Ci
: Ci → A

1 of the projection π is dom-
inant for 1 ≤ i ≤ r and is not dominant for r + 1 ≤ i ≤ s. We shall show that
̂V := ⋃r

i=1 Ci holds, i.e., ̂V is the union of all the irreducible components of V (I)

which project dominantly over A
1. Furthermore, we shall show that ̂V ⊂ A

n+1 is a
curve which constitutes a suitable deformation of the variety defined by the system
h1 = 0, . . . , hn = 0. For this purpose, we shall use the following technical lemma.

Lemma 5.5 Let F1, . . . ,Fn ∈ Q[X,T ] be polynomials which generate an ideal I :=
(F1, . . . ,Fn) ⊂ Q[X,T ] and let J denote the Jacobian determinant of F1, . . . ,Fn

with respect to the variables X. Set V := {(x, t) ∈ A
n+1 : F1(x, t) = 0, . . . ,Fn(x, t) =

0} and consider the linear projection π : V → A1 defined by π(x, t) := t . Assume
that #π−1(t) ≤ D holds for generic values of t ∈ A

1 and that there exists a point
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t0 ∈ A
1 such that the fiber π−1(t0) is a zero-dimensional variety of degree D with

J (x, t0) 	= 0 for every (x, t0) ∈ π−1(t0).
Let Vdom be the union of all the irreducible components C of V with π(C) = A

1.
Then:

• Vdom is a nonempty equidimensional variety of dimension 1.
• Vdom is the union of all the irreducible components of V having a nonempty inter-

section with π−1(t0).
• Vdom = V (I : J∞).
• The restriction π |Vdom : Vdom → A

1 is a dominant map of degree D.

Proof First we observe that dim(C) ≥ 1 for each irreducible component C of V , since
V is defined by n polynomials in an (n + 1)-dimensional space.

Let C be an irreducible component of V for which π−1(t0)∩ C 	= ∅ holds. Consider
the restriction π |C : C → A

1 of the projection map π . Then we have that π |−1
C (t0) is

a nonempty zero-dimensional variety, which implies that the generic fiber of π |C is
either zero-dimensional or empty. Since dim(C) ≥ 1, the theorem on the Dimension
of Fibers implies that dim(C) = 1 and that π |C : C → A

1 is a dominant map with
generically finite fibers. This shows that C ⊂ Vdom and, in particular, that Vdom is
nonempty.

Conversely, we have that π−1(t0) ∩ C 	= ∅ holds for any irreducible component C
of Vdom. Indeed, assume on the contrary the existence of an irreducible component
C0 not satisfying this condition. Then there is a point t1 ∈ A

1 having a finite fiber
π−1(t1) such that π |−1

C0
(t1) and π |−1

C (t1) have maximal cardinality for every C with

C ∩π−1(t0) 	= ∅. This implies that #π−1(t1) > #π−1(t0) = D, leading to a contradic-
tion.

We conclude that Vdom is the nonempty equidimensional variety of dimension
1 which consists of all the irreducible components C of V with π−1(t0) ∩ C 	= ∅.
Furthermore, this shows that the restriction π |Vdom : Vdom → A

1 is a dominant map
of degree D.

Finally, we show that the identity Vdom = V (I : J∞) holds. First, note that the
irreducible components of V (I : J∞) are all the irreducible components of V where
the Jacobian J does not vanish identically. Thus, it is clear that Vdom ⊂ V (I : J∞),
since J does not vanish at the points of π−1(t0) ∩ C for each irreducible component
C of Vdom. On the other hand, if C is an irreducible component of V for which the
projection π |C : C → A

1 is not dominant, then C is the set of common zeros of the
polynomials F1, . . . ,Fn,T − tC for some value tC . Since dim(C) ≥ 1, we have that the
Jacobian matrix ∂(F1, . . . ,Fn,T − tC )/∂(X1, . . . ,Xn,T ) is singular at every point
(x, tC ) of C . Hence, its determinant, which equals J , vanishes over C . �

Now we return to the study of the variety ̂V and show that the assumptions
of Lemma 5.5 hold. Observe that π−1(t) = Vt × {t} holds for every t ∈ A

1,
where Vt := {x ∈ A

n : ̂h1(x, t) = 0, . . . ,̂hn(x, t) = 0}. Furthermore, the polynomi-
als ̂h1(X, t), . . . ,̂hn(X, t) are obtained by a suitable substitution of the variables
Ω of the generic polynomials H1, . . . ,Hn ∈ Q[Ω,X] with supports �1, . . . ,�n

introduced in (4.16). Indeed, if c = (c1, . . . , cn) is the vector of coefficients of
h1, . . . , hn, the coefficient vector of ̂hi(X, t) (1 ≤ i ≤ n) is (ci,q tωi(q))q∈�i

for every
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t ∈ A
1. By Lemma 4.1, there exists a nonzero polynomial P (0) ∈ Q[Ω] such that,

for any c′ = (c′
1, . . . , c

′
n) with P (0)(c′) 	= 0, the associated sparse system defines

a zero-dimensional variety. In particular, the coefficients c = (c1, . . . , cn) of our
input polynomials h1 := H1(c1,X), . . . , hn = Hn(cn,X) satisfy P (0)(c) 	= 0. This
shows that the polynomial P

(0)
T ∈ Q[T ] obtained by substituting Ωi,q 
→ ci,qT ωi(q)

(1 ≤ i ≤ n, q ∈ �i) in the polynomial P (0) is nonzero, since it does not vanish at
T = 1. We conclude that Vt is a zero-dimensional variety for all but a finite number
of t ∈ A

1. Thus, π−1(t) is finite for generic values of t ∈ A
1.

Finally, by condition (H1), the fiber π−1(1) = V (h1, . . . , hn) × {1} is a zero-
dimensional variety of degree D = deg(π) and the Jacobian determinant J :=
det(∂̂hi/∂Xj )1≤i,j≤n does not vanish at any of its points. On the other hand, the fact
that #π−1(t) ≤ D holds for generic values t ∈ A

1 follows from the BKK theorem.
This shows that the variety V (I) and its defining polynomials ̂h1, . . . ,̂hn satisfy

all the assumptions of Lemma 5.5. Thus, we have:

Lemma 5.6 The variety ̂V ⊂ A
n+1 is a curve. Furthermore, every irreducible com-

ponent of ̂V has a nonempty intersection with the fiber π−1(1) of the projection map
π : ̂V → A

1.

5.3.1 Generic Linear Projections of ̂V

In order to compute a geometric solution of the space curve ̂V , we shall first exhibit a
procedure for computing the minimal polynomial of a generic linear projection of ̂V .
Let u ∈ Q[X1, . . . ,Xn] be a linear form which separates the points of the “initial
varieties” V0,γ for all the inner normals γ := (γ1, . . . , γn+1) of the lower facets of
the polyhedral deformation under consideration. Let πu : ̂V → A

2 be the morphism
defined by πu(x, t) := (t, u(x)). Since the projection map π : ̂V → A

1 defined by
π(x, t) := t is dominant, it follows that the Zariski closure of the image of πu is a
Q-definable hypersurface of A

2. Denote by Mu ∈ Q[T ,Y ] a minimal defining poly-
nomial for this hypersurface. For the sake of the argument, we shall assume further
that the identity deg(π) = D, and thus degY Mu = D, hold.

We can apply estimate (2.4) of Lemma 2.3 in order to estimate degT Mu in combi-
natorial terms (compare with [45, Theorem 1.1]). Indeed, let ̂Q1, . . . , ̂Qn ⊂ R

n+1 be
the Newton polytopes of the polynomials ̂h1, . . . ,̂hn of (4.1), and let � ⊂ R

n+1 be
the standard n-dimensional simplex in the hyperplane {T = 0}. Then the following
estimate holds:

degT Mu ≤ E := M
(

�, ̂Q1, . . . , ̂Qn

)

. (5.11)

Furthermore, equality holds in (5.11) for a generic choice of the coefficients of the
polynomials ̂hi and the linear form u.

Our purpose is to exhibit a procedure for computing the unique monic multiple
m̂u in Q(T )[Y ] of Mu of degree D. This polynomial can be alternatively defined in
terms of the Puiseux series solutions to the polynomials ̂h1, . . . ,̂hn as we explain in
what follows.

Since the projection map π : ̂V → A
1 is dominant, it induces an extension

Q[T ] ↪→ Q[̂V ], where Q[̂V ] denotes the coordinate ring of ̂V . This variety being
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a curve, Q[̂V ] turns out to be a finitely generated Q[T ]-module. Thus, tensoring with
Q(T ), we deduce that Q[̂V ] ⊗ Q(T ) is a Q(T )-vector space of finite dimension. We
claim that Q[̂V ] ⊗ Q(T ) = Q[V (I)] ⊗ Q(T ) holds. Indeed, since ̂V consists of the
irreducible components of V (I) which are mapped dominantly onto A

1 by the projec-
tion π , for each of the remaining irreducible components C of V (I), the set π(C) ⊂ C

is a zero-dimensional Q-definable variety. This implies that I (C)∩Q[T ] 	= {0} holds.
Let m̂u be the minimal polynomial of u in the extension Q(T ) ↪→ Q[̂V ] ⊗ Q(T ).

The fact that Q[̂V ] ⊗ Q(T ) is a finite-dimensional Q(T )-vector space shows that the
affine variety V := {x̄ ∈ A

n(Q(T )∗) :̂h1(x̄) = 0, . . . ,̂hn(x̄) = 0} has dimension zero.
Here Q(T )∗ := ⋃

q∈N
Q((T 1/q)) denotes the field of Puiseux series in the variable

T over Q (see, e.g., [60]) and ̂h1, . . . ,̂hn are considered as elements of Q(T )[X].
Our hypotheses imply that there exist D distinct n-tuples x(�) := (x

(�)
1 , . . . , x

(�)
n ) ∈

(Q(T )∗)n of Puiseux series such that the following equalities hold in Q(T )∗, for
1 ≤ � ≤ D,

̂h1
(

x(�), T
) = 0, . . . ,̂hn

(

x(�), T
) = 0 (5.12)

(see [26]). Since Q[̂V ] ⊗ Q(T ) is the coordinate ring of the Q(T )-variety V, from
(5.12) we deduce that the dimension of Q[̂V ]⊗Q(T ) over Q(T ) equals D. Moreover,
since degY m̂u = D holds as a consequence of our assumptions, we conclude that

m̂u =
D
∏

�=1

(

Y − u
(

x(�)
))

. (5.13)

Since Mu(T ,u(X)) ∈ I (̂V ), it follows that Mu(T ,u(X)) = 0 holds in Q[̂V ]⊗ Q(T ),
from which we conclude that Mu is a multiple of m̂u by a factor in Q(T )[Y ]. Taking
into account that both are polynomials of degree D in the variable Y and that m̂u

is monic in this variable, we deduce that m̂u is the quotient of Mu by its leading
coefficient. We summarize our arguments in the following statement.

Lemma 5.7 Let πu : ̂V → A
2 be the projection defined by πu(x, t) := (t, u(x)).

Assume that the identity deg(π) = D holds and let Mu ∈ Q[T ,Y ] be the minimal
defining polynomial of the hypersurface πu(A2). Denote by m̂u the only monic mul-
tiple of Mu in Q(T )[Y ]. Then m̂u(Y ) = ∏D

�=1(Y − u(x(�))), where x(1), . . . , x(D) ∈
An(Q(T )∗) are the solutions of (5.12).

Next, we group the roots u(x(�)) of the polynomial m̂u according to the facet
from where they arise. With notations as in Sect. 4.1, let � ⊂ Z

n+1 be the set of
primitive integer vectors of the form γ := (γ1, . . . , γn, γn+1) ∈ Zn+1 with γn+1 > 0
for which there is a cell C = (C(1), . . . ,C(s)) of type (k1, . . . , ks) of the subdivision
of A induced by ω such that ̂C has inner normal γ . As asserted in Sect. 4.1, if γ ∈
� is the inner normal of the lifting ̂C of a cell C of type (k1, . . . , ks), there exist
Dγ := k1! · · ·ks ! · Vol(C) vectors of Puiseux series x(j,γ ) := (x

(j,γ )

1 , . . . , x
(j,γ )
n ) ∈

A
n(Q(T )∗) (1 ≤ j ≤ Dγ ) of the form

x
(j,γ )

i :=
∑

m≥0

x
(j,γ )

i,m T
γi+m

γn+1
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satisfying (5.12). Considering the projection of the branches of ̂V parametrized by the
Dγ vectors of Puiseux series x(j,γ ) for each γ ∈ �, we obtain the following element
mγ of Q((T 1/γn+1))[Y ]:

mγ :=
Dγ
∏

j=1

(

Y − u
(

x(j,γ )
))

. (5.14)

From (2.2) we conclude that (5.13) may be expressed in the following way:

m̂u =
∏

γ∈�

mγ . (5.15)

Since m̂u belongs to Q(T )[Y ] and its primitive multiple Mu ∈ Q[T ,Y ] satisfies
the degree estimate degT Mu ≤ E, in order to compute the dense representation of
m̂u we shall compute the Puiseux expansions of the coefficients of the factors mγ ∈
Q((T 1/γn+1))[Y ] of m̂u truncated up to order 2E. Using Padé approximation it is
possible to recover the dense representation of m̂u from this data.

Fix γ ∈ � and set x(j,γ )
m := (x

(j,γ )

1,m , . . . , x
(j,γ )
n,m ) for every m ≥ 0 and 1 ≤ j ≤ Dγ .

Since

̂hi

(

∑

m≥0

x
(j,γ )

1,m T
γ1+m

γn+1 , . . . ,
∑

m≥0

x
(j,γ )
n,m T

γn+m
γn+1 , T

)

= 0

holds for 1 ≤ j ≤ Dγ and 1 ≤ i ≤ n, we have

0 = T −mi
̂hi

(

∑

m≥0

x
(j,γ )

1,m T γ1+m, . . . ,
∑

m≥0

x
(j,γ )
n,m T γn+m,T γn+1

)

= T −mi
̂hi

(

T γ1
∑

m≥0

x
(j,γ )

1,m T m, . . . , T γn
∑

m≥0

x
(j,γ )
n,m T m,T γn+1

)

= hi,γ

(

∑

m≥0

x(j,γ )
m T m,T

)

,

according to (4.6). Therefore the polynomial mγ (T γn+1 , Y ) ∈ Q((T ))[Y ] can be ex-
pressed in terms of the power series solutions

σ (j,γ ) := (

σ
(j,γ )

1 , . . . , σ
(j,γ )
n

) :=
∑

m≥0

x(j,γ )
m T m (1 ≤ j ≤ Dγ ) (5.16)

of h1,γ , . . . , hn,γ . Indeed, from (5.14) it follows that

mγ (T γn+1 , Y ) =
Dγ
∏

j=1

(

Y −
n

∑

i=1

ui

∑

m≥0

x
(j,γ )

i,m T γi+m

)

=
Dγ
∏

j=1

(

Y −
∑

m≥0

n
∑

i=1

uix
(j,γ )

i,m T γi T m

)
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=
Dγ
∏

j=1

(

Y −
∑

m≥0

uγ

(

x(j,γ )
m

)

T m

)

=
Dγ
∏

j=1

(

Y − uγ

(

∑

m≥0

x(j,γ )
m T m

))

=: muγ (T ,Y ),

where uγ := ∑n
i=1 uiT

γi Xi . In conclusion, we have:

Lemma 5.8 Fix γ := (γ1, . . . , γn+1) ∈ � and let mγ be as in (5.14). Then the Laurent
polynomial mγ (T γn+1 , Y ) ∈ Q((T ))[Y ] equals the minimal polynomial muγ (T ,Y ) of

the projection induced by uγ := ∑n
i=1 uiT

γi Xi on the subvariety Vγ of A
n(Q(T )∗)

consisting of the set of power series {σ (1,γ ), . . . , σ (Dγ ,γ )} of (5.16).

This lemma will be critical in order to obtain suitable approximations to the Lau-
rent polynomials mγ (T γn+1 , Y ) in Q((T ))[Y ].

5.3.2 A Procedure for Computing m̂u

Now we exhibit a procedure for computing the minimal polynomial m̂u, which is
based on the computation of the Laurent polynomials mγ arising in the factorization
of m̂u = ∏

γ∈� mγ in terms of Puiseux expansions according to Lemmas 5.7 and 5.8.
Then we will apply Lemma 2.4 to this procedure in order to obtain an algorithm for
computing a geometric solution of the curve ̂V .

In order to describe this approximation, we introduce the following terminology:
for G, ˜G ∈ Q((T )) and s ∈ Z, we say that ˜G approximates G with precision s in
Q((T )) if the Laurent series G − ˜G has order at least s + 1 in T . We shall use the
notation G ≡ ˜Gmod(T s+1). Furthermore, if G, ˜G are two elements of a polynomial
ring Q((T ))[Y ], we say that ˜G approximates G with precision s if every coefficient
ã ∈ Q((T )) of ˜G approximates the corresponding coefficient a ∈ Q((T )) of G with
precision s (in the sense of the previous definition).

Fix γ := (γ1, . . . , γn) ∈ �. In order to compute the required approximation of the
polynomial muγ of the statement of Lemma 5.8, we first compute a corresponding
approximation of the polynomials that form a geometric solution of the variety Vγ :=
{σ (j,γ ) : 1 ≤ j ≤ Dγ }. Observe that

{

σ (j,γ )(0) : 1 ≤ j ≤ Dγ

} = {

x(j,γ )

0 : 1 ≤ j ≤ Dγ

}

= V
(

h
(0)
1,γ , . . . , h(0)

n,γ

) ∩ (

C
∗)n

= V
(

h1,γ (X,0), . . . , hn,γ (X,0)
) ∩ (

C
∗)n = V0,γ

holds. Since det(∂hi,γ (X,0)/∂Xk)1≤i,k≤n(x
(j,γ )

0 ) 	= 0 holds for 1 ≤ j ≤ Dγ , we may
apply the global Newton iterator of [22] (see also [52]) in order to “lift” the given
geometric solution of V0,γ to the geometric solution of the variety Vγ associated to
the linear form u ∈ Q[X] with any prescribed precision.
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Suppose that we are given polynomials m
(0)
u,γ ,w

(0)
u,1,γ , . . . ,w

(0)
u,n,γ ∈ Q[Y ] which

form a geometric solution of V0,γ , as provided by the algorithm underlying The-

orem 5.4. Recall that m
(0)
u,γ (u(x(j,γ )

0 )) = 0 and (x(j,γ )

0 )i = w
(0)
u,i,γ (u(x(j,γ )

0 )) hold for
1 ≤ i ≤ n and 1 ≤ j ≤ Dγ . The global Newton iterator is a recursive procedure whose

kth step computes approximations m
(k)
u,γ ,w

(k)
u,1,γ , . . . ,w

(k)
u,n,γ ∈ Q[T ,Y ] of the polyno-

mials mu,γ ,wu,1,γ , . . . ,wu,n,γ which form the geometric solution of Vγ associated
with the linear form u with precision 2k for any k ≥ 0.

We may assume without loss of generality that γi ≥ 0 and 0 = min{γ1, . . . , γn}
hold for 1 ≤ i ≤ n. Indeed, if there exists γi < 0, setting γi0 := min{γ1, . . . , γn} we
have

T −γi0 Dγ mγ

(

T γn+1 , T γi0 Y
) =

Dγ
∏

j=1

T −γi0

(

T γi0 Y −
n

∑

i=1

ui

∑

m≥0

x
(j,γ )

i,m T γi+m

)

=
Dγ
∏

j=1

(

Y − T −γi0

n
∑

i=1

ui

∑

m≥0

x
(j,γ )

i,m T γi+m

)

=
Dγ
∏

j=1

(

Y −
n

∑

i=1

ui

∑

m≥0

x
(j,γ )

i,m T γi−γi0 +m

)

. (5.17)

Since γi − γi0 ≥ 0 holds for 1 ≤ i ≤ n, this shows that the computation of an approx-
imation muγ := mγ (T γn+1 , Y ) can easily be reduced to a situation in which γi ≥ 0
holds for 1 ≤ i ≤ n.

Note that the global Newton iterator cannot be directly applied in order to com-
pute the geometric solution of {σ (j,γ );1 ≤ j ≤ Dγ } associated with the linear form
uγ ∈ Q[T ][X], because the coefficients of uγ are nonconstant polynomials of Q[T ].
Indeed, two critical problems arise:

(1) Although by hypothesis uγ separates the points of Vγ , it might not separate the
points of V0,γ and it is not clear from which precision on, the corresponding
approximations of the points of Vγ are separated by uγ . Requiring uγ to be a
separating form for all the approximations of the points of Vγ is an essential
hypothesis for the iterator of [22] which cannot be suppressed without causing a
significant growth of the complexity of the procedure (see [31, 32]).

(2) The iterator of [22] makes critical use of the fact that the coefficients of the linear
form under consideration are elements of Q in order to determine how a given
precision can be achieved.

Nevertheless, we shall exhibit a modification of the procedure which computes an
approximation of muγ (T ,Y ) with precision 2γn+1E without changing the asymptotic
number of arithmetic operations performed.

In order to circumvent (1) we require an additional generic condition to be sat-
isfied by the coefficients u1, . . . , un defining uγ := ∑n

i=1 uiT
γi Xi , namely, that uγ

separates the first Mγ terms of the series σ (j,γ ). Our next result asserts that for a
random choice of the coefficients uγ , this condition is likely to happen.
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Lemma 5.9 For a random choice of values u1, . . . , un in the set {1, . . . , ρD2
γ }, the

linear form uγ := ∑n
i=1 uiT

γi Xi separates the initial terms
∑Mγ

m=0 x(j,γ )
m T m of the

power series σ (j,γ ) (1 ≤ j ≤ Dγ ) with probability at least 1 − 1/ρ.

Proof For a given linear form uγ := ∑n
i=1 uiT

γi Xi as in the statement of the lemma,

we have uγ (σ (j,γ )) = ∑

m≥0(
∑n

i=1 uix
(j,γ )

i,m−γi
)T m for every 1 ≤ j ≤ Dγ , where

x
(j,γ )

i,m−γi
:= 0 for m < γi . We make the following claim.

Claim Set Mγ := max{γ1, . . . , γn} and let Λ1, . . . ,Λn be indeterminates over
C[T ,X]. Then the following inequality holds, for every 1 ≤ j,h ≤ Dγ with j 	= h,

Mγ
∑

m=0

( n
∑

i=1

Λi x
(j,γ )

i,m−γi

)

T m 	=
Mγ
∑

m=0

( n
∑

i=1

Λi x
(h,γ )

i,m−γi

)

T m.

Proof of Claim Suppose on the contrary that there exist j 	= h such that
∑Mγ

m=0(
∑n

i=1 Λi x
(j,γ )

i,m−γi
)T m = ∑Mγ

m=0(
∑n

i=1 Λi x
(h,γ )

i,m−γi
)T m. Substituting T −γi Λi

for Λi in this identity for i = 1, . . . , n, we have
∑Mγ

m=0

∑n
i=1 Λi x

(j,γ )

i,m−γi
T m−γi =

∑Mγ

m=0

∑n
i=1 Λi x

(h,γ )

i,m−γi
T m−γi , that is,

n
∑

i=1

Mγ −γi
∑

m=0

Λix
(j,γ )

i,m T m =
n

∑

i=1

Mγ −γi
∑

m=0

Λix
(h,γ )

i,m T m.

Substituting 0 for T in this identity, we deduce that

n
∑

i=1

Λix
(j,γ )

i,0 =
n

∑

i=1

Λix
(h,γ )

i,0 ,

which contradicts the fact that the vectors x(j,γ )

0 = (x
(j,γ )

1,0 , . . . , x
(j,γ )

n,0 ) (1 ≤ j ≤ Dγ )

are all distinct. This finishes the proof of the claim.

By the claim we see that the polynomial
∑Mγ

m=0(
∑n

i=1 Λi (x
(j,γ )

i,m−γi
− x

(h,γ )

i,m−γi
))T m

of Q[Λ][T ] is nonzero, and therefore has a nonzero coefficient aj,h ∈ C[Λ] for every
1 ≤ j < h ≤ Dγ . Consider the polynomial Aγ (Λ) := ∏

1≤j<h≤Dγ
aj,h ∈ C[Λ].

Since aj,h has degree 1 for every 1 ≤ j < h ≤ Dγ , it follows that Aγ has degree
(Dγ

2

)

.
Furthermore, for every (u1, . . . , un) ∈ C

n with Aγ (u1, . . . , un) 	= 0, the correspond-

ing polynomial uγ := ∑n
i=1 uiT

γi Xi separates the initial terms
∑Mγ

m=0 x(j,γ )
m T m of

the power series σ (j,γ ) (1 ≤ j ≤ Dγ ). Therefore, by Theorem 2.2 we see that, for a
random choice of the coefficients u1, . . . , un in the set {1, . . . , ρD2

γ }, the linear form
uγ separates the first Mγ terms of the points of Vγ with probability at least 1−1/ρ. �

Assume that the coefficients u1, . . . , un satisfy the statement of the lemma. The
algorithm computing an approximation of muγ consists of the following three steps:



38 Found Comput Math (2009) 9: 1–50

(Step I) We compute a suitable approximation to the geometric solution of Vγ asso-
ciated to the linear form u := ∑n

i=1 uiXi by means of κ0 := �log(Mγ +1)�
steps of the global Newton iterator of [22].

(Step II) We use the approximation of the previous step in order to obtain a cor-
responding approximation m

(κ0)
uγ

,w
(κ0)
uγ ,1, . . . ,w

(κ0)
uγ ,n of the polynomials that

form the geometric solution of Vγ associated with uγ .
(Step III) We apply an adaptation of the global Newton iterator which takes as input

the polynomials of the previous step m
(κ0)
uγ

,w
(κ0)
uγ ,1, . . . ,w

(κ0)
uγ ,n and outputs

the required approximation to the polynomials muγ ,wuγ ,1, . . . ,wuγ ,n that
form the geometric solution of Vγ associated with uγ .

Proposition 5.10 Fix γ := (γ1, . . . , γn) ∈ � and assume that a geometric solution of
the variety V0,γ is given, as provided by Theorem 5.4. Assume further that the coeffi-
cients of the linear form u of the given geometric solution of V0,γ are randomly cho-
sen in the set {1, . . . ,4ρD3

γ } for a given ρ ∈ N. Then the algorithm above computes
an approximation to the polynomial muγ ∈ Q((T ))[Y ] with precision 2Eγn+1. The
procedure requires O((nLγ + nΩ)M(Dγ )(M(Mγ )M(Dγ )/ log(Mγ ) + M(Eγn+1)))

arithmetic operations in Q, where Mγ := max{γ1, . . . , γn} and Lγ is the number
of arithmetic operations required to evaluate the polynomials hi,γ of (4.6), and has
error probability at most 2/ρ.

Proof We consider Steps I, II, and III in detail. Step I takes as input the given geo-
metric solution m

(0)
u,γ ,w

(0)
u,1,γ , . . . ,w

(0)
u,n,γ of V0,γ , and performs κ0 := �log(Mγ + 1)�

times the global Newton iterator of [22] to obtain polynomials m
(κ0)
u,γ ,w

(κ0)
u,1,γ , . . . ,

w
(κ0)
u,n,γ ∈ Q[T ,Y ] such that the following conditions hold:

(i)u,κ0 degY m
(κ0)
u,γ = Dγ and degT m

(κ0)
u,γ ≤ Mγ .

(ii)u,κ0 degY w
(κ0)
u,i,γ < Dγ and degT w

(κ0)
u,i,γ ≤ Mγ for 1 ≤ i ≤ n.

(iii)u,κ0 m
(κ0)
u,γ ≡ ∏Dγ

j=1(Y − ϕ
(j,γ )
κ0 )mod(T Mγ +1).

(iv)u,κ0 σ
(j,γ )

i ≡ w
(κ0)
u,i,γ (T ,ϕ

(j,γ )
κ0 )mod(T Mγ +1) for 1 ≤ i ≤ n.

Here ϕ
(j,γ )
κ0 is the Taylor expansion of order 2κ0 of the power series u(σ (j,γ )), that is,

ϕ
(j,γ )
κ0 := ∑2κ0

m=0 u(x(j,γ )
m )T m for 1 ≤ j ≤ Dγ .

According to [22, Proposition 7], it follows that this step requires performing
O((nLγ + nΩ)M(Dγ )M(Mγ )/ log(Mγ )) arithmetic operations in Q, where Lγ de-
notes the number of arithmetic operations in Q required to evaluate the polynomials
hi,γ of (4.6). Furthermore, in view of the application of Lemma 2.4 it is important to
remark that this step does not involve any division by a nonconstant polynomial in
the coefficients u1, . . . , un.

Next we discuss Step II. Here we obtain approximations m
(κ0)
uγ

,w
(κ0)
uγ ,1, . . . ,w

(κ0)
uγ ,n

of the polynomials that form the geometric solution of Vγ associated with uγ with
precision 2κ0 ≥ Mγ , namely:

• degY m
(κ0)
uγ

= Dγ and degT m
(κ0)
uγ

≤ 2κ0 .
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• degY w
(κ0)
uγ ,i < Dγ and degT w

(κ0)
uγ ,i ≤ 2κ0 for 1 ≤ i ≤ n.

• m
(κ0)
uγ

≡ ∏Dγ

j=1(Y − φ
(j,γ )
κ0 )mod(T 2κ0 +1).

• σ
(j,γ )

i ≡ w
(κ0)
uγ ,i (T ,φ

(j,γ )
κ0 )mod(T 2κ0 +1) for 1 ≤ i ≤ n.

Here φ
(j,γ )
κ0 is the Taylor expansion of φ(j,γ ) := uγ (σ (j,γ )) of order 2κ0 for 1 ≤

j ≤ Dγ .
From conditions (i)u,κ0 –(iv)u,κ0 and elementary properties of the resultant it is

easy to see that m
(κ0)
uγ

satisfies the following identity:

m(κ0)
uγ

(Y ) = Res
˜Y

(

Y −
n

∑

i=1

uiT
γi w

(κ0)
u,i,γ

(

˜Y
)

,m(κ0)
u,γ

(

˜Y
)

)

. (5.18)

The resultant of the right-hand side is computed mod(T Mγ +1) by interpolation in the
variable Y to reduce the problem to the computation of Dγ resultants, as explained
in the computation of the resultant in (5.9). These Dγ resultants involve two poly-
nomials of Q[T ,˜Y ] of degree in ˜Y bounded by Dγ and are computed mod(T Mγ +1).
Hence we deduce that this step requires O(M(Dγ )Dγ M(Mγ )/ log(Mγ )) arithmetic
operations in Q.

We apply Lemma 2.4 in order to extend this procedure to an algorithm computing
m

(κ0)
uγ

,w
(κ0)
uγ ,1, . . . ,w

(κ0)
uγ ,n. For this purpose, we observe that a similar argument as in the

proof of Proposition 5.2 proves that the denominators in Q[Λ], which arise during the
computation of the Dγ resultants required to compute the minimal polynomial of the
generic version

∑n
i=1 ΛiT

γi Xi of the linear form uγ , are divisors of a polynomial of
Q[Λ] of degree at most 4D3

γ . Applying Theorem 2.2 we see that for a random choice

of the coefficients u1, . . . , un in the set {1, . . . ,4ρD3
γ } none of these denominators

are annihilated with probability at least 1 − 1/ρ.
Finally, we consider Step III. For κ1 := �log(2γn+1E + 1)�, we apply κ1 − κ0

times an adaptation of the global Newton iterator of [22] to the polynomials
m

(κ0)
uγ

,w
(κ0)
uγ ,1, . . . ,w

(κ0)
uγ ,n computed in the previous step. In the kth iteration step, we

compute polynomials m
(k)
uγ

,w
(k)
uγ ,1, . . . ,w

(k)
uγ ,n satisfying:

• degY m
(k)
uγ

= D and degT m
(k)
uγ

≤ 2k .

• m
(k)
uγ

= ∏Dγ

j=1(Y − φ
(j,γ )

k ).

• degY w
(k)
uγ ,i < D and degT w

(k)
uγ ,1 ≤ 2k for 1 ≤ i ≤ n.

• σ
(j,γ )

i ≡ w
(k)
uγ ,i (T ,φ

(j,γ )

k )mod(T 2k+1) for 1 ≤ i ≤ n.

Here φ
(j,γ )

k is the Taylor expansion of φ(j,γ ) := uγ (σ (j,γ )) of order 2k for

1 ≤ j ≤ Dγ . In particular, it follows that m
(κ1)
uγ

is the required approximation to muγ

with precision 2γn+1E.
Fix κ0 < k ≤ κ1. We briefly describe how we can obtain an approximation with

precision 2k of the polynomials that form the geometric solution of Vγ associ-
ated to the linear form uγ from an approximation with precision 2k−1. Similarly

to [22], set �k(T ,Y ) := uγ (w̃
(k)
uγ

) − uγ (w
(k−1)
uγ

) = uγ (w̃
(k)
uγ

) − Y , where w̃
(k)
uγ

is
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the result of applying a “classical Newton step” to w
(k−1)
uγ

, as described in [22].

Furthermore, write �m(T ,Y ) := T −1−2k−1
(m

(k)
uγ

− m
(k−1)
uγ

). Since m
(k)
uγ

(Y + �k) ≡
0 mod(T 2k+1,m

(k−1)
uγ

) holds (see [16, §4.2]), it follows that

0 ≡ m(k)
uγ

(Y + �k) ≡ m(k−1)
uγ

(Y+ �k) + T 2k−1+1�m(Y + �k) mod
(

T 2k+1,m(k−1)
uγ

)

≡ �k

∂m
(k−1)
uγ

∂Y
(Y ) + T 2k−1+1�m(Y ) mod

(

T 2k+1,m(k−1)
uγ

)

.

We conclude that the following congruence relation holds:

m(k)
uγ

≡ m(k−1)
uγ

−
(

�k

∂m
(k−1)
uγ

∂Y
modm(k−1)

uγ

)

mod
(

T 2k+1). (5.19)

A similar argument proves the following congruence relation:

w
(k)
uγ ,i ≡ w̃

(k−1)
uγ ,i −

(

�k

∂w̃
(k−1)
uγ ,i

∂Y
modm(k−1)

uγ

)

mod
(

T 2k+1)

for 1 ≤ i ≤ n. (5.20)

Each iteration of our adaptation of the global Newton iteration is based on (5.19)
and (5.20), which are extensions of the corresponding congruence relations of [22].
We first compute w̃

(k)
uγ

by a standard Newton–Hensel lifting, and then evaluate the
expressions (5.19) and (5.20). With a similar analysis as in [22, Proposition 7] we
conclude that the whole procedure requires O((nLγ + nΩ)M(Dγ )Eγn+1) arithmetic
operations in Q.

Finally, combining the complexity estimates of Steps I, II, and III and the prob-
ability of achievement of the two generic conditions imposed to the coefficients
u1, . . . , un (the condition underlying Lemma 5.9 and the application of Lemma 2.4
in Step II), we deduce the statement of the proposition. �

Example Consider the sparse polynomial system defined in (4.7) and their associ-
ated inner normals γ (1) = (2,−1,2), γ (2) = (−1,2,2) and γ (3) = (−1,−1,4). In
(5.10) we have computed the geometric solutions for the varieties V0,γ (i) (i = 1,2,3)

associated to the linear form u := X1 − X2.
From these geometric solutions, in the second step of Algorithm 5.1 we obtain

approximations to the polynomials mu
γ(i)

(i = 1,2,3). In order to compute in the
next step a complete geometric solution of the variety associated to the linear form
u := X1 −X2, we will deal with the first-order Taylor approximations of the minimal
polynomials of the generic linear form U := Λ1X1 + Λ2X2 centered at (Λ1,Λ2) =
(1,−1). Recall that, in this case, E = 3 (see (2.10)):

• For i = 1, we have γ (1) = (2,−1,2), Dγ (1) = 2. Following (5.17), we compute an

approximation of T 2mγ (1) (T 2, T −1Y) with precision 12 by applying our modified
Newton–Hensel lifting to the geometric solution of V0,γ (1) previously computed,
thus obtaining
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m1 = Y 2 + (−4T 11 + 4T 9 + 2T 3 + (

4T 11 + 6T 9 + 2T 7 + 2T 3)(Λ1 − 1)

+ (

8T 11 + 2T 9 + 2T 7)(Λ2 + 1)
)

Y

− 6T 12 + T 8 + T 4 − 1 + (−10T 12 − 6T 10)(Λ1 − 1)

+ (

2T 12 − 6T 10 − 2T 8 − 2T 4 + 2
)

(Λ2 + 1).

• For i = 2, we have γ (2) = (−1,2,2), Dγ (2) = 2. Following (5.17), we compute an

approximation of T 2mγ (2) (T 2, T −1Y) with precision 12 by applying our modified
Newton–Hensel lifting to the geometric solution of V0,γ (2) , thus obtaining

m2 = Y 2 + (

4T 11 − 4T 9 − 2T 3 + (

8T 11 + 2T 9 + 2T 7)(Λ1 − 1)

+ (

4T 11 + 6T 9 + 2T 7 + 2T 3)(Λ2 + 1)
)

Y

− 6T 12 + T 8 + T 4 − 1 + (−2T 12 + 6T 10 + 2T 8 + 2T 4 − 2
)

(Λ1 − 1)

+ (

10T 12 + 6T 10)(Λ2 + 1).

• For i = 3, we have γ (3) = (−1,−1,4), Dγ (3) = 4. Following (5.17), we first com-

pute an approximation of T 4mγ (3) (T 4, T −1Y) with precision 24 by applying our
modified Newton–Hensel lifting to the geometric solution of V0,γ (3) , thus obtaining

m3 = Y 4 + ((−12T 21 − 8T 17 − 4T 13 − 2T 5)(Λ1 − 1)

+ (−12T 21 − 8T 17 − 4T 13 − 2T 5)(Λ2 + 1)
)

Y 3

+ (

28T 22 − 2T 14 + 4T 10 − 2T 6 + 8T 2

+ (−28T 22 + 2T 14 − 4T 10 + 2T 6 − 8T 2)(Λ2 + 1)

+ (

28T 22 − 2T 14 + 4T 10 − 2T 6 + 8T 2)(Λ1 − 1)
)

Y 2

+ ((−192T 23 − 70T 19 − 48T 15 − 2T 11 − 16T 7 − 8T 3)(Λ1 − 1)

+ (−192T 23 − 70T 19 − 48T 15 − 2T 11 − 16T 7 − 8T 3)(Λ2 + 1)
)

Y

+ 152T 24 + 66T 20 − 32T 16 + 33T 12 − 16 − 8T 8

+ (−304T 24 − 132T 20 + 64T 16 − 66T 12 + 16T 8 + 32
)

(Λ2 + 1)

+ (

304T 24 + 132T 20 − 64T 16 + 66T 12 − 16T 8 − 32
)

(Λ1 − 1).

Using the algorithm of the statement of Proposition 5.10 for all γ ∈ � we obtain
approximations of the factors mγ which allow us to compute the minimal polynomial
mu and hence a geometric solution of ̂V . Our next result outlines this procedure and
estimates its complexity and error probability.

Proposition 5.11 Suppose that we are given a geometric solution of the variety V0,γ

for all γ ∈ �, as provided by Theorem 5.4, with a linear form u ∈ Q[X1, . . . ,Xn]



42 Found Comput Math (2009) 9: 1–50

whose coefficients are randomly chosen in the set {1, . . . ,4ρD4}, where ρ is a
fixed positive integer. Then we can compute a geometric solution of the curve
̂V with O((n3N log Q + n1+Ω)M(M�)M(D)(M(D) + M(E))) arithmetic opera-
tions in Q and error probability bounded by 1/ρ. Here N := ∑n

i=1 #�i , Q :=
max1≤i≤n{‖q‖;q ∈ �i}, and M� := maxγ∈� max{γ1, . . . , γn+1}.

Proof For each γ ∈ �, we apply the algorithm underlying the proof of Proposi-
tion 5.10 in order to obtain an approximation of muγ with precision 2γn+1E. Due
to Lemma 5.8, this polynomial immediately yields an approximation with precision
2E of mγ (T ,Y ) in Q((T 1/γn+1))[Y ].

Multiplying all these approximations, we obtain an approximation with precision
2E of the polynomial m̂u = ∏

γ∈� mγ of (5.15). Since every coefficient aj (T ) of
m̂u ∈ Q(T )[Y ] is a rational function of Q(T ) having a reduced representation with
numerator and denominator of degree at most E, such a representation of aj (T ) can
be computed from its approximation with precision 2E using Padé approximation
with O(M(E)) arithmetic operations in Q.

In order to estimate the complexity of the whole procedure, we estimate the com-
plexity of its three main steps:

(i) The computation of the polynomials mγ with precision 2E for all γ ∈ �, which
requires O(

∑

γ∈�(nLγ + nΩ)M(Dγ )(M(Mγ )M(Dγ )/ log(Mγ ) + M(Eγn+1)))

arithmetic operations in Q.
(ii) The computation of the product

∏

γ∈� mγ with precision 2E, which requires
O(M(D)M(E)) arithmetic operations in Q.

(iii) The computation of a reduced representation of all the coefficients of m̂u ∈
Q(T )[Y ], which requires O(M(E)D) arithmetic operations in Q.

Observe that, from the sparse representation of the polynomials h1, . . . , hn,
we easily obtain a straight-line program computing the polynomials hi,γ of (4.6)
with O(nN log(QMγ )) arithmetic operations in Q for every γ ∈ �, where N :=
∑n

i=1 #�i and Q := max1≤i≤n{‖q‖;q ∈ �i}. Therefore, the algorithm performs
O((n2N log Q + nΩ)M(M�)M(D)(M(D) + M(E))) arithmetic operations in Q,
where M� := maxγ∈�{Mγ ,γn+1}.

Next we discuss how this procedure can be extended to the computation of a geo-
metric solution of ̂V in the sense of Sect. 2.3. Two computations of the above proce-
dure involve divisions by the coefficients ui of the linear form u: the computation of
the resultant of (5.18) for all γ ∈ � and the Padé approximations of (iii). Both compu-
tations are reduced to D applications of the EEA, which is performed in a ring Q(Λ).
A similar analysis as in Proposition 5.2 shows that all the denominators in Q[Λ] aris-
ing during such application of the EEA are divisors of a polynomial of degree 4D4.
Therefore, according to Lemma 2.4, we conclude that a geometric solution of ̂V can
be computed with O((n3N log Q + n1+Ω)M(M�)M(D)(M(D) + M(E))) arithmetic
operations in Q, with an algorithm with error probability at most 1/ρ, provided that
the coefficients of u are randomly chosen in the set {1, . . . ,4ρD4}. �
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Example We continue with our previous example.

• For i = 1, the algorithm obtains an approximation m̃γ (1) of mγ (1) by substituting

Y = T Y in the polynomial m1 previously computed, multiplying it by T −2 and
replacing T 2 with T , which yields

m̃γ (1) = Y 2 + (−4T 5 + 4T 4 + 2T + (

8T 5 + 2T 4 + 2T 3)(Λ2 + 1)

+ (

4T 5 + 6T 4 + 2T 3 + 2T
)

(Λ1 − 1)
)

Y

− 6T 5 + T 3 + T − 1

T
+

(

2T 5 − 6T 4 − 2T 3 − 2T + 2

T

)

(Λ2 + 1)

+ (−10T 5 − 6T 4)(Λ1 − 1).

• For i = 2, the algorithm obtains an approximation m̃γ (2) of mγ (2) by substituting

Y = T Y in the polynomial m2, multiplying it by T −2 and replacing T 2 with T ,
which yields

m̃γ (2) = Y 2 + (

4T 5 − 4T 4 − 2T + (

8T 5 + 2T 4 + 2T 3)(Λ1 − 1)

+ (

4T 5 + 6T 4 + 2T 3 + 2T
)

(Λ2 + 1)
)

Y

− 6T 5 + T 3 + T − 1

T
+

(

−2T 5 + 6T 4 + 2T 3 + 2T − 2

T

)

(Λ1 − 1)

+ (

10T 5 + 6T 4)(Λ2 + 1).

• For i = 3, the algorithm obtains an approximation m̃γ (3) of mγ (3) by substituting

Y = T Y in the polynomial m3, multiplying it by T −4 and replacing T 4 with T ,
which yields

m̃γ (3) = Y 4 + ((−12T 5 − 8T 4 − 4T 3 − 2T
)

(Λ1 − 1)

+ (−12T 5 − 8T 4 − 4T 3 − 2T
)

(Λ2 + 1)
)

Y 3

+ (

28T 5 − 2T 3 + 4T 2 − 2T + 8

+ (

28T 5 − 2T 3 + 4T 2 − 2T + 8
)

(Λ1 − 1)

+ (−28T 5 − 2T 3 − 4T 2 + 2T − 8
)

(Λ2 + 1)
)

Y 2

+ ((−192T 5 − 70T 4 − 48T 3 − 2T 2 − 16T − 8
)

(Λ1 − 1)

+ (−192T 5 − 70T 4 − 48T 3 − 2T 2 − 16T − 8
)

(Λ2 + 1)
)

Y

+ 152T 5 + 66T 4 − 32T 3 + 33T 2 − 8T − 16

T

+
(

304T 5 + 132T 4 − 64T 3 + 66T 2 − 16T − 32

T

)

(Λ1 − 1)

+
(

−304T 5 − 132T 4 + 64T 3 − 66T 2 + 16T + 32

T

)

(Λ2 + 1).
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Computing the first-order Taylor approximation centered at (Λ1,Λ2) = (1,−1)

of the product m̃γ (1) m̃γ (2) m̃γ (3) with precision 2E = 6 in the variable T , and applying
a Padé approximation algorithm, we obtain the polynomial

M := Y 8 + 8T − 2

T
Y 6 + 2T 2 − 32T + 1

T 2
Y 4 + −28T 2 − 2T + 40

T 2
Y 2

+ 33T 3 + 24T 2 − 16

T 3
+

(

8T − 2

T
Y 6 − 10Y 5 + 4T 2 − 64T + 2

T 2
Y 4

+ −48T + 14

T
Y 3 + −84T 2 − 6T + 120

T 2
Y 2

+ 14T 2 + 80T − 8

T 2
Y + 132T 3 + 96T 2 − 64

T 3

)

(Λ1 − 1)

+
(−8T + 2

T
Y 6 − 10Y 5 + −4T 2 + 64T − 2

T 2
Y 4 + −48T + 14

T
Y 3

+ 84T 2 + 6T − 120

T 2
Y 2 + 14T 2 + 80T − 8

T 2
Y

+ −132T 3 − 96T 2 + 64

T 3

)

(Λ2 + 1).

This polynomial is the first-order Taylor approximation centered at (Λ1,Λ2) =
(1,−1) of the minimal polynomial of the generic linear form U := Λ1X1 + Λ2X2.

Therefore, a geometric solution of the curve ̂V defined in (4.9) is given by the
polynomials

m̂u(Y ),
∂m̂u

∂Y
X1 + v̂1(Y ),

∂m̂u

∂Y
X2 + v̂2(Y ),

where

m̂u = Y 8 + 8T − 2

T
Y 6 + 2T 2 − 32T + 1

T 2
Y 4

+ −28T 2 − 2T + 40

T 2
Y 2 + 24T 2 + 33T 3 − 16

T 3

is the polynomial obtained substituting Λ1 = 1,Λ2 = −1 in M ,

v̂1 = 8T − 2

T
Y 6 − 10Y 5 + 4T 2 − 64T + 2

T 2
Y 4 + −48T + 14

T
Y 3

+ −84T 2 − 6T + 120

T 2
Y 2 + 14T 2 + 80T − 8

T 2
Y + 132T 3 + 96T 2 − 64

T 3

is the partial derivative ∂M/∂Λ1,
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v̂2 = −8T + 2

T
Y 6 − 10Y 5 + −4T 2 + 64T − 2

T 2
Y 4 + −48T + 14

T
Y 3

+ 84T 2 + 6T − 120

T 2
Y 2 + 14T 2 + 80T − 8

T 2
Y + −132T 3 − 96T 2 + 64

T 3

is the partial derivative ∂M/∂Λ2.

Putting together Theorem 5.4 and Proposition 5.11 we obtain the main result of
this section.

Theorem 5.12 Let ρ be a fixed positive integer. Suppose that the coefficients of the
linear form ũ of the statement of Theorem 5.4 and of the linear form u are randomly
chosen in the set {1, . . . ,4nρD4}. Then the algorithm underlying Theorem 5.4 and
Proposition 5.11 computes a geometric solution of the curve ̂V with error probability
3/ρ performing O((n3N log Q + n1+Ω)M(M�)M(D)(M(D) + M(E))) arithmetic
operations in Q. Here N := ∑n

i=1 #�i , Q := max1≤i≤n{‖q‖;q ∈ �i}, and M� :=
maxγ∈� ‖γ ‖.

5.4 Solving a Sufficiently Generic Sparse System

Now we obtain a geometric solution of the zero-dimensional variety V1 := {x ∈ C
n :

h1(x) = 0, . . . , hn(x) = 0} from a geometric solution of the curve ̂V .
With notations as in the previous section, we have that V1 = π−1(1), where π :

̂V → A
1 is the linear projection defined by π(x, t) := t . Moreover, due to Lemma 5.6,

the equality V1 = π−1(1) ∩ ̂V holds.
This enables us to easily obtain a geometric solution of V1 from a geometric so-

lution of the curve ̂V . Indeed, let m̂u(T ,Y ), v̂1(T ,Y ), . . . , v̂n(T ,Y ) be the polyno-
mials which form a geometric solution of ̂V associated to a linear form u ∈ Q[X].
Suppose further that the linear form u separates the points of V1. Making the sub-
stitution T = 1, we obtain new polynomials m̂u(1, Y ), v̂1(1, Y ), . . . , v̂n(1, Y ) ∈ Q[Y ]
such that m̂u(1, u(X)) and ∂m̂u

∂Y
(1, u(X))Xi − v̂i (1, u(X)) (1 ≤ i ≤ n) vanish over

V1. Taking into account that degY (m̂u) = D = #V1 and that u separates the points of
V1, it follows that the polynomials m̂u(1, Y ), v̂1(1, Y ), . . . , v̂n(1, Y ) ∈ Q[Y ] form a
geometric solution of V1.

Proposition 5.13 Let ρ be a fixed positive integer. With assumptions and notations
as in Theorem 5.12, the algorithm described above computes a geometric solution
of the zero-dimensional variety V1 with error probability 4/ρ using O((n3N log Q +
n1+Ω)M(M�)M(D)(M(D) + M(E))) arithmetic operations in Q.

Example By substituting 1 for T in the geometric solution of the curve ̂V de-
fined in (4.9) computed in the previous section, we obtain a geometric solution
of the zero-dimensional variety V1 = {(x1, x2) ∈ C

2 : 1 − x2
1 − x2

2 − x2
1x2

2 = 0,
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1 + x2
1x2 + x1x

2
2 = 0} defined by the system (4.7), namely,

mu(Y ),
∂mu

∂Y
(Y )X1 + v1(Y ),

∂mu

∂Y
(Y )X2 + v2(Y ),

where

• mu(Y ) := m̂u(1, Y ) = Y 8 + 6Y 6 − 29Y 4 + 10Y 2 + 41.
• v1(Y ) := v̂1(1, Y ) = 6Y 6 − 10Y 5 − 58Y 4 − 34Y 3 + 30Y 2 + 86Y + 164.
• v2(Y ) := v̂2(1, Y ) = −6Y 6 − 10Y 5 + 58Y 4 − 34Y 3 − 30Y 2 + 86Y − 164.

6 The Solution of the Input System

Let notations and assumptions be as in the previous sections. Assume that we are
given a geometric solution mu(Y ), v1(Y ), . . . , vn(Y ) of the zero-dimensional variety
V1 defined by the polynomials h1 := f1 + g1, . . . , hn := fn + gn. Assume further
that the linear form u of such a geometric solution separates the points of the zero-
dimensional variety f1 = 0, . . . , fn = 0. In this section we describe a procedure for
computing a geometric solution of the input system f1 = 0, . . . , fn = 0.

For this purpose, we introduce an indeterminate T over Q[X] and consider the
“deformation” F1, . . . ,Fn ∈ Q[X,T ] of the polynomials f1, . . . , fn defined in the
following way:

Fi(X,T ) := fi(X) + (1 − T )gi(X) (1 ≤ i ≤ n). (6.1)

Set V := {(x, t) ∈ A
n+1 : F1(x, t) = 0, . . . ,Fn(x, t) = 0} and denote by π : V → A

1

the projection map defined by π(x, t) := t . As in Sect. 5.3, we introduce the variety
Vdom ⊂ A

n+1 defined as the union of all the irreducible components of V whose
projection over A

1 is dominant.

6.1 Solution of the Second Deformation

In this subsection we describe an efficient procedure for computing a geometric so-
lution of Vdom from the geometric solution of π−1(0) provided by Proposition 5.13.

Since π−1(0) is the variety defined by the “sufficiently generic” sparse system
h1(X) = F1(X,0) = 0, . . . , hn(X) = Fn(X,0) = 0, with similar arguments to those
leading to the proof of Lemma 5.6, it is not difficult to see that the polynomials
F1, . . . ,Fn, the variety V , the projection π : V → A

1, and the fiber π−1(0) satisfy
all the assumptions of Lemma 5.5. We conclude that Vdom is a curve and that the
identity V ∩ π−1(0) = Vdom ∩ π−1(0) holds. Furthermore, Lemma 5.5 implies that
all the hypotheses of [52, Theorem 2] are satisfied.

Therefore, applying the “formal Newton lifting process” underlying the proof
of [52, Theorem 2], we compute polynomials m̃u(T ,Y ), ṽ1(T ,Y ), . . . , ṽn(T ,Y ) ∈
Q[T ,Y ] which form a geometric solution of Vdom. The formal Newton lifting process
requires O((nL′ + nΩ+1)M(D)M(E′)) arithmetic operations in Q, where L′ denotes
the number of arithmetic operations required to evaluate F1, . . . ,Fn and E′ is any
upper bound of the degree of m̃u in the variable T .
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In order to estimate the quantity L′, we observe that from the sparse representation
of the polynomials f1, . . . , fn,h1, . . . , hn we easily obtain a straight-line program of
length at most O(nN log Q) which evaluates f1, . . . , fn,h1, . . . , hn. Therefore, the
polynomials F1, . . . ,Fn can also be represented by a straight-line program of length
at most O(nN log Q).

Furthermore, we can apply Lemma 2.3 in order to estimate degT m̃u in combina-
torial terms. Indeed, let ˜Q1, . . . , ˜Qn ⊂ R

n+1 be the Newton polytopes of F1, . . . ,Fn

and let � ⊂ R
n+1 be the standard n-dimensional simplex in the hyperplane {T = 0}.

Since ˜Qi ⊂ Qi × [0,1] holds for 1 ≤ i ≤ n, where Qi ⊂ R
n is the Newton polytope

of hi , by (2.5) of Lemma 2.3 we deduce the following estimate:

degT m̃u ≤ E′ :=
n

∑

i=1

M(�,Q1, . . . ,Qi−1,Qi+1, . . . ,Qn). (6.2)

With this estimate for L′ and this definition of E′, we have:

Proposition 6.1 Suppose that we are given a geometric solution of the variety V1, as
provided by Proposition 5.13. A geometric solution of Vdom can be deterministically
computed with O((n2N log Q + nΩ+1)M(D)M(E′)) arithmetic operations in Q.

6.2 Solving the Input System

Making the substitution T = 1 in the polynomials m̃u(T ,Y ), ṽi(T ,Y ) (1 ≤ i ≤ n)

which form the geometric solution of Vdom computed by the algorithm of Proposi-
tion 6.1 we obtain polynomials m̃u(1, Y ), ṽ1(1, Y ), . . . , ṽn(1, Y ) ∈ Q[Y ] which rep-
resent a complete description of our input system f1(X) = 0, . . . , fn(X) = 0, even-
tually including multiplicities. Such multiplicities are represented by multiple factors
of m̃u(1, Y ), which are also factors of ṽ1(1, Y ), . . . , ṽn(1, Y ) (see, e.g., [22, §6.5]).
In order to remove them, we compute a(Y ) := gcd(m̃u(1, Y ), (∂m̃u/∂Y )(1, Y )),
and the polynomials m(Y) := m̃u(1, Y )/a(Y ), b(Y ) := ((∂m̃u/∂Y )(1, Y )/a(Y ))−1

modm(Y), and wi(Y ) := b(Y )(̃vi(1, Y )/a(Y ))modm(Y) (1 ≤ i ≤ n). Then m,w1,

. . . ,wn form a geometric solution of our input system and can be computed with
O(nM(D)E′) additional arithmetic operations in Q.

Summarizing, we sketch the whole procedure computing a geometric solution of
the input system f1 = 0, . . . , fn = 0. Fix ρ ≥ 4. We randomly choose the coefficients
of the polynomials g1, . . . , gn in the set {1, . . . ,4ρ(nd)2n+1 + 2ρn22N1+···+Ns } and
coefficients of linear forms u, ũ in the set {1, . . . ,16nρD4}. By Theorem 2.2 it follows
that the polynomials g1, . . . , gn and the linear forms u, ũ satisfy all the conditions
required with probability at least 1 − 1/ρ. Then we apply the algorithms underlying
Propositions 5.13 and 6.1 in order to obtain a geometric solution of the variety Vdom.
Finally, we use the procedure above to compute a geometric solution of the input
system f1 = 0, . . . , fn = 0. This yields the following result.

Theorem 6.2 The algorithm sketched above computes a geometric solution of the
input system f1 = 0, . . . , fn = 0 with error probability at most 1/ρ using

O
((

n3N log Q + n1+Ω
)

M(D)
(

M(M�)
(

M(D) + M(E)
) + M

(

E′)))
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arithmetic operations in Q. Here N := ∑n
i=1 #�i , M� := maxγ∈� ‖γ ‖, Q :=

max1≤i≤n{‖q‖;q ∈ �i} and E, E′ are defined in (5.11) and (6.2), respectively.

We remark that our algorithm can be applied mutatis mutandis in order to compute
the isolated points of an input system having a solution set with positive-dimensional
components. Indeed, since the first deformation is not determined by the input sys-
tem but by its monomial structure, it computes a geometric solution of a generic
sparse system as described in Sect. 5. Then we execute our second deformation
on the polynomials F1, . . . ,Fn of (6.1), considering the saturation (I : J∞), where
I := (F1, . . . ,Fn) ⊂ Q[X,T ] and J denotes the Jacobian determinant of F1, . . . ,Fn

with respect to the variables X. From Lemma 5.5 it follows that positive-dimensional
components of f1 = 0, , . . . , fn = 0 are “cleaned” by the saturation (I : J∞). Hence,
our algorithm properly outputs the isolated points of f1 = 0, , . . . , fn = 0, as stated.
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