
CHAPTER 27 

DEFORMATION  UP  TO  BREAKING  OF  PERIODIC WAVES  ON  A  BEACH 

lb A.  Svendsen*   and    J.  Buhr Hansen* 

ABSTRACT 

An experimental description is presented for 'the transformation of 
periodic waves which approach breaking on a gently sloping beach. The 
data include the variation of wave height, phase velocity, wave surface 
profiles, and the maximum value of the wave height to water depth ratio 
(H/h)max around the breaking point. 

The results are compared with the theories of sinusoidal and cnoidal 
wave shoaling, and the latter is shown in most cases to agree remark- 
ably well when the laminar energy loss along the walls and bottom of 
the wave tank is included. 

An empirical relation is established between wave length to water 
depth ratio L/h at the breaking point and the deep water wave steep- 
ness H0/L0. Also the maximum wave height to water depth ratio at 
breaking shows considerably less scattering than found previously, 
when plotted versus S = hx L/h, hx being bottom slope. 

1. INTRODUCTION 

The literature shows a considerable number of experimental investi- 
gations of the slow transformation of waves on a sloping bottom, which 
is denoted shoaling,  in particular, data for the variation of the wave 
height have been reported. 

Most of these results, however, do not confirm each other. Thus no 
definitive conclusion has been obtained so far neither about the real 
variation of the wave height nor as to which theory will predict the 
variation sufficiently accurately. 

Iversen (1952)' presented experimental data which showed that the 
height of periodic waves on a sloping bottom grows much faster than 
predicted by the sinusoidal wave theory, and Brink-Kjaer and Jonsson 
(1973) showed that actually the variation resemble a cnoidal wave 
shoaling. 

Similar experiments were made by Ippen and Eagleson (1955) , and 
Eagleson (1956) arrived at the same conclusion though the pattern was 
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The paper by Iversen (1953), 'Waves and breakers in shoaling water,' 
Third Conf. Coastal Engrg., Cambridge, Mass. 1952, is almost identi- 
cal with Iversen (1952). 
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less pronounced, partly due to considerable scattering.  Also the ex- 
periments by Vera-Cruz (1965) should be mentioned. 

Iwagaki (1968) compared his experiments with the theory of hyperbolic 
waves, in which the wave profiles are approximated by parts of solitary 
wave profiles. As far as it has been possible to ascertain from the 
graphical presentation in the paper, the agreement is good for waves 
with small deep water steepness (HQ/L0 < 0.005), (though the theoreti- 
cal curves have not been extended to the full region of water depths 
for which measurements are presented). Actually it may be shown (Svend- 
sen, 1974) that to the first order the hyperbolic wave height varies as 
h~ , i.e. as a shoaling solitary wave.  Further, in particular waves of 
small deep water wave steepness (swell-type) will more and more resem- 
ble a solitary wave in shape as the water depth decreases. Hence the 
best agreement with hyperbolic waves should be expected for swell-type 
waves.  For steeper waves the comparison seems inconclusive as should 
also be expected, as the theory does not apply to such waves. 

Against this stand the solitary wave experiments by Ippen and Kulin 
(1954) and by Camfield and Street (1969) indicating that although a sol- 
itary wave is as far from a sinusoidal wave as well possible, the varia- 
tion of its height is much better predicted by the h-1/1* rule valid for 
long sinusoidal waves. This is further confirmed by the numerical cal- 
culations by Madsen and Mei (1969), which agree quite well with the re- 
sults of Camfield and Street. 

Finally, Wiegel (1950) claims that in general his experimental re- 
sults for periodic waves on slopes 1:10.8 and 1:20 follow the linear 
theory. 

One possible reason for these discrepancies is that all the experi- 
ments for pure solitary waves, and Wiegel's with periodic waves, have 
been performed on slopes which are actually too steep to allow the 
shoaling assumption to be valid.  Another important factor is the fric- 
tion losses, which can be shown to have a considerable effect on the 
shoaling process, in particular in a relatively narrow laboratory wave 
flume. 

Also part of the surprisingly large scattering which appears in many 
experimental results for wave quantities is most likely due to the free 
second harmonic waves generated by the sinusoidal motion of a piston- 
wave-generator . 

The aim of the present investigation has been to try to clear up 
some of these uncertainties, using the facilities for generation of 
waves of extremely regular and permanent form, described by Buhr Han- 
sen, Schiolten and Svendsen (1975). 

In addition to the wave height, the phase velocity and the mean wa- 
ter level ('set-down') have been measured, and records have been ob- 
tained for the wave surface profiles. The results are compared with 
theory, and since it is rather evident from previous investigations 
that the linear theory is doomed to fail, the major emphasis is placed 
on a comparison with cnoidal wave theory.  Perhaps it should be added 
for completeness that a second or higher order Stokes theory will be 
out of question, too, when the Ursell parameter U (defined as HL2/h3) 
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(as in most cases) grows far beyond 30 or 40, which is about the limit 
for which a higher order Stokes theory is applicable.* 

In each case will be discussed outcome of the comparison, and an 
analysis will be attempted of the possible reason for discrepancies. 

2. DESCRIPTION OF EXPERIMENTAL FACILITIES AND PROCEDURE 

The waves are generated by a flap-type wave generator in a flume 
33 m long, 60 cm wide, with a plane beach sloping 1:35 (see Fig. 1). 
The motion of the wave generator is controlled by a PDP 8 mini-com- 
puter, which generates a command signal of the form 

£ = ej sin ut + e2 sin(2ut+82) U) 

(Buhr Hansen and Svendsen, 1974).  Fig. 2 shows a comparison between a 
resulting measured wave profile (with almost no free second harmonic 
components) and a second order Stokes wave. The parameter U = HL2/h3 

is about 2.  It appears that even for U as large as 40-50 (which is 
far up in the cnoidal region), the waves generated by (1) remain of 
clean and constant form. 

This is important because the waves in the constant depth part of 
the wave flume represent the initial conditions for the shoaling pro- 
cess.  (It may be noticed that it has no meaning to consider whether 
the wave produced by (1) is a 'Stokes' or a 'cnoidal' wave, as long 
as it is of constant form.) 

The water surface variation is recorded by a resistance wave height 
transducer (two silver wires, 0.17 mm diameter, 5 mm apart), the signal 
of which is scanned by the computer 400 times per second. The trans- 
ducer is mounted on a carriage which is moving slowly along the flume. 
Vertical irregularities of the rails for the carriage are eliminated 
by storing in the computer a zero level correction, which is obtained 
from the wave transducer during a carriage-run without waves. 

In the experiments, the computer determines on line the height H of 
each wave, the mean water level n, and by means of an additional wave 
height transducer, the phase velocity c.  At the same time selected 
wave profiles are stored.  After each experiment the results may be 
plotted out on an ordinary pen-recorder. 

In all experiments reported, the still water depth was 36.0 cm and 
the plane slope was 1:35. The wave frequency varied between 0.3 Hz 
and 1.2 Hz, the wave height in the constant depth part of the flume 
between 3.5 cm and 10 cm. 

The calibration factor for the wave transducers was determined by 
linear regression on 10 - 12 data points corresponding to 1 cm incre- 
ments in the submergence of the transducer.  In all experiments the 
minimum submergence was more than 1.5 cm, corresponding to a regres- 
sion coefficient larger than 0.999. 

*The limit referred to corresponds to the largest value of H for which 
there is no secondary wave crest in the trough.  In the second order 
this means that U < (L/h)3 ir""1 (3 coth3kh - cothkh)-1, the maximum of 
which is 26.3 for kh •* 0 (see Svendsen and Jonsson, 1976).  For higher 
order theories U may be slightly larger. 
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The reproducibility of the experiments is illustrated in Fig. 3 
showing two records of the same experiment. The figure also shows 
that even most of the small and apparently inexplicable irregulari- 
ties in the records are obviously repeated exactly the same way. 
Some may be due to irregularities in the wave flume (though the ac- 
curacy of alignment of sides and bottom is well below 1 mm) but most 
of them seemed to be generated by either capillary waves, secondary 
waves generated by the breaking process, and perhaps the rest of the 
free second harmonics. 

3. THE SHOALING ASSUMPTION 

The notion of wave shoaling or wave transformation on a beach was 
introduced on an intuitive basis by Rayleigh (1911).  In his approach 
there are three more or less independent assumptions involved: 

(a) The wave will — to the first approximation in bottom slope — 
continuously adjust its form so that surface profile, phase and 
particle velocities, pressure variation, etc. can be determined 
from the horizontal bottom theory, applying the local values of 
water depth and wave height. 

(b) The wave energy flux through a vertical section is constant, which 
implies that the reflection is negligible. 

(c) The number of waves.remain constant during the shoaling process 
so that the wave period T is conserved. 

Essentially each of these assumptions requires a 'sufficiently gently 
varying water depth', but how gently will actually depend on the wave 
theory considered. This question can be analysed theoretically by 
rigorous perturbation expansions including the effect of the bottom 
slope hx. 

Rayleigh, of course, presented the ideas in terms of the linear 
wave theory, and for that case it may be shown that the shoaling as- 
sumptions will be satisfied provided the relative change in water 
depth over a wave length is of the same order of magnitude as the wave 
steepness (or smaller), i.e. 

S = hxL/h = 0(H/L) (2) 

For higher order Stokes waves only smaller values of hx are allowed 
(depending on the order considered), and for (first order) cnoidal 
waves, Svendsen (1974) showed that a consistent shoaling theory re- 
quires S = 0(h/L)3. 

In conclusion we notice that in all cases the parameter S occurs 
and that shoaling conditions imply that S is too small to be of impor- 
tance. This will be discussed further later on. 

4. THE WAVE HEIGHT VARIATION 

Experimental  Results 

Since the wave period is assumed to be constant, one of the princi- 
pal problems in wave shoaling is to determine the wave height H as a 
function of the water depth h. 
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Figs. 4 and 5 show the recorded variation of the wave height for 
deep water wave steepnesses ranging from 0.0039 to 0.064. Both dimen- 
sionless wave period TVg/h, wave height to water depth ratio H/h in the 
constant depth part of the flume, and the theoretically determined deep 
water wave steepness H_/L are given in each figure. 

There are two experimental curves in each figure.  One represent 
each individually measured wave height, the other a moving average 
over the length of the reflection pattern. 

Though the curves for the individual wave heights seem to show a 
continuous variation they are actually step-curves. This is because 
the' carriage with the wave transducer moves 2 - 4 cm (depending on the 
wave period) along the wave flume during one wave period, i.e. between 
each new result for the wave height. 

In the following the origin of the theoretical curves is described 
and discussed, but first we consider the effect of energy loss due to 
friction. 

Energy  Loss   due   to  Friction 

This effect was taken into account in the theoretical curves by re- 
ducing the energy flux at each station with the energy lost since the 
previous station in the calculation, due to friction along the bottom 
and along the side walls. 

In these calculations laminar boundary layers were assumed in all 
cases although the longest and highest waves according to Jonsson (1966) 
should have turbulent boundary layers, at least close to the breaking 
point.  The effect, however, of introducing the turbulent value of the 
wave energy loss on the last part of the slope appears to be insignifi- 
cant. 

In the calculation of friction losses were used wave particle veloc- 
ities determined by the linear theory. This also applies to the region 
where the wave height variation was calculated from the cnoidal theory. 
In fact it is a reasonable simplification since the friction only 'eats' 
a minor part of the energy flux anyway. 

Linear  Wave  Shoaling 

It is not surprising that the present results confirm the conclusion 
quoted in the introduction from other investigations, namely that shore- 
ward of the point of minimum wave height, i.e. roughly h/LQ = 0.10, the 
linear theory predicts divergingly smaller wave heights than measured. 
This is evident from Fig. 4 b where the linear curve is shown through 
to breaking. 

On the other hand we notice that as long as the deep water steepness 
is less than 3-4% (Figs. 4 a and 5a), the linear wave theory seems to 
work quite well in deeper water. This is of particular interest because 
the cnoidal theory cannot be applied for h/L jb 0.10. 

In fact, for the small wave steepnesses the agreement is better than 
in the interpretation of Iversen's measurements given by Brink-Kjjer and 
Jonsson (1973). They found that even for smaller wave steepnesses ah 
appreciable discrepancy seemed to develop between the linear theory and 
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the measurement as h/LQ decreased towards the value 0.10. Fig. 6 shows 
an example of this where HQ/LO is 3.58%, and the linear theory yields 
results up to 8% higher than the measurements {i.e. a minimum value of 
H/H0 = 0.913 against 0.85 measured). 

It has turned out that the major reason for this discrepancy is that 
friction has been neglected in Brink-Kjaer and Jonsson's calculation of 
the theoretical curves.  In particular in Iversen's case, with a wave 
flume only 30 cm wide and a horizontal bottom depth of 77.8 cm in the 
case considered, the friction along the side walls has a considerable 
effect. Taking this into account brings the theoretical minimum value 
of H/H down to 0.869 in the case shown in Fig. 6, and this must be 
considered in fair agreement with the measured value. The theoretical 
variation with friction included is shown in the figure.  It may also 
be noticed that the wave heights measured by Iversen are most likely 
influenced by the fact that the first 4.6' (= 1.40 m) of Iversen's 
slope are steeper (1:5.75 = 0.174) than the value 1:13.8 = 0.072 re- 
ferred to as the slope for the experiment. 

Fig. 6 
The effect of friction 
losses on Iversen's 
results 

H 
\-h"' 

\\ V 

-£=0.97 
h 

CN0I0A 
V\ .SI »IUS0IDAL 

v^ > >> 
> 

NUSOIDAL   W 
FRICTION 

h 

For the experiment shown in Fig. 4 a, H0/L0 is almost the same (3.57%) 
and here the measured minimum value of H/HQ is 0.875 against the calcu- 
lated value (including friction) of 0.889. 

From Fig. 5a-c, however, we see that if the deep water steepness 
increases, the wave height to water depth ratio will grow to large val- 
ues already outside the cnoidal region.  In the case of H0/LQ =6.4% 
(Fig. 5c) the wave actually breaks at h/LQ =* 0.10, so that the entire 
shoaling process has been determined by the linear theory,  tod quite 
obviously, linear theory cannot handle the large values of H/h. 

Since we here at the breaking point have Omax ~ 45 (H/h ~ 0.71 and 
L/h ~ 8) it seems likely that the problem could be overcome by using a 
second or third order Stokes shoaling theory. 

Cnoidal  Wave  Shoaling 

The theory of cnoidal wave shoaling used here was developed by Svend- 
sen and Brink-Kjaer (1972) who on the same intuitive basis as Rayleigh 
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solved and tabulated the variation of the wave height. A more direct 
presentation of the results can be found in Skovgaard et al. (1974). 

Perhaps it should be mentioned that this theory is based on (8) (see 
Sect. 6). A slightly different version will appear if (10) (in which 
I'I + A H/h is substituted by 1 + ^AH/h) is used, and other differences 
of similar nature are possible too.  Formally all these versions (as 
e.g. Shuto (1974) and Ostrovskiy and Pelinovskiy (1970) are equal in 
that they only differ in the way the small terms are handled.   For 
practical applications, however, where H/h is not really as small as 
envisaged in the theory they result in considerable differences in the 
numerical results for e.g. the wave height variation, in particular as 
we approach the breaking point.  In our numerical calculations we have 
found that the best fit to the measurements is obtained by using the 
version developed by Svendsen and Brink-Kjaer. 

As appears from Fig. 4 b and c, the combined linear-cnoidal shoaling 
model fits the experimental data surprisingly well in those cases where 
the H/h-ratio remains small for h/LQ > 0.10. The predictions even fol- 
low the development all the way to the breaking point, although the 
theory should not be applicable there. 

It should be emphasized, however, that essentially this only indi- 
cates that the relationship between cnoidal energy flux and wave height 
shows a realistic variation with water depth. The absolute value of 
the energy flux is determined from the wave height in the constant depth 
part of flume and may not be correct (and other cnoidal wave properties 
as e.g. the position of the mean water level may be even rather inaccu- 
rately predicted by the same theory). This must be recalled in those 
experiments were h/LQ ~ 0.10 in the constant depth part of the flume. 
Then linear wave theory is applied for h/LQ > 0.10, and at h/LQ = 0.10 
the theoretical result must be matched with the cnoidal shoaling, which 
is used shoreward of that point.* Svendsen and Brink-Kjaer (1972) 
matched the two theories by assuming continuity in energy flux. How- 
ever logical this approach seems it results in a discontinuity in wave 
height at the matching point. 

Since, however, neither of the two theories yields the exact energy 
flux for a given wave height it may be argued that it is equally cor- 
rect to match the wave heights, which we know are continuous, and ac- 
cept a discontinuity in the theoretically determined energy flux (which 
is approximate anyway) at the matching point. This is actually the 
method chosen here.  Finally is mentioned that in the numerical evalua- 
tions the still water depth has been corrected for wave set-down. 

Disaussion 

As mentioned the figures show a reasonable agreement, though discrep- 
ancies up to 6 - 8% in wave height develop close to the breaking point. 
This cannot surprise, however, since the energy flux used for the cal- 
culations was based on the assumptions that H « h, that the horizontal 
velocity u is constant over the water depth, and that the excess pres- 
sure p due to the wave is constant too, and proportional to the local 

*In principle any point shoreward of h/LQ ~ 0.10 could be chosen as the 
matching point between the two theories. 
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value of the surface elevation. As is evident from e.g. velocity meas- 
urements in waves near breaking (see e.g. Iwagaki and Sakai, 1976), the 
velocity is far from constant over the water depth, and the constancy 
of p+ actually represents neglection of the vertical accelerations in 
this context. 

A few comments will also be appropriate about the matching procedure 
between linear and cnoidal wave theory. 

The wave tables prepared by Skovgaard et al. (1974) are based on con- 
tinuity in energy flux. The tables may also be used, however, for cal- 
culations with continuity in wave height at the matching point, if it 
is noticed that the corresponding shift in energy flux is represented 
by a formal shift in the deep water wave steepness.  The procedure is 
illustrated in the appendix. 

As mentioned in Sect. 3, a proper measure of the steepness of the 
sloping bottom is the parameter S = hx L/h. 

Since L is approximately proportional to v^gh, a plane slope will cor- 
respond to S ~ h h-1/2 so that for fixed h the value of S grows with 
decreasing water depth, indicating that the slope appears steeper and 
steeper to the waves as they propagate shoreward.  Hence the shoaling 
condition (which requires S small) will sooner or later be invalidated. 
With reference to the assumptions in Sect. 3 this would cause appreci- 
able reflection and disintegration of the wave form (T not constant). 
No such phenomena were observed in the experiments recorded here, which 
suggests that S in all cases have been small enough. 

5. WAVE SURFACE PROFILES 

Let us assume that a rigorous perturbation expansion is carried out 
for waves on a sufficiently gently sloping bottom. Then the shoaling of 
the wave will represent the first approximation, but even though the 
slope of the bottom does not directly influence this first order solu- 
tion, a second order solution exists which will represent the first ap- 
proximation to the effect of the bottom slope, which has the effect of 
making the wave skew. 

Svendsen (1974) carried out the calculations for this second order 
solution in the case of cnoidal waves, and the result for the skew wave 
profiles can be written 

n = n(°) + T^1' (3) 

where r\ (°) is the constant depth cnoidal wave profile 

n<<» = H(B(m) + cn2(2K6,m)), 6 = | - | (4) 

K being the complete elliptic integral of the first kind, m its parame- 
ter, and 8 a function of m. ri'1) is the above mentioned first approxi- 
mation to the effect of the sloping bottom,  n'1) is given by 

^p = 3 s ^T^Th f(e,u,jj) (5) 

where 

H'l • 7=h I "8
0)
-
2
 ] ^

0)
 I ^

{
°\ - ^

(0)
] « « ce  (e, 
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with indexes g and ^ denoting partial differentiation with respect to 6 
and h, respectively, under the restriction that the energy flux E^ is 
constant. This solution has been evaluated for a number of cases cor- 
responding to wave profiles measured in the experiments. As input for 
the evaluation of the theoretical profiles has been used the wave pe- 
riod, the local measured wave height, the water depth (including set- 
down) , and the bottom slope. 

Figs. 7 and 8 show a comparison between measured and calculated pro- 
files, in each case for three different phases of the deformation of a 
wave towards the breaking point. 

It is immediately evident from the figures that the agreement is good 
even for wave height to water depth ratios as large as 0.75.  It should, 
however, also be noticed that all the cases in the figures correspond to 
situations where the deviation from the symmetrical (ordinary) cnoidal 
wave profile is small.  In other words, situations where the shoaling 
assumption about a local equilibrium is still valid. This is required 
also in the theory for n'1' because n'1' has to be a small perturbation 
on n'0'- Consequently the large deformations which rapidly develop just 
before breaking cannot be predicted by this theory. 

An interesting feature is that the skewness of the surface slopes is 
not so pronounced in the wave crest. The major effect of sloping bottom 
is concentrated in the wave trough, which has its deepest point right in 
front of the next wave crest. 

6. PHASE VELOCITY 

The measurements of the phase velocity c were obtained by measuring 
the time (in milliseconds) it took the wave crest (identified digitally 
by the computer) to travel the distance between two wave gauges placed 
20.0 cm apart in the direction of wave travel. 

The results obtained in this way are rather sensitive to small 
changes in the shape of the wave crest between the two wave gauges. 
As a consequence, the individual measurements show a considerable 
scattering (± 10 - 25%) .  This is particularly pronounced for the very 
small wave steepnesses. Consequently the scattering is much reduced 
when the waves steepen on the slope. 

The results for c presented in Fig. 9 a-d represent a moving average 
over a number of waves. The results have further been confirmed by a 
different method based on measuring electrically the time it takes the 
wave to travel between two pointed metal-rods placed 20 cm apart. The 
mean value of the measurements obtained in this way confirmed that the 
results obtained from the computer when the pointed ends of the metal- 
rods were placed at a level close to the wave crest. 

It can be mentioned that one of the reasons for the large scattering 
in the experimental results is that small free second harmonic waves 
still exist in the flume.  Such disturbances result in phase velocities 
which are constant in time, but vary from point to point.  Hence the 
tendency mentioned in Sect. 2, that even the irregularities are repro- 
duced when an experiment is repeated. 

The measurements are compared with linear and cnoidal results for 
the phase velocity.  From linear theory we have 
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c = 2. tanh kh (7) 

which is used for all values of h/LQ > 0.10. As the cnoidal result for 
c is used (for h/LQ < 0.10) 

Hll1/2 h(1 + 4) (8) 

A = 1 - 1 - if (9) 
m     m K 

where E is the complete elliptic integral of the second kind. 

Since cnoidal theory assumes H/h « 1, (8) may also be written 

C = ^h(l + iA|) +0(f}
2 (10) 

which is equally valid.  In the analogy with the wave height variation 
we realize that for waves near breaking the numerical results obtained 
for (8) and (10) differ appreciably.  It turns out that the results ob- 
tained from (8) fit the measurements better.  In (8) the theoretically 
determined wave height (i.e. from the shoaling process) has been used. 

In general-the conclusion is positive. The two theories predict the 
phase velocity to within a few per cent, the linear theory for h/LQ > 
0.10, the cnoidal shoreward of that point. The only exception is close 
to breaking, where the cnoidal theory overestimates the finite amplitude 
effect and yields results somewhat above the measurements. In Fig. 9 c 
is for comparison given the linear curve even though h/LQ < 0.10 every- 
where . 

7. WAVE BREAKING 

The last topic to be discussed in this paper is the characteristics 
of the waves at the breaking point, including the prediction of the po- 
sition of this point, e.g. in terms of the water depth where breaking 
is initiated. 

Even though cnoidal theory seems to predict the wave height varia- 
tion reasonably well, no information can be deduced from that theory 
(or any other known theory) about where the breaking occurs.  In that 
question we must rely entirely upon empirical data. 

One of the problems is to define exactly where the breaking has 
started.  Often breaking is defined to start 'where the front of the 
wave becomes vertical', though in the case of a spilling breaker there 
is no such point. Also the initiation of foam may be a very uncertain 
definition in small scale experiments where the surface tension will 
cause scale effects for the foam production. 

In consequence of these arguments we have chosen to define the break- 
ing point as the point where H/h is maximum.  Since the wave height has 
a maximum close to the point where the energy dissipation starts and h 
is decreasing, H/h appears to have a rather sharp maximum. In the eval- 
uation of h the set-down is incorporated.  The choice of H/h to iden- 
tify the breaking point has the advantage that from an engineering point 
of view the maximum of H/h is one of the primary information about the 
wave breaking. 
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Part of the large scatter in breaking data for earlier experiments 
is believed to be due to free second harmonics in the waves (Battjes, 
1974). And even when this irrelevant effect is removed, as in our ex- 
periments, each breaking wave will generate wavelets which influence 
the breaking of the next wave etc. This is particularly pronounced for 
plunging breakers and represents an effect which must be expected also 
in the nature. 

In the attempt to find coherence in the data obtained, many different 
plots and relationships among the parameters have been tried.  One of 
the most promising is shown in Fig. 10. 

It shows the value of the wave length to water depth ratio (L/h)B at 
the point where H/h is maximum. Since all the experiments were per- 
formed with a slope 1:35, Iversen's (1952) data for slopes, 1:10, 1:20, 
1:30 and 1:50, and those reported by Iwagaki and Sakai (1976) for slopes, 
1:10, 1:20 and 1:30 have been included, too. For all the points, L has 
been determined from the cnoidal wave theory using the wave period, and 
the wave height and water depth at the breaking point. 

The abscissa in Fig. 10 is the theoretically determined deep water 
wave steepness H0/LQ.  It appears from the figure that within the accu- 
racy expected by the experiments (and the more advanced ISVA-experiments 
show a smaller variation, as they should) the data can be described by 
the relationship 

(L/h)B = 2.30(Ho/Lo)
_l/2 (11) 

From this relationship several deductions follow. Since L/h is increas- 
ing monotonously shorewards, this relation means that breaking starts 
when the wave length to water depth ratio grows to a value which depends 
only on the deep water wave steepness. 

It is of particular interest to note that (L/h)B does not depend on 
the bottom slope hx, and that the scattering is considerably smaller 
than for any other correlation between breaking parameters. The first 
suggests that shoaling conditions are satisfied in most of the experi- 
ments (Iversen's 1:10-data showing a weak tendency to larger values of 
(L/h)B).  Since L/h varies rapidly with the position in the breaking 
zone, the small scattering indicates that the initiation of breaking 
depends strongly on the value of L/h. 

Once the relation (11) has been established, the wave height at the 
breaking point HB is actually theoretically  fixed too for a wave with a 
given deep water steepness H0/LQ. From (11) we get (L/h)B, and since 
L/h is a monotonous function of h/L0 for given H0/LQ (Svendsen and 
Brink-Kjaer, 1972) this means that (L/h)B corresponds to one particular 
value of hB/LQ. This value can in principle be determined, though none 
of the tables published so far are suited for this purpose.* Finally, 
from hB/LQ and H0/L0 the value of (H/h)B can be determined (using e.g. 
Table 3 in Skovgaard et al., 1974). 

Notice that if only HQ/L0 is given we cannot determine the absolute 
value of hB and HB, only the ratios described above.  Often, however, 
the wave period will be given too, and then LQ = g/(2ir) T

2 yields the 

*The table required should have the entries L/h and H0/L0 and yield 
values of h/LQ. 
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length required to specify the absolute values from the dimensionless 
ratios. 

In Fig. 11 a the values of (H/h)B are plotted versus S = hx(L/h)B. 
A comparison between theoretical and experimental results here would 
yield no information, which could not be drawn from Figs. 4 and 5. 

The measurements of Iversen, and Iwagaki and Sakai (Fig. lib) do not 
quite fit into the pattern of the present investigation but the tend- 
ency is the same. Their results all correspond to smaller values of 
(H/h)B and the scattering is considerable.  As mentioned before, this 
is probably to a large extent due to the free second harmonics gener- 
ated by their wave generator.  The scattering, however, is considerably 
decreased by using S instead of (L/h)B.  Thus the value of H/h at the 
breaking point is actually a function of the bottom slope hx. 

It will be seen that the values of the (H/h)B are in general some- 
what larger than the height 0.827 h considered the largest possible for 
a solitary wave on a horizontal bottom (Longuet-Higgins and Fenton, 
1974), and other results usually quoted for the maximum possible height 
of periodic waves.  Also, the largest values of (H/h)B correspond to 
the largest values of S. 

In both these respects, the results seem to fit into the pattern 
found by Camfield and Street (1969) who for solitary waves (i.e. theo- 
retically infinitely long waves) found (H/h)g-values up to 2. 

8. CONCLUSION 

Linear ('sinusoidal') and cnoidal wave theories are compared with 
experimental results obtained with waves without free second harmonic 
disturbance on a plane slope h = 1:35.  It is shown that: 

(a) Linear theory can predict the shoaling as long as the wave height 
to water depth ratio H/h is small (Fig. 4 a). 

(b) Cnoidal theory, which can only be used for h/L0 < 0.10 (L0 being 
deep water wave length), predicts the variation of the wave height 
quite well even close to breaking (Fig. 4 b and c) . 

(c) LinSar theory is used for h/LQ > 0.10, and wave height is matched 
with cnoidal theory at that point. For waves with large deep water 
steepness H0/L0 (> 3 - 4%) the value of H/h is not small for h/LQ > 
0.10.  Hence linear theory fails (Fig. 5 b and c) . Second or higher 
order Stokes theory is recommended in this case for h/L > 0.10. 

• 
(d) The skew shape of the wave profiles is well predicted by a theory 

taking into account the effect of the bottom slope (Figs. 7 and 8). 
The theory cannot predict breaking. 

(e) Both the linear and the cnoidal formulae for phase velocity c fit 
remarkably well to the data for h/LQ > 0.10 and < 0.10, respectively 
(Fig. 9). 

(f) At the breaking point the wave length to water depth ratio (L/h)R 

appears to be independent of bottom slope, for bottom slopes less 
than 1:10, i.e. (L/h)B = f (HQ/L0) , Fig. 10, whereas (H/h)B is pri- 
marily a function of the slope parameter S = hx(L/h)B (Fig. 11). 
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APPENDIX 

Given a wave with period T = 12 s, and H0/L0 = 0.01. 

Find the wave height H at h = 7 m. 

Since LQ = g T
2/2ir. = 225 m, we have h/LQ = 0.031 > 0.10 so that 

cnoidal wave theory is appropriate to use for'this wave at h = 7 m. 

Continuity in energy flux at the matching point, Table 3 in Skov- 
gaard et al., yields directly (using h/LQ and H0/LQ as entry) that 
H/HQ = 1.133, or H = 2.55 m, since H0 = 2.25 m. 

Continuity in wave height at the matching point requires that we 
stage the calculation through that point. Linear theory yields (1^ 
denoting the depth at the matching point) 

hm/L0 = 0.10 =» H/H0 = 0.933   H = 0.933 • 0.01 • 225 = 2.10 m 

1^ = 0.10 • 225 = 22.5 m 

At this point the table for linear (i.e. sinusoidal) waves yields 
Hsin/HQ = 0.933, whereas the cnoidal result for H0/L0 = 0.01 is Hcn/HQ= 
0.867.  If we now require that at the matching point Hcn = Hs^n, we find 
that in the cnoidal calculation we must formally use a deep water wave 
height HQ cn = HQ • 0.933/0.867 = 2.43 m, i.e. in the cnoidal computation 
the deep water steepness must be HQ cn/LQ = 0.01076 ~ 0.0108. The wave 
height at h = 7 m can then be found from Table 3 (Skovgaard et al.) 
using h/LQ = 0.031 and HQ/L0 = 0.0108 as entry.  We get 

H/HQ =1.140   H = 1.140 • 2.43 = 2.78 m 

against 2.55 m obtained by the other matching procedure. 
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