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0. Introduction. A Lie algebra is a vector space with an alternating bilinear
product which satisfies the Jacobi identity. In this paper we shall consider the
set 9N of all Lie algebra multiplications on a fixed (finite-dimensional) vector
space V. If we choose a basis for ¥, then 9 can be identified with the set (c};)
of all Lie algebra structure constants. The group G = GL(V) of all vector
space automorphisms of V acts as a transformation group on 9 and the orbits
of G on 91 are precisely the isomorphism classes of Lie algebra structures on V.
In the study of ‘“‘deformations’” of Lie algebras, we are interested in geometric
properties of the set 9 considered as a transformation space for G.

Let p e 9 and let L = (V, u) be the corresponding Lie algebra. We consider
the following problems concerning deformations of L:

(1) Give sufficient conditions on L in order that every Lie algebra L’ near
L be isomorphic to L (we say, in this case, that L is rigid).

(ii) Describe in terms of algebraic properties of L the set of all Lie algebras
in g neighborhood of L.

The solutions to both of these problems involve the Lie algebra cohomolgy
space H(L, L). Precisely, (i), L is rigid if H*(L, L) = 0 and, (ii), a neighborhood
of L (i.e., p) can be parametrized in the real or complex case by the zeros of an
analytic map from H*(L, L) to H*(L, L). The computations involved are greatly
simplified by the introduction of a graded Lie algebra Alt(V) associated with V.

Strictly speaking, once we establish the relation between Lie algebra structures
on V and the graded Lie algebra Alt(V), all of our results could be obtained by
simply quoting the general theorems on deformations in graded Lie algebras
developed in [10]. Since so many purely technical details appear there, we have
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tried to make this paper as seli-contained as possible. When we have to appeal
to the results of [10], we sketeh the ideas behind the proofs.

Our results on deformations of Lie algebras are analogous to earlier results
of Gerstenhaber [4] on deformations of associative algebras.

The problems we consider are closely related to the notion of contraction of
Lie algebras, which is of interest in modern physics. For a discussion, see several
recent papers of R. Hermann [5].

As further applications of the ideas involved we briefly discuss deformations
of modules over a Lie algebra (representations) and deformations of ideals.
In another paper [11], we have discussed deformations of homomorphisms
of a Lie algebra L (resp. Lie group @) into a second Lie algebra M (resp. Lie
group H). The methods and results are similar to those of this paper.

1. Lie algebra structures on a vector space. We shall consider only finite-
dimensional Lie algebras. A Lie algebra L = (V, u) is given by a (finite-dimen-
sional) vector space V, together with a bilinear map (“‘product map”) u: V' X

V — V which is alternating (u(z, ) = 0, this implies u(z, ¥) = —u(y, 2))
and which satisfies the Jacobi identity:
(1) M(.’/E, I-"(y; Z)) + N(y: l‘(z; .’L‘)) + :u(z; N(xy y)) = 0.

Classically, the product p(z, y) is denoted [z, y]; we shall, however, reserve
square brackets for a different operation.

If we choose a basis (e, , --- , e,) of V, then the multiplication is completely
determined by the values of u(e; , €;). We may set u(e; , ¢;) = 2 ¢';e, , Where
c%; are field elements, called the structure constants of the Lie algebra L. Clearly,
¢, = 0 and ¢f; = —c}; ; the Jacobi identity is equivalent to

(1,) ; (kacl;m + C;kc’fn.- + C,l,,kC’;i) = (),

The discussion of Lie algebras and their deformations could be carried out
entirely in terms of structure constants, but preference will be given to the,
usually simpler, intrinsic formulation.

Let 91t denote the set of all alternating bilinear maps p : V X ¥V — ¥V which
satisfy the Jacobi identity (1). 9 may be identified with the set of all N =

n(g)—tuples (ct;) of field elements which satisfy the conditions for structure

constants. In view of (1’), this set is the intersection of a finite number of
quadratic hypersurfaces in K"; hence 91 is an algebraic set. Here K denotes
the base field of V. We shall assume char K == 2 throughout (otherwise, see
[10] for details). The cases K = R or C (real or complex numbers) underlie
most of the intuitive discussions.

2. Deformations of Lie algebras—a sketch. ITet u' : V X V — V be an
alternating bilinear map and let u be a Lie algebra multiplication on V. Set
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¢ = u' — p; then ¢ is also an alternating bilinear map. Now, u’ is a Lie algebra
multiplication if it satisfies the Jacobi identity:
0= Z w(x, 'y, z))

oyol

2+ o), (0 + 9, 2)

oyol

= 2, u, py,2) + 2w, oy, 2))

eyo oyel

+ 2 o, uly, 2)) + Z o(@, ¢y, 2)).

eyel

Here Y., denotes the sum over all cyclic permutations of {x, y, z}. The first
term on the right vanishes since p is a Lie product. The second and third terms
take a form which is familiar in the cohomology theory of Lie algebras. (See
Section 3.) Precisely, they give the coboundary 8¢ of the 2-cochain o;

@) do(, y, 2) = Z u(x, oy, z)) + E oz, uly, 2)).

cyol eyel
The last term in the computation is denoted —3[g, ¢], for reasons to become
clear later:

3) e, o, 4, 2) = 2 ¢lelx, v), 2).

oyel

Thus the “deformation equation’ becomes
(4) dp — %[‘P; ¢] =0,

and ¢ is a deformation of u (d.e., 4’ = u 4+ ¢ is a Lie product) if and only if
¢ is a solution of (4)).

3. Lie algebra cohomology. We shall give only the basic definitions; for a
detailed discussion see [3, 6].

Let L = (V, u) be a Lie algebra and let p be a representation of L on a vector
space W. Then W is said to be an L-module. If z ¢ L and w e W, then p(z)(w)
is denoted simply by z-w. C*(L, W), the (vector) space of n-cochains of L with
coefficients in W, is defined to be the vector space of all alternating n-linear
maps of V into W and C(L, W) denotes the direct sum @,.,C"(L, W). The
coboundary operator § : C(L, W) — C(L, W), a homogeneous linear map of
degree 1, is defined as follows: if a £ C"(L, W), then éa & C**'(L, W) is given by

dax(xo y ° " ’xn) = ZO(_I)ixi'O‘(xO: KR PR ;xn)

+ Z(—l)iq.fa(l‘(x-’)xi):xO; 1ﬁi7 "':ﬁir ,-’l?,,),

i<q
where the sign A indicates that the argument below it has been omitted. It
can be shown that 6 o § = 0 (a proof is given in Section 5), thus (C(L, W), 8)
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is a cochain complex. Let Z"(L, W) = {ae C*(L, W) | a = 0} and B*(L, W) =
s(C™ (L, W)); Z™(L, W) (vesp. B (L, W)) is the space of n-cocycles (resp. n-
coboundaries). Since 6 o § = 0, B*(L, W) is included in Z"(L, W). The quotient
space H"(L, W) = Z™(L, W)/B"(L, W) is the n-th cohomology space of L with
coefficients in W and H(L, W) denotes the direct sum @, H"(L, W).

If z e L, then the linear map y — u(z, ) of L into L is denoted by ad z. It
follows from the Jacobi identity that & — ad,x is a representation of L on L,
and hence L (or more precisely, V) becomes an L-module. The Lie algebra

cohomology space H(L, L) is the only one we shall have to consider in the main
part of this paper.

4, Infinitesimal deformations. Let L = (V, p) be a Lie algebra and let

¢ ¢ C*(L, L) be a 2-cochain. Then ¢ is a deformation of L if and only if ¢ is a
solution of the deformation equation

@) Sp — 3o, ¢] = 0.
The solutions of the linearized version of (4)
(5) dp =0

will be called infinitesimal deformations of u; thus the infinitesimal deformations
of u are just the 2-cocycles. Let u, = u + o, + t°0; + - - - be a one-parameter
family of Lie algebra multiplications on V where £ may denote a real or complex
variable, or an indeterminate. (In the latter case, K and V have to be replaced
by K{[t]] resp. V[[t]], the sets of formal power series with coefficients in K resp. V;
and various other technicalities have to be taken care of. We ghall ignore them
and refer the reader to Gerstenhaber [4].) One easily verifies that ¢, is an in-
finitesimal deformation. It is not possible, in general, to find a one-parameter
family which has a given infinitesimal deformation as its first order term.

Among the deformations of u there will, in general, be equivalent ones.
Two deformations, ¢, and ¢, , are called equivalent if the corresponding u, =
k+ ¢ and g, = p + @, define isomorphic Lie algebras Ly, = (V, u,) and L, =
(V, ws). In that case we have u,(z, ¥) = g(u(g 'z, ¢7'y)) for some g ¢ GL(V),
the group of vector space automorphisms of V.

Let @ : V— V be a linear map. Then I -} {a is a family of invertible linear
maps if { e R or C and |t} is small or if ¢ is an indeterminate. (I is the identity
map.) The Lie algebra multiplication u, given by

pel, y) = (I + ta)u(d + to) "z, (I + ta)'y)
is equivalent to u. If we expand (I + fa)™" by the geometric series we find
we(@, y) = w@, y) + Halu(z, ¥)) — wow, y) — u, ay))
-+ (higher order terms).

This shows that the alternating bilinear map
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@, y) = ou(z, y) — ulow, v) — u@, ay)

is an infinitesimal deformation. In fact we observe that « is a 1-cochain and
that the above map is just — . We note that s« is a special kind of infinitesimal
deformation. It “‘deforms” u into a structure isomorphic to it, and hence is
called a frevial infinitesimal deformation. Thus the trivial infinitesimal deforma-
tions are precisely the 2-coboundaries. The above construction by means of
I + ta shows that every trivial infinitesimal deformation is the first order term
of some one-parameter family of deformations of x. (It might have been more
elegant to take ¢'* instead of I + ta; however, that would have compounded
the difficulty for fields of prime characteristic.)

On the infinitesimal level, we now have two vector spaces which are of sig-
nificance: (1) the space Z°(L, L) of all infinitesimal deformations of g; (2) the
space B*(L, L) of all trivial infinitesimal deformations of u. The quotient space
Z*(L, L)/B*(L, L) is just the Lie algebra cohomology space H*(L, L). It “meas-
ures” the extent to which there exist non-trivial infinitesimal deformations.
It would be reasonable to call L infinitesimally rigid if H*(L, L) = 0. In fact
the rigidity theorem of Section 7 states that if the base field is R or C or is
algebraically closed, then H?(L, L) = 0 is sufficient for L to be rigid, 7.e. there
is a neighborhood of p in 97 all of whose elements are equivalent to p.

5. The graded Lie algebra Alt(V). In view of the complicated nature of
expressions such as (1), (2) and (3), which will need to be manipulated in dealing
with deformation problems, it becomes clear that a formidable amount of
computation lies ahead unless we can find a systematic method for handling
such expressions. The following will serve our purposes.

For each integer n = —1, we define Alt"(V) to be the vector space of all
alternating (n -+ 1)-linear maps of V into itself. We denote by Alt(V) the direct
sum P, Alt*(V). For a ¢ AE*(V) and 8 & Alt™(V), we define a A 8 ¢ Alt"™(V)
by

(6) o K ﬂ(xo » "t CE,,+,,.)

= Z sgn (a')a(ﬁ(wi) » " xv(m)); Logmt1) 5 °*° xﬂ(m+»));

2

where the sum is taken over all permutations ¢ of {0, --- , #» 4+ m} such that
d0) < ++- <g(m)and o(m + 1) < -+- < g(n + m). We now define [a, 8] ¢
AW™(V) by

@) fo, 8] =« A B — (=1)"B A a.
It is now a matter of simple verification to verify that (1) becomes
@) A p=3upu =0,

that (2) becomes

@) do=—uNo—o Au=—[uq,
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and that (3) is consistent with the present definition. We note further that
A(V) = C***(L, L), hence that Alt(V) is identical with the cochain complex
C(L, L), except for a change in grading. Furthermore, the coboundary operator
8 can be expressed in terms of the bracket product. We define D, : Alt(V) —
Alt(V), a homogeneous linear map of degree 1, by setting Do = [, a]. A
simple computation shows that D,e = (—1)"8a for o ¢ Alt"(V). Thus we see
that all formulae introduced so far can be expressed in terms of the newly
introduced product on Alt(V). The main properties of this product are sum-
marized in the following theorem.

Theorem 5.1. The graded vector space AlL(V), with the product [,] defined
by (6) and (7) is a graded Lie algebra. That is, if o ¢ Alt™(V), B ¢ Alt"(V) and
v e At*(V), then

(a) [a, B] e AIt™™(V); and depends bilinearly on o and 8;

(®) e, 8] = (=1)™B, al;

() (—D™Ie, 8, Y]] + (=1)™IB, [y, &l] + (—1)lr, [&, B]] = 0.

(If m 1s odd, one also requires [a, [, &]] = 0. This follows from (c) except when
the base field has characteristic 3.)

The identity (c) is called the graded Jacobi identity. The proofs of (a) and
(b) are immediate. The proof of the graded Jacobi identity follows by triple
application (cyeclic permutation of entries), ¢f. [10, p. 7], of the so-called com-
mutative-associative law for A’

OGADAB=7A@AD=(D"{rADANa—v A B A}

This latter identity may be proved by a direct (though rather demanding)
write-out, ¢f. [9]. A more intrinsic proof is given in an appendix to this paper.

The graded Jacobi identity has a number of interesting consequences. For
the present we shall mention only two, both related to Lie algebra cohomology.
First it implies immmediately that 8 o § = 0, where § is the coboundary operator
in C(L, L). Since § is (except for an irrelevant sign) equal to D, , it suffices to
show that D, o D, = 0. But, if « ¢ Alt (V), we have

DDy = [, [u, a]] = 3[4, u], a] = 0.

(If W is an arbitrary L-module, then essentially the same proof, applied to the
semi-direct product L -+ W, shows that § o § = 0, where § is the coboundary
operator in C(L, W).)

Since D, o D, = 0, the pair (Alt(V), D,) is a cochain complex. We define
Z(Alt(V), D,) (resp. B(Alt(V), D,)) to be the kernel (resp. image) of D, and
we set

H(AW(V), D,) = Z(AW(V), D,)/BAI(V), D,).

We similarly define Z"(Alt(V), D,), B*(Alt(V), D,) and H"(AIt(V), D,). Then
we have Z"(Al(V), D,) = Z""*(IL, L), B Al(V), D,) = B**'(L, L), and
H*(At(V), D,) = H"**(L, L). The Jacobi identity implies that D, is a deriva~



LIE ALGEBRA 95

tion of Alt(V). That is, if « ¢ Alt™(V) and 8 & Alt"(V), then D,[a, 8] = [D,e, 8] +
(=1)"e, D,B]. It follows immediately that if &, 8 ¢ Z(Alt(V), D,), then [o, 8]l &
Z(Alt(V), D,). Similarly, if v ¢ BAW(V), D,), then [a, 7] ¢ B(AlL(V), D,).
Thus Z(Alt(V), D,) is a (graded Lie) subalgebra of the graded Lie algebra
Alt(V) and B(Alt(V), D,) is an ideal in the graded Lie algebra Z(Alt(V), D,).
It follows immediately that there is an induced structure of graded Lie algebra
on the quotient space H(Alt(V), D,). Thus we have proved:

Theorem 5.2. The graded Lie algebra structure on AIt(V) (= C(L, L)) induces
o structure of graded Lie algebra on the Lie algebra cohomology space H(L, L),
in which the usual grading is reduced by one.

Remark. As noted above, the graded vector spaces Alt(V) and C(L, L)
are identical, except for a change of grading. However, (and this is a point we
wish to emphasize) the product [,] on Alt(V) is defined independently on
any Lie algebra structure that V may have. This is the main reason we have
chosen to distinguish between Alt(V) and C(L, L).

6. The action of GL(V) on Alt(V). The properties of a graded Lie algebra
imply that Alt’(V) is a Lie algebra in the usual sense. In fact, a moment’s
reflection shows that it is the Lie algebra gI(V) of all linear endomorphisms
of V, supplied with the usual commutator product. Extending notation in-
troduced earlier, we define, for each « ¢ Alt°(V), a homogeneous linear map
D, : Alt(V) — Alt(V) of degree 0 by setting D8 = [, 8] for 8 e Alt(V). It
follows immediately from the graded Jacobi identity that the map « — D,
is a representation of the Lie algebra Alt°(V) on Alt(V).

There is a natural representation p of the group G = GL(V) on Al(V).
If g e G and B ¢ AIt"(V), then p(g)B8 ¢ AIt"(V) is given by

(8) (P(g)ﬁ)(xo y 0" )xn) = g(ﬁ(g_l(xo)7 ] g_l(xn)))'

In fact, p is a rational representation of the algebraic group GL(V) on Alt(V)
(i.e., p(g)B depends rationally on ¢ for fixed g).

Now let @ £ g{(V), and ¢ = I -+ to. Expanding (I + t)™" by the geometric
series, we find

(p(g)ﬁ)(:vo y " xn)
= (I + )BT + ta) "o, -+, (I + ta)'z.)

=ﬁ(x07""xn)+ta(ﬁ(x0)"')wn))—tiﬁ(x0’°"7axi;'°'7mn)+"'

i=0

=B@o,,T)FHaAB—=BAD@o, @)+ oo,
where the dots indicate higher order terms. It follows that

oI + te)B = B + e, 8] + -+ .
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This formula gives the relationship between the (finite) action of G on Alt(V)
and the “infinitesimal” action of gl(V) on Alt(V). More precisely, gl(V) is
the Lie algebra of the linear algebraic group GL(V) and the above formula
shows that the differential dp of the rational representation p is just the rep-
resentation a — D, of g{(V) on Alt(V). (For the appropriate definitions con-
cerning linear algebraic groups, see [1, 2]. A detailed proof of the above result
on dp follows easily from the general results of [2, Chapitre III}. If V is a real
or complex vector space, then GL(V) is a Lie group, gI(V) is its Lie algebra,
p is a representation of Lie groups, and dp is just the representation @ — D, .)

It follows easily from (6) and (8) that p(g)(8 A v) = p(@)B A e(g)vifgeG
and 8, v are homogeneous elements of Alt(V). This implies that p(9){8, 7] =
[0{g)8, p(g)y], thus that each p(g) is an automorphism of the graded Lie algebra
Als(V).

Let 9% = {u ¢ Alt'(V) | [u, u] = 0}. Then 9 is just the set of all Lie algebra
multiplications on V. Since G acts on Alt(V) by automorphisms, it follows
immediately that 9T is stable under the action of G. Let g, , u, & 9 and let
Ly = (V, w) and L, = (V, u,) be the corresponding Lie algebras. Then it
follows immediately from the definitions that L, and L, are isomorphic if and
only if there exists ¢ € G such that p(g)u; == u. . Thus the orbits of G on 9 cor-
respond precisely to isomorphism classes of Lie algebra structures on V.

In summary, we have shown that the triple (Alt(V), G, p) satisfies the condi-
tions for an algebraic, graded Lie algebra given in [10, p. 11]; when the base field
is either R or C it is also an analytic graded Lie algebra. Thus we may apply
the general theorems on deformations in graded Lie algebras given in [10] to
study deformations of Lie algebra structures on V. If p e M and L = (V, u),
then the cohomology space H" (Alt(V), D,) is identical with the Lie algebra
cohomology space H"**(L, L).

7. Rigid Lie algebras. Let V be a finite-dimensional real vector space and
let 9N be the real algebraic set of all Lie algebra multiplications on V; we con-
sider 91 as a topological space with the topology induced as a subset of Alt'(V).
(Alt"(V) is given the usual (Hausdorff) topology of a finite-dimensional real
vector space.) A Lie algebra I = (V, u) is rigid if the orbit G(u) = {p{g)u | g e G}
is an open subset of M. The following “rigidity theorem’ is a special case of
[10, Theorem 18.1 and Corollary 18.2]. (The parenthetical remark in the last
sentence should read ‘‘(resp. is a (finite) union of components of a Zariski open
subset of 911).”

Theorem 7.1. Let V be a finite-dimensional real vector space, let 9N be the
algebraic set of all Lie algebra multiplications on V, and let L = (V, ) be a Lie
algebra such that H*(L, L) = 0. Then L is rigid. More precisely, the orbit G(u)
18 a (finile) union of componenis of a Zariski-open subset of 9. Furthermore,
there exist only a finite number of isomorphism classes of Lie algebras L with
underlying vector space V such that H*(L, L) = 0.
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The idea behind the proof of Theorem 7.1 is simple. The form of the ‘“‘de-
formation equation’” (4) shows that the ‘“tangent space” to 9N at u is a sub-
space of Z°(L, L) (to be precise, one must use the Zariski tangent space, since
9 may have a singularity at x). The argument given in Section 4 shows that
the tangent space to the orbit G(u) at u is B*(L, L). If H*(L, L) = 0, i.e., if
Z*(L, L) = B*(L, L), then an elementary differential-geometric argument shows
that the orbit G/(x) is an open subset of 9, hence that L is rigid. The other
statements of the Theorem depend upon a technical lemma [10, Proposition 17.1]
and properties of the Zariski topology.

The rigidity theorem above actually holds for Lie algebras over an algebraically
closed field of arbitrary characteristic. Let V be a finite-dimensional vector
space over an algebraically closed field K and let 91T be the algebraic set of all
Lie algebra multiplications on V. We consider 91 as a topological space supplied
with the Zariski topology (induced by the Zariski topology of Alt'(V)). A
Lie algebra L = (V, p) is rigid if the orbit G{u) is an open subset of 9. The
following theorem is a special case of [10, Theorem 22.1 and Corollary 22.2].

Theorem 7.2. Let V be a finite-dimensional vector space over an algebraically
closed field and let L = (V, u) be a Lie algebra. If H*(L, L) = 0, then L is rigid.
Furthermore, there exist only a finite number of tsomorphism classes of Lie algebras L
with underlying vector space V such that H*(L, L) = 0.

Let L be a semi-simple Lie algebra over a field K of characteristic 0. Then
it follows from [3, Theorem 24.1}] that H*(L, L) = 0. Hence L is rigid if K = R
or if K is algebraically closed. More generally, if L’ is the direct sum of L and
a l-dimensional Lie algebra, then it follows from the Hochschild-Serre spectral
sequence [6, Theorem 13] that H*(L/, L') = 0. In particular, if K = R or if
K is algebraically closed of characteristic 0 and if V is a finite-dimensional
vector space over K, then the Lie algebra gl(V) is rigid.

The following example shows that H*(L, L) = 0 is not a necessary condition
that a Lie algebra L be rigid. Let S denote the (unique to within isomorphism)
three-dimensional simple Lie algebra over C and, for each positive integer n,
let ¢, denote the irreducible representation of weight # of S on C****, We con-
sider C***! as an abelian Lie algebra and form the corresponding semi-direct
product S +,, C***!, which we denote by L, . Then it is shown in [12] that L,
is rigid if n # 1, 2, 3, 5 and that H*(L, , L,) =+ 0 if n is odd. Thus we obtain
a family L, , Ly , - - - of rigid Lie algebras with H* + 0.

8. Interpretation of H’(L, L) as obstructions. Let L = (V, p) be a Lie
algebra. In this section we shall show how the elements of H*(L, L) may be
interpreted as “‘obstructions” to “expanding’” an infinitesimal deformation of
p into a one-parameter family of deformations of u. We shall deal throughout
only with formal one-parameter families, i.e., one-parameter families given by a
formal power series. A more precise, although less intuitive, interpretation will
be given in the following section.,
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Let p, = p + to; + 0 + -+ (o; € Alt'(V)) be a (formal) one-parameter
family of alternating bilinear maps of V' X V into V. In order that u, be a one-
parameter family of Lie algebra multiplications on V, we must have [u; , u.} = 0.
This leads to an infinite sequence of conditions on p and the ¢;’s. The first
three conditions are

[IJ'7 ﬂ] = 07 D/A‘Pl = 0) and Duﬁaz -+ %[401 ’ Sol] = 0.

The first condition is automatically satisfied and the second implies that ¢,
must be an infinitesimal deformation. If the first two conditions are satisfied,
it follows from the fact that D, is a derivation that %[e, , ¢4] is a cocycle. In
order that ¢, can be found satisfying the third condition, %[e; , ¢;,] must be a
coboundary. Thus the class of i[p, , ¢1] in H*(Alt(V), D,) must vanish. This
class is the first obstruction to forming a one parameter family of deformations
whose first order term is ¢, . If it vanishes, another obstruction may show up at
the next level, efc. All of these obstructions will be shown to lie in
H*(At(V), D,) = H*(L, L). If H*(L, L) = 0, then each infinitesimal deforma-
tion is the first order term of a one-parameter family.

A simple proof that all obstructions lie in H*(Alt(V), D,) is the following.
Let w, = p + toy + -+ + ", satisfy the Jacobi identity through order n,
.60y [ue , ] = " ¥ns1 + ---, where three dots denote higher order terms.
If; DOW, u; = M + foy o+ 00 F tn+1§0n+1 3 then

[t ) ] = tnﬂanﬂ + .-,

where o,.; &€ Alt*(V) is given by

Opyy = 2Dﬂ.¢n+l + Z; [§0i ) §0n+1-1']°
=

In order that ¢,,, exist such that u! satisfies the Jacobi identity through order
n + 1, it is necessary and sufficient that 8,41 = 2., [¢; , Pa+1-;] be & coboundary.
We show that B,., , or equivalently a,.; , is a cocycle in any case, so that its
cohomology class in H*(Alt(V), D,) is then an obstruction. By the graded
Jacobi identity, we have [u! , [u! , x/]] = 0. In view of the above formulas, this
implies that

0= [ﬂ: ) [ﬂ:;”:]] = tn+l[l‘y an+1] + e

Hence, [y, aps1] = D,yaney = 0, which was to be proved.

The power series method outlined above was used by Kodaira, Nirenberg
and Spencer [7, p. 453] in a problem concerning deformations of complex struc-
tures on a compact manifold. A more involved method was used by Gerstenhaber
[4] in studying deformations of associative algebras. In the following section,
we shall give preference to a study of all local solutions to the deformation
equation at once. The successive obstructions are then replaced by one obstruc-
tion map @ with values in H*(Alt(V), D,).
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9. Locally complete families of deformations. We sketch the solution of
the deformation equation

© Dy + 3o, 0] =0

for the case when the base field is R or C, so analytic methods may be used.
For details we refer of course to [10]. As a preliminary we choose in each Z" =
Z*(Alt(V), D,) a subspace H" complementary to B" = B"(Alt(V), D,); we
shall identify H" with H*(Alt(V), D,) = H"***(L, L) by means of the canonical
isomorphism. We also choose in each Alt"(V) a subspace C" complementary
to Z". Then Alt"(V) = B* @ H" @ C". Denote by 75 , 7z , ¢ the projections
on these subspaces. To solve (9) we first solve =, times it, which is a sub-system
of (9):

(10) Dn‘P -+ %WB[‘Py ‘P] = 07

and set ¢ = 2 4 ¢; 2 ¢ 2%, ¢ ¢ C*. Then D,z = 0, while D,¢c = 0 if and only if
¢c=0,

(11) Do+ 3xplz + ¢,z + ¢l = 0.

The left side denotes a map of Z' X (" into B®. For z = 0 the map C* — B®
is just D, , hence is an isomorphism. By the implicit function theorem it is
therefore possible to express ¢ as an analytic function of 2 : ¢ = &(z) in a neigh-
borhood of (2, ¢) = (0, 0). Hence the ‘‘small” solutions of (11), or of (10), are
of the form ¢ = 2 4 ¢ = z 4 ®(2). We now apply =z to the left side of (9) and
substitute the solution of (11) into it:

Q) = dmulz + @),z + 26)],

50 Q is an analytic map defined in a neighborhood of 0 in Z*, with values in H>.
It is called the obstruction map. We now consider the expression obtained by
applying w, to the left side of (9): wcle, ¢], which equals iwclu -+ o, u + o).
Denote it v for short. We claim that, if (2) = 0 and ¢ = z + ®(2), and if ¢ is
sufficiently small (Z.e., 2 sufficiently small), then y = 0. Observe that, under
the hypotheses, 2[u + ¢, u + ¢] = ¥ & C°, and that by the Jacobi identity

0=13p+to,toutol=[k+tev]=Dy+ el

Now D, sends C" injectively into Alt*(V); hence so does any map close to D,
such as D -+ [p, -] for small . Hence Dy + [, v] = 0 implies v = 0 for small
¢ (i.e., small 2) since ¥ ¢ C'. Thus there is a neighborhood N of 0 in Z* such
that the ¢ = 2z + ®(2) with Q(2) = 0 and z ¢ N fill out a neighborhood of u in
M.
A locally complete family of deformations of p is a connected subset W of
M with u ¢ W such that the orbit G(W) is a neighborhood of x in 9%. Thus,
intuitively, every element of 9 near u lies on the orbit of an element of W near p.

Theorem 9.1. Let V be a finite-dimensional real or complex vector space and
let 9 be the algebraic set of all Lie algebra muliiplications on V. Let u & 9N and



100 A, NJENHUIS & R. W. RICHARDSON, JR.

let L = (V, u). Then there exists a neighborhood N of 0 in H*(L, L) and analytic
maps® : N — AW*(V, V) and @ : N — H*(L, L) such that

K={u+z+ &) |ze H(L, L) NN and Q%) = 0}
18 a locally complete family of deformations of u.

(We recall that H*(L, L) (resp. H*(L, L)) has been identified with a vector
subspace of Alt'(V) (resp. AIt*(V)).)

For the proof we note first that the tangent space at u to the orbit G(x)
consists of all elements of Alt'(V) of the form [a, ] = D, (—«) with « ¢ At°(V);
i.e., this tangent space is exactly B'. Since AIt'(V) = B' @ (H' @ CY), it
follows that the orbit G(u) meets the linear variety u -+ H' 4+ C* transversally
at u. An easy application of the inverse function theorem shows that there
exists a neighborhood N, of g in the linear variety u + H' -+ C" such that the
orbit G(IV,) is a neighborhood of u in Alt'(V). Since 9 is stable under the
action of G, it follows from the above results that & is a locally complete family
of deformations of u.

The locally complete family of deformations X is an exact analogue of the
locally complete family of complex structures on a compact manifold con-
structed by Kuranishi [8].

For the case of a Lie algebras L = (V, p) over an algebraically closed field,
a similar result holds. For details see [10]. In particular, if H*(L, L) = 0, we
have:

Theorem 9.2. Let V be a finite-dimensional vector space over an algebraically
closed field and let 9 be the algebraic set of all Lie algebra multiplications on V.
Let u € 9 be such that, setting L = (V, ), we have H*(L, L) = 0. Then there is
precisely one irreducible component N, of N which contains p. Furthermore, u
is a simple point of N, and the tangent space to M, at u is Z*(L, L).

10. Deformations of modules. The methods developed in the preceding
can be applied to the problem of deforming a representation o of a Lie algebra
L = (V, uo) on a vector space W. The crucial observation to be made is that
the conditions that g, satisfy the Jacobi identity (1) and that ¢ be a homo-
morphism of L into gI(W) can be expressed in one condition. We consider the
alternating bilinear map p of V X W into V X W defined by

p@, y) = polz,y) if z,yeV,
p, y) = —uly, ) = olx)y if zeV,yeW,
p,y) =0 if z,yeW.

Then the above conditions on s and ¢ are satisfied if and only if u satisfies (1),
t.e., if (V X W, u) is a Lie algebra. Conversely, if x4 is a Lie algebra product
on VX Wandif u(V, V) CV,u(V, W) CW, u(W, W) = {0}, then the re-
striction u, of u to V satisfies (1), and the linear map ¢ : L — g{(WW) obtained
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from the restriction of u to (V, W) is a homomorphism. From here on we assume
that p is a Lie algebra product of the type discussed, and u, and ¢ are as above.
By restricting attention to the deformations of u into product maps of the
type discussed we may thus study deformations of ¢, or also simultaneous
deformations of u, and ¢. Each of these problems can be formulated by means
of its own graded Lie algebra. They will be denoted F resp E.
We set E = E" and define E™' = V X W, while for n = 0 we take

al@, ) eV if @, 2.8V 1
E'=ae Alt" (VX W) |alo, +++ ,2)e W if Ji with z,e W
l al@o, *+* ,2,) =0 if Ji==j with x,-,x,-eW[

A moment’s reflection on (6) shows that if o, 8 ¢ E then & A 8 ¢ E. Hence
{a, 8] ¢ E, and E is a subalgebra of Alt(V X W). The multiplication maps u
under consideration are exactly those in £', and hence E is stable under these
D, . Multiplication maps u, and g, on ¥V X W in the present context are
equivalent if they are related by a map ¢ ¢ GL(V X W) (¢f. §4) which sends
V and W onto themselves. The group G of these maps has as its Lie algebra
the set of all maps VX W — V X W under which V and W are stable; ‘.e., the
Lie algebra of G is E°. A look at (8) confirms that E is stable under the action
of G.

In summary, we thus see that (£, D,) is a cochain complex, and that (E, G, p)
is an algebraic resp. analytic graded Lie algebra in the sense of [10]. Therefore,
Theorems 7.1, 9.1 and 9.2 hold for simultaneous deformations of u, and o,
provided the groups H*(L, L) in these statements are replaced by H* *(E, D,).

For the deformations of ¢ in which u, is kept fixed we may use the graded
Lie algebra F = @F", with F~' = W, and, for n = 0,

F*'={aeE" |al@, -+« ,2,) =0 if x4, - ,zeV}.

A look at (6) now shows that « A e Fifae E,BeForifasF,BeE. It
follows that F is an ideal in the graded Lie algebra E. In particular, F is stable
under D, , with u ¢ E'. Representations ¢, , o, are equivalent if they differ by
an element g of GL(W) : ¢2(x) = g-01(z)-g~". The Lie algebra, gI(W) of GL(W)
is just F°. Clearly, F is stable under the action of GL(W) (considered as a sub-
group of GL(V X W)) on Alt(V X W) via p, (cf. (8)). Thus (F, D,) is a cochain
complex, and (F, GL(W), p) is an algebraic resp. analytic graded Lie algebra.
Theorems 7.1, 9.1 and 9.2 hold for deformations of ¢, with H"(L, L) replaced
by H*'(F, D,).

It is intuitively clear that the infinitesimal deformations of ¢ are also in-
finitesimal deformations of u, though of a special kind, since p, is not changed.
Similarly, any infinitesimal deformation of x in E' gives rise to an infinitesimal
deformation of u, , by restriction to V. These facts, and several more, are
brought out by considering the quotient graded Lie algebra E/F. Brief con-
templation of the definitions of E* and F" shows (E/F)", which is the same as
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E"/F", to be naturally isomorphic to Alt*(V), and it also shows that ‘A (cf. (6))
commutes with the isomorphism. Furthermore, the composition j of the canon-
ical map E — E/F and the isomorphism E/F — Alt(V) maps u into u, . We
observe that

0—F5SE-LAlV) —0,

where 7 is the injection, is an exact sequence of graded Lie algebra homo-
morphisms which commute with the coboundary maps D, , D, and D, , respec-
tively.

A standard result in homological algebra yields an exact triple of vector space
homomorphisms

i *
H* (F,Du) — H*(E,Du)

Ay

*(al
H* (A t(V)’DH )

o

where, in fact, 7* and j* are graded Lie algebra homomorphisms, while D*
is of degree 1. An interesting portion of the triangle is the following sequence

— HAW(V)) 25 H'(F) S HY(E) D H'(AW(Y) 25 H(F) —.
The exactness of maps between the middle three terms was formulated at
the beginning of this discussion. Exactness at H'(F) shows that a non-trivial
infinitesimal deformation of o is trivial as a deformation of u if it is the image
of an element of H°(Alt(V)), 4.e. of an outer derivation (infinitesimal outer
automorphism) of L = (V, p,). This reflects the fact that representations o, ,

o3 obtainable from each other via an automorphism of I were, in general, not
considered as equivalent. The portion of the sequence:

— H'(AW(V)) 25 H*(F) £ HY(E) &5 H*(AK(V)) —

involving the obstruction spaces, can be similarly discussed.

In §3 it was shown that H"(Alt(V), D,) can be identified with the more
familiar H™**(L, L). We now show that H"(F, D,) can be identified with H™(L,
gl(W)), where g{(W) is an L-module via ¢ and the adjoint representation.
The exact triple then becomes

H*(L, o1 (W)) —i%y H*(E,Du)

A b

H*(L,L)

where now ¥ and D* are of degree 0 and j* of degree 1.
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To each @ ¢ F* (n = 0) is associated a uniquely determined alternating n-
linear map & of V into gl(W), by

WLy y o S T)Y =Ty, e, Ty Y),

and conversely. The representation 7 of L = (V, u,) on gl(W) is given by

(r@)B)y = o(@)By — Bo(x)y = wulx, By) — Bulz, y),
where z e V,ye W, 8 egl(W). For g = a(x,, +-- , x,) this becomes

(T(ﬁt)&(xl 3 T, xn))y = F"(x; a(wl PR xn)y) - 5[(:171 ) "t xn):u(xi y)
= —u@a@, T, y), ) — (—)alul, ?/): Tiy o, Tn).

We now replace (z, @1, -+-, %) by (¥, %0, *»+ , £, -+ , %), multiply by
(—1)" and sum on 7; thus finding the first sum in the expression for éa; cf. (3).

(.Z (—l)iT(x")a(xO N T D)
= _z‘:(_l)iﬂ(a(x07 ey By e T, ), T)
+ “L: (_I)Hnﬂa(ﬂ(xi )R SR A Tn)e

The first term on the right equals (—1)*(u A @) (%o, +-- , . , ¥). The second
term on the right combines with

Z:_ (-1)i+ia(/v‘(xi YD)y oy e s iy e iy T, Y)
(which is the second sum in the expression for 8z, cf. (3)) to give (& A ) (%o ,
<+, 2., 7). Hence we find

(8o, = 2y = (~D"@Aat+aAw)@, 2%,
= (_l)n(Dua)(xO 3 "7y Ty y)‘

Thus the coboundary maps of (F, D,) and (C"(L, gI(W)), 8) commute under
a — & up to a non-vanishing factor. The correspondence o — & thus gives an
isomorphism between H*(F, D,) and H"(L, gl(IW)).

The complex (¥, D,) and its cohomology take on a more natural form if
(V X W, u) is considered as a graded Lie algebra A in which V = A%, W = A'
and all other summands vanish. Then H"(Z, D,) is the same as H*"'°(A, A),
the (n + 1)** cohomolgy space based on maps « e Alt(A) of degree 0. In par-
ticular, H'(E, D,) = H*°(A, A) which measures the non-trivial infinitesimal
degree-preserving deformations of the product map of A.

The study of deformations of ¢ : L — gl(W) may be considered as a special
case of the general problem of deforming a Lie algebra homomorphism ¢ : L — M.
This problem also fits into the general pattern of deformation theory, but uses
a different graded Lie algebra. It is discussed in [11].
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11. Deformations of ideals. Let L = (V, u) be a Lie algebra and U a
subspace of V which is an ideal: u(V, U) C U. One may ask for deformations
of u sueh that U remains an ideal. Such deformations yield deformations of
the Lie algebra structure on U, as a subalgebra, deformations of the induced
Lie algebra structure on V/U, and deformations of the structure of U as an
L-module. They are also related to deformations of (V, u) as an extension of
V/U by U. So clearly, the range of problems to be investigated here is even
richer than that sketched in §10.

We confine ourselves to the construction of the appropriate graded Lie
algebra I = @I for deformations of u. Weset I™" = V, and forn = 0

I"= {ae AWV {alo, -+ ,2)e U if ¢ with z,e U}.

Observations of the usual kind show that I is indeed a subalgebra, that u e I,
hence I is stable under D, , and that the group @G of equivalences consists of
those ¢ € GL(V) under which U is stable. Its Lie algebra is exactly I°. Also,
I is stable under G via p, (¢f. (8)). Hence (I, D,) is a cochain complex, and (I, G, p)
is an algebraic resp. analytic graded Lie algebra. Theorems 7.1, 9.1 and 9.2
give results on deformations of u, provided H*(L, L) is replaced by H* (I, D,).

12. Appendix: Proof of the commutative-associative law, The identity in
question is

12) GAYAB=—TA@AB) =D (AR Aa—vAEBA),

where «, 8, v ¢ Alt(V), of respective degrees m, n, p.

Since V is finite-dimensional, Alt"(V) is canonically isomorphic to V &
A™') where A" is the vector space of all alternating (n + 1)-forms on V
(7.e., all alternating (n -+ 1)-linear maps of V into the base field). Hence, it is
sufficient to prove (12) fora = t X w0, 8 = y Q 7w and v = 2z K 7, where z,
y, z ¢ V and where w, w, and 7 are alternating forms on V of respective degrees
m -+ 1,n -+ 1, and p -+ 1. Then

v Aha=z2Rw A (+ A x),
WA)AB=2@rA (AT ANDAY,
YA@@AB =27 AwAY AGFTA=2).

These expressions contain only ‘A-products of forms with a vector, which means
contraction with a vector. This operation satisfies the evident rules.

CADAY=@©@AY Ao+ (=1 A Ay,
GCAD)ANYy=—GFAY Az

The first rule, with & = 7 A z, applied in (y A a) A B8 yieldsy A (a A B)
plus the term

D"z Q@7 Aw A ((+ A x) A y).
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The same computation, with «, 8 interchanged would yield
(D" Qo Ax A ((rANy) A ).

By the second rule for A and the “commutativity” of A we see that the first
of these results equals (—1)"*'(=1)"*"'(=1)(=1)™*P ™ = (~1)™ times
the second. That proves (12).
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