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Introduction 

L e t  t h e  ( real  o r  c o m p l e x )  L ie  g r o u p  G a c t  a n a l y t i c a l l y  o n  t h e  c o n n e c t e d  ( real  or  com-  

p lex)  a n a l y t i c  m a n i f o l d  M .  I n  t h i s  p a p e r  we  sha l l  s t u d y  t h e  b e h a v i o u r  of t h e  i s o t r o p y  

s u b g r o u p s  Gx as  a f u n c t i o n  of x E M .  I f  m =minxr  d i m  Gx, i t  is t r i v i a l  to  s h o w  t h a t  M 0 = 
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{x E M I dim Gx = m} is a dense open subset of M, the complement of an analytic subset 

of M. We shall restrict at tention to the case in which M = M0, i.e. we assume that  all orbits 

of G on M have the same dimension. This case is well understood if G is a compact con- 

nected Lie group (even for the case of continuous G-actions). There exists a dense open 

subset U of M such tha t  G~ is conjugate to Gy for x, y E U. Moreover, M - U is of codimen- 

sion I> 2 in M and, if x E U and y E (M - U), then G x is conjugate to a subgroup of G~. Thus, 

modulo conjugacy, all isotropy subgroups are the same on U and on ( M - U )  all tha t  

happens is tha t  the isotropy subgroups pick up extra components. In  particular, the 

number  of components of the isotropy subgroup G x is an upper semi-continuous function 

of xEM.  

The situation is quite different in the case of non-compact G. For example, there exists 

an analytic action of G=SL4(R ) on an analytic manifold M such tha t  all orbits of G on M 

have codimension 1 and such that ,  for x, y E M, G x is non-isomorphic to Gy unless x and y 

lie on the same orbit under G. Similar examples exist for semi-simple algebraic groups acting 

algebraically on quasi-affine algebraic varieties. To give another example, consider the 

irreducible representation of G = SLy(C) on (~4 and let U = {xEC4IGx is finite}; U is a non- 

empty  Zariski-open subset of C 4. There exists a Zariski closed subset A of U such tha t  

Gx=(e)  for x E A  and Gx is of order three if x E ( U - C ) .  Thus, for the action of G on U, the 

number  of components of G~ is a lower semi-continuous function of x but is not upper semi- 

continuous. For all of these examples, see w 12. 

In  order to s tudy the behaviour of the isotropy subgroups, we shall s tudy the more 

general problem of "deformations" of subgroups of a (real or complex) Lie group G. Roughly, 

an analytic family o /Lie  subgroups o /G,  parametrized by  an analytic manifold M, is an 

analytic submanifold H of G • M such that  the projection :7~M" II-->M is a submersion and, 

for every tEM,  the fibre 7~M--l(t) is of the form Ht • {t), where Ht is a Lie subgroup of G. 

Our basic result concerning such analytic families is the following: 

THEOREM 3.1. Let  H=(Ht)teM be an analytic family o /Lie  subgroups o/G, let toEM 

and let H =Hto. Let K be a Lie subgroup o / H  such that the component group K / K  ~ is ]initely 

generated and such that the Lie group cohomology space Hi(K, ~/~) vanishes. Then there exists 

an open neighborhood U o] t o in M and an analytic map ~: U ~ G  with ~(to)=e such that 

H t ~ ~(t)K~(t) -1 /or every t E U. 

Here $ (resp. 3) denotes the Lie algebra of G (resp. H) and the K-module structure of 

fl/~ is determined by  the adjoint representation of K on g. 

Theorem 3.1 generalizes the result of A. Weil [24, p. 152] which states tha t  if F is a 

discrete, finitely generated subgroup of G such tha t  Hi(F, g )=0 ,  then F is "rigid". I t  also 
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generalizes results of the author [17], [19] on deformations of subalgebras of Lie algebras 

to the case of Lie subgroups. Theorem 3.1 makes sense in the framework of G~176 

and we conjecture tha t  it holds there. However, our proof relies heavily on the assumption 

of analyticity. In  particular we require a theorem of M. Artin [1] on replacing formal power 

series solutions of analytic equations by convergent power series solutions. 

If, in particular, K = H  is a reductive Lie group, then Hi(K, 0/~)=0 and Theorem 3.1 

applies. 

Let  G act analytically on M such tha t  all orbits have the same dimension and let G = 

{(g, t)E G • M lg fi Gt}. In  general G = (Gt)tEM is not an analytic family of Lie subgroups of 

G. We say tha t  (g, t) fi G is a regular point of G if there exists a neighborhood U of t in M 

and an analytic map  s: U-+ G with s(t) = g such tha t  s(u) E G= for every u e U. Let  O* be the 

set of regular points of G and let G* = {g 6 Gt[(g, t)eG*}. Then V*t is a Lie subgroup of G 

containing the identity component of Gt and G*= ((~)tEM is an analytic family of Lie 

subgroups of G. Thus Theorem 3.1 can be applied to the analytic family G*. I f  all orbits of 

G on M are locally closed, it follows from a result of J.  Glimm [7] tha t  there exists a dense 

open subset U of M such tha t  Gt = G~ for every t E U. 

We obtain our sharpest results in the case of algebraic transformation groups (over C). 

In  this case, our main result is 

TH]~OREM 9.3.1. Let (G, X)  be an algebraic trans]ormation space with G an a]]ine alge- 

braic group. For each t E X ,  let U t denote the unipotent radical o /Gt  and let L t be a Levi sub- 

group o/Gt. Then there exists a ]inite [amily X 1 .. . .  , X n o/non-singular Zariski-locaUy closed 

subsets o / X  such that the ]ollowing conditions hold: 

(a) X= Uj%Xr 

(b) _For each j, X j  is a Zariski open subset o] X - ( ~-1 

(c) I f  x, yEXj ,  then L~ and L~ are conjugate. 

(d) _For each ], the/amily (Ut)t~x ~ is an algebraic/amily o/algebraic subgroups o/G. 

Many of the results of this paper were announced in [20]. 

w 0. Preliminaries 

0.1. As usual, N, Z, R and C denote respectively the set of natural  numbers, the ring of 

integers, and the fields of real and complex numbers. 

0,2. Throughout this paper, F will denote either R or C and, unless stated otherwise, 

all Lie groups and analytic manifolds will be taken over F. All Lie groups and analytic 

manifolds are assumed paracompact  and Hausdorff. Our basic reference for Lie groups and 

analytic manifolds is [22] and we shall follow the terminology therein, except tha t  we 
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denote by dfx: Tx(M)-+ Tj(x)(A r) the differential (tangent linear mapping in the terminology 

of [22]) at xEM of an analytic m a p / :  M-~N of analytic manifolds. In  particular, we shall 

consistently use the terminology and elementary results mentioned in [22] on immersions, 

submersions, subimmersions and fibre products. 

0.3. The Lie algebra of a Lie group G, H, etc., will be denoted by the corresponding 

lower ease German letter g, ~, etc. If V is a finite dimensional vector space over F, then 

GL(V) denotes the Lie group of automorphisms of V and End(V) denotes the F-algebra of 

endomorphisms of V. If  G is a Lie group, then e denotes the identity element of G, G o the 

connected component of e in G, and expo: g-+ G and Ada: G-> GL(fl) denote respectively the 

exponential map of G and the adjoint representation of G. By a linear representation of G, 

we shall always mean an analytic homomorphism G-+ GL(V), where V is [inite-dimensional 

over F. Lie subgroups are as defined in [9] (for the real ease; we take the analogous definition 

in the complex case); in particular, a Lie subgroup of G is not necessarily an analytic sub- 

manifold of G and is not required to have the topology induced as a subset of G. If  the Lie 

group O acts as a transformation group on a topological space M and if t~M, then Gt= 

{gEGlg.t=t} is the isotropy subgroup of G at t and the Lie algebra gt of Gt is the isotropy 

subalgebra of g at t. 

A n  open in  F is a set  of  the  f o r m  . . . . .  eF l Iz l < a  for j = l  . . . .  , 

where a is a positive real number. If  V is an r-dimensionaI vector space over F, an open box 

in V is the image in V of an open box in F ~ under a linear isomorphism q): F r-~ V. 

Chapter I. Deformations of Lie subgroups 

w 1. Analytic families of Lie subgroups 

Many of our definitions in this section are special cases of a more general situation 

considered by Douady and Lazard [6], that  of an analytic family of Lie groups (or, in the 

terminology of Douady-Lazard,  Lie groups over M). In contrast to [6], we require all mani- 

folds to be tIausdorff. 

1.1. De[inition. Let G be a Lie group and 21/an analytic manifold. An analytic [amily o/ 

Lie subgroups of G, parametrized by M, is an analytic manifold H satisfying the following 

conditions: 

(a) H c G  x M and the inclusion map i: H-+G • M is an immersion. 

(b) If  ~ru: H-~M denotes the composite map pru o i, where prM denotes the projec- 

tion G • M-+M, then ~u is surjective and is a submersion. 
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(c) For  every t EM, the fibre z ~ ( t )  is of the form H, • {t}, where Ht is a subgroup of G. 

(d) Let  I t  • MII denote the fibre product  of I t  with itself over M with respect to 

=M and let #: t I  • Mtt-+It  and j: H - ~ H  be defined by  #((x, t), (y, t)) = (xy, t) and j(x, t) = 

(x-% t). Then ,u and j are analytic maps. 

1.2. Remarks. (a) We do not  require t h a t  I t  be an analytic submanifold of G x M. I n  

particular, the  topology on t I  is no t  necessarily the induced topology as a subset of G • M. 

(b) If  H is an analytic submanifold of G • M, then condition 1.1. (d) is a consequence 

of 1.1. (a)-(c). 

(c) I t  follows from the definition tha t  each Ht( tEM)  is a Lie subgroup of G. Conse- 

quent ly  I I  can be considered as a family of Lie subgroups of G, which depend analyt ical ly 

on the parameter  t E M. We shall f requent ly  denote H by  (Ht)teM. 

(d) I t  follows from 1.1. (b) t ha t  t ~-~ dim Ht  is constant  on each component  of M. We 

shall assume tha t  t ~-> dim H~ is constant  on all of M. 

(e) For t E M, let c(t) be the number  of components  of Hr. The funct ion t ~->c(t) is no t  

necessarily either upper  semi-continuous or lower semi-continuous. For  examples, see w 12. 

(f) A number  of non-triviM examples of analytic families of Lie subgroups are given 

in w 12. 

1.3. Sections. Let  I t  = (Ht)te M be an analytic family of Lie subgroups of G and let U 

be an open subset of M. An analytic section of H over U is an analyt ic  map s: U->G such 

t h a t  (i) s(t) EH t for every tE U and (ii) the map t~-> (s(t), t) is an analytic map  of U into It .  

I f  I I  is an analytic submanifold of G • then condition (ii) follows from condition (i), 

but  this is no t  the case if I t  is no t  an analytic submanifold. I t  follows easily f rom 1.1. (b) 

tha t  for every (x, t) EIt,  there exists an  open neighborhood U of t in M and an anMytic 

section s: U-> G of H over U such t h a t  s(t) = x. Moreover, if U is open in M, then  the  constant  

map  t ~-> e is an analyt ic  section over U and, if sl, s 2 are analytic sections over U, then 

t ~-+ sx(t ) s2(t) -1 is an analytic section over U. 

1.4. The Lie algebra o] tI. For  each tEM,  let IJt denote the Lie algebra o f / / t  and let 

= {(X, t) E g • M I X  E~t}. Then ~ is a sub-bundle of the trivial vector  bundle g • M-+M; 

is an analyt ic  vector  bundle of Lie algebras over M. We shall  call ~ the Lie algebra of 

the analyt ic  family tI.  Define expri: ~ - * I t  by  expH(X, t) = (expGX , t). I t  is not  difficult to 

show tha t  expH is an analytic map.  I f  toEM, the differential of expn  at (0, to) is a linear 

isomorphism. I t  follows from the inverse funct ion theorem tha t  expH defines an analyt ic  

manifold isomorphism of an  open neighborhood of (0, to) in ~ onto an open neighborhood 

of (e, 0) in tI .  
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1.5. Coordinates on the Grassmann mani/old. Let H =  (Ht)teM be as above, let toEM, 

let ~ = ~t0 and let q = dim ~. In  order to make computations involving the family ~ = (~t)teM 

of subalgebras of g, we shall need to introduce "coordinates" on the Grassmann manifold 

Fq(~) of q-dimensional vector subspaces of g. Let  W be a vector subspace of g such tha t  g is 

the vector space direct sum of ~ and W and let Fw be the open submanifold of l~q(g) con- 

sisting of all q-dimensional subspaces of g whose intersection with W is {0}. For each 

TEHomF(~, W), let r 2 4 7  Then (I)(T)EFw and (I): Homy(~, W)~Fw 

is an isomorphism of analytic manifolds. I f  F = (~, then (D is an isomorphism of algebraic 

varieties. We denote by  O: Fw~Hom~(~), W) the inverse isomorphism. Classically, Fw is the 

big Schubert cell on Fq(~) and 0 defines Schubert coordinates on Fw. 

For each t EM, the Lie algebra ~t may  be considered as a point of Fq(g). I t  follows easily 

from the definitions tha t  t ~ ~t is an analytic map of M into Fq(g). Choose an open neigh- 

borhood U of t o in M such tha t  ~tEFw for every tE U and let ~: U-+HomF(~, W) be defined 

by  ~(t) = O(~t). Then ~ is an analytic map. 

1.6. The pull-back o/an analytic/amily. Let It = ( H t ) ~ M  be as above and l e t / :  N - ~ M  

be an analytic map of analytic manifolds. We wish to define an analytic family/*(H) of Lie 

subgroups of G parametrized by N, the pull-back of H b y / .  We set 

/*(H) = {(x, s)eG x N]xEgns)}. 

Let  ZN denote the restriction to ]*(H) of the projection G x N-~N.  For each s e N, ~ ( s )  = 

Hs(~) x {s}. In  order to define the analytic manifold structure on /* (H)  we consider the 

analytic maps 1 a x / :  G x N-> G x M and i: H-~ G x M. Since ~M: I I - ~ M  is a submersion, it 

follows easily tha t  1~ x ] and i are transversal at  each point of the fibre product E = 

(G x N) x(a• Thus E is a closed analytic submanifold of (G x N) x H. One checks 

easily tha t  the projection (G x N) x I I -~G x N maps E bijectively onto /*( l I ) .  We define 

an analytic manifold structure on ]*(It) by requiring tha t  this bijection be an isomorphism 

of analytic manifolds. I t  is easy to check tha t /* ( I I ) ,  with this analytic manifold structure, 

is an analytic family of Lie subgroups of G. 

1.7. Expansion o] an analytic /amily. Let II = (g t ) t eM be an analytic family of Lie 

subgroups of G. I t  is convenient for technical reasons to "expand"  the family t t  so as to 

obtain a new family I~I which contains all conjugates of all H~(tEM). We define t I =  

{(x, t, y) E G x M • G Ix E yHt y-~}. Let ~M• a : ITI -~ M x G denote the restriction to ]I  of the 

projection G x (M x G)-+M x G. For each (t, y ) e M  x G, gM• y) =(yHty -1) x {(t, y)}. 

In  order to define the analytic manifold structure on I t  we proceed as in the preceding 

paragraph. We define ~: G x M x G-+ G x M by a(x, t, y) = (y-lxy, t). One checks easily 
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tha t  a is a submersion. We now form the fibre product L of G • M • G and H over G • M, 

corresponding to or: G x M • G->G • M and i: l t -+G • M. Since ~ is a submersion, it fol- 

lows immediately tha t  ~ and i are transversal at  each point of the fibre product L. Thus 

L is a closed analytic submanifold of (G • M • G) • It. The projection (G • M • G) • 

H-+G • M • G maps L bijectively onto ~I; we define an analytic manifold structure on ~I 

by requiring tha t  this bijection be an isomorphism of analytic manifolds. One checks easily 

tha t  I~, with the above analytic manifold structure, is an analytic family of Lie subgroups 

of G. We write ~t= (H(t,y))(t.~)GM• where H(t.y)=yHty -1. 

1.8. The analytic family H ~ Let  H ~  ((x, t)EHIxEH~ 

1.8.1. L:~M~A. H ~ is an open subset o /H.  

Proof. Let (x0, to) EH ~ We m a y  write x o = (expaX1) ... (expaX~), where X 1 .. . . .  Xn ~1) = 

Ilt o. Let  W, U and ~o: U-* HomF(~, W) be as in 1.5. Let  ~ = { ( / ,  t) e 9 ]t e U} and define an 

analytic map ~: ~ - > I I  by 

~(X, t) = ((expaX) (expv(X1 +~(t ) .  X1) ) ... (expa(X~ + ~(t)" X~)), t); 

the analyticity of a follows from the analyticity of expR and the fact tha t  the group opera- 

tions on t t  are analytic. We have :r to) = (x0, to) and ~(~u) c l to ;  moreover, it is easy to 

check tha t  the differential of ~ at (0, to) is a linear isomorphism. I t  follows tha t  ~(~v) is a 

neighborhood of (x0, to) in H. This proves 1.8.1. 

1.8.2. COROLLARY. H ~ is an analytic family o/Lie subgroups o I G. 

1.8.3. Remarlr In  general, it is not true tha t  t l  ~ is a connected component of It. See 

w 12.2. 

w 2. The normal displacement of an analytic family 

Throughout this section H = (Ht)tEM denotes an analytic family of Lie subgroups of the 

Lie group G. Since we are only interested in the local deformation theory, we assume 

throughout tha t  M is an open neighborhood of 0 in F r and we set H = H  0. Let  W be a vector 

subspace of ~ such tha t  ~ is the vector space direct sum of ~ and W. The normal displacement 

of the family H at  0 is an analytic mapping ~ of a neighborhood ~ of H • (0} in H • M 

into W. The normal displacement determines the family H locally. Let  K be a Lie subgroup 

of H. The main result of this section, Proposition 2.7.1, says tha t  if we take the Taylor 

series expansion of the restriction of ~ to ~ • (K • M), then the lowest order non-vanish- 

ing terms in this expansion can be interpreted as a one-cocycle of K with coefficients in an 

appropiate K-module. 
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2.1. Normal displacement/unctions. 

2.1.1. Definition. A normal displacement/unction for the analytic family tt=(Ht)t~M 

at  0 is an analyt ic  map y~ of an open neighborhood ~ of H • {0} in H x M into W such tha t  

the following conditions hold: 

(a) ~f(x, 0) = 0  for every xEH; 

(b) For  every (x, t )E~,  ( exp~(x ,  t))xEHt and the map y: ~ - > H  defined by  7(x, t)= 

((expa~f(x, t))x, t) is an analyt ic  map; 

(c) For  every x E H, there exists an open neighborhood Bz of x in H and an open neigh- 

borhood C~ of 0 in M such t h a t  B~ • C~ c ~ / a n d  such tha t  y defines an analytic manifold 

isomorphism of B~ • Cx onto an open neighborhood of (x, 0) in It. 

Roughly  speaking, a normal  displacement function measures the normal  variat ion o f  

the  family I t  a t  0. The existence of normal  displacement functions is demo~lstrated in 2.3. 

I t  is not  difficult to  show tha t  two normal  displacement functions agree in a neighborhood 

of H • {0). 

Let  ~v: ~ -~  W be a normal  displacement function for the family H at O, let N be an 

open neighborhood of 0 in F a and let ]: N - ~ M  be an analytic map such tha t  riO) =0 .  Let  

~/~ = ((x, t) E H • ~N] (x, ](t)) E ~/) and let ~v~: ~ - *  W be defined by  ~(x ,  t) -~v(x,/(t)). Then it 

follows immediate ly  f rom the definitions t h a t  y~ is a normal  displacement funct ion for the 

pull-back analytic fami ly /*(H)  = (Hf(t))teN. 

2.2. Local parametrization o /a /ami ly  o/submanifolds. Let  A, B and C be open boxes 

in (resp.) F ~, F q and P and let X be a closed (q § analytic submanifold of 

A • B • C. Let  ~c denote the restriction to X of the projection ,4 • B • C->C. Assume 

tha t  ar c is surjec~ive and is a submersion. I t  follows tha t  each fibre 7rcl(z) (z E C) is a closed q- 

dimensional submanifold of A • B of the form X~ • {z}, where X z is a closed q-dimensional 

analyt ic  submanifold of A • J~. Thus X can be considered as a parametr ized family (X~)~c, 

of analyt ic  submanifolds of A • B. We assume fur ther  t h a t  X 0 = {0} • J~. 

2.2.1. L ~ A .  There exist open boxes Al  C A, BI ~ B and Cl C C and an analytic map 

Y: BI• CI~A1,  with y(y,  0 ) = 0  /or yEB1, such that the map (y, z)~-~(y(y, z),y, z) is an 

a~mlytic mani/old isomorphism o/ B 1 • C I onto an open neighborhood of (0, O, O) in X.  

Proo]. Let  arB• X ~ B  x U denote the restriction to X of the projection A • B x C-~ 

B x C. Since ~c is a submersion and X 0 = {0} x B, the differential of :ZB • c at  (0, 0, 0) is 

a linear isomorphism. The proof of 2.2.1. now follows easily f rom the inverse funct ion 

theorem. 



DEFORI~IATIO:NS OF L I E  SUBGROUI~S AND T H E  VARIATIO]~ OF ISOTROFY SUBGROUFS 43 

2.3. Existence o] normal displacement ]unctions. We define an analytic map  T: W x H x 

M-+G x M by  T(w, x, t)=((exp~w)x, t). If  x e H ,  then  the  differential of ~ at  (0, x, 0) is 

a linear isomorphism. Hence T maps  a neighborhood of (0, x, 0) isomorphica l ty  onto a 

neighborhood of (x, 0) in G • M. 

2.3.1. LEMMA, Let xEH. There exists an open box A x in W, an open neighborhood B x 

o] x in H, an open box CxC M in F r and an analytic map ~fx: Bx • Cx~+ A x, with ~x(y, O) =0 

/or every y E Bx, such that the ]ollowing conditions hold: 

(a) T ~w~ps A~ • B~ • C~ isomorphically onto an open neighborhood o/(0, x, O) in G • M; 

(b) Let Ex =-((w, y, t)CA x • Bx • C xlw =~x(Y, t)}. Then T maps the closed analytic sub- 

mani]old E~ isomorphically onto an open neighborhood L~ o/(x,  0) in It. 

(c) The map t ~-~ (expa F~ (x, t) ) x o] Cx into G is an analytic section o / I t  over Cx. 

The proof of 2.3.1. follows readily from 2.2.1. The function F~ measures the normal  

displacement of the family I t  in a neighborhood of (x, 0). 

2,3.2. L]~MMA. Let x, yEH. Then %(b, t) =~,~(b, t) [or (b, t)E(B~ • C~,) N (B~ • C~). 

Proo/. Let  z E (B z N Bv) and let V denote the connected component  of z in B~ N Bv. We 

m a y  choose open neighborhoods N(z) of z in V and N(0) of 0 in C~. N Cv such that ,  if (b, t) E 

N(z) • N(O), then v(~x(b, t), b, t) EL z ;1Ly and T(y3~(b, t), b, t) EL• N Ly. I t  follows easily t ha t  

Fx(b, t) =~y(b, t) for (b, t) 6N(z) • ~V(0). Since V x (U~ N Cy) is connected and F~ and Fy are 

analytic functions , Fx and F~ must  agree on V • (C~ N Cy). This proves 2.3.2. 

Let  ~ / =  [Jxe~(B~ • U~); ~/ is an open neighborhood of H x (0} in H • M. We define 

an analytic funct ion yJ: ~/-+ W as follows: Let  (b, t)E ~ .  Then (b, t)E Bz x Cx for some x E H. 

We set y~(b, t)=F~(b, t). I t  follows f rom 2.3.2 tha t  F(b, t) is independent  of the choice of 

xEH.  I t  is an easy consequence of 2.3.1 tha t  F is a normal  displacement function of the 

family t l  a t  O. 

2.4. The in]initesimal displacement. Now we want  to look at the power series expansion 

of the normal  displacement funct ion ~. First  some notation.  If  ~ = ( ~  ... .  , ~r)E N r and 

t = ( t l ,  . . . ,  t r ) E  F r, we write t ~= t~ ~ ... tT, and l~] = ~ +.. .  + ~r- For  each x E H, the funct ion 

t~-~f(x, t) can be expanded in a power series F(x, t )=~N~u~(x) t  ~ (u~(x)EW) about  0, 

convergent  in some open box about  0 in F r. Since y~(x, t) is analyt ic  in both  x and t, it follows 

tha t  the functions x ~-~ u~ (x) are analytic functions defined on all of H with values in W. 

For  each hEN, we denote by  P~(F r, W) the vector  space of homogeneous polynomial  

maps of degree n of F ~ into W. Now let K be a Lie subgroup of H. For  mEN and x E K  we 

define Sm(x ) EPm(F r, W) to  be the polynomial  map  t ~-> Xl~l=~u~(x) t~. Then S~ is an analytic 

map  of K into P,,(F ~, W). If  S ~ 0  for all ? '<m, then S~ is called the m - t h  in/initesimal 
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displacement along K of the analytic family It. The important  term, of course, is the first 

non-vanishing infinitesimal displacement along K. 

In  the case K = H the first infinitesimal displacement coincides with the infnitesimal 

displacement defined by Kodaira [14] for an analytic family of compact complex submani- 

folds of a complex manifold. To pass from Kodaira 's  definition to ours, one needs to note 

tha t  the normal bundle of H in G is trivial, so tha t  an analytic cross section of the normal 

bundle corresponds to an analytic map of H into W. 

2.5. On the cohomology o/Lie groups. Let L be a Lie group and let ~: L-~GL(V) be a 

linear representation of L. We define ZI(L, V), the space of one-cocyeles of L with coeffi- 

cients in the L-module V, to be the vector space of all analytic m a p s / :  L-> V such that  

](xy) =/(x) + ~(x)./(y) for all x, y EL. BI(L, V), the space of one-coboundaries, is defined to 

be the vector space of all analytic maps of L into V of the form x~-->~(x).v-v for some 

vEV. We have BI(L, V)~ZI(L, V) and the quotient vector space Hi(L, V)=ZI(L, V)/ 

BI(L, V) is the first cohomology space of the Lie group L with coefficients in the L-module V. 

In  this paper we shall be interested in the cohomology groups Hi(K, W) and Hi(K,  

P,n(F ~, W)), where K and W are as above. First  we need to define the K-module structure 

on W. Let  p: W-->~/~ denote the restriction to W of the canonical projection g~g/~;  p is 

a vector space isomorphism. The restriction to K of the adjoint representation of G gives a 

representation of K on g, ~ is a K-submodule of 6 and thus we have a quotient K-module 

structure on g/~. We define the K-module structure of W by transporting to W by  means 

of p the K-module structure of g/d, i.e. we require tha t  p: W-->g/~ be a K-module isomor- 

phism. Let  ~: K-+GL(W) be the representation defining the K-module structure of W and 

let prw: g -~ W and pr~: g - ~  be the projections corresponding to the direct sum decomposi- 

tion f i = ~ +  W. I f  xEK and wE W, then ~(x).w=prw(Ada(x).w ). 

We define a representation ~m of K on Pm(F ~, W) as follows: if ]EPm(F r, W) and xE W, 

then Q~(x)./=Q(x)o/. Equivalently, note tha t  P~(F ~, W) is canonically isomorhie to 

P,~(F ~, F) | W, where P,~(F ~, F) is the vector space of all homogeneous polynomial func- 

tions of degree m on F r. Then ~m is the tensor product of the trivial representation of K 

on Pm(F ~, F) and the representation ~ of K on W. In  particular, the K-module P,n(F ~, W) 

is the direct sum of K-modules isomorphic to W. Thus the vanishing of Hi(K, W) implies 

tha t  Hi(K, P~(F r, W)) vanishes. 

2.6. Two technical lemmas. 

2.6.1. L E ~ I A .  Let C~ M be an open box in F r and let/: C->g be an analytic map such 

that ](t) e ~t /or every t E C. Expand / in a power series about O:/(t) = ~ c~t ~ (c~ e ~), convergent 
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in some open box, and assume that the power series is oit order >1 m, i.e. c~ = 0 whenever I ~ [ < m. 

Then c~E~ /or every ~ such that I~1 = m .  

Prooit. Choose C small enough so tha t  ~eF~ for every tEC, let ~: C-+Homr(~, W) be 

as in 1.5 and assume tha t  the power series expansion of ~ converges in C. Since it(t)E~t for 

teC, we have it(t)=u(t)+q~(t).u(t), where u(t)=pr~/(t) .  Take power series expansions for 

u(t) and ~(t): 
u( t )= ~ b~t ~ (b~E ~) 

I~l~>m 

~( t )=  ~ a~t ~ (a~E Homp(~, W)). 

Thus it(t) = u(t) + ~(t). u(t) = ~. b~/~ § (higher order terms). 
I~1 =rn 

Consequently e~=b~E~, for ]~1 =m.  This proves 2.6.1. 

Let  D be an open box in g such tha t  expa defines an analytic manifold isomorphism 

of D onto an open neighborhood D 1 of e in G. Similarly, let E be an open neighborhood of 

(0, 0) in ~ such tha t  expti maps E isomorphically onto an open neighborhood E 1 of (e, 0) 

i n  H .  

2.6.2. L E M M A. Let C c M be an open box and let ~: C ~ G be an analytic section o/ H over 

C such that ~(0)=e and ~(C)c  D 1. Let logo: D v + D  denote the inverse o / e x p o  and expand 

logo ~(t) in a power series about 0 

logo~(t) = ~ a ~ t  ~ (a~E ~), 

convergent in some open box, and assume that this power series is o/ order >1 m. Then a~ E 

whenever I =m" 

Proo/. We may  assume C chosen small enough so tha t  (~(t), t )EE 1 whenever t EC. I f  

t E C, it follows tha t  logo ~(t) E ~.  The conclusion now follows from 2.6.1. 

2.7. The/ irs t  non-vanishing in]initesimal displacement is a one-cocycle. Let  y~ and S~(] > 0) 

be as in 2.4. and let m be the smallest positive integer such tha t  S,~40; the analytic function 

S,n: K-+Pm(F r, W) is the first non-vanishing infinitesimal displacement of H along K. 

2.7.1. PROPOSITION. S m is a one-cocycle. 

Proo/. Let x, y E K. ~Ve must  show that  

Sm(xy) = S,~(x) + ~(x) Sin(y). 

For z E K  and t E F  r, let sm(z , t) =Sin(z) (t). I t  suffices to show tha t  

Sm(Xy, t) = SIn(X, t) + ~(X) Sin(y, t) 
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for all t in some neighborhood of 0 in F r. Choose an open box C in F ~ such tha t  

C~Cx N C~ N C~, where C~, C, and Cxy are as in Proposi t ion 2.3.1. Define analytic 

maps  ~ ,  % and ~v  of C into G by:  ~( t )  = (exp~ y~(x, t)) x; %(t) = (exp~ ~(y, t)) y; and ~y(t) = 

(exp~ ~(xy, t))xy. I t  is a consequence of 2.3.1. (c) t ha t  ~ ,  ~ and ~ are analytic sections of 

I t  over C. Define an analytic section ~: C ~  G by  

~(t) =~(t)~y(t)~y(t) -1 =exp~ ~,(x, t) (x(exp~ ~(y, t) )x -~) exp~ -y~(xy, t) 

= exp~ y~(x, t) expv (Advx.  F(Y, t)) e x p ~ -  F(xy, t). 

We have ~(0) = e. F rom the first order terms of the Campbell-Hausdorff  formula, we see t h a t  

the power series expansion about  0 of log~ ~(t) has the form 

log~ ~(t) = s~(x, t)+ Ad~ x . s~  (y, t ) -  s m (xy, t)+ {terms of order > m in t). 

This series converges in some open box C~ ~ C. I t  follows f rom L e m m a  2.6.2. t ha t  

0 =prw(s~(x, t)+Ad~ x.  s~(y, t)-Sm(Xy , t))=s~(x, t )+  @(x)s~(y, t)-sm(xy, t), for t~C~. 

This proves 2.7.1. 

w 3. Proof of Theorem 3.1 

This section will be devoted to the proof of the following theorem. 

3.1. T ~ E o  l~Z~. Let H = (Ht ) teM be an analytic/amily o/Lie subgroups o/G, let t o 6 M and 

let H =Hto. Let K be a Lie subgroup o/ H such that the component group K / K  ~ is finitely 

generated and such that Hi(K, ~/~)=0. Then there exists an open neighborhood U o/ t o in M 

and an analytic map 9: U-+G such that ~(t)K~(t)-l~ Ht /or every tE U. 

The proof of Theorem 3.I falls into two parts. B y  using Proposit ion 2.7.1 and the 

vanishing of Hi(K, ~/~), we show tha t  there exists a formal power series solution of the 

problem. Then we use a recent theorem of )5. Art in  [1] to show tha t  the formal power 

series solution can be replaced by  a convergent  power series solution. 

We assmne th roughout  w 3 tha t  M is an open neighborhood of O in F r and tha t  t o = 0. 

3.2. Enlarging the /amily H. Let  I t =  (H(t,~))(t.~)~M• be the "expanded"  family de- 

fined in 1.7. Define an analytic map  (~: M • W-+M • G by  a(t, w) = (t, expa w) and let 74 

denote the pull-back family a*(~I). Thus we m a y  write 74=(H(~.w))(~.w)~M• where 

H(t,~) = (expG w)Ht(expG- w). We let ~0 be a neighborhood of H • {(0, 0)} in H • M • W 

and ~ :  720-+ W be a normal  displacement funct ion for the analytic family 74. 

I n  order to be able to use s tandard  notat ion for the power series expansion of ~F we 

assume tha t  we are given a basis (X 1 ..... X~) of W and we identify F p with W by  the linear 

isomorphism 
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W = (Wl ,  . . . ,  W~) F W - W l X  1 -~ ...  - } - w p X p .  

With  this identification, we have the power series expansion 

~(x ,  t, w) = ~ a(~,~)(x) t~w ~. 
(~, fl) 

Here the sum is taken  over all (~, fl) EN r • N ~ and, for each (c~,/~), x~>a(~, fl) (x) is an ana- 

lytic map  from H into W. For  each x EH, the corresponding power series in (t, w) is conver- 

gent  in some open box in F" • F p. 

3.2.1. L]~IMA. ~lZl=la(0 ' ~) (x) w ~ = w -- O(x). w. 

Pro@ Define T: W ~ M •  W by  T(w)=(O,w). Then y*(~)=(Hw)wEw, where H w =  

(expe w ) H ( e x p a - w  ). Let  ~ [ = { ( y , w ) E H x  W[(y,O, w)E~/0} and define ~: ~ - ~ W  by  

9(y, w) =~ ' (y ,  0, w); then c f is a normal  displacement funct ion for the family 7"(~/). Let  C 

be a (sufficiently small) open box in W, let xEH and define an analytic section ~: C-~G of 

~,*(~/) over C by  
~(w) = (expe w ) x ( e x p a -  w)x -1 expa ~(x, w). 

\~'e have ~(0)=e. The power series expansion of log G ~(w) about  0 has the form 

log~ ~(w) = w - A d ~ ( x ) . w -  ~ a(o.p)(x)ure + (E), 
I~l =1 

where (E) consists of terms of degree higher t han  one in w. I t  follows from 2.6.2 t h a t  

0 = prw (w - Ade (x). w - ~ a(0. ~)(x) w ~) = w - ~(x). w - F a(o.~) (x) w r 
l~l •l ]flI~l 

This proves 3.2.1. 

3.2.2. Remarlc. Equivalent ly,  3.2.1 says t h a t  D3u~ (0, 0, 0), the partial derivative of lIZ 

with respect to  w at (0, 0, 0) is 1 w - ~ ( x  ). (1W denotes the ident i ty  map of W.) 

3.3. The [ormal power series solution. 

3.3.1. PBOPOSITIOSr. There exists a sequence ( g j ) ~eN o/homogeneous polynomial maps 

gj EPj(F ~, W) such that, i / m  EN and/m =go + "'" +gm, then the power series expansion about 0 

o/the analytic/unction t ~+ ~F(x, t,/re(t)) is o/order >~ m + 1/or every x E K. 

Pro@ B y  induct ion on m. I f  we define go =/o =0 ,  then it is clear t ha t  t-->~g2"(x, t,/o(t)) is 

of order > 1 for every x E K. Assume tha t  we have have defined gs EPJ( F~, W) for ] = 1 ..... m 

satisfying the conditions of the proposition. L e t / m = g o + . . . + g m  and let ~,~: M - , M  x W 

denote the analytic map  t~-~(t, /re(t)). Let  ~ m = { ( x ,  t )~H • M l(x , t,/m(t)E~0} and let 

~0m: Urn-+ W be defined by  ~om(x, t)=~F(x, t, fro(t)); Fm is is a normal  displacemen~ function 
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for the  pul l -back family  ~0*(~H). Thus  we have  a power  series expansion abou t  0 (in t) 

~m(X, t)=~N,C~(X)t~; for each :r ca is an analyt ic  m a p  of H into W and, for each xEH, 

the  series converges for t in some open box in F r. I t  follows f rom the induct ion hypothesis  

tha t ,  for each ~ such t h a t  [ ~[ < m  + 1, the  restr ict ion of % to K vanishes.  We define q~+l: 

H • F ' - +  W b y  qm+~(x, t) = ~l~l=~+l c~(x)t: and we let Qm+~: K~P,~+I( F~, W) be defined b y  

Qm+~ (x)(t)=q,,+~(x, t). B y  Proposi t ion 2.7.1, applied to the analyt ic  family  ~*(~H), we see 

t h a t  Qm+x ~Z~(K, Pz+I(F ~, W)). Since H~(K, Pm+I(F r, W)) =0,  there  exists gz+~ ePm+l( F~, W) 

such t h a t  Qm+~(x) =~(x)Ogm+~--gm+l for every  xeK.  
Set ~z+~(x, t) =~F(x, t, Ira(t) +9m+l(t)), for (x, t) in a sufficiently small  neighborhood of 

H x {0} in H x M. Le t  yeK.  We want  to show tha t  the  power  series expansion abou t  0 of 

t ~'m+l (Y, t) is of order  > m + 1. 

I f  f l eN  ~, we define fl!=l-i~/=~fl.,!. 
expansion: 

3.3.2. 

We  need the  mul t ivar iable  fo rm of the  binomial  

(~)  =(~!) (5!) -1((~--5)! )  -1, and 5~<fl means fl-SEN ~. Here  

I f  we use 3.2.2 and expand  t-~Vm+l(y, t) in a power  series about  0, we obta in  

~p,~+l (y,t) = ~ a(~.~)(y) (~) t~/m(t)~-~ gm+l (t)~ ; 
(~,~.~) 

here the  sum is t aken  over  all triples (r j~, 5) E3N r x ~v x N p such t h a t  5 4;6. I f  we sum over  

all t e rms  with 5 =0 ,  we obta in  the  power series expansion of ~m(Y, t). Thus  we have  

~Pm+l(Y,t)=~m(Y,t)+ : a(~.~)(Y)(fl~)t~fm(t)~-~gm+1(t)~. 
(r 

Letcf(a.fl.6)(t)=(~)t~/m(t)~-~grn+l(t)~ ; (p(~,fl..)is a polynomial  in t. The  order of ~(~.~.,)(as 

a formal power series in t) is >1 I~1 + I ~ -  51+ (m + 1)151. Thus, if ~ . 0 ,  ~,=. p.~) is of order 

> ~  + 1 unless I ~1 = I ~ -  51 = 0  and 151 = 1. The homogeneous component of degree ~ + 1 

in the  power series expansion of ~ ( y ,  t) is 

qz+l(Y, t) = Q(y). gm+l (t) -g,~+~(t). 

Thus  the  homogeneous componen t  of degree m + 1 in the  power  series expansion of ~2m+l(Y, t) 

is 

If a, b E F p and fl E N ~ then  



DWFO~ATIO~S OF LIE SU~Gl~OV~S A~D T~E V~IATIO~ OF ISOTROP~r SUBGROUPS 49 

e(Y) "gin+l(t) -gin+l(t) + ~ a(o.~)(Y)gm+l(t)~; 
l~[=l 

it follows from Lemma 3.2.1 that  this homogeneous component is 0. Thus the power series 

expansion of t->F,,+l(y , t) about 0 is of order > m §  This completes the induction and 

concludes the proof of 3.3.1. 

3.4. M.  Art in 's  theorem. If  the formal power series/(t) = ~ 0  gj (t) converges (where the 

gj(t) are chosen as in Proposition 3.3.1), then setting ~ ( t )=expa - / ( t ) ,  the conclusion of 

Theorem 3.1 would be satisfied. We shall use a recent theorem of M. Artin [1] to show tha t  

the gj(t) can be chosen so tha t  ~ l g j ( t )  converges in a neighborhood of 0. In  order to 

apply this theorem directly, however, we need to reformulate things slightly, so there is 

still more work to be done. 

3.4.1. P ~ o P o s l T I O ~  (Artin). Let fj ( ]=1 . . . . .  m) be analytic functions defined in a 

neighborhood of (0, O) in F ~ x F p such that / j (0 ,  0 ) = 0 / o r  ?'=1 . . . .  , m. Assume there exist 

formal power series y~ (i = 1, ..., p) in r variables with 0 constant term such that the formal 

power series fj (x, y(x)) (~ = 1 . . . . .  m) vanish identically (here x -  (x 1 . . . . .  x~) and y(x) = (yl(x), 

.... y~ (x)). Then there exist analytic functions ~j (j ~ 1 ..... p), defined in a neighborhood A of 0 

in F ~, such that ]i(x, T(x)) =0  for x E A  and i = l  . . . .  , m. Moreover, one may require that the 

power series expansion of y j -  z~ (] = 1 . . . . .  p) about 0 is of order > n, where n may be chosen 

arbitrarily. 

3.5. A technical lemma. Asumme tha t  Mm F ~ is chosen small enough tha t  ~)tEF W for 

every t e M ,  let 0:  F w ~ H o m / ~ ,  W) be defined as in 1.5 and define the analytic map ~: 

M - ~ H o m / ~ ,  W) by ~(t) --| Expand ~ in a power series about 0. 

~( t )= ~Ny~t ~ ( ~  e I-IomF (~, W)). 

Let  r: HomF(I), W)--~Hom/L W) denote the restriction map. Then the power series expan- 

sion of ro~  about 0 is given by  roq~(t) = ~ ( r  o ~ ) t  ~. If  the terms of order less than m in the 

power series expansion of ro~ vanish, then the terms of order m in this expansion give the 

ruth order infinitesimal displacement along ~ of the analytic family ~ = ( ~ ) ~  of subs1- 

gebras of ~. I t  is intuitively clear tha t  if the ruth order infinitesimal displacement along K 

of the analytic family H = ( H t ) t e  M vanishes, then so does the ruth order infinitesimal dis- 

placement along ~ of the analytic family @ = (~t)teM. This is proved in the lemma below. 

3.5.1. Lw~MA. Let F be a normal displacement funct ion/or the ana ly t i c /ami lyH = (Ht ) t e  M 

and, /or ] ~ N ,  let S~: K--->P~(F ~, W) be defined as in 2.4. Assume that Sr vanishes/or  ] <~m. 

Then the power series expansion o/roof about 0 is of order > m. 

4- -  722901 Acts mathematlca 129. I m p r i m 6  le 1 5uin  1972. 
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Proo]. For every X e ~ ,  let v(X)EEndr(~) be defined by the convergent power series 

(ad X) j. 

j=o (i+ l)!' 

symbolically, one can write r(X) = (e ~ z -  ])/ad X. For x E G, let R(x): G-~ G denote right 

translation by  x, y~->yx. I t  is well known tha t  

(3.5.2) d(R(exps - X) o exps)x = v(X) 

(see, e.g. [9, p. 95]). 

Let  s be the order of the power series expansion of ro~  about 0 and assume tha t  s ~<m. 

We shall show tha t  this leads to a contradiction. We may  choose X C ~ such tha t  the fol- 

lowing conditions hold: (i) (X) is invertible; ( i i ) r (X)(W)N ~={0}; and (iii) there exists 

~EN ~ such that  [c~I = s  ~nd ~ ( X )  40 .  Let QEP~(F ~, W) be ddined by 

Q(t) = p ~ ( ~ ( x )  ( ~ ~(x)t~). 
lairs 

I t  follows from (i), (ii), (iii) above that  Q =~0. 

Let  C c M  be a (sufficiently small) open box in F ~ and define w: C->g by  

~(t) = logs (exps (X +~(t) X) e x p s - X ) .  

Then v(0) = 0  and it is a consequence of (3.5.2) tha t  the power series expansion of T about 0 

takes the form 

(3.5.3) T(t) =v(X)(  ~ q~(X)t~)+(terms of order :> s). 
l~I=s 

Define an analytic section ~: C-+G by 

~(t) = (exps (X+cf(t) X) (exps - X )  (exps -yJ (exps X, t)). 

We have ~(0) = e. Since the power series expansion of t ~ ( e x p ~  X, t) is of order > s, we 

see from (3.5.3) tha t  the power series expansion of logso ~ takes the form 

log~ ~(t)= v(X) ( ~ cf=(X)t ~) +(terms of order > s). 
lal ~s 

I t  follows from Lemma 2.6.2 tha t  prw(v(X)~=(X))=0 for every c~ such that  I gl =s .  This 

implies tha t  
Q(t) = pr~(~(x) ( ~ ~(x)t~)) 

I~l-s 

vanishes identically in t, which gives a contradiction. 

3.6. The convergent power series solution. Let tF be as in 3.1, let gjEPj(F ~, W) (]E/~ ~) be 

as in Proposition 3.3.1 and let ](t) denote the formal power series ~J~0 g~(t). Then it follows 
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from Proposition 3.3.1 that,  for every x 6 K, the formal power series t ~--->viZ(x, t,/(t)) vanishes 

identically. Choose elements x I ..... x~ 6 K such tha t  the cosets x l K  ~ ..., xnK ~ generate the 

component group K / K  ~ Let C c M  and A be (sufficiently small) open boxes in (resp.) F ~ 

and W and define analytic function ~:  C • A-~ W (j ~ 1 ... .  , n) by ~(t, w) = ~F(xj, t, w). 

Define an analytic map ~0: C • A-~Hom~ (f, W) by ~o(t, w) = ro| (exp~ w) (~t)); note 

tha t  ~ Ad a (exp~ w) (~t) if and only if ~t0(t , w) =0.  I t  follows immediately tha t  the formal 

power series )~j(t, /(t)) (j = 1 .. . . .  n) vanish identically. Let  m 6N, let /re(t)~go(t)+... +gin(t), 

let ~%: M ~ d k / •  W be as in the proof of Proposition 3.3.1 and let ~/m(X, t)=IF(x,  t,/re(t)) 

(~0m is defined in a neighborhood of H • {0} in H • M). I t  follows from Proposition 

3.3.1 and Lemma 3.5.1, applied to the analytic family ~*(~/) with normal displacement 

function V,~, that  the power series expansion of t~20(t,/,~(t)) about 0 is of order ~> m + l .  

Thus the formal power series 20(t ,/(t)) vanishes identically. Hence we can apply Art in 's  

theorem to the family of analytic functions '~0, ..., ~ -  Thus there exist an open box U c  C irt 

F" and an analytic map fi: U ,  W such tha t  f i (U)c A and such tha t  2j(t, f i ( t ) ) -0  for t 6 U 

and j = 0  ..... n. Define ~]: U ~ G  by ~( t )=expa- f l ( t ) .  Since 20(t, fl(t))=0, it follows tha t  

c Ada (~(t) -~) (f)t), hence tha t  K ~  r](t)-~Ht~](t) or, equivalently, that  ~(t) K~ -~ c Hr. 

Similarly, for ]>0 ,  ,~(t, fl(t))~O implies tha t  x~6rt(t)-~Htr](t), or tha t  ~q(t)x~rl(t)-~6Ht. 

Since K ~ 0 {x~ ....  , xn} generates K, it follows tha t  ~)(t) K~ (t) -~ ~ H t for t 6 U. This completes 

the proof of Theorem 3.1. 

w 4. Relation of Theorem 3.1 to results on deformations on subalgebras of Lie algebras 

Let G be a Lie group with Lie algebra g, let q < d i m  9 and let Aq be the Zariski closed 

subset of Pq(.q) consisting of all q-dimensional subalgebras of g. The following result was 

proved in [19, w 9]: 

4.L Let  '~ be a q-dimensional subalgebra of g and let ~ be a subalgebra of ~ such tha t  

the Lie algebra cohomology space HI( 3, g/~) vanishes. Then there exists an open neigh- 

borhood V of ~ in Aq and an analytic map/~: V ~  G such that  Ade (/~(a)) (3) c a for every a 6 V. 

Now let H : ( H t ) t e  M be an analytic family of Lie subgroups of G, let tos  and let 

H =Hto. Let K be a connected Lie subgroup of H such that  H 1 ({, ~/'0)=0. Then it follows 

from 4.1 that  there exists an open neighborhood U of t o in M and an analytic map ~: U-+G 

such tha t  Ad G (rt(t)) (3)c %t for every t 6 U. This implies that  ~/(t)K~l(t)-lc Ht for t 6 U. Thus, 

if K is u connected Lie subgroup and the Lie algrebra cohomology space H 1 ({, g/%) vanishes, 

the conclusion of Theorem 3.1 follows from 4.1. 

I f  K is connected and ~: K ~ G L ( V )  is a representation, then the Lie group cohomology 

space H 1 (K, V) can be canonically identified with a subspace of H 1 (f, V). Thus, H 1 (~, V) = 0 
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implies that  Hi(K,  V)=0.  The converse statement does not hold, e.g. for K a torus and 

the trivial representation. There are many examples of analytic families H =  (Ht)te M and 

connected K ~ H t ,  as above for which Hi(K,  ~/~)=0, but HI(~, g/0)~=0. Consequently, 

even if K in Theorem 3.1 is assumed connected, the conclusion of Theorem 3.1 is stronger 

than any corollaries one can derive from 4.1. 

w 5. Variations on Theorem 3.1 

5.1. A n  extension o/Theorem 3.1. Let the Lie group G be a closed norm~l Lie subgroup 

of the Lie group L. If  xEL,  then Intzx: L-*L denotes the inner antomorphism y~-~xyx-L I f  

x EG, then IntLx maps G into G and induces the identity isomorpism of L/G. Since AdLx 

is the differential of IntLx, it follows that AdLx induces the identity map of I/~; equivalent!y, 

if X E i, then (Adz x. X - X) E ~. 

5.1. THEOREM. Let G be a closed normaILie subgroup o/ the Lie group L, let H ~ ( H t ) t e  M 

be an analytic/amily o/ Lie subgroups o/ G, let t o E M and let H = Ht.. Let K be a Lie subgroup 

o] H such that the component group K / K  ~ is ]initely generated. Assume that there exists a 

vector subspace V o / I  such that the/oUowing condition holds: For every ~E ZI(K, ~/~), there 

exists vE V such that ~(x)=7~r /or every x E K  (here zg/~: g ~ ~/~ denotes the 

canonical projection). Then there exists an open neighborhood U o / t  o in M and an analytic 

map ~ : U ~ V such that (exp~ ~](t) K(expL -- ~(t)) c H~ /or every t E U. 

We shall only sketch the proof of Theorem 5.1, which is essentially the same as that  

of Theorem 3.1. Let M be an open neighborhood of 0 in F ~ and let t o = 0. First define an 

expanded analytic family I~= (H(t.~))(t,~)e~• L as in 1.7 (with G replaced be L; I t  is an ana- 

lytic family of Lie subgroups of G since G is normal in L). Let ~: M • V - ~ M  • JL be the 

map (t, v)-+ (t, expL V) and let tI~ be a normal displacement function for the pull-back an- 

alytic family ~* (fI). As in w 3, one defines a formal power series/(t) = ~j=0gj( ~ t) (gj EP~ (F ~, V)) 

such that, for every x EK, the formM power series t->tF(x, t,/(t)) vanishes identically. 

Using Artin's theorem, one can replace /(t) by a convergent power series -~](t), and ~](t) 

satisfies the conclusion of Theorem 5.1. 

5.2. Remark. Let the Lie group A act analytically on G by automorphisms and let 

L = G • A be the corresponding semi-direct product. The Lie algebra 1 can be identified 

with the vector space direct sum ~ C)a. Let H, H and K be as in Theorem 5.I and assume 

that  a satisfies the hypothesis on V in the statement of Theorem 5.1. In  this case, Theorem 

5.1 can be regarded as the extension of Theorem 3.1 from the case of the group of inner 

automorphisms to tile case of an arbitrary Lie group of automorphisms of G. 
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5.3. More on the cohomolgy o 1Lie groups. Let H be a Lie group, let L be a closed normal 

subgroup of H and let V be un H-module. Set V L = {v E V [ g v = v for every g EL]. Let  

Z~(H, L, V) -- {q~ EZ~(H, V) I~(L) == {0}} and let H~(H, L, V) denote the image of ZI(H, L, V) 

in Hi(H, V). 

5.3.1. LEM~A. Let the notation be as above. Then H~(H, L, V) is canonically isomorphic 

to Hi(H/L, VL). 

The proof of 5.3.1 is elementary and will be omitted. 

5.4. Analytic/amilies containing a/ ixed normal subgroup. 

5.4.1. PROPOSITION. Let H=(Ht)te ~ be an analytic /amily o/Lie  subgroups o /G,  let 

toEM and set H=Hto. Assume that the component group H/H ~ is linitely generated and that 

there exists a normal Lie subgroup L o /G  such that L is a closed Lie subgroup o I H t/or every 

tE M and such that HI(H/L~ (~/~)L)~0. Then there exists an open neighborhood U o] t o in M 

and an analytic map ~] : U ~ G  with ~](0) = e such that ~(t) H~](t)-l~ Ht lor every t E U. 

We shall only sketch the proof, which is similar to the proof of Theorem 3.1. Let  IUI = 

(H(t,x))(:,z)eM• G be the expanded analytic family, defined as in 1.7, let ~=~  | W as in w 

and let o~: M • WL-~M • G be defined by  c~(t, w) =(t, expzw). Let  ~F be a normal displace- 

ment  function for the pull-back family ~*(tI). I t  follows from the normality of L and the 

definition of I t  tha t  L ~ H(t.u) for every (t, w) E M • W L. Therefore ~F(x, t, w) = 0 for every 

(x, t, w)E L • M • W L. Consequently, if }I' is any analytic family obtained by  pull-back 

from the family ~* (tI), it follows tha t  the first non-vanishing infinitesimal displacement 

along H of the family t I '  is an element of ZI(H, L, ~/~). Si~ce Hi(H,  L, ~/~)= 

Hi(H/L,  (~/~)L)=O one can, exactly as in 3.6, find a formal power s e r i e s / ( t ) = ~ o g j ( t )  

(gjEPj(F ~, W r~) such that,  for every xEH,  the formal power series t-+~F(x, t,/(t)) vanishes 

identically. The rest of the proof is as in w 3. 

5.4.2. COROLLARY. Let H, G and H be as in 5.4.1. Assume that M is connected, that 

H~ ~ = H  ~ every t GM and that Ht/H ~ is o/(/inite) order m/or  every t EM. Then H t is conju- 

gate to H / o r  every t E M. 

Proo/. Let iV be the normalizer of H ~ in G. Then _N is a closed Lie subgroup of G and 

H t c  N for every t E M; thus fI  is an analytic family of Lie subgroups of N. Therefore we 

may  assume tha t  G = N ,  i.e. tha t  H ~ is normal in G. Let  sEM. Since H~/H ~ is finite, the 

cohomology group HI(Hs/H ~ (9/~)Ho) vanishes, and we may  apply Proposition 5.4.1. This, 

plus the fact 0 that  the order of Ht/H~ is independent of t E M, implies tha t  Ht  is conjugate to Hs 

for every t in a neighborhood of s. Since M is connected, the conclusion ot 5.4.2 now follows. 
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w 6. Algebraic families of algebraic subgroups 

In  this section we shall deal with (complex) algebraic families of algebraic subgroups of 

a (complex) algebraic group. Our methods involve a somewhat unsatisfactory mixture of 

transcendental and algebraic techniques. 

6.1. Conventions. Our basic reference for algebraic geometry and algebraic groups is 

[2] and we shall follow the notation and terminology therein. All algebraic varieties and 

algebraic groups are taken over G. If  X is an algebraic variety, then X has an underlying 

structure of (reduced) complex space, which we denote by the same letter XI Thus there 

are two topologies given on X, the Zariski topology and the usual topology of X as a 

complex space; we shall refer to the latter topology as the Hausdorff topology of X. I f  

f: X-+ Y is a morphism of algebraic varieties, then ] is also a holomorphic map of the under- 

lying complex spaces. An algebraic subgroup of an algebraic group G is a subgroup of G 

which is a Zariski closed subset of G. 

6.2. Algebraic families of algebraic subgroups. 

6.2.1. Definition. Let G be an algebraic group and M a non-singular algebraic variety. 

An algebraic family of algebraic subgroups of G, parametrized by  M, is a non-singular 

Zariski locally closed subvariety t t  of G x M satisfying the following conditions: 

(a) Let  ~ :  H-+ M denote the restriction of the projection prM: G x M-+ M. Then ~zr 

is surjective and is a submersion (i.e., the differential of ~M is surjective at each point of H). 

(b) For every t CM, the fibre ~Ml(t) is of the form H t x {t}, where H t is a subgroup of G. 

I t  follows easily from the definitions tha t  an algebraic family of algebraic subgroups of 

G has an underlying structure of a complex analytic family of Lie subgroups of the complex 

Lie group G. 

Let  H = (Ht)te M be an algebraic family of algebraic subgroups of the algebraic group G. 

I t  follows from the definition tha t  dim H t is constant on each component of M. 

6.2.2. L~MMA. Let n ~ ( H t ) t e  M be as above, assume that M is connected and let q be the 

common dimension o/ the Ht( tEM ). Then the map t-+~t o/ M into F~(~q) is a morphism of 

algebraic varieties. 

The proof is elementary and will be omitted. 

6.3. Some lemmas on algebraic families. Let H = (Ht)te M be an algebraic family of alge- 

braic subgroups of the algebraic group G and let K be an algebraic subgroup of G. 

6.3.1. L ]~ M MA. Let A = {t E M[Ht  ~ K}. Then A is a Zarislci locally closed subset of M. 
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Proof. Since H , ~ K  ~ if and only if ~D ~, it follows immediately  from Lemma 6.2.2 

t h a t  A 0 = {t E M IH t ~ K ~ is a Zariski closed subset of M. Let  Xl, . . . ,  X n be a complete set of 

representatives for the eosets of K modulo K 0 and let Aj  ~ {t E M ] xj E Ht} (j = i ..... n). Then 

H N ({xj} x M)={x j }  • A t is Zariski locally closed and hence A t is a Zariski locally closed 

subset of M. Thus A = I"1 ~=0 At is Zariski locally closed. 

We recall t ha t  a subset C of an algebraic var ie ty  X is eonstructible if C is the union of a 

finite number  of Zariski locally closed subsets of X. A constructible subset of X contains 

a Zariski open, Zariski dense subset of its Zariski closure. If  C is a constructible subset of 

X and cf: X-~ Y is a morphism of algebraic varieties, then  ~(C) is a constructible subset of Y. 

6.3.2. LEMMA. Let B = { t E M [ H  t contains a con/agate o / K } .  Then B is a construetible 

subset o / M .  

Proo/. Define ~: G • M x G -~ G • M by  o~(x, t, y) ~ (y-lxy, t), let I i  = ~-I(H) and let 

~ i •  G : f t ->  M x G denote the restriction to l i  of the projection pr~• ~: G x (M • G)-> M • G. 

Then the fibre 7~• t) has the form (yHty -1) • {(t, y)}. Let  H(t.~)=yHty -l. One checks 

easily t ha t  t I  = (H(t. ~)) (t. ~) ~ ~• ~ is an  algebraic family of subgroups of G. By  Lemma 6.3.1, 

A = {(t, y) E M • G I yHty-~ ~ K}  is a Zariski locally closed subset of M x G. Let  prM: G X 

M - ~ M  denote the projection. Then  B=prM(A)  is a constructible subset of M. 

6.3.3. LEMMA. Let X be an algebraic variety, let U be a subset of X which is open with 

respect to the Hausdor// topology o / X  and let B be a construetible subset of X which contains U. 

Then there exists a Zariski open subset V o / X  such that U ~ V c B. 

Proof. By induct ion on dim X (dimension as an algebraic variety). The lemma is trivial 

for dim X =0 .  Let  n = dim X and assume tha t  the result holds Ior varieties of dimension 

less t han  n. Let  X1, ..., Xr be the irreducible components  of X which do not  meet  U and 

let X '  = X -  ( J ~ I X j .  Set B '  = X '  N B. Then X '  is Zariski open in  X and  B '  is a construetible 

subset of X ' .  Replacing X and B by  (resp.) X '  and B' ,  we m a y  assume t h a t  X meets  every 

irreducible component  of X. I t  is clear t ha t  U, and hence B, is Zariski dense in X. Thus  B 

contains a Zariski open, Zariski dense subset V 0 of X. Let  C = X  - V0. Then U N C ~  B N C 

and dim C < n .  Thus, by  the inductive hypothesis,  there exists a Zariski open subset V1 of 

C such tha t  U N C c  V1~ B N C. Let  V = V0 0 V1. Then V is Zariski open in X and U ~  V ~  B. 

6.4. A~plication of Theorem 3.1 to algebraic/amilies o/algebraic subgroups. 

6.4.1. THEOREM. Let H=(Ht) t~  M be an algebraic family o/algebraicsubgroups o/the 

algebraic group G, let toEM and let H = H  w Let K be an algebraic subgroup o / H  such that 

Hi(K,  ~/~)=0. Then there exists a Zariski open subset V o/ M containing t o such that Ht 

contains a conjugate o / K  ]or every t E V. 



56 R . W .  RICHAI~DSO~ JR. 

Proo]. Let B = {t E M{Ht contains a conjugate of K).  Then B is construetible and by  

Theorem 3.1 there exists a Hausdorff open neighborhood U of t o such tha t  U c  B. By 

Lemma 6.3.3, there exists a Zariski open subset V of M such tha t  U c  V c  B. This com- 

pletes the proof. 

6.4.2. Remark. The cohomology group which occurs in the s tatement  of Theorem 

6.4.1 is defined using holomorphic cochains. I f  L is an algebraic group and ~: L-~GL(V) 

a rational representation, one can define i Z~ig (L, V) to be the set of all morphisms ~ : L-> V 

H~Ig(L, V)=Zalg(L, V)/BI(L, V). We have which satisfy the eocycle condition. We set i 1 

H~I~(L, V)~Ht(L, V). If L is an affine algebraic group, then it is known [12] tha t  Hi(L, 

V) = H~lg (L, V). However, this equality does not necessarily hold for the case of an arbi trary 

algebraic group (e.g. an extension of an abelian variety by the "additive group" C). Thus our 

s ta tement  of Theorem 6.4.1 is somewhat unsatisfactory, except for the case of affine alge- 

braic groups. I t  seems virtually certain tha t  the statement of Theorem 6.4.1 remains valid 

~/J1 / / (  ~ 0 ~ .  with "Hi(K, 0/~)=0"  replaced by "~alg~,  g/~) However, the proof will probably 

require more sophisticated algebraic techniques. 

6.5. Variation o/the unipoten~t radical. Let V be a finite dimensional vector space over (~. 

For  every subalgebra ~ of the Lie algebra 0i(V), let u(a) be the maximal ideal of nilpotence 

of the a-module V (see [3, p. 60] for the definition of the maximal ideal of nilpotence). 

I f  a is the Lie algebra of an algebraic subgroup A of GL(V), then lt(n) is the Lie algebra of 

the unip0tent radical of A [5]. I t  is known [3, p. 127, Ex. 11] tha t  u((~) can be characterized 

as follows: 

6.5.1. Let E be the associative subalgebra of End(V) generated by  lv  and a. Then 

~(a) = {x E a I Tr(xu) = 0 for every u E E).  

Let  0 be a Lie subalgebra of 0~(V), let n < d i m  0 and let Ln(0) be the algebraic var iety 

of all n-dimensional subalgebras of 0; Ln(0) is considered in the obvious way as a closed 

subvariety of the Grassmann variety F~(0). For each m~n,  let L ..... (0)={aELn(0)Idim 

~(a) =m) .  Then, using 6.5.1, it is not difficult to prove: 

6.5.2. (a) For each r~n,  Um<~L~.~(~) is a Zariski open subset of/~n(g); in particular, 

each L~.~(0) is a Zariski locally closed subset of Z~(g). 

(b) For each m ~<n, the map a~-~u(a) of L~.~(0) into L~(0) is a morphism of algebraic 

varieties. 

Now let G be an algebraic subgroup of GL(V) and let I t  = (Ht)~i  be an algebraic family 

of algebraic subgroups of G. For each t EM, let l t t= u(~h); if U~ is the unipotent radical of 

Ht, then H~ is the Lie algebra of Ut. Let m = m i n t ~  M dim nt and set S = {t EMtd im 14=m}, 
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Then S is a Zariski open subset of M and the map fl: S-~Lm(6) defined by fl(t)=tts is a 

morphism of algebraic varieties. 

Let  ~ (resp. lI) be the Zariski closed subset of gl(V) (resp. GL(V)) consisting of all 

nilpotent (resp. unipotent) endomorphisms of V and let U: .~-+1I denote the restriction of 

the exponential map expGL(v~: fi[(V)~ GL(V). Since ~ consists of nilpotent matrices, U is a 

polynomial mapping. In  fact, U is an isomorphism of algebraic varieties; the inverse of 

is given by the log series. 

The set {(x, t)E~ • S]xEttt} is a Zariski closed subset of ~ • S. Since U: ~->1I is an 

isomorphism, we readily see tha t  IJ={(g, t)EG• SIgEUs} is a Zariski closed subset of 

G • S and that  U =  (Us)s~s is an algebraic family of algebraic subgroups of G. Thus we 

have proved: 

6.5.3. LE~M~t. Let G be an a/fine algebraic group, let II ~ ( H t ) t e  M be an algebraic family of 

algebraic subgroups o/G and,/or each t E M, let U s be the unipotent radical o / H  t. Let m ~ min t eM 

dim Ut, let S = ( t E M I d i m  Us=m} and let U={(g,  t )EG•  Then S is a Zariski 

open subset o / M  and U = (Us)s~ s is an algebraic family o/algebraic subgroups o/G. 

6.6. Algebraic ]amilies o/subgroups o/an a/fine algebraic group. I f  G is an affine algebraic 

group and U is the unipotent radical of G, then an algebraic subgroup L of G is a Levi sub- 

group of G if the canonical homomorphism G-~G/U defines an isomorphism (of algebraic 

groups) of L onto G/U. I t  is known (in the characteristic zero case) tha t  G admits Levi 

subgroups. A Levi subgroup L of G is reductive and any reductive subgroup of G is conju- 

gate to a subgroup of L. 

I f  R is a reductive affine algebraic group and ~: R--> GL(V) is a rational representation 

of R, then Hi(R, V)=H11~(R, V)=O [12]. 

6.6.1. Pl~O] ~ o SITION. Let H = ( H t ) t e  M be an algebraic ]amily o/algebraic subgroups o/the 

a]/ine algebraic group G and let M be irreducible. For each t E M let L s be a Levi subgroup o / H  t. 

Let r=maxs~  M dimLs and let S =  ( t E M i d i m  Lt=r} .  Then S is a Zariski open subset o / M  

and LOs is conjugate to L ~ /or every s, t E S. Moreover, there exists a non-empty Zarislci open 

subset T c  S such that L s is conjugate to Ls /or every s, t E T. 

Proo]. The fact tha t  S is Zariski open follows from 6.5.3. I t  is a consequence of Theorem 

6.4.1. that ,  for every t ES, there exists a Zariski open subset St of S, containing t, such that,  

if tlESs, then L~ is conjugate to Lt ~ Let  s, tES. Since M is irreducible, Ss and St intersect. 

This implies tha t  L ~ and Lt ~ are conjugate. 
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Let p be the maximum number  of components of Lt as t ranges over S and let t o ES be 

such tha t  Zt~ has p components. I t  follows from Theorem 6.4.1 tha t  there exists a Zariski 

open subset T of M containing to such tha t  Ht  contains a conjugate of Lt~ for every t E T. 

The conjugacy of Levi subgroups and the maximal i ty  of the number  of components of 

Lto implies that  Lt is conjugate to Lt~ for every t E T. This proves Proposition 6.6.1. 

w 7. Complex-analytic families of subgroups of complex Lie groups 

There exist reasonable analogues of the results of w 6 in the complex-analytic case, 

provided we restrict attention to connected Lie subgroups. 

7.1. An  extension o/Theorem 3.1/or complex-analytic families. Let V be a finite dimen- 

sional complex vector space and let G be a connected complex Lie subgroup of GL(V). Let  

G' denote the Zariski closure of G in GL(V). I f  g E G', then g is stable under AdGL(v)g and 

consequently G is stable under IntaL(V): x~+gxg -1. By abuse of notation, we denote by  

Intvg: G-+G (g EG') the restriction to G of IntGL(v)g. 

7.1.1. T ~ E o ~ ] ~ .  Let G ~ GL(V) and G' be as above and let I t  = ( Ht ) te  M be a complex an- 

alytic/amily of complex Lie subgroups oJ G, parametrized by a connected complex manifold M. 

Let to EM , let H =  Hr, and let K be a connected complex Lie subgroup o/ H such that 

Hi(K, ~/~)=0. Then there exi~'ts a connected dense open neighborhood U of t o in M, such 

that the following condition holds:/or every t E U, there exists g E G' such that (Inta g) ( K ) ~ Hr. 

We shall need the following lemma for the proof of Theorem 7.1.1. 

7.1.2. L ~ a ~ , .  Let 9~ : M ~ X  be a holomorphic map o / a  connected complex mani]old M 

into an algebraic variety X ,  let t E M and assume that there exists an open neighborhood U o/ 

t and a constructible subset A of X such that qz(U)~A. Then there exists a connected dense 

open subset V of M, with tE V, such that 9)(V)c A. 

We omit the proof, which is straightforward. 

7.1.3. Proof o/ Theorem 7.1.1. Let q = d i m  H and let E c G '  • be defined by  

E = {(g, W) r a '  • F~(~) I (Ado~< ~ ~ (W) ~ ~}; 

E is a Zariski closed subset of G ' •  Fq(g). Let  pr 2 denote the projection G ' •  Fq(fl)-+l~q(fl) 
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and let A =pr2(E ). Then A is a constructible subset of Fo(g); we note tha t  WEF~(g) is 

in A if and only if W contains an AdaL(v~(G') conjugate of f. Define ~: M-~Fr by ~(t) = ~t. 

I t  is an easy consequence of Theorem 3.1 that there exists an open neighborhood U 0 of t o in 

M such that  ~(U0)c A. The proof now follows from Lemma 7.1.2. 

7.l.4. Remark. If  G is complex-analytically isomorphic to a complex linear algebraic 

group, then one may  assume tha t  G = G' in Theorem 7.1.1. I t  has been shown by Hochschild 

and Mostow [11] tha t  G is complex-analytically isomorphic to a complex linear algebraic 

group if and only if the factor group of the radical of G modulo its maximal normal connected 

nilpotent complex Lie subgroup is reduetive. 

7.2. Reductive complex Lie gro~tps. A complex Lie group G is reductive if it satisfies the 

following conditions: (i) component group G/G ~ is finite; (ii) G admits a faithful (holo- 

morphic) representation; and (iii) every linear representation of G is semi-simple. We shall 

need the following results concerning reductive complex Lie groups. 

7.2.1. Let  ~: G-+GL(V) be a linear representation of the reductive complex Lie group 

G. Then Hi(G, V)=0.  

7.2.2. Let  G be a comlected complex Lie group which admits a faithful representation. 

Then G has a maximal reductive complex Lie subgroup H, which is closed and connected, 

and every reductive complex Lie subgroup of G is conjugate to a subgroup of H. 

The proof of 7.2.1 is an easy consequence of the semi-simplicity of linear representa- 

tions of a reductive group. 7.2.2. is proved in i l l ] .  

7.2.3. t ) l~oPosI~IO~.  Let G be a connected complex Lie group which admits a/ai th/uI  

linear representation Let It  = ( H t ) t e  M be a complex-analytic ]amily o/complex Lie subgroups o/ 

G, parametr~zed by a connected complex manifold M, such that each H t (t E M) is connected. 

For each tEM, let L t be a maximal connected reductive complex Lie subgroup o] H t. Then 

there exists a connected dense open subset U of M such that it s, t E U, then L s is conjugate 

to L t. 

The proof is an easy consequence of 7.1.1, 7.2.1 and 7.2.2. 
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Chapter II. The variation of isotropy subgroups 

w 8. The analytic family G* 

8.1. Let the Lie group G act analytically on the connected analytic manifold M, let 

q = mint ~M dim Gt and let M 0 = {t E M I dim Gt = q}. An elementary argument (see e.g. [18, 

w 2]) shows that M o is a dense open subset of M, the complement of an analytic subset. We 

assume throughout w 8.1 that  M o = M ,  i.e. that  all orbits of G on M have the same dimen- 

sion. We set G={(g, t )EG • M[gEG~}. In  general, G=(Gt)~M is not an analytic family of 

Lie subgroups of G. 

We say that a point (g, t) E G is regular if there exists an open neighborhood U of t in 

M and an analytic map s: U--+G such that s(u)EGu for every uE U and such that  s(t)=g. 

Let (~* denote the set of regular points of G and, for t E M, let G* = {g E Gtl(g, t) is a regular 

point of G}. 

8.1.1. L ~ I ~ A .  G* is a closed Lie subgroup o /Gt  and G~ G~. 

Proo/. Let gl, g~EG* and let sj: U-+G ( j=l ,2)  be an analytic map of an open neigh- 

borhood U of t in M into G such that  sj(u) EG~ for every uE U and sj(t) =gj. Define an ana- 

lytic map s: U ~ G  by s(u)=sl(u)s2(u) -1. Then s(u)eG~ for every u E U and s( t)=glg~ 1. 

Thus g l g ~ E  G*. This shows that  G* is a subgroup of G. 

Let ~=~t, let W be an r-dimensional subspace of g such that g is the vector space 

direct sum of ~) and W and let Fw and O: Fw~HomF(~, W) be as in 1.5. Choose an open 

neighborhood U of t such that  ~u EFw for u E U and define an analytic map ~v: U-+Homp(~, W) 

by q~(u)= @(~u). Let gEG ~ We may write g=expG(X1)  ... expG(Xn), where X 1 ..... X~E~. 

Define an analytic map s: U-~ G by s(u) = expa(X1 + q~(u) X1) ... expv(X~ + ~(u) Xn). Then 

s(u) E G ~ for every u E U and s(t) =g. Thus g E G* and we have shown that 0 �9 Gt ~ Gt. Since G o 

is a closed Lie subgroup of Gt, so is G* t"  

8.1.2. L]~M~A. Let r =dim M and let p be the common dimension o/ the orbits o / G  on M.  

Let ~v : G x M ~ M x M be de/ined by ~,(g, t) =(g . t, t). Then the di//erential o/ ~v at each point 

o / G  • M is o] rank (p § r). I n  particular, ~v is a subimmersion. 

The proof of 8.1.2 follows from an easy computation of differentials and will be 

omitted. 

8.1.3. PI~OPOSITIO~. (a) G* is an open subset o /G.  (b) G* is an analytic submani/old 

o / G  • M.  (c) G* is an analy t ic /ami ly  o /L ie  subgroups o /G.  
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Pro@ Let  (g, t)EG* and let s: U-+ G be an analytic map of an open neighborhood U 

of t into G such tha t  s(u)~Gu for every uE U and such t h a t  s( t ) -g .  Since ~p is a subimmer- 

sion, there exists an open neighborhood S of (g, t) in G x M, an open neighborhood T of 

(t, t) in M x M and a closed submanifold V of T such tha t  F(S) = V and such tha t  F: 

S-~ V is a submersion. Choose an open neighborhood A of t in M and an open neighborhood 

B of g in G such tha t  the following conditions hold: A • A c  T; B x A c S ;  A c  U; and 

s ( A ) ~ B .  Let  SI=SN~f - I (A  • A); S 1 is an open neighborhood of (g, t) in G • M. Let  

~Pl: S1--->A • A denote the restriction of ~o and let [/1 = V n (A • A). Then V 1 is a closed 

analytic submanifold of A x A and ~01: Sv-> V 1 is a submersion. 

Let  AA denote the diagonal of A; AA is a closed analytic submanifold of A x A. I f  

u E A, then (s(u), u)e  B • A and V(s(u), u ) =  (u, u). Therefore A A c  V1. Consequently AA is 

a closed analytic submanifold of V1 and, since ~01: $1-" V1 is a submersion, ~o~I(AA) = S  1 A 13 

is a closed analytic submanifold of S 1. 

Assume tha t  U is sufficiently small so tha t  g,,eP~ for every u e U  and let ~: U-+ 

Horns (~, W) be as above. Define the analytic map a :~  x U - + G x M  by  ~ ( X , u ) =  

(s(u) expa (X + ~(u)-X),  u). For  u C U we have (X § q0(u). X) E g** and thus (s(u) expa (X + 

q~(u). X)) e Gu. Consequently ~(~ • U) c G. One checks easily that ,  in fact, a(~ x U) c O*. 

Moreover, the differential d~(o,t ) is injective. An  easy dimension count  shows tha t  

dim (~ • U) = dim (S 1 A G). I t  follows from the inverse funct ion theorem t h a t  c~ maps an 

open neighborhood of (0, t) in ~ • U isomorphically onto an open neighborhood of 

(g, t) in S1 fl 13. This proves 8.1.3. (a)-(b). I t  follows from the definition of 13" tha t  

~H: G*-- ,M is a submersion, which proves 8.].3. (e). 

Combining 8.1.3, 8.1.1 and 8.1.2, we obtain 

8.1.4. COROLLARY. Let G O = {(g, t) EG x MlgCG~ Then G o is an analytic/amily o/ 

Lie subgroups o/G. 

We note tha t  G* can be equivalently defined as follows. Let  131 be the subset of G 

consisting of all points (g, t) E G such tha t  G is locally a submanifold of G x M at (g, t). 

(See [22, p. LG 3.22] for the appropriate  definition.) Let  z~:  ( I I -+M denote the restriction 

to (~1 of the projection and let G* be the set of points (g, t) E G 1 at  which the differential 

d(7~M)(g, t) is surjective. Then (I* = 13". This follows easily f rom 8.1.3 and the implicit func- 

t ion theorem. 

8.2. An example. If  the Lie group G acts analyt ical ly on the analytic manifold M, it is 

not  necessarily the case tha t  there exists a non-empty  open subset U of M such tha t  
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Gt = G* for every t E U. One counterexample goes as follows (see [23, p. 758 and p. 797] for 

more details): 

Let  / be the 2 • 2 matr ix  (11 21). Then / induces a diffeomorphism /0 of the torus 

T 2 =R2/Z  2 and the periodic points of ]0 are dense. Let  Z act  on T 2 • t t  by  n.(t ,  s ) =  

(/8~(t), s + n) and let M be the orbit  space (T 2 • R)/Z. Then M is a compact  three-dimen- 

sional manifold and the suspension of/0 gives a flow, i.e. an action of R 1 on M; the set P of 

points lying on periodic orbits is dense in M. For  this action of G = R on M we have 

G* t = {0} for every "tEM, but  Gt 4G* for t belonging to the dense subset P of M. 

8.3. Glimm ' s results on the continuity o/ the isotropy subgroups. Let  the Lie group G act  

continuously on the locally compact  space M. Following J.  Glimm [7], we say tha t  the 

isotropy subgroups are continuous at t EM if, for every sequence (tj) in M converging to t 

and for every g E Gt, there exists a sequence (gj) in G converging to g such tha t  gj E Gt~ for 

every ]. Glimm proves the following result: 

8.3.1. Let  the Lie group G act  continuously on the locally compact  space M and as- 

sume tha t  every orbit  of G in M is locally closed. Then there exists a dense open subset 

U of M such tha t  the isotropy subgroups are continuous at each point  of M. 

I n  order to apply this result to analytic t ransformat ion groups we need the following 

lemma: 

8.3.2. L~MMA. Let the Lie group G act analytically on the analytic mani/old M such that 

all orbits o / G  on M have the same dimension. Let t E M and let g E G t. Then the ]ollowing condi- 

tions are equivalent: 

(i) For every sequence (tj) in M converging to t, there exists a sequence (gj) in G converging 

to g such that gj E Gtj /or every ]. 

(ii) g E G~. 

Proo/. I t  is immediate  t ha t  (ii) implies (i). Assume tha t  (i) is satisfied, let G be as in 8.1 

and let ZM: G-~M denote the restriction of prM: G • M ~ M .  Let  U he a neighborhood of 

(g, t) in G. Then I claim tha t  ZM(U) is a neighborhood of t in M. For  assume tha t  ~M(U) is 

not  a neighborhood of t. Then there exists a sequence (tj) in M converging to t such tha t  

t j~zM(U) for every j. By  (i), there exists a sequence (gj) in G converging to g such tha t  

gj E Gtj for every j. Then (gj, tj) E G for every j and (gj, tj) converges to (g, t). For  j sufficiently 

large, (gj, tj) E U and hence tyE~M(U), which is a contradiction. 
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Let  ~v: G x M - > M  • M be as in 8.1.2; ~o is a subimmersion. I f  V is a neighborhood 

of (g, t) in G • M, then ~v((l f3 V) = {(v, v) lv E2"~M(G 0 V)}, and ~M(G (1 V) is a neighborhood 

of t in M. Since ~o is a subimmersion, we m a y  choose an open neighborhood V of (g, t) in 

G • M, an open neighborhood A of t in M and a closed analyt ic  submanifold V1 of A x A 

such tha t  the following conditions hold: ~o( V ) -  VI; ~0: V-+ V 1 is a submersion; and A A c  V r 

I t  follows tha t  13 N V=~v-I(AA) is a closed analytic submanifold of V. Moreover, since ~o 

maps G fl V submersively onto AA, it follows easily tha t  there exists an analyt ic  map  s: 

A -> G such tha t  s(v) E G~ for every v E A and such tha t  s(t) = g. Thus g E G~ and 8.3.2 is proven. 

As an easy consequence of Proposit ion 8.1.3 and Lemma 8.3.2, we have 

8.3.3. PROrOSITION.  Let the Lie group G act analytically on the connected analytic 

mani/old M such that each orbit o/ G on M is locally closed. Then there exists a dense open 

subset U o] M such that all orbits o] G on U have the same dimension and such that Gt = G~ 

/or every t E U. ~h~ts if  G' = {(g, t) E G x U I g E Gt}, then G' - (Gt)tr u is an analytic [amily o/ 

Lie subgroups o[ G. 

8.3.4. Remark. I f  (G, M) is an algebraic t ransformat ion space (over C), then each 

orbit  of G on M is locally closed. Using this, one can show, for example, t ha t  if p: G-+ 

GL(V) is a linear representat ion of a (real or complex) reductive Lie group, then  every 

orbit  of G on V is locally closed. Thus 8.3.3 applies to all of these examples. For  the case 

of algebraic t ransformat ion spaces, however, we have a much stronger result (see w 9). 

w 9. Algebraic transformation groups 

9.1.Let (G, M)  be an algebraic t ransformat ion space (over C), where M is a non singular 

algebraic variety.  We assume tha t  all orbits of G on M have the same dimension. Let  

G = {(g, t) E G • M Ig. t = t}, let G 1 be the set of simple points of G and let G* be the set of 

points (g, t)EG1 at which the differential d(~M)(a, t): T(~. t)(G1) -~ Tt(M)  is surjective. Then 

13" is a Zariski open subset of G, hence G* is a Zariski locally closed subset of G x M. 

For  t E M ,  let G* = {gEG] (g, t)EG*}. Then, as in 8.1, G t is a subgroup of G and G ~  G~ c Gt; 

thus G~' is an algebraic subgroup of G. Therefore ( I*= * (G t ) t eM is  a n  algebraic family of 

algebraic subgroups of G. 

9.1.1. PROPOSITION. Let (G, M)  be an algebraic trans/ormation space with M a non- 

singular algebraic variety and assume that all orbits o/ G on M have the same dimension. 
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Let t o E M,  let H = H to and let K be an algebraic subgroup o / H *  = G t*. such that H ~ ( K,  9/[) ) = O. 

Then there exists a Zarislci open subset U o] M containing t o such that G~ contains a conjugate 

o / K / o r  every t E U. 

The proof follows immediately from 6.4.1. 

9.1.2. COnOLLARr. Let G, M, t o and H be as in 9.1.1. Assume that H contains a connected 

reductive affine algebraic group R. Then there exists a Zariski open subset U of M containing 

t o such that Gt contains a conjugate o / R / o r  every t E U. I n  particular, assume that H is a reduc- 

tive amine algebraic group. Then there exists a Zariski open neighborhood U o / t  o in M such that 

G o is conjugate to H ~ every t E U. 

9,2. Existence of a Zarislci open subset on which the isotropy subgroups form an algebraic 

family. Let (G, X )  be an algebraic transformation space. Rosenlicht [21] has proved that  

there exists a non-empty G-stable Zariski open subset Y of X such that  there exists a 

quotient ~: Y ~ G ~ Y  for the action of G on Y. (See [2, pp. 171-180] for a discussion of 

such quotients.) We may assume that  Y and G~, Y are non singular and that ~ is a submer- 

sion. Let F: G• Y - + Y •  Y be defined by F(g , t )=(g . t ,  t) and let E = F ( G •  Y); E is 

the graph of the equivalence relation defined by the orbits of G on Y. We note that  

E is the inverse image of Ao\ y under 7~ • ~: Y • Y-+ ( G ~ Y )  • ( G ~ Y ) .  Since ,~ • 7~ is a 

submersion and A r is a non-singular subvariety of Y • Y, it follows that E is a Zariski 

closed non-singular subvariety of Y • Y. But, by 8.1.2, F is of constant rank (it follows 

from the existence of the quotient G ~  Y that all orbits of G on Y have the same dimension). 

Thus F maps G • Y submersively onto E. Consequently G=F~I(Ar)  is a closed non- 

singular subvariety of G • M. But G=  ((g, t )EG • Y i g ' t = t } "  Thus G=  (Gt)t~r is an al- 

gebraic family of algebraic subgroups of G. Thus we have proved: 

9.2.1. L]~lVIMA, Let (G, X)  be an algebraic transformation space. Then there exists a non- 

empty, non-singular, G-stable, Zarislci open subset Y of X such that G ~ (G~)t~ r is an algebraic 

family o/algebraic subgroups o/ G. Moreover, we may  assume that the number of connected 

components of G t is independent of t E Y. 

The last statement in 9.2.1 follows immediately from standard properties of mor- 

phisms of algebraic varieties (see e.g. [2, p. 39]). 

9.3. Aff ine  algebraic transformation groups. 

9.3.1. TIt~Ol~M. Let (G, X )  be an algebraic transformation space, where G is an a/fine 

algebraic group. For each t E X ,  let U t be the unipotent radical of Gt an let L t be a Levi subgroup 



D E F O R M A T I O N S  OF L I E  SUBGROUPS AND T H E  V A R I A T I O N  OF ISOTROPY SUBGROUPS 6 5  

o/Gt. Then there exists a ]inite set V1 ..... Vm o/G-stable, non-singular, Zariski locally closed 

subvarieties o] X such that the ]ollowing conditions hold: 

(i) X =  U?:, Yj. 

(ii) For each ~ = 1 ..... m, V~ is a Zariski open subset o] X - U{:I V,. 

(iii) I] s, t fi Vj, then L~ is con]ngate to IJ t. 

(iv) U j=  ( U ~),~ vq is an algebraic ]amily o] algebraic subgroups o] G. 

Proo/. I t  follows from 9.1.2, 9.2.1 and 6.5.3 that  there exists a non-empty, G-stable, 

non-singular Zariski open subset V1 of X satisfying conditions (iii) and (iv). The proof 

follows by an easy induction, using the fact that  X is a Noetherian space with respect to 

the Zariski topology. 

w 10. Analytic transformation groups 

10.1. PROPOSITION. Let the Lie group G act analytically on the analytic mani[old M 

such that all orbits o/ G on M have the same dimension. Let toEM, let H =Ht, and let K be a 

Lie subgroup o / H * =  G~ such that K / K  ~ is finitely generated and Hi(K, g/~)=0. Then there 

exists an open neighborhood U o~ t o in M and an analytic map ~: U ~ G such that ~](t) K~(t) -1 c 

G t/or every t E U. 

The proof of Proposition 10.1 follows immediately from Theorem 3.1 and Proposition 

8.1.3. 

10.2. Reductive subroups o] isotropy subgroups. A real Lie group 1~ is reductive if: (i) 

R / R  ~ is finite; (ii) R admits a faithful linear representation; and (iii) every linear representa- 

tion of R is semi-simple. If  R is reductive and if @: R~G L(V )  is a linear representation of 

R, then it  follows immediately from (iii) that  Hi(R,  V) =0. Let R be a real Lie group which 

satisfies (i) and (ii) above. Then it is known [10] that  R is reductive if and only if the center 

Z of R is compact and R/Z is a semisimple Lie group. 

Let  the notation be as in 10.1 and let K be a reductive (real or complex) Lie subgroup 

of H. Then Hi(K, ~[~)=0 and therefore the conclusion of 10.1 holds. Thus, for example, 

in the real-analytic case, if Gt contains a compact connected subgroup K, then G, contains 

a conjugate of K for every s in a neighborhood of t. In the complex-analytic ease, we can 

obtain somewhat stronger results. 

10.3. Complex-analytic trans]ormation groups. Let V be a finite-dimensional complex 

vector space and let G be a connected complex Lie subgroup of GL(V). Let  G' denote the 

5 -- 722901 Acta mathematica 129. I m p r i m 6  le 2 Ju in  1972. 
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Zariski closure of G in GL(V) and, for gEG', let Intag: G-->G be defined as in 7.1. Let G 

act complex-analytically on the connected complex manifold M and assume that all orbits 

of G on M have the same dimension. 

10.3.1. PROPOSITION. Let (G, M) be as above, let toEM and let H=Gto. Let K be a 

connected Lie subgroup o / H  such that Hi(K,  g/~)=0. Then there exists a dense open neigh- 

borhood U o/ t o in M,  such that the/ollowing condition holds: ]or every t E U, there exists g E G' 

such that (Intog) (K) c G~. 

10.3.2. PROPOSITION. Let (G, M) be as above and, /or every tEM,  let L t be a maxi- 

mal connected reductive complex Lie subgroup o/ G~. Let m = maxt~ M dim Lt and let U =  

{ t E M [ d i m L t = m  }. Then i is the complement o/ an analytic subset o/ M and, /or every 

s, t E U, L s is conjugate to Lt. 

The proof of Proposition 10.3.1 follows from 8.1.4 and 7.1.1. Proposition 10.3.2 is an 

immediate consequence of 8.1.4 and 7.2.3. 

Our methods seem unsatisfactory in dealing with components of the isotropy sub- 

groups, even when all isotropy subgroups have a finite number of components. Along this 

line, we conjecture that the following complex-analytic analogue of 9.3.1 holds. 

10.3.3. CONJECTURE. Let ( G , M) be as above and assume that each isotropy subgroup has 

only a ]inite number o/components. For each t E M,  let L t be a maximal reductive complex Lie 

subgroup o/ Gt. Then there exists a connected dense open subset U o] M, such that L~ is 

conjugate to L~ ]or every s, t E U. 

(We note that  if K is a complex Lie subgroup which admits a faithful linear representa- 

tion and if the component group K / K  ~ is finite, then K admits a maximal reductive complex 

Lie subgroup and any two such subgroups are conjugate in K. The proof is the same as in 

the case in which K is connected [10]. Thus the groups L~ in the above conjecture exists.) 

w 11. Relation between analytic families of subgroups and families 

of isotropy subgroups 

11.1. One question which naturally arises is whether every analytic family of Lie 

subgroups of G can be obtained as the family of isotropy subgroups for an analytic action 

of G on an analytic manifold. I t  is clear that  the answer to the question as stated is negative. 

For example, it is easy to find analytic families It  = (Ht)te M which do not contain every 

conjugate of every Ht; such a family cannot be the family of isotropy subgroups for an 
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analytic action of G on M. However, the following result shows that  every closed analytic 

family of Lie subgroups of G can be obtained by pull-back from a family of isotropy sub- 

groups. 

11.1.1. PROPOSiTIOn. Let H=(Ht)~M be an analytic/amily o~ Lie subgroups o/ the 

Lie group G, and assume that H is a closed analytic submani/old o /G • M. Then there exist 

an analytic mani/old N, an analytic action o/ G on N and an analytic map ~ : M-> N such that 

the/ollowing conditions hold: 

(a) (i = (Gt)~N is an analytic /amily o/Lie subgroups o/G. 

(b) ~*(G) = H (this implies in particular that Gr H t/or every t EM). 

Before giving the proof of Proposition 11.1, we need to recall some elementary facts 

concerning equivalence relations on manifolds. 

11.2. Let X be an analytic manifold and let ~ X • X be an equivalence relation on X. 

Then the following conditions on ~ are equivalent: 

(a) The quotient set X/}~ admits a structure of analytic manifold such that  the ca- 

nonical map p: X - ~ X / ~  is a submersion. 

(b) Let 7~x: ~ - + X  denote the restriction to ~ of the projection pr~ of X • X on its 

second factor. Then R is a closed analytic submanifold of X x X and ~x is a submersion. 

The proof of 11.2 is given in [22, p. LG-3.27]. 

11.3. Proo/ o/ Proposition 11.1. Let R be the equivalence relation on G • M defined 

by: (x, t ) ~ ( y ,  s) if and only if t =s  and x- lyEHt .  We claim that: 

(i) R is a closed analytic submanifold of (G • M) • (G • M). For the proof of (i), let 

q~: (G • M) • (G • M)-+G x M • M 

be defined by q~((x, t), (y, s)) = (x-ly, t, s). Then ~ is a submersion. Let 

u ' =  ((x, t, s ) e G  • i • i l s = t  and 

Then ~I' is the image of H under the analytic manifold isomorphism of G • M onto 

G • A M given by (x, t )~(x ,  (t, t)). Since II  is u closed analytic submanifold of G • M, and 

G • A M is a closed analytic submanifold of G • M • M, we see that  I t '  is a closed analytic 

submanifold of G • M • M. Since ~ is a submersion, ~ = ~ - I ( H ' ) i s  a closed analytic sub- 

manifold of (G • M) • (G • M), which proves (i). 

Let ~2: ~ G x M  denote the restriction to ~ of the projection pr~: ( G • 2 1 5  

( G x M ) ~ G •  
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(if) g~ is a submersion. 

Let  ((x, to), (y, to) ) E ~ Choose an  open neighborhood U of t o in M and an analyt ic  map  

o~: U--*G such tha t  oc(t)EH t for  every  t E U  and o~(to)=x-ly. Define an  analyt ic  map  /~: 

G x U-+ (G x U) x (G x U) by  fl(z, t) = ((zoo(t) -1, t), (z, t)). Then, since (za(t)-l)- lz  = ~(t), we 

see tha t /5(G • U ) c  ~. Fur thermore,  g2o/5 is the ident i ty  map of G x U. I t  follows tha t  

the differential of ~2 at ((x, to) , (y, to) ) is surjective. This shows tha t  g~ is a submersion. 

I t  is a consequence of (i) and (if) t ha t  there exists a unique s tructure of analyt ic  mani-  

fold on the quot ient  2 V = ( G x M ) / R  such tha t  the canonical map  p :  G •  is a 

submersion. 

We define an analytic act ion of G on G • M by  x(y, t) = (xy, t) for x, y E G and t E M. 

Using 11.2 and functorial  properties of quotient  structures,  it is not  difficult to  show t h a t  

there is an induced analytic act ion of G on N such t h a t  p: G • M - + N  is a G-equivariant 

map.  Fur thermore ,  a similar a rgument  shows t h a t  G=(G~)t~N is analyt ic  family of Lie 

subgroups of G. Define an analyt ic  map 90: M - ~ N  by  ~0(t) =p(e, t). Then it is easy to check 

t h a t  ~* (G)=H.  This proves 11.1.1. 

11.4. Remark. The only place in the above proof in which we used the fact  t ha t  H 

was a closed analyt ic  submanifold of G x M was to  insure tha t  h r was Hausdorff .  Thus  if 

we drop our requirement  t h a t  manifolds be Hausdorff ,  Proposi t ion 11.1 remains true if 

we only assume t h a t  H is an analyt ic  submanifold of G x M. 

w 12. Examples 

12.1. Let  G=SL2(C), let V be the four-dimensional vector  space of homogeneous 

polynomials of degree three in two indeterminates X and Y, and let G act  on V in the  usual 

way.  E v e r y  P E V can be wri t ten as a product  of three linear forms. I t  is a classical fact  t h a t  

PSL2(C ) =SL2(C)/{_+ 1} acts simply transit ively on the set of triples of distinct lines inC 2. 

Using this fact, it is easy to show by  direct computa t ion  tha t  if P E V has no linear factor  of 

mult ipl ici ty greater than  one, then the isotropy subgroup Ge is a cyclic group of order three. 

However,  if P has a linear factor  of multiplici ty two, e.g. P = X 2 Y, then  Gv = {e}. Let  V 0 = 

(PE  V[ G~ is finite}; V 0 consists of all cubic forms with no linear factor  of mult ipl ici ty three. 

Let  Q = X 2 Y. The orbit  G(Q) is a Zariski closed subset of V 0 and we have: G~ = (e} for P E G(Q); 

G(P) is cyclic of order three for P E ( V o - G ( Q ) ) .  For  the  action of G on V0, the  number  of 

components  of Gp is a lower semi-continuous funct ion of P E V 0, but  is not  an upper  semi- 

continuous function. I t  is trivial to  check tha t  G~=G* for every P E  V0, hence (G~)pEv, 

is an algebraic family of algebraic subgroups of G. 
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12.2. Let G = SLn(@), let g = ~I,((~) and let G act on g via the adjoint representation. We 

say that  an element x E g is regular if the isotropy subgroup G~ is of dimension n - 1 and we 

let V 0 be the set of regular elements of g; V0 is a Zariski open subset of g. I t  follows from the 

results of Kostant  [15] on the adjoint representation that  G=(G,)~,v, is an algebraic 

family of subgroups of G. If  x E V0 is semi:simple, then G, is an algebraic torus and hence is 

connected; the regular semi-simple elements form a Zariski-open subset V1 of V o. If  

x E(V o -  Vt), it is not necessarily the case that  G, is connected. For example, if x is the 

regular nilpotent element EI~ + E23 + ... + En_l. n (E,j denotes the matrix with 1 in the i-l" 

position and 0 elsewhere), then G, has n connected components. For the action of G on V0, 

we can prove the following properties: 

(a) The number of connected components of G z is an upper semi-continuous function 

of a:e Vo. 

(b) G-- (G~)~:~v~ is a connected anMytie manifold, but  G-~eG ~ (G ~  (G~)~v,). 

12.3. The following example was pointed out by Mostow [16]. Let  ~Y~ GLz(R ) be the 

two-dimensional vector group consisting of all matrices 

T(a, b) = 1 (a, b E It). 

0 

N acts on R 8 by matrix multiplication and the hyperplane A={(x ,  y, z)ER31z=l} is N- 

stable. If  t = (x, y, 1) E A, then the isotropy subgroup Nt is given by hr, = {~(a, b) Iay + b = 0}. 

Thus each orbit of N on A is of codimension one (a line) and, since N is abelian, if s, tEA, 

then hr~ and _St are conjugate if and only if s and t lie on the same N-orbit. 

Let  ~ be the Lie subalgebra of gI3 (it) spanned by Ell , Ea3, EI~ and Ela and let S be the 

corresponding connected Lie subgroup of GLa(R); S is a closed, simply connected subgroup 

of GLa(R ). Let  d~: ~-~1t be the Lie algebra homomorphism defined by dq(E i1 )=Elv  

dq(Ea3)=Ela, dQ(El2)=clo(Ela)=O and let 0: S-~N be the corresponding homomorphism 

of Lie groups. We let S act on A by means of ~. If t = (x, y, 1)EA, then the isotropy subal- 

gebra ~t is spanned by (En-yEaa) ,  E12 and Ela. If  t '=(x' ,  y', 1), then it follows from the 

classification of three-dimensional Lie algebras [13, p. 12] that  ~t is isomorphic to ~t" if and 

only if either y =y' or (1 +y)  (1 + y ' ) =  1. Let  B = {(x, y, 1)EAly >0}. Then B is N-stable, 

and hence S-stable, and, for t,t'E B, ~ is isomorphic to ~, if and only if t and t' lie on the 

same S-orbit. 

The homomorphism a: S-~SL4(R ) given by 

1 
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maps  S isomorphically onto a closed Lie subgroup S '  of SLa(R ) = G; to simplify nota t ion we 

identify S with S'  by  means of a. Thus G~G/S is a principal fibre bundle with s tructure 

group S. Since S acts on B we m a y  form the associated fibre bundle E-+G/S with fibre B; 

E is an analytic manifold and G acts on E in the usual way. For  this action of G on E, each 

orbit  is closed and of codimension one and, for s, t E E, we see tha t  G o is not  isomorphic to 

G O unless s and t lie on the same orbit. Thus we have shown: 

12.3.1. There exists an analytic action of G = S L a ( R  ) on an analytic manifold E such 

tha t  each orbit  of G on E is closed and of codimension one and such that ,  for s, tEE, G O is 

no t  isomorphic to G o unless s and t lie on the same G-orbit. 

12.4. The example given in 12.3. is not  an algebraic t ransformat ion group. Similar 

examples exist in the case of algebraic t ransformat ion groups, but  it seems to be difficult 

to  give an explicit description of them. Let  (G, X) be a (complex) algebraic t ransformat ion 

space, with G an affine algebraic group, and, for xEX, let U x be the unipotent  radical of 

Gx and let Lx be a Levi subgroup of G~. I t  follows from Theorem 9.3.1 tha t  the L x fall into 

a finite number  of conjugacy classes, so one is led to s tudy  the conjugacy classes of the  uni- 

potent  radicals. The problem here is t ha t  it is hard to find explicit invariants  to distinguish 

between conjugacy classes of unipotent  subgroups. 

First  we shall show tha t  if there exists an infinite number  of isomorphism classes of 

isotropy subalgebras for the act ion of G on X, then there exists a G-stable Zariski locally 

closed subvar ie ty  V of X such tha t  (G, V) has properties similar to the example of 12.3. 

Let  s be the set of Lie algebra multiplications on C ~. s is a Zariski closed subset of 

the vector  space of all al ternating bilinear maps of C ~ • C ~ into C ~ and thus has a natural  

s t ructure of an affine algebraic variety.  The general linear group H =GLn(C ) acts in a 

canonical manner  on ~ and the orbits of H on gn are just the isomorphism classes of Lie 

algebra structures on C n. Applying the result of Rosenlicht [21] mentioned in 9.2 to  the  

algebraic t ransformat ion space (H, gn), we see tha t  there exists a part i t ion of gn into a 

finite family of disjoint, Zariski locally closed, non-singular H-stable subsets V1 ... . .  Vm 

such tha t  the following conditions hold for each ] = 1 .. . .  , m: (i) Vj is a Zariski open subset 

of s  U~--~ Vi; (ii) there exists a quotient  ~j: Vf+(H~V]) =Zj for the action of H on Vj. 

Le t  Z be the disjoint union of the algebraic varieties Z . . . . .  Zm. The points of Z correspond 

bijectively to the isomorphism classes of n-dimensional complex Lie algebras. 

/flow let (G, X) be an algebraic t ransformat ion space and assume tha t  all isotropy 

subgroups G~(x E X) have dimension n. For  each x E X, let F(x) E Z denote the isomorphism 

class of ~ .  For  j =1  .. . . .  m, let Xj={xEXI~f(x)EZj} and let ~j: Xf~Zj  denote the restric- 

t ion of yJ. Then a s t ra igh t forward  a rgument  shows tha t  Xj  is a Zariski locally closed 
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subset of X and tha t  ~vj is a morphism of algebraic varieties. We note tha t  ~s is constant 

on G-orbits. 

12.4.1. PROrOSlTION. Let (G, X) be an algebraic trans/ormation space and assume that 

there is an in]inite number o] distinct isomorphism classes (resp. con]ugaey classes) of isotropy 

subalgebras ~(x  E X ). Then there eixsts a Zarislci locally closed, non-singular G-stable subvariety 

V o / X  such that the/ollowing conditions hold: 

(a) All orbits o/G on V have the same dimension and dim G(x) < dim V ]or x E V. 

(b) For every x E V, there exists an open neighborhood U o / x  in V (with respect to the 

Hausdor// topology o/ V) such that i / y ,  zE U, then gy is not isomorphic (resp. conjugate) to ~ 

unless y and z lie on the same G-orbit. 

Proo/. We shall give the proof for the case of isomorphism classes. By passing to a 

Zariski locally closed subvariety of X, we may  assume that  all isotropy subgroups Gx (x E X) 

have dimension n and tha t  there exists i (1 <~ i <~ m) such tha t  y~(x) E Z ~ for every x E X, where 

is as defined above. By a straightforward argument, involving only standard properties 

of morphisms of algebraic varieties and the result of Rosenlicht mentioned above, we can 

show tha t  there exists a G-stable, non-singular Zariski locally closed subvariety V of X and 

a non-singular Zariski locally closed subvariety A of Z~ such that  the following conditions 

hold: (i) There exists a quotient H: V - + ( G ~ V ) = B  for the action of G on V; (ii) B is non- 

singular and dim B >0; (iii) F (V)=  B; and (iv) I f  T: B ~ A  is the morphism induced by  ~vt, 

then for every b E B the differential dvb: Tb ( B ) ~  T~(~)(A) is a linear isomorphism. 

Conclusion (b) of 12.4.1 follows immediately from (iv) via the implicit function theorem. 

This proves 12.4.1 for the case of isomorphism classes. 

To prove 12.4.1 in the case of conjugacy classes, we let A~(~) be the algebraic variety 

of all n-dimensional subalgebras of g and we apply [21] to the action of G on A~(~) deter- 

mined by the adjoint representation of G. The rest of the proof goes as above. 

12.4.2. I t  was shown in [18, p. 432] tha t  for n sufficiently large, there exists a rational 

representation of G = SL~((J) on a vector space W such tha t  there exists an infinite number  

of isomorphism classes of isotropy subalgebras g~(xE W) for the action of G on W. Thus 

Proposition 12.4.1 applies to (G, W). 

We can give explicit examples of representations of SL~((~) for which there exists an 

infinite number of conjugacy classes of isotropy subalgebras. Write (~2n as the direct sum 

VI |  V2 of two n-dimensional subspaees and let ~ be the abelian subalgebra of ~l~n(C) 

defined by 
= {T E gI2=(C) ] T(V1) ~ V2 and T(V~) = {0}}. 

Every  k-dimensional subspace of ~) is the Lie algebra of a commutat ive unipotent algebraic 
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subgroup of G=SL2n(C). For  n sufficiently large and k < n  2 chosen properly (e.g. n=4,  

k = 8 ) ,  an  easy dimension count  shows tha t  there exists an  infinite number  of conjugaey 

classes of k-dimensional subalgebras of ~. Le t  m = 4 n  ~ - k ;  m is the number  of linear equa- 

tions needed to  determine a k-dimensional subspaee of flt2n(C). Let  (C~n) * denote the  dual 

space of C ~ and let E be the ruth exterior power of the vector  space C + (C2~)*; E has 

natura l  s t ructure of a G-module. An  argument  due to  Chevalley (see [4, pp. 161-171]) 

shows tha t  each k-dimensional subalgebra of ~ occurs as an isotropy subalgebra for the  

act ion of G on E. Thus, if k and n are properly chosen, there exists an  infinite number  of 

conjugacy classes for the action of G on E,  and Proposi t ion 12.4.1 applies to  (G, E). 
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