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1. Introduction

The study of bundles on IP* apparently has a long history (see [22, Chap. I,
Sect. 2.4]). Grothendieck proved that any principal bundle on IP{ with a
complex reductive Lie groups as structure group admits a reduction of struc-
ture group to a maximal torus, unique up to Weyl group action {9]. Harder
gave a simple proof of this result which works for IP' over arbitrary fields
[11]. In this paper we study the deformations of principal bundles over IP!.

Let G be a split reductive group over the field k. By the result of Grothen-
dieck-Harder and Zariski locally trivial G-bundle on IP* is associated to the
G,-bundle k*—0-IP* by a 1-PS i: G,,—G. Let us denote this G-bundle by E,.

Let E—-SxIP' be a G-bundle with an isomorphism E, =E|s,xIP'~E,.
We then call E a deformation of E, parametrized by S,s,. We say that the G-
bundle E’ tends or degenerates to the G-bundle E, and write E'E, if there is a
deformation E-SxIP! of E such that in every neighbourhood of the base
point s,€8, (E, ~E), there is an s such that E.x E'.

We prove (Theorem 7.4) that if A, 4 are dominant 1-PS then E ~E, il and
only if p£4, ie. A—p is a positive integral combination of simple coroots (or,
equivalently (1 —u, w,)€Z™ for every fundamental weight w,. See Sect. 2.5).

Note that the set of dominant y such that <1 is the same as the set of
dominant weights occuring in the indecomposable (or irreducible, if char k=0)
representation of the dual group G’ (see Sect. 2.6) with highest weight 4 (cf. [16,
Sect. 21.3]). The deformation theory of G-bundles on IP! seems to be much the
same as the representation theory of the dual group G° (cf. [9, p. 123]). It
would be interesting to find a more intrinsic connection between them.

The G-bundles E and E"are said to be algebraically equivalent if there is a
G-bundle E—S x P!, with S connected, such that ExXE, and E'~E_ for some
s5,5'eS. We prove (Theorem 7.7) that the algebraic equivalence classes of Zar-
iski locally trivial G-bundles are classified by the fundamental group of G (ie.
the quotient of the lattice of 1-PS of G by the lattice of coroots). This result
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holds more generally for irreducible smooth projective curves of arbitrary
genus (cf. [23, Sect. 57; Sect. 7.10).

We also identify the rigid G-bundles as those E, such that 1 is a dominant
1-PS which is minimal with respect to the ordering <(Proposition 7.8).

Brieskorn has studied the equivalence of complex projective bundles [7]
and Hulek that of complex orthogonal bundles [15].

In Sect. 5 we describe the automorphism group AutE; (identity over the
base) and prove the irreducibility of some spaces of B-reductions.

In Sect. 8 we construct and study the versal deformation U—S xIP* of E,.
We prove that S, ={seS|U=~E,} are smooth locally closed subvarieties and
give their dimensions. We have also indicated there how to deduce the exis-
tence of an (algebraic) versal deformation for a G-bundle over a curve of
higher genus using the results of [1, 2].

In Sect. 9 we have given the modifications to be made when G is not
connected (Theorem 9.2). We have also given there the specialisation of our
results to the case of vector bundles and bundles with other classical groups as
structure groups.

The results and proofs are often motivated by looking at what happens in
the special case G=GL(2) (i.e. vector bundles of rank 2) and giving it the right
formulation so that it generalises. As in the theory of algebraic groups we
often reduce inductively to this special case.

2. Algebraic Groups and Principal Bundles

We fix some notation to be adopted throughout this paper.

2.1. Let k be an arbitrary field. Let G be a connected reductive algebraic group
defined and split over k (Chevalley group). Let T be a maximal split torus and
B a Borel subgroup containing T. Let U be the unipotent radical of B. Then B
=T-U (semidirect product). Let i: T—B and j: B—G be the inclusions and
p: BoB/U=T be the projection. Let W=N(T)/T be the Weyl group and
woeW the element of maximal length in W (cf. [4, 5]).

2.2. Let G,, be the 1-dimensional torus and G, the additive group. We denote
by X, (T) the group of homomorphisms of G, into 7. We write the group
operation in X, (T) additively. We call elements of X _(T) 1-parameter sub-
groups (abbreviation: 1-PS). X*(T) denotes the group of characters of . We
have a natural perfect pairing X, (T)® X*(T)—»Hom(G,,, G,)=Z given by com-
position. We denote this pairing by (, ).

2.3. We refer to [29] for facts about root data (see also [5, 16]). Let @< X*(T)
be the system of roots of G, @* the set of positive roots and A={a,,...,o,} the
set of simple roots corresponding to B. For ac® let U, be the root group
corresponding to a [5, Sect. 2.3], T, the connected component of kero and Z,
the centraliser of T, in G. Then the derived group [Z,, Z,] is of rank 1 and
there is a unique 1-PS o”: G,»TN[Z,,Z,] such that T=(Ima”). T, and («*, %)
=2 [29, Sect. 2]. This «” is called the coroot corresponding to a. We denote by
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9" the set of coroots. The quadruple {X*(7T), @, X (T), #°} with the map ¢—*
given by ar—o” constitutes the root datum.

2.4. Let Q be the roor lattice, i.e. the subgroup of X*(T) generated by &. Let P
={xeX*(TRMQ|(a", x)eZ for every ac®} be the weight lattice. Let w,,...,w,
be the duals of the simple coroots af,...,af, ie. (&, w;)=0;; and (4,w)=0 for
any A in the centre of G. These elements of P are called the fundamental
weights. Let X, be the subgroup of X*(T) othogonal to ®'< X _(T). Then X,
=X*(G) and G is semisimple if and only if X,=0. We have Qn X =0 and Q
+ X, is of finite index in X*(T), [29]. Let Q°, P’ and X7} be the corresponding
objects for X (7).

2.5. Let P, ={xeP|(«",x) 20, for every ae®*}. Elements of P, are called domi-
nant weights. Dually P! ={yeP"|(y,0)=0 for every ac®*}. We denote by
X, (T), the set of dominant 1-PS, ie. X (T), =P/ X (T). We have a partial
ordering £ in X_(7) (and dually on X*(T)) defined as follows: u<4 if and
only if A—u is a positive integral combination of «’€A” or equivalently
(A—pw)eZ* and (A—pu, x)=0 for yeX*(G)=X,.

2.6. The group G whose root datum is the dual root datum
(X (T), @, X*(T), ®) is called the dual group of G [29]. The dominant 1-PS of
G are the integral dominant weights of G*. Hence a dominant 1-PS of G
corresponds to an indecomposable representation of G namely the one with
highest weight A (the so called Weyl module).

27. We illustrate the above notions by looking at the special case of
G L(n). The diagonal matrices diag[x,,...,x,] form a maximal torus T and
the upper triangular matrices form a Borel subgroup B. Any 1-PS of T
is of the form t—diag(t™,...,t*], a,€Z. Therefore X (T)=Z". Moreover
diag[x,,...,x,J—x5, ..., x" gives a typical character on T so that X*(T)=Z"
The pairing ( , ) is ((a;,..-,4,), (by,...,0))=> a;b,. Let ¢=(0,...,0,1,...,0)
be the i® coordinate vector. Then O=@"={g,—¢li*j, 1<i,jsn} and
A=A"={¢—¢,,|1<i=n—1}. The root datum is (Z",¢,Z", ¢) and the dual
group GL(n) is GL(n) itself. Q={(b,,...,b,)|Y b;=0} and X,={(r,r,...,r)reZ}.
The maps induced by (b,,...,b,)—> b, give isomorphisms X*(T)/Q~Z and
X*(N/Q+X,~Z, The root datum of the derived group SL(n) is
(X*(T)/X o, 2,0, D) (cf. [29]).

2.8. We usually use lower case bold face letters to denote the corresponding
Lie algebras. Thus g denotes the Lie algebra of G, and t, b,u those of T, B, U.
Let U, be the root group corresponding to the root «. Then u, is isomorphic to
U,. The group multiplication gives an isomorphism [] U,—U of varieties [4,
Sect. 14.4 Remark, p. 330]. aed?

2.9. Principal Bundles. By a principal bundle with structure group G (or a G-
bundle) over X we mean a morphism n: E—X where G acts on E on the right
and n is G-invariant and isotrivial (ie. for every xeX there is an étale
morphism ¢: Y— X, xe@(Y), such that the pull back ¢* E is isomorphic to
Yx G, G-equivariantly for the action of G on YxG by right multiplication
on the second factor). See [27].
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2.10. If G operates on F (on the left) the associated bundle is denoted by E(F).
Recall that E(F) is the quotient of E x F under the action of G given by g(e,f)
=(e'g,87"f), ecE, f€F, geG, [27].

2.11. If G acts on F, and F, and F,—F, is a G-equivariant morphism then
there is a natural morphism E(F,)—E(F,).

2.12. If p: G—H is a homomorphism of groups the associated bundle E(H), for
the action of G on H by left multiplication through p, is naturally a H-bundle.
We denote this H-bundle sometimes by p E and we say that p E is obtained
from E by extension of structure group.

2.13. A pair (E,¢), where E is a G-bundle and ¢: p E—F is a H-bundle
isomorphism, is said to give a reduction of structure group of F to G. We
sometimes omit ¢ and call E a G-reduction of F. Two G-reductions of structure
group (E,,,) and (E,, ¢,) are equivalent or isomorphic if there is a G-bundle
isomorphism Y : E,—»E, such that the following diagram commutes:

p*El__h’p*EZ
@1 ¢2

F

2.14. If p: G—=H is a closed subgroup inclusion the quotient F/G is naturally
isomorphic to the associated bundle F(H/G). Further F->F/G is a G-bundle
and a section ¢: X—=F/G of F/G-X gives the G-bundle ¢*F on X with a
natural isomorphism p,o*F~F. Thus equivalence classes of reductions of
structure group of F to G are in bijective correspondence with sections of
F/G-X.

2.15. A GL(n)-bundle E is completely determined by the associated vector
bundle E(V) (where V' is the canonical n-dimensional space on which GL(n)
acts) as its bundle of frames. Similarly a PGL(n)-bundle is equivalent to a
projective bundle ie. an isotrivial fibre bundle with IP" as fibre.

2.16. If X is a projective smooth curve and L—X is a line bundle we mean by
deg L the degree of the divisor associated to a rational section of L. If W—-X is
a vector bundle of rank n we denote by det W the line bundle A"W, the n™
exterior power of W. We define degW to be deg(det W). The vector bundle W
gives a locally free sheaf, namely the sheaf of sections. We will not differentiate
between this sheaf and the vector bundle. If S is a subsheaf of W we call § a
subbundle if the quotient sheaf is locally free. We call the minimal subbundle S
containing a subsheaf S the subbundle generated by S (cf. [21, Sect. 4]).

3. T-bundles and B-bundles

We now describe the bundles on P! (the projective line over k) with the split
torus T as structure group.
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3.1. On P! we have the natural G,-bundle k2—0-IP'. If 1: G,,»T is a 1-PS
we denote by T, the T-bundle obtained by the extension of structure group
A7'1 G, —T (we take the inverse because we want the line bundle (1) to be
associated to (G,,), for the natural action of G, on k). Note the k*—0—-IP! is
trivial on IP'—0 and PP!~o0 and A1: G, =(P'-0)n(IP!—oc)>T can be
thought of as the transition function for the T-bundle T,.

3.2. Given a T-bundle E on IP' we get a homomorphism i,: X*(T)—Z by
associating to yeX*(T) the degree of the line bundle associated to E for the
action of T on k through y. By duality (Sect. 2.2) this homomorphism is given
by a 1-PS A,eX (T): deg x, E=(Ag, x) for every ye X*(T).

3.3. Lemma. The mapping AT, gives a bijective correspondence between X (T)
and isomorphism classes of T-bundles on TP, the inverse mapping being E+—i,
described above.

Proof. For T=G, the lemma is clear since O(d)—d gives a bijection
PicIP'»Z. When T=G,, xG,,... is the product of r copies of G, the lemma
follows by noting that a T-bundle is nothing but an (ordered) r-tuple of line
bundles.

3.4. Now we come to B-bundles. Let E be a B-bundle on IP!. Then by the
above lemma there is a unique AeX (T) such that the T-bundle
p.E(p: B-»B/U=T, Sect. 21) is isomorphic to T,. We call 4 the T-type or
simply the type of the B-bundle E.

3.5. Let B act on U by inner conjugation. Since inner conjugation preserves
the group structure of U the associated bundle E(U) is a group scheme over
IP! (ie. the fibres are groups).

3.6. Lemma. Let E be a B-bundle. Then the associated bundle E(B/T)(=E/T) is
a principal homogeneous space under the group scheme E(U) over TP,

Proof. Consider the action of U on B/T given by U x(B/T)—B/T, (u,bT)—ubT.
This is simply transitive. Moreover if we make B act on U by inner con-
jugation and on B/T by left translation then U x B/T—B/T is B-equivariant.
Therefore this gives rise to the action E(U)x E(B/T)—E(B/T) (see Sect. 2.11).
Hence the lemma.

3.7. Lemma. If the T-type A of the B-bundle E is such that for every
aed” <« X*(T) we have (4, 0)2 —1 then H'(P',E(U))=1 and E=i,T,(i: T—B
is the inclusion, Sect. 2.1).

Proof. The non-abelian cohomology group H'(IP*, E(U)) classifies the principal
homogeneous spaces of the group scheme E(U) over IP! (cf. [19, Chap. III,
Sect. 47). Therefore if H'(IP*,E(U))=1 then by Lemma 3.6 above E(B/T) has a
section and hence E has a reduction of structure group to T giving i T, ~E.
To show H'(IP!,E(U))=1 note that U has a filtration U U, o U,... by T
invariant normal subgroups such that the successive quotients are isomorphic
to G, with the T:action given by a positive root, (cf. [5 Sect. 2.3; 11]). From the
exact cohomology sequence corresponding to 1-U,—-U—-G,—»1 we have
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H'(IPY, E(U,))~H'(IP', E(U))—»H'(IP*, E(G,)) (see [19, Chap. IlI, Sect. 4]). The
last term is zero, from the hypothesis. Therefore it is enough to prove that
H'(IP', E(U,))=1. Now proceed inductively with U,, ....

4. The Theorem of Grothendieck-Harder

In this section we give briefly Harder’s proof of the theorem on the classifi-
cation of Zariski locally trivial G-bundles on IP.

4.1. Definition. Let F be a B-bundle giving a B-reduction of the G-bundle E.
We call the T-type of F (see Sect. 3.4) to be the T-type, or simply the type, of
the B-reduction F. We say that F is a split reduction if F admits a T-reduction.
(Note that if F is a split reduction of type 4 then Fxi,T,.)

4.1.1. Definition, Let g=j-i: T>G be the inclusion (Sect. 2.1). For 1e X _(T) we
denote by E, the G-bundle ¢, T, ie. E; is the G-bundle obtained from the Hopf
bundle k*—0-IP! by the extension of structure group A~': G, —G (Sect. 3.1).

4.1.2. If one extends the structure group of a G-bundle E by an inner automor-
phism Intg: G—G one gets an isomorphic G-bundle (Intg), E with the canoni-
cal isomorphism (Intg),E~E induced by ExG—E, (e, h)—egh (Sect. 2.10).
For weW the map w: T—-T is induced by an inner conjugation of G, de-
termined upto inner conjugation by an element of T. Therefore for weW,
q,w, T,~q,T,, the isomorphism being determined upto inner conjugation of G
by an element of T. Thus for each weW, ¢q,T,=E; has the canonical T
reduction w, T, (unique, upto isomorphism, Sect. 2.13). This gives further the
canonical split B-reduction i, w,T, of the type w A.

4.2. Theorem (Grothendieck-Harder). Let E—IP! be a G-bundle (k arbitrary
field)y which is locally trivial in the Zariski topology. Then E~E, for some
AeX (T). For Z,ueX(T), E;~E, if and only if pu=wi for some weW.
Therefore the Zariski locally trivial G-bundles on TP are classified by X (T)/W.

Proof. To show that E admits a reduction to T we have only to find a reduction
to B of T-type A with (4,)=0 for all ae®* (Lemma 3.7). For a reduction o:
IP'-E/B and a character x on B let n(y,0)=degy,0*E (=the degree of the
line bundle associated to the reduced B-bundle through the character y). Let
@y, ...,w, be the fundamental weights. We can find an integer s>0 such that
$Wy,...,Sw,; are characters of B. The number n(sw,, ¢) are bounded from above
as ¢ varies over all possible B-reductions (since n(sw;, g) is the degree of a line
subbundle of E(V), where V is the irreducible representation of G with highest
weight sw,; cf. proof of Proposition 6.16 and [9, Lemma 2.2]).

Since E is locally trivial in the Zariski topology the set of B-reductions is
nonempty. For we can take a generic section of E/B and it would extend to
whole of IP! by properness criterion, G/B being complete. Let therefore o be a
reduction such that n(sw,, ¢) is maximal in the sense that there exist no ¢’ with
n(sw;, 6") = n(sw,, o) for every i and for some iy, n(sw,_ ,d") >n(sw;_, 6).

ig? io?
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We claim that for such a maximal ¢ we have n(x, 6) =0 for every aed. For
a simple root « let B, be the minimal parabolic subgroup corresponding to o
generated by B and U_,. Let U’ be the unipotent radical of B and Z,
=(ker®)°cT. Then B/Z, - U’ is isomorphic to SL(2) or PSL(2) and the Borel
subgroups of B/Z, -U’ are in bijective correspondence with those of G con-
tained in B, [5]. Thus a reduction of structure group of the SL(2) or PSL(2)
bundle ¢*E(B/Z,-U’) to a Borel subgroup gives a reduction ¢’ of structure
group of E to a Borel subgroup of G. Further since ¢’ is achieved within P, it is
easy to see that n(sw;, 6") =n(sw;, o) for all w; except w;, corresponding to «. It
follows immediately from the Riemann-Roch theorem that for any SL(2) or
(Zariski locally trivial) PSL(2) bundle there exists a reduction & to a Borel
subgroup such that the corresponding n(%, ) =0 where & is the simple root of
PSL(2). Let o, be the corresponding reduction of E so that n(sw,,0)
=n(sw,;,0,), iFi,. A simple computation shows that in the expression of w; in
terms of o and w;, i=*i,, the coefficient of « is positive [11, p. 136]. Therefore if
n(a, 6) <0 then n(sw; ,0,)>n(sw, o). This would contradict the maximality of
o and hence we have proved the claim that n(«,¢)=0 for all xeA. Hence by
Lemma 3.7 ExXE, for some AeX,(T). The uniqueness statement follows from
Corollary 6.17 in Sect. 6 below.

To complete the picture when k=k we have the following proposition.

4.3. Proposition. Let X be a smooth projective curve over an algebraically closed
field k. Then any G-bundle E on X, with G connected reductive, is locally trivial
in the Zariski topology.

Proof. Let K=k(X) be the function field of X. Then E(G/B) is a principal
homogeneous space under B, over K. Since k is algebraically closed, by [30] it
is trivial. Therefore E(G/B) has a section over K and hence over an open
subset of X and hence over the whole of X by the properness criterion. Thus E
admits a reduction to B.

Now any T-bundle is Zariski locally trivial [19, Chap. 111, Proposition 4.9].
Therefore it is enough to prove that any B-bundle F on X admits a T-
reduction over any affine open subset 4 of X ie. H*(4, F(U))=1. This can be
proved exactly as in the proof of Lemma 3.7 using H'(4, F(G,)=0, A being
affine.

4.4. Remark. If X =IP' the assumption that G is connected can be dropped in
Proposition 4.3. For, by applying the Riemann-Hurwitz formula the étale
covering E(G/G,)—IP' has a section, where G, is the identity component of G
(IP! is “simply connected™). Thus we get a reduction to the connected group
G,.

5. Automorphism Groups

5.1. Let A be a dominant 1-PS. Let P(1) be the corresponding parabolic
subgroup, generated by T and the root groups U, with (4,)=0 [20, Chap. II,
Sect. 2]. Let U(4) be the unipotent radical of P(4). Let Z(A) be the centraliser
of 2 in G. Then Z(4) is a connected reductive group and P(1)=2(4)- U(4) and
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for the Lie algebras z(A)=t® ) wu,unl)= ) wu,(cf [5]). Z(4) and z(4) are
{2, 0)=0 {(Aa)>0
called Levi supplements (for the radicals).

5.2. Proposition. Let A be a dominant 1-PS and E; the corresponding G-bundle
on TP, Then Z(A) is naturally a subgroup of AutE,, the group of bundle
automorphisms of E, (identity on the base). Further AutE, is isomorphic as a
variety to
Z0)x HOWP', T, (=Z() x T[] HO(P', T(u,).
(4, 2)>0

Proof. We will write E,P,Z, ... in place of E,, P(4),Z(4),... . Let G act on itself
by inner conjugation and E(G) the associated bundle. It is a group scheme
over P! and AutE=H°(IP!,E(G)). Now T,(p) is the sum of all lie line sub-
bundies of E(g) of degree =0. Hence any vector bundle endomorphism of E(g)
leaves it invariant. In particular Aut E leaves it invariant. This implies (since
the normaliser of p in G is P) that any global section of E(G) has values in
T,(P). Therefore Aut E=H®P!, T,(P)). Now P=ZU T-equivariantly and hence
HO(P!, T(P)=Z x H°(P', T,(U). Again U= []| u, T-equivariantly. Hence
the result. (%,a)>0

5.2.1. Let B(E,, 1) be the space of (isomorphism classes of) B-reductions of E,
of type p. Then B(E,,p) is the space of certain sections of E,/B—IP!
(Sect. 2.14). To be more precise, consider the functor I' from the category of
schemes over k to the category of sets defined as follows. I' associates to a
scheme S the set of sections ¢: S xIP'—~S x E,/B such that for every seS the
restriction o: sxIP'=IP'>sx E,/B=E,/B is a section of type u (i.c. gives a B-
reduction of type w). For a morphism f: §'—S, I'(f)(e) is the pull back section
f*(o). By [10, exposé 221] I' is represented by an algebraic scheme (see also
[117). B(E,, u) is this representing scheme. Note that for an arbitrary section
c: SxIP'>S x E,/B the type of ¢ remains constant on the connected com-
ponents of S.

5.2.2. There is a natural action of AutE, on B(E,,p): Let geAutE, and
(F, p)eB(E,, 1. Then g(F, ¢)=(F,ge). (See Sect. 2.13))

5.3. Proposition. Let A be a dominant 1-PS and A,=wyA the opposite 1-PS
(Sect. 2.1). Then AutE, acts transitively on B(E;,,). Further B(E,, i,) is smooth
and irreducible.

Proof. Let (F,, p,) be the canonical B-reduction of E, of type 4, (Sect. 4.1.2).
Since F, is a split reduction, i.e. a B-reduction which comes from a T-reduction
(Sect. 4.1), any translate of it by Aut E, will also be a split reduction.

Conversely any split reduction (F, @) of type 4, is an AutE, translate of
(F,, @,)- To see this first note that we have an isomorphism y: F,—F, both F,
and F being isomorphic to i, T, . Extending structure groups by j: B—=G we
get an isomorphism j i/ : ]*F —+]*F Define geAutE, by g=0(j, ¥)@s". Then
clearly g takes (Fy, ¢,) to (F, ).

So to prove the transitivity it is enough to show that any B-reduction of E;
of type 4, is a split reduction.



Deformations of Principal Bundles on the Projective Line 173

First let us look at the SL(2)-case. Let V=0n)®0(—n), n=0. Let L be a
line subbundle of V of degree —n (i.e. a B-reduction of type 4,). Consider the
composite ((n)—V —V/L;since O(n) and V/L have the same degree the map is
either zero or an isomorphism. It cannot be zero since ¢(n)+ L. Therefore it is
an isomorphism so that V=0(n)@® L. This proves that L corresponds to a split
reduction. The proof in the general case is a natural generalisation of this,
using the adjoint representation in the place of the canonical representation for
SL(2).

Let (F,@)eB(E,,1,). We have to get a section of F(B/T). To simplify
notation let us write P, p, Z, z, U, u for P(4), p(4), etc. and F, etc. for P(4,) etc.
Consider the Grassmannian X of subspaces of p of dimension that of z. The
Borel subgroup B< P acts on X through the adjoint representation. The
isotropy subgroup in B at zeX is T [5]. Therefore B/T gets embedded B-
equivariantly in X as the orbit of z under B. Further any Levisupplement of p
is conjugated to z under the unipotent radical of P [5]. Therefore the B orbit
of z consists precisely of the subspaces of p which are Levisupplements. Thus
F(B/TYyc F(X) and a T-reduction of F is equivalent to a subbundle of the Lie
algebra bundle F(p) which at every fibre is a Levisupplement. We now proceed
to produce such a subbundle.

We use the isomorphism ¢: j, F —E; and the inclusion pcg to identify F(p)
as a subbundle Q, of E,(g). Similarly the canonical T-reduction T, of type 4,
(Sect. 4.1.2) and the inclusion p,—g give a subbundle Q, =T, (p,) of E,(g). We
will show that the subsheaf O, " Q, is actually a subbundle of Levisupplements
of F(p), thus getting a T-reduction for F.

If p, and p, are two parabolic subalgebras of g such that g=p,®Pu,, where
u, is the nilradical of p, then one knows that p, and p, are opposite parabolic
subalgebras with p, np, a Levi-supplement for both p, and p, [5]. Therefore
to show that @, nQ, is a Levisupplement it is enough to show that the natural
projection T, (uy) — E,(g)/F(p) is an isomorphism.

Now u, has a T-invariant decomposition u,= ® uz;= @ u,. There-

8
LBI<0 4o,
fore we have Tio(“o)‘u @) T, (). (4.8)< (20,0)>0
0 >0 i .
This Trinvariant decomposition of u, can be suitably arranged to give a B-

invariant filtration. For this introduce a total order < in the set of roots as
follows. Let o, fe®.

i) If (Ag,0) <(4,, f) define o< f.
i) If (Ay,0)==(4y, ) define a<<f if height of o>height of B (where if «
= 3 a;o;, height of a=2Xa,).

a.ed
iii) In the subsets where both (i,, —) and height remain constant take

arbitrary total orderings.
Let B1< .< B, be the total order induced on the subset {fe®|(4,, f)>0}.
Let V= @ u,. Then the filtration 0=V, V,... ¥ =u, is B-invariant since

for ae¢+, (io,oc)<0 and the adjoint action of U, increases height. Since p and
p, are opposite g=p®u, and the above flltratlon induces a filtration
0=V,cV,...cV,=g/p. Forming associated bundles with respect to the B-bundle



174 A. Ramanathan

Fwe get OcF(V)..cF(g/p) Since F s of type 1,
F(V)/F(V,_))~(G,)g, 5, Ty,(ug ). Therefore the associated graded of the above
filtration is isomorphic to T, (ug).

Let d,=deg(F(V))/F(V,_,)). Then d,=(4,,B). It follows easily from the de-
finition of < that 0<d, <d,... <d,. By similar considerations it is easy to see
that F(p) has a filtration whose successive quotients are line bundles of degree
<0. Under these conditions the following lemma (part ii)) shows that
T,,(u,)— E(g)/F(p) is an isomorphism as was to be shown.

5.3.1. Lemma. Let X be a smooth projective irreducible curve.

1) Let V=L ®...®L, where L,,...,L, are line bundles on X of the same
degree d. Let W be a vector bundle on X with a filtration 0=Wyc W,...c W,
=W such that W/W,_, is a line bundle of degree d. Let 2 V—W be a homomor-
phism. Then Xer f is a direct summand of V and, if nonzero, is itself a direct sum
of line bundles of degree d.

ii) Let V be a vector bundle of rank n on X. Let W, W’ be subbundles of rank
r and n—r respectively. Suppose that there is a filtration W'=V,cV,...cV,=V
such that V,/V,_y=L, is a line bundle of degree d, with d <d,<.... Further
suppose that W=M,@...®M, such that degree M;=d; and that W' has a
filtration whose successive quotients are line bundles of degree <d,. Then the
natural projection W—V/W’ is an isomorphism.

Proof. 1) We can assume without loss of generality that f(V)d& W, , and that
the natural map L,—W,/W, , induced by f is nonzero. It is then an isomor-
phism. Therefore W=W,_ @ f(L,). Now consider pof: VW, | (where p is
the projection W—W,_,) and use induction on rank W.

ii) Let M,, M, ,..M, ; be the set of M, with degM;=d,. Suppose

M.®..®M,_,cV,_,. Then by part i) the kernel of M,®...®M,_—V,_,/V,_, _;
will contain a line subbundle L of degree d,. Then L< V,_, _,. But by assumption
V,_,_; admits a filtration with successive quotients line bundles of degree <d,.
Therefore there can be no nonzero homomorphism from L into V,_,_;. This
contradiction shows that M.®...®M, ¢V, ,. Therefore we can assume that
the composite M, ~>W-V/W'—>V/V._ =L, is nonzero and hence an isomor-
phism. We then have V=V,  @®M,; considerV,_,, W' and WnV,_, in place of
V,W’" and W and use induction on rank V/W’.

This proves the lemma and with it we have completed the proof of the
transitivity of the action of Aut E; on B(E,, 4,).

Since AutE, is irreducible by Proposition 5.2 it follows that B(E,,4,) is
irreducible. The smoothness of B(E,, 4,) follows from the infinitesmal criterion
of [10, exposé 221]. See Lemma 6.11 below.

5.4. Remark. Propositions 5.2 and 5.3 can be suitably generalised to T-bundles
on curves of higher genus. If X is of genus g the proofs go through if we
assume E—X is a G-bundle admitting a T-reduction of type A with
(Loy=gVaed*. If E-X is an arbitrary G-bundle we can degenerate it to a T
bundle (cf. Lemma 6.9). Therefore if we could functorially embed {compactify)
the space of B-reductions as a dense subset (at least in the irreducible com-
ponents of maximal dimension) of a complete space then from the analogue of
Proposition 5.3 we would get another proof for Harder’s result [12] that the
space of B-reductions of E (of suitable T-type) is irreducible.
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6. Deformations and B-reductions

In this section we show that E, degenerates to E, if and only if E, admits a B-
reduction of type w(d) for some weW. Thus we convert the problem of
studying deformations into one of studying B-reductions. Proposition 6.16

gives the possible T-types of B-reductions of E,.

6.1. Let E be a G-bundle on IP!. A G-bundle E—S xIP! together with an
isomorphism E_ =E|s, xIP'=E at the base point s,eS is called a deformation
of E parametrized by S, s,. We sometimes refer to E—S xIP! as a family of G-
bundles parametrized by S.

6.2. A morphism of two deformations E—S xIP! and E' -5 xIP! of E (with
base points seS, s'eS’) is a G-bundle morphism E—E' inducing identity: E
=E,—> E.=E. A morphism E - E’ is equivalent to an isomorphism of E with
the pull back of E’ by the map S — S’ on the base.

6.3. We can define in the obvious way the functor D, of deformations of E
from the category of pointed schemes over k to the category of sets by
associating to S, s, the set of isomorphism classes of deformations of E
parametrized by S, s,.

6.4. It follows from Theorem 4.2 and Proposition 4.3 that there is a unique
dominant 1-PS such that E and E, become isomorphic over a finite extension
of the base field. We then say that E is of type 4. If k is algebraically closed
then E is of type A if and only if ExXE;.

6.5. Let E5SxIP! be a G-bundle and S irreducible. Let K=4k(S) be the
function field of S. Let Ex—IPk, the base change of E—S xIP' by spec K-S,
be of type 1eX (T),. This implies that for all s in some nonempty open

subset of S, E_ is of type 4. We then call 1 the generic type of the deformation
E.

6.6. Definition. Let 2, u be 1-PS. We say E, tends or degenerates to E, and write
E,~E, if there exists a deformation E—SxIP' of E,, with S an irreducible
variety, whose generic type is p (see Sect. 6.5 above ).

6.7. It is easy to see that E,~E; if and only if there is a deformation
E—(Spec A) xIP! =IP} of E, where A is a discrete valuation ring with residue
field a finite extension of k and quotient field K, such that Ex~E . (We can
even assume the residue field to be k, since as we shall show later there is a
versal deformation space for E; over k itself; cf. Sect. 8.5.)

6.8. Definition. We say that E, is rigid if E,~E, implies E,~E,.
6.9. Proposition. Let 4, u be dominant 1-PS. If E, has a B-reduction of type w(4)

for some weW then E ~E,.

Proof. The notion of extension of structure group can be slightly generalised as
follows. Let E-Sx X be a family of G-bundles on X (Sect. 6.1). Let p: §
xG—S x G be a family of homomorphisms ie. p is a morphism over S such
that for every se§ the restriction p, of p to s xG=G is a homomorphism of
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groups. Then we can form in the obvious way a G-bundle p E—S x X which
when restricted to s x X = X corresponds to the extension of structure group by
ps-

We shall show below that there is a family of homomorphisms p: A'
x B—»A'! x B, where A! is the affine line, such that for 0%+zeA', p : BB is

inner conjugation by an element of B and p, is the composite B—— T->B

(Sect. 2.1). Now assume that such a p exists. Let F be a B-reduction of E, of
type w(A). Consider the product family A' x F->A® x IP'. Extend the structure
group by p as above. Since extension of structure group by an inner con-
jugation does not change the isomorphism class (Sect. 4.1.2) we see that p (A"
x F) gives a degeneration of the B-bundle F to the split bundle i, T, ;. By
further extending the structure group to G (and noting that (ji), T, =0, T;
=E,) we get a degeneration E, ~E;.

So it only remains to construct p. Start with a 1-PS v such that (v,«)>0 for
every ae®*. Since G, =A'—0,v gives risec to a map (A'-0)x B—>(A'—0)xB
defined by (z, tup—(z, tv(z) uv(z)~*) where zeA! -0, teT and ueU. For a root «
we have the isomorphism 0,: G,=A'—U, such that 6 (a(t)x)=10,(x)t~" [5,
Sect. 2.3]. Therefore p(z,t0,(x))=(z,t0,(z""?-x)). Since (v,a)>0 for ac®P* this
shows that p can be extended to A!x U, as a morphism by setting p(0, 6,(x))
=(0,¢,.), ¢, the unit element of U,. Since U is the product of the U,’s p extends
to A' x B with the required properties.

6.10. Let E— S x IP! be a family of G-bundles. By [10, exposé 221], we have an
S-scheme B(E|S, 1) — S whose fibre over seS is the space of B-reductions of E_
of type A, with the natural universal property (cf. Sect. 5.2.1).

6.11. Lemma. Let E—S xIP! be a family of G-bundles. Let u be a 1-PS such that
(1, )£ 1 for ac®*. Then the morphism B(E|S, w)—S is smooth.

Proof. We think of a geB(E|S, ), as a section of E(G/B)—IP!. The in-
finitesimal criterion for the smoothness of the space of sections at ¢ is that
H'(IP!,6*N)=0 where N is the normal bundle of o(IP') in E(G/B) (cf. [10,
exposé 2217; also [11]). It is easy to see that ¢* N =¢*E (g/b). But ¢*E (g/b)
has a filtration (given by the negative root spaces) whose associated graded is
the direct sum of line bundles Y, T,(u,) (cf. [11]). Since (4, f)= —1 for fed™,

ped -
H'(IP', T (u,))=0. Hence the lemma.

6.12. Corollary. If E ~E, and E, has a B-reduction of type wyv, veX (T),,
then so does E,. More generally if E, wE, w»...~»E, —and E, has a B-
reduction of type w,v so does E , .

Proof. The second assertion follows from the first by induction. To prove the
first let E—SxIP' be a family giving the degeneration E ~E; with E ~E,.
By Lemma 6.11, B(E[S,wy(v))—S is smooth and by assumption its image
contains s,. Since a smooth map is an open map its image contains a
neighbourhood of s,,. It follows that B(E,, w,(v)), which is a neighbouring fibre,
is nonempty.
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6.13. Proposition. Let A,ueX (T),. Then E ~E,<E, has a B-reduction of
type w(l) for some weW,.

Proof. = follows from Corollary 6.12 above (since E; has a reduction of type
wy 4, cf. Sect. 4.1.2). <= follows from Proposition 6.9.

6.14. Corollary. If E, ~E, and E, ~~E, then E, ~E, .
Proof. Follows immediately from Proposition 6.13 and Corollary 6.12.
6.15. Remark. The above corollary can also be deduced from Sect. 8.6 and 8.7.

6.16. Proposition. Let A be a dominant 1-PS. If ueX (T) is the T-type of a B-
reduction of E then u<A.

Proof. Let y be the Ttype of a B-reduction of E,. Then we first show that
(4, w) (4, ) for every dominant integral w (Sect. 2.5).

Let G-GL(V) be the irreducible representation with highest weight o (or
nw, neZ™). Let V=XV, be the direct sum decomposition of V into 1-dimen-
sional spaces ¥, on which T acts by the character leX*(T). Then E V)
=X T,(V) and T,(V)) is a line bundle of degree=(4, /) (Sect. 3.2). Since w is the
highest weight any other weight [ is of the form w— Y n,a% n,>0. Since 4 is

aedt
dominant, deg V;<(4, w). Therefore E,(V) is a direct sum of line bundles each
of which has degree <(4, w).

Let F be a B-bundle giving a B-reduction of E; of type u. Since the highest
weight space V| of V is B-invariant F(V,) is a line subbundle of F(V)=E (V).
Now deg F(V,)={(g, w) and since F(V,) admits a nonzero homomorphism into
at least one of T;(V)) we must have (u, ) <(4, w).

From Proposition 6.9 it follows that E;»E,. Let E->Sx X be a family of
G-bundles giving the degeneration E;~E,. Then if ye X*(G), extending struc-
ture group by y: G—G,, the family of line bundles y E has constant degree
over S and hence (4, x)=(u, ).

It only remains to prove that A— u is an integral combination of the simple
coroots of. For this we can assume without loss of generality that G is
semisimple and that the base field is algebraically closed. Let G—G be the
simply connected covering group of G [8, exposé¢ 23]. Let T, B be respectively
the maximal torus and the Borel subgroup of G which are the inverse images
of T, B respectively. We have the commutative diagram of exact sequences:

e s G G 1
(*) 1 ﬂ g; — Z,Lj -
L 0

where Z is a finite commutative group scheme (not necessarily reduced when
char k+0). The above exact sequences give rise to exact sequences of sheaves
in the flat topology (cf. [19, Chap. III] and [13]). We have the following
cohomology diagram [19, 13]:
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H(IP',G)-—— H'(IP',G)—2 HX(P', 2)

S

(+%) H'(P',B)— H'(IP', B)—= H¥IP', Z)

L F T

H'(P', T)— H'(IP!, T)—= H*(IP}, Z

We have H'(IP',T)=isomorphism classes of T-bundles on IP'=X(T) by
Lemma 3.3 (cf. [19, Chap. III, Propn. 4.9]). Similarly H (P!, T)=X ,(T) and
the map H'(P*, T)—»H'(IP*, T) is the natural map X ,(T)— X (T).

By the commutativity of (=) we have for Fe H!(IP!, B),

03Py F'=0,j,F (1)

Since F is of type p, p, F=pueX (T) so that the left hand side of (1) is 65(u).
Since j F=j,i A (both being E;) we have 6,j, F=0,j,i, A But é,j,i, =0d;.
Therefore the right hand side of (1) is 85(4). We thus have proved d;(u)= 3(/1)
which implies that §,(1—u)eX *(7"). Since X *(T) is precisely the lattice gener-
ated by af we are done.

6.17. Corollary. Let A, y be 1-PS. Then E,~E, if and only if p=w(l) for some
weW.

Proof. We can assume, without loss of generality, that 4 and u are dominant.
E, has the canonical B-reduction of type 4 and E, has one of type u (Sect.
4.1.2). If E;~E, the above proposition gives A<y and p<4 so that A=p.

6.18. Remark. A G-bundle is semistable (resp. stable) if and only if for any B-
reduction the T-type u satisfies (u, w)=<0 (resp. <0) for all the dominant
weights w (see [23, 24]). From Proposition 6.16 it follows easily that there are
no stable bundles on IP! and that E, is semistable <1 is in the centre of G.
Further by Proposition 5.2 E, is semistable <+Aut E, is reductive <AutE,=G.
From Proposition 7.3 below we get that E, semistable =E, rigid. When 4 is
noncentral and dominant the Harder-Narasimhan flag of the unstable E; is the
reduction to P(4) obtained from the canonical T-reduction T, by the extension
of structure group T— P(4) (cf. [24]).

7. Deformations of E;

In this section, given a dominant 1-PS A, we determine the set of 1-PS p such
that E,~E,; (Theorem 7.4). We also classify algebraic equivalence classes
(Theorem 7.7).

7.1. Proposition. Let A be a discrete valuation ring with residue field k and
quotient field K. Let E—IP) be a family of G-bundles parametrized by spec A
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such that Eg~E, and E,~E, with 2 a dominant 1-PS and pu an arbitrary 1-PS,
then u<Ai.

Proof. Let ¢ be the canonical B-reduction of E, (§4.1.2). We consider ¢ as a
section of E,(G/B)—IP;. Since IP) is nonsingular and G/B is complete it
follows from the valuative criterion that we can extend ¢ to a section & over
an open subset U of IP} with codimension of IPY—U in IP}2=2, ie. IP}—U is
only a finite set of closed points of IPg. Restricting 6 to PgnU we get a
section of E,(G/B)—IP;} over the nonempty open set [P/ ~U. Again by the
properness criterion we can extend §|IP} U to a section g, over the whole of
IP;. Thus the reduction ¢ of Eg gives in the limit a reduction g, of E,.

We claim that u<4’, where A" is the T-type of ¢,. To prove this let w be a
dominant integral weight of G and G—-G L(V) be the irreducible representation
with @ as the highest weight. Let ¥ be the 1-dimensional weight space of V of
weight . Since V,, is B-invariant the reduction & gives the line subbundle L
=6*(E|U)(V,) of E(V) over U. Since the codimension of U in P} is 22 L
extends uniquely to a line bundle L on the whole of IPL. In fact the sections of
L over an open subset ScIP! are by definition the same as the sections of L
over SNU. Therefore the map L—-E(V)}]U over U extends naturally to
L—E(V) over P} as a sheal map, though L may not be a subbundle of E(V).
On the other hand L|IP} nU, a line subbundle of E,(V) over IP n U, extends
as a subbundle L, of E (V) on the whole of IP} (by properness criterion by
considering the subbundle as a section of a Grassmann bundle). Clearly L, is
also the associated bundle o¥(E,) (V).

Over PN U the sheal map L|IP!—E(V)|IP! factors through L,|IP} nU.
Therefore the composite L|IP; —E,(V)—E,(V)/L, is zero on IP; nU and hence
on IP!. Therefore we have a generic isomorphism L{IP!—L,. Therefore
deg L|IP} <degL,. But deg(L|IP})=deg(L|IP})=(1,) and degL,=(1,w)
where A’ is the T-type of ¢,. Therefore (u, w)<(4, w).

If w; is a fandamental weight then for some $>0, sw; is the highest weight
of a representation of G. Hence (' —u, wi)zé(/l’— u,sw;)=0. By Proposition
6.16 I’< . Therefore (A—p, ;) =0.

It remains to prove that (A—p,m,) is an integer and (A—p, x)=0 for
x€X*(G) ie. A—peQ®. Since E; has a B-reduction of type w,4 so does E,, by
Corollary 6.12. Therefore by Proposition 6.16 wu—wyieQ’, where weW is
such that wyu is dominant. But u—wueQ" (since s,u—p= —(u, «) o*). Therefore
u—wyAeQ’. Since 1—w,1eQ’ it follows that 1 —ueQ®.

7.2. Corollary. Let E—S x P! be a family of G-bundles and y a dominant 1-PS,
Then the set S,={seS|E, is of type E,} is an open subset of its closure S, in S.
Further S, ={seS|E, is of type veX (T), with u<v}.

Proof. Follows from the above proposition and the valuation criterion.
7.3. Corollary. If A is a 1-PS of the centre Z of G then E, is rigid (cf. Sect. 6.8).

Proof. Note that the characters of G and the fundamental weights of G
together generate X*(T)®Q. If y is a character of G then we have the line
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bundle x, E—IP} so that deg x, E, =deg x, E, which gives (4, x)=(4, y). Further
if w is a fundamental weight (4, w)=0 since A< Z. Therefore p=A.

7.3.1. Remark. The above corollary also follows from deformation theory: since
in this case A1 acts trivially on g, the infinitesimal deformation space
H'(IP', E(g) =

We will now prove the main result.

7.4. Theorem. Let 4, p be dominant 1-PS. Then E ~E, (Sects. 6.6, 6.7) if and
only if uZ<a (Sect. 2.5).

Proof. We have already proved that E,~ E, implies p<4 (Proposition 7.1). We
have only to prove the converse. The idea of the proof is to get a sequence
Ui ..-» 1, Of 1-PS starting from p and going to A such that y, ., is got from g,
by a simple process (Lemma 7.4.1 below) and then to construct a degeneration
E, ~E, by SL(2)-theory. Then the transitivity of ~» (Corollary 6.14) shows
E ~E,

74.1. Lemma. If A, pueX (T), and pu=/i then we can find a sequence p
=y, .., fhy =24 0f elements of X (T) (not necessarily dominant) such that y;
=, +of for some a;eA with (y;, ) =0.

Proof. This is well known. See [16, p. 70].

7.4.2. Lemma. Let u,u,eX (T), not necessarily dominant, such that p,=p, +o’
with aed and (u,,%)=0. Then E, has a reduction to a Borel subgroup of type
SuM4, Where s, is the reflection corresponding to o.

Proof. Let P, be the minimal parabolic subgroup corresponding to the simple
root o. Then E is generated by B and U_, and P=M U’ where U’ is the
unipotent radical and M is the reductive part generated by T and U,,. Let Z,
=(ker 2)°, which is the connected component of the centre C of M,
M/C~PSL(2). Further the root o induces ae X*(T/Z,) which is the simple root
of the rank 1 group M/Z,=M. The coroot (3)° is «°, the image of ' under
X, (T)»X (T/Z,). The simple reflection s, induces the simple reflection 5, [5,
29].

The projection P—M/Z,=M induces an isomorphism P/B—M/B(~IP')
where B is the image of B. Therefore the B-reductions of the P-bundle T, (B)
are in bijective correspondence with B-reductions of the M- bundle T, (M) Let
4 be the T-type of a B-reduction of T, () and 7 the T-type of the correspond-
ing B-reduction of T, (M) Clearly for any yeX*(T) which extends to B, we
have (4, 0)= (Hl,x) Now X*R)®Q=X*Z)®Q and X*( T®Q
=X*Z)RQ®X*(Im «”)®Q (cf. Sect. 2.3). Hence it follows that A=y, +aa’.
Further to determine a we have only to look at the B-reduction which must be
of the form A=ji, +a-&@

Therefore it follows that the P-bundle T, (E) (and hence the G-bundle E, )
admits a B-reduction of type s, 1, 1f and only if the M-bundle T, (M) adrmts a
B-reduction of type 5,Ji,. Thus we are reduced to proving the lemma for SL(2)
or (Zariski locally trivial) PSL(2)-bundles. Since any Zariski locally trivial
projective bundle comes from a vector bundle (cf. [27] and Sect. 9.4 below) it
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is easy to see that this is equivalent to proving the following for rank 2 vector
bundles: The vector bundle @(m)@O(n) with m—n=0 has a line subbundle
isomorphic to O(n—1). To prove this note that we can find sheaf morphisms
5;: O(n—1)->0(m) (which is a section of Hom(O(n—1), O(m))=O(m—n+1))
vanishing only at the fibre over PeIP! and s,: O(n—1)—0(n) vanishing only at
the fibre over Q+P (by Riemann-Roch). Then s, @®s,: O(n—1)->0O(m@U(n)
makes O(n— 1) a subbundle,

Now we have everything we need to complete the proof of Theorem 7.4. So
suppose p<A Choose pu=u,,...,,=4 as in Lemma 7.4.1. Then by Lemma
74.2. E, admits a B-reduction of type w(y,, ) for some weW and hence by
Proposmon 6.13, E,~E,  which implies E,»E; by transitivity (Corollary
6.14).

+1

7.5. Definition. We call the bundles E,, E, to be algebraically equivalent if there
is a family of bundles E—S§ x P! parametrlzed by a connected variety S such that
E ~E; and E,xE, for some s;,se€S.

7.6. Remark. Algebraic equivalence is symmetric in E,, E, and does not imply
E, ~E,, for s, may have a neighbourhood in § where E, does not occur. Of
course E, ~ E, implies E, and E, are algebraically equivalent.

Recall (§2.4) that Q" is the subgroup of X _(T') generated by the coroots ¢*.

7.7. Theorem. Let A, be 1-PS. Then E, is algebraically equivalent to E; if and
only if u and i have the same image in X (T)/Q". Therefore X (T)/Q" (which is
the “fundamental group” of G) classifies the algebraic equivalence classes of
( Zariski locally trivial ) G-bundles on IP*.

Proof. If s, is the reflection corresponding to a€4, s,(4) —A= —(4,a)-a”. There-
fore W operates trivially on X (T)/Q" and we can assume that both 1 and u
are dominant.

Suppose E, is algebraically equivalent to E,. Let E—S xIP' be a family in
which both E; and E, occur. Assume § to be irreducible. Let ve X (7). be the
generic type of this family. Then by Proposition 7.1 v<4 and v<y. Therefore
A, and v have the same image in X _(7)/Q". If § is not irreducible argue as
above with irreducible components and use the connectedness of S.

To prove the converse we need the following lemma. We call ve X (T),
minimal if vieX (T), and v'<v then v'=v. (See [8, exposé 20, Sect. 2].)

7.7.1. Lemma. Each coset of X (T)/Q" contains a unique minimal element.
Further if v is the minimal element in a coset and v' is any dominant 1-PS in the
same coset then v and v' are comparable: v< V',

Proof. See [16, Sect. 13.2, Lemma B and Exercise 13, p. 72]. (There the root
system is assumed to be semisimple. It is easy to see that the same works for
reductive systems as well.) See also [8, exposé 20].

Suppose A and u belong to the same coset and let i, be the minimal
element of that coset. Then by the above lemma A,<4/ and A,<u. Therefore
by Theorem 7.4 (and Proposition 6.13 and the proof of Proposition 6.9) there
is a family E > A' x P! parametrized by the affine line such that E,~E, and
E[(A'—0)~E, x(A!'—0). Similarly there is a family E' with E,~E, and
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El(A' —0)xE, x(A'—0). So by patching E and E' along A'—0 we get a
family E” — P! x IP! parametrized by IP* such that E{~E, and E ~E,.

7.7.2. Remark. Note that we have actually connected E, and E, by an irreduc-
ible parameter variety, viz., IP.

7.8. Proposition. Let A be a dominant 1-PS. Then E, is rigid if and only if A is
minimal. In each algebraic equivalence class of G-bundles there is precisely one
rigid bundle.

Proof. Follows immediately from Theorem 7.4 and Lemma 7.7.1.

7.8.1. Remark. Tt follows from [16, Exercise 13, p. 72] that 1 is minimal <
(Lo)=0,1,—1 for all aed. Therefore E, is rigid <= A4 is minimal <«
HY(IP', E (g))=0 since H'(IP*, O(n))=0 if and only if n> —1.

7.9. Remark. For GL(n), X (T)/Q"=Z (Sect. 2.7). The algebraic equivalence
class of a vector bundle of rank n is determined by its degree.

7.10. Remark. Let X be a smooth projective curve of arbitrary genus. Let
E—X be a Zariski locally trivial G-bundle. Then E admits some B-reduction
(cf. proof of Proposition 4.3). Let its type be 1. Then one can show, by similar
methods as for P!, that the image of 4 in X, (T)/Q" is independent of the
chosen B-reduction of E and characterizes the algebraic equivalence class of E.
When k=C the same result holds for topological equivalence (see [23, Sect.

50).

8. Versal Deformation Space

We will now construct a versal deformation space for E=E;, leX _(T), (See
Remark 8.11 below for G-bundles'on curves of higher genus.)

Let G act on the Lie algebra g by adjoint representation and E(g) the
associated vector bundle (adjoint bundle).

Suppose k=C. Since H2(IP*, E(g))=0 we have a family of bundles para-
metrized by an (analytic) neighbourhood of 0 in H'(IP', E(g)) which is com-
plete (or versal) in the sense that any deformation of E is induced locally from
this [17, 21]. We indicate below how the results of Artin [1, 2] imply the
analogous results for an arbitrary field k.

8.1. By [26] it is quite easy to see that there exists a formal versal deformation,
that is, there is a complete local ring 4, with maximal ideal m and residue field
k, and a compatible family of deformations of E over IP,,. such that any
compatible family of deformations over a complete local ring is induced from
this. In fact there exists a hull (local moduli) ie. a formal versal deformation
whose infinitesimal deformation map is an isomorphism. See [26] and [28,
Theorem 2.2, Remark 2.3 and Theorem 2.3].

8.2. This is a rather weak result and we will need that there is an (algebraic)
versal deformation [2, Sect. 3] i.e. a deformation U—S x IP? parametrised by an
algebraic scheme S over k such that if E->R xIP! is any deformation, with E,_
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=E,r,eR, Rfk, then there is an &tale neighbourhood of r,, ie an étale
morphism ¢: R'—R over k with r,e@(R), such that ¢*E is induced from U by
a morphism R'—S. The existence of such a versal deformation follows from the
existence of an effective versal deformation, by the algebraization theorems of
Artin. However in this case as we shall show, it is easy to directly construct an
algebraic family which is a formal versal deformation and check Artin’s con-
ditions for versality for the deformation functor D,.

8.3. Construction. There are natural trivialisations of k?—0—-IP' on A,=IP!
—oo and A, =IP'—0 and k?—0-IP' is given by the transition function
id: 4gnA_ =G, —G,,. Using this trivialisation, for any line bundle L we can
represent an element of H'(IP',L), as a Cech cocycle, by a function on
A, A,. By choosing representative cocycles for a basis of S,=H'(IP', T,(U,)
we identify it with a finite dimensional vector space of functions from A,n A4,
to U,(xG,). Let S= [] S,. We define U~S xIP* to be the G-bundle obtained

Bed®~
by patching up the trivial G-bundles on Sx A, and Sx A by the transition
function
Qo SxG,»B <G

defined by @ (5, -+, 85, 2)=M2) - @(5p,(2), .., 84,(2)) where {B,,....By}=P",
@: U -U~ is the group multiplication (cf. 2.8) and B~ is the Borel opposite
to B and U~ its unipotent radical. Note that at 0€S, ¢, (0,z)=A(z) so that at
the base point 0 we have E,.

8.4. Proposition. U—S xIP!, constructed as above, is an (algebraic) versal defor-
mation (cf. 8.2) of E, whose infinitesimal deformation map is an isomorphism.

Proof. First we check that this is a formal versal deformation (cf. 8.1). The
functor D, (Sect. 6.3) satisfies the conditions H,, H,, H, of [26]. Hence a
formal versal deformation exists. The tangent space to Dy (the infinitesimal
deformation space) is H'(IP',E,(g)) and the versal deformation is formally
smooth since the obstruction space H*(IP', E,(g)) =0.

In fact any deformation parametrized by a smooth variety with the in-
finitesimal deformation map an isomorphism gives a formal versal deformation
which is a hull. Thus we have only to check that the infinitesimal deformation
map Ty(S)->H'(IP', E,(g)), where T,(S) is the tangent space to § at 0, is an
isomorphism. Since A is dominant (4,«) =0 for ae®™*. Therefore H'(IP', T,(U,))
=0 for ae®*. Therefore H'(IP',E;(g)= Y. H'(IP', T,(Uy). Since the differen-

Bed-
tial of the map ¢ is an isomorphism, in fact identity if we make the obvious
identifications, it follows that

5,
é—t {<Po w(tS, Z)},: 0=S

which shows that the infinitesimal deformation map is an isomorphism. Thus
we have proved that U is a formal versal deformation.

To prove U is actually versal, by Artin [2, Theorem 3.7], we have only to
check that the map DE(/I)—>£i_n3 Dg(A/m"), is injective, where A is the local ring
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of an algebraic scheme with residue field k. If E is a vector bundle this is
guarantied by the existence theorems of Grothendieck [EGA III 5]. We can
reduce the general case to that case as follows. The idea is to look upon a G-
bundle as a vector bundle with additional structure, analogous to considering
on O(n)-bundle as a vector bundle with quadratic forms on the fibres.

Let ¢: G>GL(V) be a faithful representation. By a theorem of Chevalley
[4] there is an element [eIP(W), where W=V"®V** is a suitable tensor space,
whose isotropy for the action of GL(V) on W is precisely G. Let C=GL(V)/G
be the orbit of [ under G L(V). Then given a G-bundle E we have a section of
@ (E)(C). Conversely if we have a GL(V)-bundle F (equivalently, a vector
bundle) and a section of F(W) with values in F(C) we have a reduction of
structure group of F to G and hence a G-bundle. Thus we can view a G-bundle
as a vector bundle together with a section of an associated vector bundle.
Looked at this way the fact that D, (A)—lim Dy(4/m") is injective follows from
the existence theorems of [EGA III 5.

We now note some properties of the versal family U—S x [PL.

8.5. Zariski local triviality. Since by construction U, is Zariski locally trivial for
seS§, by the versality of U it follows that any small deformation of E, is Zariski
locally trivial over the base field k itself.

8.6. Versality in a neighbourhood. Since we are in the “unobstructed” case it is
easy to see that the conditions of [2, Sect. 4.1] are satisfied by Dy. Therefore
U-—S xIP! which is versal at 0eS remains so in a neighbourhood of 0 in S.

8.7. Homogeneity. The maximal torus T acts on the associated line bundle
T,(Up) and on H'(IP', T,(Up)) by the character f. Thus we can make T operate
on S. For teT,

Poolt-5,2)=M2)- 0t -54,(2), .. )=t M2} @(5;,(2), .. ™ !

(since ¢ is T-equivariant). Therefore we have a lift of the action of Ton S to U
and U;~U,, for seS. For a ueX (T) with (u, f)>0, for every fe®", the u-orbit
of seS is a “ray” in § tending to 0. Thus the family § is “homogeneous” and is
determined by any “small” neighbourhood of 0.

8.8. Lemma. Let seS. Then U~ E, if and only if s=0.

Proof. Suppose U,~E;. Let C be the T-orbit of s and C its closure. Consider
the restriction U]C xIP!. Since for any xeC, U ~E, (Corollary 7.2) it is easy
to see that there is an étale neighbourhood f: C'—C of 0eC such that f*U
becomes a trivial family. Hence any tangent to C at 0 will go to zero under
the infinitesimal deformation map. But we know that the infinitesimal defor-
mation map is an isomorphism. Therefore s=0.

8.9. Proposition. Let A,pu be dominant 1-PS such that p<Ai Let §,,
={seS|U~E,}. Then S, is a locally closed smooth subvariety of S and

dim$,,= Y {dim H'(IP', T,(U,)—dim H'(P', T,(Uy))}

fed—

=dim(Aut E,) — dim(Aut E,).
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Proof. §,, is open in its closure by Corollary 7.2. Because of homogeneity
(Sect. 8.7) and openness of versality (Sect. 8.6) we see that for seS§,,, U is
versal at s. Therefore the morphism inducing U, in a neighbourhood of s, from
the versal family U —S§, x P! for E, 1s smooth at s (since the tangent map of
the inducing map, being the infinitesimal deformation map must be surjective).
By Lemma 8.8, in an étale neighbourhood of s, §,, is the fibre of such an
inducing map S—S,, over 0€S,. Hence S, is smooth. To get the dim S,, we
have only to note that

dim S= Z dim H'(IP!, T,(Up)
PBed—
and

dimS,= ) dim H'(IP', T,(Up).
ped—
8.9.1. Remark. One can show that S, x AutE, is locally isomorphic to B(E,,
woA). The smoothness of S, , can be deduced from this.

8.10. Remark. The varieties S, , are irreducible. For a given g, S,, are irreducible
when Aissufficiently large(i.e.(4, #) > 0,Yae®*) by aresult of Harder [ 12]. Forrank 2
vector bundles the varieties S,, can easily be seen to be irreducible. In fact §,,
are defined, in this case, by rank conditions on matrices and are determinantal
varieties. See Remark 8.13, in general.

8.11. Remark. Let X be a smooth projective curve of arbitrary genus. Then any
G-bundle E-»X has an (algebraic) versal deformation (Sect. 8.2). We can see
this as follows. First the conditions H,, H, and H, of [26] are easily verified
for D;. Hence a formal versal hull exists (Sect. 8.1).

To see the existence of a versal deformation we first deal with the vector
bundle case. Let V—X be a vector bundle. Let L be an ample line bundle on
X such that HY(X,V®L)=0 and H°(X,V®L) generates VL. Clearly it is
enough to construct a versal family for V®L. So we assume the above
conditions for V. Let dim H%X, V)=n. Let I be the trivial bundle of rank ».
Let Q be the Quot scheme of quotients of I whose rank and degree are those
of V. From the exact sequence 0—»K—I—V—0 applying Hom(—,V) and
taking the cohomology sequence we get a map HOX,K*®V)
- HYX,V*®V)—-0 and H'(X,K*®V)=0. Now H°(X,K*®V) is the tangent
space to Q at J->V—0, and the above map is the infinitesimal deformation
map for the universal quotient family V—Q x X (thought of as a deformation
of V). Further HY(X,K*®V)=0 implies Q is smooth at V. Hence V-0 x X
is a formal versal family for V. But it is not a hull since it may have a higher
dimension. To get a hull pull up V to a smooth subvariety in an étale neigh-
bourhood of Ve which has tangent space at V supplementary to the kernel
of the infinitesimal deformation map. This family is versal by [2], the veri-
fication of condition (ii) of [2, Theorem 3.7] being same as in the proof of
Proposition 8.4.

To deal with G-bundles we again have only to view a G-bundle as a vector
bundle with additional structure. Take a faithful representation G—GL(V),
form the universal quotient family V-0 x X as above for E(V). Form the
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associated bundle V(GL(V)/G)»Q x X and let ¥—>Q x X be the space of sec-
tions [10, exposé 221]. One can check that X is smooth at E [25]. Then one
proceeds as in the case of vector bundles to take a subvariety in an étale
neighbourhood of E to get a versal deformation hull for E.

8.12. Remark. For constructing versal deformations of bundles on IP* (and on
curves of higher genus as well) we can avoid using Artin’s general results. For,
any B-bundle on S x A' becomes a T-bundle after pulling up by an étale §'—~8§
and thus we would get transition functions for any family of G-bundles E—S
x P! for the covering S'x A4,, S'x A, and this trapsition function could be
induced from ¢, .

8.13. Remark. Our results can be interpreted in terms of the generalised
Schubert varieties introduced by Kazhdan-Lusztig in [31]. This will be done
elsewhere.

9. Non-connected Groups and Classical Groups

9.1. Bundles with non-connected structure group. In this section G is a not
necessarily connected group with its identity component G° a reductive split
group. Maximal torus, 1-PS, ... etc. of G are the same as those of G°. However
the Weyl group W of G is N4(T)/T where Ng(T) is the normaliser of T in G.
The Weyl group W°=N,o(T)/T is a subgroup of W of finite index.

9.2. Theorem. Let E—IP! be a Zariski locally trivial G-bundle (G not nec-
essarily connected ). Then

i) E admits a reduction of structure group to G°, the identity component of G.

ii) ExE, for a 1-PS.

iii) The G-bundles E,; and E, are isomorphic if and only if u=w(4) for some
weW.

iv) Suppose A, p are dominant 1-PS. Then E,~E, if and only if for some
weW w(y) is dominant and w(p) < 4.

v) The versal deformation for E is the same as that for a G°-reduction.

vi) The Weyl group W of G acts naturally on X (T)/Q" (with W° acting
trivially ). The algebraic equivalence classes of Zariski locally trivial G-bundles
on P! are in bijective correspondence with the elements of (X ,(T)/Q")/W.

Proof. i) See Remark 4.4.

i) Use i) and the connected structure group case (Theorem of Grothendieck-
Harder, Sect. 4.2).

iii) From the exact (nonabelian) cohomology sequence (in the étale to-
pology) corresponding to 1-G°—>G—G/G°—1 (cf. [19, Chap. III, Sect. 4]) we
see that E,~E, implies that 4 and p differ by an action of G/G° (by inner
conjugation). Since representatives in G for the cosets of G/G° can be chosen
in Ng(T) it follows that u=w(4) for some weW (cf. [9, p. 136]).

iv) Use iii) and the connected structure group case (Theorem 7.4).

v) Let E—S x P! be a deformation of E. Let
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E(G/G%

\S'
—

be the Stein factorisation of the composite E(G/G%—S xIP'—>S. Then f: §'—S
is étale and (f x id)*E admits reduction of structure group to G°.

vi) Suppose A,u have the same image in (X, (T)/Q")/W. Then for some
weW, 1 and w(u) are in the same coset in X (T)/Q". Therefore by the con-
nected structure group case (Theorem 7.7) E,, E,,,, are algebraically equivalent
as G%bundles and hence as G-bundles (since E, ., E, as G-bundles).

Conversely, suppose E, is algebraically equivalent to E, and E—SxIP' a
family of G-bundles with S irreducible and E, ~E,, E_ ~E,, s;,5,€S. Then in
an étale neighbourhood of s, (resp. s,) E admits a G°-reduction E' (resp. E?)
with generic type v, (resp. v,). Since S is irreducible clearly v, =w(v,) for some
weW. Therefore the G°-bundles EY and EY,,, are algebraically equivalent and
hence by the connected structure group case (Theorem 7.7} 4 and w(p) have the
same image in X (T)/Q". Clearly the case when § is only connected can be
reduced to the irreducible case.

9.2.1. Remark. It follows that the deformations of a G-bundle are the “same”
as those of the corresponding ad G%bundle, ad G° being the adjoint group.

We will now indicate the particular form taken by our results when G is
one of the classical groups. From the standard description of maximal tori,
Weyl groups (cf. [8, exposés 20-22]) and the root data (cf. [6, Tables]) it is easy
to read off the results (cf. Sects. 2.5, 7.8.1, 9.2.1).

9.3. Vector Bundles. A GL(n)-bundle is always Zariski locally trivial (cf. [27])
and in fact a GL(n)-bundle is equivalent to a vector bundle. From the de-
scription of maximal torus etc. given in Sect. 2 the following result is easily
deduced from our general results.

i) Any vector bundle of rank n on IP' is isomorphic to a (unique) direct
sum of line bundles O(a,)®...®0(a,), with a, =... = a, integers.

Denote this vector bundle by A{a,,...,a,).

i) For integers b, =...2b,, A(b,,....b)~A(a,,...,a,) if and only if a, +...
+a,=b,+...+b,and a;+...+ag,2b,+...+b, 1Zi<n—1
i) The rigid vector bundles of rank n are A(m+1,...,m+1,m,...,m), meZ.

iv) A(b,,...,b,) is algebraically equivalent to A(a,,...,a,) if and only if ) g
n i=1
=Y b, ie. the two vector bundles have the same degree.
i=1

9.4. Projective Bundles. Let T be the image in PGL(n) of the standard torus T
of SL(n) (Sect. 2.7). Then

X*('I_") ={lay,...,a,]1eX (T)®Q|na,eZ, q;=a;(mod Z})}.
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Any 1-PS of PGL(n) therefore lifts to GL(n) (though not to SL(n)). Therefore
any Zariski locally trivial projective bundle comes from a vector bundle (cf.
Sect. 2.15). Note that if ¥V, W are vector bundles then IP(V)xIP(W) if and only
if there is a line bundle L such that V®L~W (use the exact sequence
1-G,,—»GL(n)—PGL(n)—1).

i) Any projective bundle is uniquely of the form IPA(a,,...,q,) with a,€Z,
a,Z...2za, and 02 a,<n (where A(a,,...,a,) is the vector bundles defined
in Sect. 9.31)). Denote this bundle by IP(a,, ..., a,).

i) P(b,,...,b,)P(a,,...,a)y=Ab,,...,b)»A(a,,...,a,) (see Sect. 9.3).

iii) The rigid bundles are IP(1,...,1,0,...,0).
iv) IP(b,, ..., b,) is algebraically equivalent to IP(a,,...,a,) if and only if Xg;

=2Xb,. (Note that we have normalised Z¢; to be between 0 and n.)

9.5. Orthogonal Bundles. The orthogonal group O(21+1)(resp. O(21l)) is the
subgroup of GL(21+1)(resp. GL(21)) leaving invariant the quadratic form

21 ! i
Q (Z xiei)=x§+ PIE A (resp. Y xi-xH,).

i=0 i=1 i=1
SO(21+ 1)(resp. SO(2))) is the connected component of O(21+1) (resp. O(21))
defined by the determinant or, if chark=2, by the Dickson invariant. The
maximal torus T consists of diagonal elements and a 1-PS is of the form
t—diag[ 1,7, ..., 1% =%, ., 17 %] (for SO(2]) the initial 1 is dropped). The Weyl
group of O(21+1) is the same as that of SO(21+1). The Weyl group of SO(2))
is of index two in that of O(2]) (the “sign changes” need not be even cf. [6,
p. 257, item (X)]).

9.5.1. Type B(1=2).
1) A Zariski locally trivial O(2I+1)-bundle has the underlying vector
!

bundle 0@ Y {O(a)@O(—a,)} with a,2... 24,20 integers. The quadratic form
i=1

is the orthogonal sum of the constant quadratic form “x2” on @ and the
hyperbolic form on 0(a,)®O(—a,) given by the duality O(a)*=0(—a,).

Denote this bundle by B(a,, ..., a,). Assume [=2.

i) Bby,...,b)~B(a,,....,a)=a,+...+a,;=2b, +...+b,, 1=ig! and
1 1

a;= ) b,(mod?2).
i=1 i=1

13

iil} The rigid bundles are B(0, ...,0)(=trivial bundle) and B(1,0,...,0).
iv) B(b,,...,b) is  algebraically  equivalent to  B(ay,...,a)=
i

a= Z b;(mod 2).

1 i=1

-

t

9.5.2. Type D,(1=3)
1) A Zariski locally trivial O(2])-bundle is uniquely of the form

I
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D(ay,...,a)= Z {0(a)@0(—ay)}

with a,=...2a,20 integers and the quadratic form as in 9.5.1i).
Assume 123,
i) D(b,,...,b)~D(a,,...,a) if and only if

a;+...+azb +...+b, 15iZ1-2, a,+...+a, ,+aq2b +...+b,_,+b,

[ !
ay+...+a_;—a=zb +...+b,_,—band > a;=) b(mod2).
i=1 i=1
iii) and iv) same as in 9.5.1.

9.5.3. 0(1). Since O(1)=Z, the only O(1)-bundle is the trivial bundle.

9.54. 0(2). It is easily seen that SO(2)~G,, and that O(2) is the semidirect
product Z, x G,,, Z, acting on G,, by inversion: z—z~'. Using the notation of
9.5.21), D(a)=0(a)DO(— a)—O(a), a =0, gives an identification of O(2)-bundles
with line bundles of degree =0. Since line bundles on IP* are rigid it follows
that all O(2)-bundles are rigid.

9.5.5. 0(3). We have SO(3)~PGL(2) (One way of seeing this is to note that a
nonsingular conic is isomorphic to IP'). So the map sending B(a)
=0DUa)@O(—a) to IP(a/2, —a/2) if a (=0) is even or to IP([a/2]1+1, —[a/2])
if a is odd gives a bijection between O(3)-bundles and PG L(2)-bundles. More-
over B(b)w»B(a)<>az=b. B(b) is algebraically equivalent to B(a) if and only if
a=b(mod 2). The rigid bundles are B(0) and B(1).

9.5.6. O(4). We have a two sheeted covering SO(4)—PGL(2) x PGL(2). (This can
be seen from the isomorphism of a nonsingular quadratic surface with P! x IP?),

2
The map which sends D(a,,a,)= Y {0(a)®O(—a))}, a,=a,20, to IP((a, +a,)/2,
i=1
—(uy +ay)2) xP((a; —ay)/2, —(a, —a,)/2) if a, +a, is even or to
IP([(a; +a,)/2]+1, —[(a, +a,)/2]) x IP([(a; —a,)/2] + 1, —[(a, —a,)/2])

if a;+a, is odd gives a bijection of O(4)-bundles with unordered pairs of
PGL(2)-bundles of the same parity (i.e. belonging to the same algebraic equiva-
lence class). D(b,,b,)»» D(a,,a,) if and only if a, +a,=2b, +b,, a,—a,=b,—b,
and a,+a,=b;+b,(mod2). D(b,,b,) is algebraically equivalent to D(a,,a,) if
and only if a, +a,=b, +b,(mod 2). The rigid bundles are D(0,0) and D(1,0).

9.6. Remark. For orthogonal bundles the condition Xa,=2Xb,(mod?2) arises
from the integrality for the fundamental weights corresponding to the spin
representations (w, _, and w, in the notation of [6, Tables]). In [15] Za,mod 2
is called the Mumford invariant and its relation with algebraic equivalence
(item iv)) is proved when k=C. This result of [15] also follows from {23,
Proposition 4.2 and Sect. 57.



190 A. Ramanathan

9.7. Symplectic Bundles.

1) Any Sp(2n)-bundle (n=2) is Zariski locally trivial [27]. The underlying
vector bundle is 0(a,)®...00a,)DO(—a,)...®0O(—a,), with a,=...2a, in-
tegers, the symplectic form being the standard one. Denote this bundle by
Clay,...,a,).

iy C(hy,...,b,)»Cla,,...,a,) if and only if a,+...+aq=b,+...+b,
i£1<n

iii) The trivial bundle C(0,...,0) is the only rigid bundle.
iv) All Sp(2n)-bundles are algebraically equivalent (since Sp(2n) is simply
connected).
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