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1. Introduction 

The study of bundles on IP 1 apparently has a long history (see [22, Chap. I, 
Sect. 2.4]). Grothendieck proved that any principal bundle on IP~ with a 

complex reductive Lie groups as structure group admits a reduction of struc- 
ture group to a maximal torus, unique up to Weyl group action [9]. Harder 

gave a simple proof  of this result which works for IP 1 over arbitrary fields 

1-11]. In this paper we study the deformations of principal bundles over IPL 

Let G be a split reductive group over the field k. By the result of Grothen- 
dieck-Harder and Zariski locally trivial G-bundle on IP ~ is associated to the 

G,,-bundle k Z - 0 ~ I P  1 by a 1-PS 2: G,,--,G. Let us denote this G-bundle by E~. 
Let E-- ,S •  1 be a G-bundle with an isomorphism Eso=E[s o x lP~---E~. 

We then call E a deformation of Ex parametrized by S,s o. We say that the G- 

bundle E' tends or degenerates to the G-bundle E, and write E' ,~E,  if there is a 
deformation E ~ S x l P  1 of E such that in every neighbourhood of the base 

point socS, (E~o-~E), there is an s such that E ,~ E ' .  
We prove (Theorem 7.4) that if 2,/~ are dominant  1-PS then E , , ~ E  z if and 

only if # < 2 ,  i.e. 2 - p  is a positive integral combination of simple coroots (or, 
equivalently (2-/~, ~oi)e2g + for every fundamental weight co i. See Sect. 2.5). 

Note that the set of dominant # such that # < 2  is the same as the set of 

dominant weights occuring in the indecomposable (or irreducible, if char k=0)  

representation of the dual group G ~ (see Sect. 2.6) with highest weight 2 (cf. [16, 
Sect. 21.3]). The deformation theory of G-bundles on IP ~ seems to be much the 

same as the representation theory of the dual group G ~ (cf. [9, p. 123]). It 

would be interesting to find a more intrinsic connection between them. 
The G-bundles E and E" are said to be algebraically equivalent if there is a 

G-bundle E ~ S  x lP 1, with S connected, such that E ~ E  s and E ' ~ E  s, for some 

s, s 'eS.  We prove (Theorem 7.7) that the algebraic equivalence classes of  Zar- 
iski locally trivial G-bundles are classified by the fundamental group of G (i.e. 

the quotient of the lattice of 1-PS of G by the lattice of coroots). This result 
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holds more generally for irreducible smooth projective curves of arbitrary 
genus (cf. [23, Sect. 5]; Sect. 7.10). 

We also identify the rigid G-bundles as those Ex such that 2 is a dominant 
1-PS which is minimal with respect to the ordering <(Proposit ion 7.8). 

Brieskorn has studied the equivalence of complex projective bundles [7] 
and Hulek that of complex orthogonal bundles [15]. 

In Sect. 5 we describe the automorphism group AutEz (identity over the 

base) and prove the irreducibility of some spaces of B-reductions. 
In Sect. 8 we construct and study the versal deformation U--*S x IP 1 of Ez. 

We prove that S~,={s~S[Us~E,} are smooth locally closed subvarieties and 
give their dimensions. We have also indicated there how to deduce the exis- 
tence of an (algebraic) versal deformation for a G-bundle over a curve of 
higher genus using the results of [1, 2]. 

In Sect. 9 we have given the modifications to be made when G is not 
connected (Theorem 9.2). We have also given there the specialisation of our 
results to the case of vector bundles and bundles with other classical groups as 
structure groups. 

The results and proofs are often motivated by looking at what happens in 
the special case G = GL(2) (i.e. vector bundles of rank 2) and giving it the right 
formulation so that it generalises. As in the theory of algebraic groups we 
often reduce inductively to this special case. 

2. Algebraic Groups and Principal Bundles 

We fix some notation to be adopted throughout this paper. 

2.1. Let k be an arbitrary field. Let G be a connected reductive algebraic group 
defined and split over k (Chevalley group). Let T be a maximal split torus and 

B a Borel subgroup containing T. Let U be the unipotent radical of B. Then B 
= T. U (semidirect product). Let i: T~---,B and j:  B~--,G be the inclusions and 
p: B ~ B / U = T  be the projection. Let W-=N(T)/T be the Weyl group and 
woe W the element of maximal length in W (cf. [4, 5]). 

2.2. Let G m be the 1-dimensional torus and G a the additive group. We denote 
by X,(T) the group of homomorphisms of G m into T. We write the group 
operation in X,(T) additively. We call elements of X,(T) 1-parameter sub- 
groups (abbreviation: 1-PS). X*(T) denotes the group of characters of T. We 
have a natural perfect pairing X,(T)|  m, Gm)=Z given by com- 
position. We denote this pairing by ( , ) .  

2.3. We refer to [29] for facts about root data (see also [5, 16]). Let 4~cX*(T) 
be the system of roots of G, ~+ the set of positive roots and A = {el . . . .  , eft} the 
set of simple roots corresponding to B. For c~e4~ let U~ be the root group 
corresponding to e [5, Sect. 2.3], T~ the connected component of ker e and Z~ 
the centraliser of T~ in G. Then the derived group [Z~, Z~] is of rank 1 and 
there is a unique 1-PS ~v: G,,~Tc~[Z~,Z~] such that T=(Ima~). T~ and (c~,~) 
= 2 [29, Sect. 2]. This av is called the coroot corresponding to c~. We denote by 
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~v the set of coroots. The quadruple {X*(T), cP, X,(T), ~v} with the map r v 
given by e~--,c~ v constitutes the root datum. 

2.4. Let Q be the root lattice, i.e. the subgroup of X*(T) generated by 4~. Let P 

={x~X*(T)| for every e ~ }  be the weight lattice. Let 0) 1 . . . . .  co l 
v V v _ _  be the duals of the simple coroots ~i, ..-, ~l, i.e. (~i, ~ j ) - 6 i j  and (~.,~i)=0 for 

any 2 in the centre of G. These elements of P are called the fundamental 
weights. Let X o be the subgroup of X*(T) othogonal to ~vcX,(T) .  Then X o 

=X*(G) and G is semisimple if and only if Xo=0 .  We have QC~Xo=0 and Q 
+ x  0 is of finite index in X*(T), [29]. Let QV, pv and X~ be the corresponding 
objects for X,(T). 

2.5. Let P+ ={x~Pl(ctV, x)>O, for every c~r Elements of P+ are called domi- 
nant weights. Dually P+={y~P~l(y,~)>O for every c~4~+}. We denote by 

X,(T)+ the set of dominant 1-PS, i.e. X,(T)+ =P+c~X,(T). We have a partial 
ordering < in X,(T) (and dually on X*(T)) defined as follows: / t<2  if and 
only if 2 - #  is a positive integral combination of c ~ A  v or equivalently 

( 2 - # ,  col)~Z + and ( 2 - p ,  ~ )=0  for z~X*(G)=X o. 

2.6. The group G v whose root datum is the dual root datum 
(X,(T),~',X*(T),cP) is called the dual group of G [29]. The dominant  1-PS of 

G are the integral dominant weights of G ". Hence a dominant 1-PS of G 
corresponds to an indecomposable representation of G v, namely the one with 

highest weight 2 (the so called Weyl module). 

2.7. We illustrate the above notions by looking at the special case of 
GL(n). The diagonal matrices diag[x 1 ... .  ,x , ]  form a maximal torus T and 
the upper triangular matrices form a Borel subgroup B. Any 1-PS of T 
is of the form t~--,diag[t~,...,t~"], ai~7l. Therefore X , ( T ) = Z " .  Moreover 

diag[x 1 .... ,x,]v--~x]~,..., xb," gives a typical character on T so that X*(T)=71". 
The pairing ( , )  is ((al,...,a,), (bl, . . . ,b,))=~aib i. Let e/=(0 . . . .  ,0,1 . . . .  ,0) 
be the i th coordinate vector. Then rP=~={e~-~;li+j,  l<i , j<n} and 

A=A~={e~-e~+~[l<i<n-1}. The root datum is (2g",~,2g",r and the dual 

group GL(n) ~ is GL(n) itself. Q = {(bl, ..., b,)] ~ b i =0} and X o = {(r, r . . . .  , r) re2g}. 
The maps induced by (b~,...,b,)~--*~b i give isomorphisms X*(T)/Q~7Z and 
X*(T)/Q+Xo~2g .. The root datum of the derived group SL(n) is 

(X*(T)/X o, ~, Q, ~) (cf. [29]). 

2.8. We usually use lower case bold face letters to denote the corresponding 
Lie algebras. Thus g denotes the Lie algebra of G, and t, b, u those of T, B, U. 

Let U~ be the root group corresponding to the root c~. Then u, is isomorphic to 

U,. The group multiplication gives an isomorphism I ]  U,--* U of varieties [4, 

Sect. 14.4 Remark, p. 330]. ~ +  

2.9. Principal Bundles. By a principal bundle with structure group G (or a G- 

bundle) over X we mean a morphism n: E--*X where G acts on E on the right 
and n is G-invariant and isotrivial (i.e. for every x e X  there is an 6tale 

morphism ~o: Y ~ X ,  xeep(Y), such that the pull back ~o*E is isomorphic to 
Yx G, G-equivariantly for the action of G on Yx G by right multiplication 

on the second factor). See [27]. 
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2.10. If  G operates on F (on the left) the associated bundle is denoted by E(F). 
Recall that E(F) is the quotient of E x F under the action of G given by g(e,f) 

= ( e . g , g - l . f ) ,  eeE, f eF, g~G, [27]. 

2.11. If  G acts on F 1 and F 2 and F1--*F 2 is a G-equivariant morphism then 
there is a natural morphism E(F1)~E(Fz). 

2.12. If  p: G-*H is a homomorphism of  groups the associated bundle E(H), for 

the action of G on H by left multiplication through p, is naturally a H-bundle. 
We denote this H-bundle sometimes by p,E and we say that p,E is obtained 
from E by extension of structure group. 

2.13. A pair (E,q~), where E is a G-bundle and q0: p , E ~ F  is a H-bundle 

isomorphism, is said to give a reduction of structure group of F to G. We 

sometimes omit ~0 and call E a G-reduction of F. Two G-reductions of  structure 
group (E1,~01) and (E 2, (P2) are equivalent or isomorphic if there is a G-bundle 
isomorphism ~: E l s E  2 such that  the following diagram commutes: 

P*~ 
p , L  1 - - - - - * p , E  z 

F 

2.14. If p: G~-*H is a closed subgroup inclusion the quotient F/G is naturally 
isomorphic to the associated bundle F(H/G). Further F~F/G is a G-bundle 

and a section a: X~F/G  of F/G~X gives the G-bundle a * F  on X with a 
natural isomorphism p.a*F~--F. Thus equivalence classes of reductions of 

structure group of F to G are in bijective correspondence with sections of  
F/G~X. 

2.15. A GL(n)-bundle E is completely determined by  the associated vector 

bundle E(V) (where V is the canonical n-dimensional space on which GL(n) 
acts) as its bundle of frames. Similarly a PGL(n)-bundle is equivalent to a 

projective bundle i.e. an  isotrivial fibre bundle with IP" as fibre. 

2.16. If X is a projective smooth curve and L-*X is a line bundle we mean by 
degL the degree of the divisor associated to a rational section of L. If  W ~ X  is 
a vector bundle of rank n we denote by det W the line bundle A"W, the n tla 

exterior power of  W. W e  define deg W to be deg(det W). The vector bundle W 
gives a locally free sheaf, namely the sheaf of sections. We will not differentiate 
between this sheaf and the vector bundle. If S is a subsheaf of  W we call S a 

subbundle if the quotient sheaf is locally free. W e  call the minimal subbundle 

containing a subsheaf S the subbundle generated by S (cf. [21, Sect. 4]). 

3. T-bundles and B-bundles 

W e  now describe the bundles o n  IP 1 (the projective line over k) with the split 

torus T as structure group. 
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3.1. On IP 1 we have the natural Gin-bundle kZ-0--+lP 1. If  2: G,,-~T is a 1-PS 

we denote by Tx the T-bundle obtained by the extension of structure group 
2-1: G,,~T (we take the inverse because we want the line bundle (9(1) to be 

associated to (Gm)id for the natural action of G m on k). Note the kZ-0---,lP 1 is 
trivial on I P 1 - 0  and l P l - o o  and 2: G m = ( I P a - 0 ) ~ ( I P I - o o ) ~ T  can be 

thought of as the transition function for the T-bundle Ta. 

3.2. Given a T-bundle E on IP 1 we get a homomorphism 2~: X*(T)~7Z by 
associating to z~X*(T) the degree of the line bundle associated to E for the 

action of T on k through )(. By duality (Sect. 2.2) this homomorphism is given 
by a 1-PS )~E~X,(T): deg)( ,E=(2E,  Z) for every zEX*(T). 

3.3. Lemma.  The mapping 2F--~T~ gives a bijective correspondence between X,(T) 
and isomorphism classes of T-bundles on IP 1, the inverse mapping being E~--,2 e 
described above. 

Proof For  T=G,, the lemma is clear since (9(d)~--~d gives a bijection 

PicIPI-*Z.  When T=Gm x Gin... is the product of r copies of  G,, the lemma 
follows by noting that a T-bundle is nothing but  an (ordered) r-tuple of line 
bundles. 

3.4. Now we come to B-bundles. Let E be a B-bundle on IP x. Then by the 
above lemma there is a unique 2 e X , ( T )  such that the T-bundle 
p,E(p: B~B/U=T,  Sect. 2.1) is isomorphic to T~. We call ,~ the T-type or 

simply the type of the B-bundle E. 

3.5. Let B act on U by inner conjugation. Since inner conjugation preserves 
the group structure of U the associated bundle E(U) is a group scheme over 
IP 1 (i.e. the fibres are groups). 

3.6. Lemma.  Let E be a B-bundle. Then the associated bundle E(B/T)(=E/T) is 
a principal homogeneous space under the group scheme E(U) over IP 1. 

Proof Consider the action of U on B/T given by U x (B/T)~B/T, (u, bT)~--,ubT. 
This is simply transitive. Moreover if we make B act on U by inner con- 

jugation and on BIT by left translation then U x B / T ~ B / T  is B-equivariant. 
Therefore this gives rise to the action E(U)xE(B/T)-,E(B/T) (see Sect. 2.11). 
Hence the lemma. 

3.7. Lemma.  I f  the T-type 2 of the B-bundle E is such that for every 
c~EcI)+ cX*(T)  we have ( 2 , ~ ) > - 1  then HI(Ip1,E(U))= I and E~i,T~(i: T~-+B 
is the inclusion, Sect. 2.1). 

Proof The non-abelian cohomology group HI(IP 1, E(U)) classifies the principal 

homogeneous spaces of the group scheme E(U) over IP ~ (cf. [19, Chap. III, 
Sect. 4]). Therefore if HI(IP1,E(U))=I then by Lemma 3.6 above E(B/T) has a 

section and hence E has a reduction of structure group to T giving i, T~ ~ E. 
To show HI(IPt,E(U))=I note  that U has a filtration U~ Ux~U2... by T- 

invariant normal subgroups such that the successive quotients are isomorphic 
to G, with the T-action given by a positive root, (cf. [5 Sect. 2.3; 11]). F rom the 
exact cohomology sequence corresponding to I~U~--*U~G,~I  we have 
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Ht(IP~,E(UI))--,H~(IP~,E(U))~H~(IP~,E(G,)) (see [19, Chap. III, Sect. 4]). The 
last term is zero, from the hypothesis. Therefore it is enough to prove that 
Ha(IP1,E(U1))= 1. Now proceed inductively with U2, .... 

4. The Theorem of Grothendieck-Harder 

In this section we give briefly Harder's proof of the theorem on the classifi- 
cation of Zariski locally trivial G-bundles on IP 1. 

4.1. Definition. Let F be a B-bundle giving a B-reduction of the G-bundle E. 
We call the T-type of F (see Sect. 3.4) to be the T-type, or simply the type, of 
the B-reduction F. We say that F is a split reduction if F admits a T-reduction. 
(Note that if F is a split reduction of type 2 then F ~ i, Tz.) 

4.1.1. Definition. Let q =j .  i: T~--*G be the inclusion (Sect. 2.1). For )~eX,(T) we 
denote by Ea the G-bundle q,  T~ i.e. Ez is the G-bundle obtained from the Hopf 
bundle k 2-0--*IP 1 by the extension of structure group 2-1: Gm~G (Sect. 3.1). 

4.1.2. If one extends the structure group of a G-bundle E by an inner automor- 
phism Intg:  G ~ G  one gets an isomorphic G-bundle ( In tg) ,E with the canoni- 
cal isomorphism (Intg),E_~E induced by E •  (e,h)~-~egh (Sect. 2.10). 
For w e W  the map w: T ~ T  is induced by an inner conjugation of G, de- 
termined upto inner conjugation by an element of T. Therefore for we W, 
q , w , T ~ q ,  Tz, the isomorphism being determined upto inner conjugation of G 
by an element of T. Thus for each weW, q,T~=E~ has the canonical T- 
reduction w,T~ (unique, upto isomorphism, Sect. 2.13). This gives further the 
canonical split B-reduction i , w ,  Tz of the type w2. 

4.2. Theorem (Grothendieck-Harder). Let E~IP  1 be a G-bundle (k arbitrary 
field) which is locally trivial in the Zariski topology. Then E~E~ for some 
2~X,(T).  For 2,#eX,(T) ,  Ez,~E ~ if and only if /z=w2 for some w~W. 
Therefore the Zariski locally trivial G-bundles on IP 1 are classified by X ,(  T)/W. 

Proof To show that E admits a reduction to T we have only to find a reduction 
to B of T-type 2 with (2, c0>0 for all ae~b + (Lemma 3.7). For  a reduction a: 
I P ~ E / B  and a character X on B let n(x ,a )=degx ,  a*E (= the  degree of the 
line bundle associated to the reduced B-bundle through the character Z). Let 
col, ..., e)~ be the fundamental weights. We can find an integer s > 0  such that 

so% .... , s~o l are characters of B. The number n(sco i, a) are bounded from above 
as a varies over all possible B-reductions (since n(sco i, a) is the degree of a line 
subbundle of E(V), where V is the irreducible representation of G with highest 
weight s~ol; cf. proof of Proposition 6.16 and [9, Lemma 2.2]). 

Since E is locally trivial in the Zariski topology the set of B-reductions is 
nonempty. For we can take a generic section of E/B and it would extend to 

whole of IP ~ by properness criterion, G/B being complete. Let therefore a be a 
reduction such that n(s~o~, a) is maximal in the sense that there exist no a' with 

n(sooi, if') ~ n(sogl, a) for every i and for some io, n(so)g o, a') > n(sO9io, 0"). 
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We claim that for such a maximal cr we have n(cc, a)>O for every :r For 
a simple root c~ let P~ be the minimal parabolic subgroup corresponding to c~ 
generated by B and U_~. Let U' be the unipotent radical of P~ and Z,  
= ( k e r a ) ~  Then PJZ~. U' is isomorphic to SL(2) or PSL(2) and the Borel 

subgroups of PjZ, .  U' are in bijective correspondence with those of G con- 

tained in P~ [-5]. Thus a reduction of structure group of the SL(2) or PSL(2) 
bundle o*E(PJZ,. U') to a Borel subgroup gives a reduction a '  of structure 
group of E to a Borel subgroup of G. Further since a'  is achieved within P~ it is 

easy to see that n(so~, 0')=n(s~o~, a) for all co~ except c% corresponding to c~. It 
follows immediately from the Riemann-Roch theorem that for any SL(2) or 
(Zariski locally trivial) PSL(2) bundle there exists a reduction ff to a Borel 

subgroup such that the corresponding n(~, i f )>0 where g is the simple root of 
PSL(2). Let 01 be the corresponding reduction of E so that n(sco~,o) 
=n(scoi,ol), iq=i o. A simple computation shows that in the expression of COCo in 
terms of ~ and co~, iq=io, the coefficient of c~ is positive [11, p. 136]. Therefore if 

n(:r 0 ) < 0  then n(s~oio, a0>n(sCO~o, 0). This would contradict the maximality of 
0 and hence we have proved the claim that n(c~,o)>0 for all e~A. Hence by 

Lemma 3.7 E ~ E a  for some 2eX,(T) .  The uniqueness statement follows from 
Corollary 6.17 in Sect. 6 below. 

To complete the picture when k = s we have the following proposition. 

4.3. Proposition. Let X be a smooth projective curve over an algebraically closed 
field k. 7hen any G-bundle E on X, with G connected reductive, is locally trivial 
in the Zariski topology. 

Proof Let K = k ( X )  be the function field of X. Then EK(G/B ) is a principal 

homogeneous space under B K over K. Since s is algebraically closed, by [30] it 
is trivial. Therefore E(G/B) has a section over K and hence over an open 
subset of X and hence over the whole of X by the properness criterion. Thus E 

admits a reduction to B. 
Now any T-bundle is Zariski locally trivial [19, Chap. III, Proposition 4.9]. 

Therefore it is enough to prove that any B-bundle F on X admits a T- 
reduction over any affine open subset A of X i.e. HI(A,F(U))=I.  This can be 
proved exactly as in the proof of Lemma 3.7 using H'(A,F(G,))=O, A being 

affine. 

4.4. Remark. If X = I P  1 the assumption that G is connected can be dropped in 
Proposition 4.3. For, by applying the Riemann-Hurwitz formula the 6tale 

covering E(G/Go)~IW has a section, where G o is the identity component  of G 
(IP 1 is "simply connected"). Thus we get a reduction to the connected group 

G o �9 

5. Automorphism Groups 

5.1. Let 2 be a dominant 1-PS. Let P(2) be the corresponding parabolic 
subgroup, generated by T and the root groups U~ with (2, e)__>0 [20, Chap. II, 

Sect. 2]. Let U(2) be the unipotent radical of P(2). Let Z(2) be the centraliser 
of 2 in G. Then Z(2) is a connected reductive group and P(2)= Z(2). U(2) and 
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for the Lie algebras z (2 )= tO  ~ u~, u(2)= ~, u~ (cf. [5]). Z(2) and z(2) are 
12,~)- 0 (2 ,a)>0 

called Levi supplements (for the radicals). 

5.2. Proposition. Let 2 be a dominant 1-PS and E a the corresponding G-bundle 
on IP 1. Then Z(2) is naturally a subgroup of AutE~, the group of bundle 
automorphisms of E~ (identity on the base). Further Au tE  z is isomorphic as a 
variety to 

Z(2) • H~ 1, T~(u(2))(=Z(2) x I~ n~ Iv1, rz(u~)). 
(3~,~) >0 

Proof We will write E , P , Z  ....  in place of E~, P(2),Z(2), . . . .  Let G act on itself 

by inner conjugation and E(G) the associated bundle. It is a group scheme 
over IP 1 and AutE=H~ Now Tx(p) is the sum of all lie line sub- 
bundles of E(g) of degree>=0. Hence any vector bundle endomorphism of E(g) 
leaves it invariant. In particular Aut E leaves it invariant. This implies (since 
the normaliser of p in G is P) that any global section of E(G) has values in 
T~(P). Therefore Aut E =H~ 1, Tz(P)). Now P = Z U  T-equivariantly and hence 

H~ T~(P))=ZxH~ Again U =  [ I  u~ T-equivariantly. Hence 
the result. (~,~ >o 

5.2.1. Let B(Ex, #) be the space of (isomorphism classes of) B-reductions of E~ 
of type #. Then B(E~,#) is the space of certain sections of Ea/B~IP 1 
(Sect. 2.14). To be more precise, consider the functor F from the category of 
schemes over k to the category of sets defined as follows. F associates to a 
scheme S the set of sections a: S x lPI -*SxEa/B such that for every seS the 
restriction as: s x IP 1 = l P l ~ s  x E J B = E x / B  is a section of type # (i.e. gives a B- 
reduction of type #). For a morphism f: S'--,S, F(f)(a)  is the pull back section 
f*(a). By [10, expos6 221] F is represented by an algebraic scheme (see also 
[11]). B(E~,#) is this representing scheme. Note that for an arbitrary section 
a: S x l P I ~ S x E x / B  the type of cr remains constant on the connected com- 

ponents of S. 

5.2.2. There is a natural action of AutEx on B(Ex,#): Let gEAutE~ and 
(F, q)) eB(E~, #). Then g(F, ~o) = (F, g q)). (See Sect. 2.13.) 

5.3. Proposition. Let 2 be a dominant 1-PS and 2o=Wo2 the opposite 1-PS 
(Sect. 2.1). Then Aut Ez acts transitively on B(Ez,20). Further B(Ez, 20) is smooth 
and irreducible. 

Proof Let (Fo,q~o) be the canonical B-reduction of E~ of type 2 o (Sect. 4.1.2). 
Since F o is a split reduction, i.e. a B-reduction which comes from a T-reduction 
(Sect. 4.1), any translate of it by AutEx will also be a split reduction. 

Conversely any split reduction (F,~0) of type 2 o is an AutE~ translate of 
(Fo,q~o). To see this first note that we have an isomorphism ~: Fo~F, both F o 
and F being isomorphic to i ,  Tzo. Extending structure groups by j:  B~--*G we 
get an isomorphism j , O : j ,  Fo--*j,F. Define gEAutEx by g=~0(j,O)~0o 1. Then 

clearly g takes (F o, q~o) to (F, ~o). 
So to prove the transitivity it is enough to show that any B-reduction of E~ 

of type 2 0 is a split reduction. 



Deformations of Principal Bundles on the Projective Line 173 

First let us look at the SL(2)-case. Let V=(9(n)@(9(-n), n>O. Let L be a 

line subbundle of V of degree - n  (i.e. a B-reduction of type 2o). Consider the 
composite (9(n)~--~V~V/L; since (9(n) and V/L have the same degree the map is 
either zero or an isomorphism. It cannot be zero since C(n)4:L. Therefore it is 
an isomorphism so that V=(9(n)OL. This proves that L corresponds to a split 

reduction. The proof in the general case is a natural generalisation of this, 
using the adjoint representation in the place of the canonical representation for 

SL(2). 

Let (F,q~)~B(E~,2o). We have to get a section of F(B/T). To simplify 

notation let us write P, p, Z, z, U, u for P(2), p(2), etc. and Po etc. for P(2o) etc. 
Consider the Grassmannian X of subspaces of p of dimension that of z. The 
Borel subgroup B~P acts on X through the adjoint representation. The 

isotropy subgroup in B at z6X is T [5]. Therefore B/T gets embedded B- 
equivariantly in X as the orbit of z under B. Further any Levisupplement of p 
is conjugated to z under the unipotent radical of P [5]. Therefore the B orbit 

of z consists precisely of the subspaces of p which are Levisupplements. Thus 
F(B/T)cF(X) and a T-reduction of F is equivalent to a subbundle of the Lie 
algebra bundle F(p) which at every fibre is a Levisupplement. We now proceed 
to produce such a subbundle. 

We use the isomorphism (o: j ,  F ~ E a and the inclusion p c g to identify F(p) 

as a subbundle Q1 of Ez(g ). Similarly the canonical T-reduction Tzo of type 2 o 

(Sect. 4.1.2) and the inclusion p o c g  give a subbundle Q2=Tz0(P0) of E~(g). We 
will show that the subsheaf Q~ r is actually a subbundle of Levisupplements 
of F(p), thus getting a T-reduction for F. 

If Pl and P2 are two parabolic subalgebras of g such that g = p ~ |  z, where 
u 2 is the nilradical of P2 then one knows that pl and P2 are opposite parabolic 

subalgebras with pt ~P2 a Levi-supplement for both p~ and P2 [53" Therefore 
to show that Q1 r is a Levisupplement it is enough to show that the natural 
projection Tzo(Uo)-~Ea(g)/F(p ) is an isomorphism. 

Now u o has a T-invariant decomposition u o = (~) up = (~ up. There- 

fore we have Tao(Uo)= @ T~o(Up). (~,p)<o (ao,p)>o 
(;m, P) > 0 

This T-invariant decomposition of u o can be suitably arranged to give a B- 
invariant filtration. For this introduce a total order ~( in the set of roots as 

follows. Let ~ , f l ~ .  

i) If  (2 o, ~) <(20, fl) define ~ ( f l .  
ii) If  (2o,~)=(2o, fl) define ~ f l  if height of ~>height  of fl (where if 

= ~ ai~i, height of ~=Sal). 
~EA 

iii) In the subsets where both ( 2 0 , - )  and height remain constant take 

arbitrary total orderings. 

Let fl~-<...-<fl, be the total order induced on the subset {fl~cbl(2o, fl)>0}. 
J 

Let Vj=i_~ 1 ue. Then the filtration 0 =  Voc V 1... c V = u  o is B-invariant since 

for ~ c b  +, (2o ,7)<0 and the adjoint action of U~ increases height. Since p and 
Po are opposite g = p O u  o and the above filtration induces a filtration 

0 = Vo c Pl.. .  c ~ = g/p. Forming associated bundles with respect to the B-bundle 
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F we get 0oF(V1). . .  ~ F(g/p). Since F is of type 20, 
F(~)/F(P~_l)~(G,,)p, zo~Txo(U~.). Therefore the associated graded of the above 
filtration is isomorphic t_o T~.o(Uo). 

Let di=deg(F(Vi)/F(Vi_a) ). Then di=(2o,fli). It follows easily from the de- 
finition of M that O<d~<=d2... < d  r. By similar considerations it is easy to see 
that F(p) has a filtration whose successive quotients are line bundles of degree 
__<0. Under these conditions the following lemma (part ii)) shows that 
T~o(u0)-~ E~(g)/F(p) is an isomorphism as was to be shown. 

5.3.1. Lemma. Let X be a smooth projective irreducible curve. 

i) Let V = L 1 0 . . . O L  r where L t . . . .  , L  r are line bundles on X of  the same 
degree d. Let  W be a vector bundle on X with a fi l tration 0 =  W o ~ W1... c 
= W such that WJWi_ 1 is a line bundle o f  degree d. Let  f: V ~ W  be a homomor- 

phism. 3hen k e r f  is a direct summand of  V and, if nonzero, is itself a direct sum 

o f  line bundles of  degree d. 
ii) Let V be a vector bundle of  rank n on X.  Let  W, W'  be subbundles of  rank 

r and n - r  respectively. Suppose that there is a f i l tration W ' =  V o c V1,.. c V, = V 

such that Vi /Vi_I=L i is a line bundle o f  degree d i with dl <=d2 < . . . .  Further 
suppose that W = M ~ @ . . . O M ~  such that degree M~=d~ and that W '  has a 

filtration whose successive quotients are line bundles of  degree <d t .  7hen the 
natural projection W ~ V / W '  is an isomorphism. 

Proof  i) We can assume without loss of generality that f (V)dgW~_t  and that 
the natural map Lr~WJVf~_  ~ induced by f is nonzero. It is then an isomor- 
phism. Therefore W = W ~ _ ~ O f ( L ~ ) .  Now consider pof:  V~W~_~ (where p is 
the projection W~W~_I) and use induction on rank IV. 

ii) Let Mr, M~_~...M~ ~ be the set of Mj with degMj=d~. Suppose 
M ~ O . . . O M , _ i c  V~_ 1. Then by part i) the kernel o f M r O . . . |  -i  
will contain a line subbundle L of degree d,. Then L c V,_ 1-~. But by assumption 

V~_~_~ admits a filtration with successive quotients line bundles of degree <d,.  
Therefore there can be no nonzero homomorphism from L into V~_~_/. This 
contradiction shows that M , O . . . O M r _ ~ r  V~_I. Therefore we can assume that 
the composite M,~--+W~V/W'--,V/V,_~ =L~ is nonzero and hence an isomor- 
phism. We then have V=V, ~OM~; considerV~_~, W' and Wc~ V~_~ in place of 

V, W'  and W and use induction on rank V/W'.  
This proves the lemma and with it we have completed the proof of the 

transitivity of the action of Aut Ex on B(E x, 2~o). 
Since AutEx is irreducible by Proposition 5,2 it follows that B(E>2o) is 

irreducible. The smoothness of B(E~,20) follows from the infinitesmal criterion 

of [10, expos6 221]. See Lemma 6.11 below. 

5.4. Remark. Propositions 5.2 and 5.3 can be suitably generalised to T-bundles 
on curves of higher genus. If X is of genus g the proofs go through if we 
assume E--*X is a G-bundle admitting a T-reduction of type 2 with 
(2, c~)>gVc~b +. If E ~ X  is an arbitrary G-bundle we can degenerate it to a T- 

bundle (cf. Lemma 6.9). Therefore if we could functorially embed (compactify) 
the space of B-reductions as a dense subset (at least in the irreducible com- 
ponents of maximal dimension) of a complete space then from the analogue of 
Proposition 5.3 we would get another proof for Harder's result [12] that the 

space of B-reductions of E (of suitable T-type) is irreducible. 
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6. Deformations and B-reductions 

In this section we show that E u degenerates to Ex if and only if E,  admits a B- 
reduction of type w(2) for some wcW. Thus we convert the problem of 

studying deformations into one of studying B-reductions. Proposition 6.16 
gives the possible T-types of B-reductions of Ea. 

6.1. Let E be a G-bundle on IP t. A G-bundle E - * S x l P  1 together with an 

isomorphism E~o=Els 0 x lP t = E  at the base point so~S is called a deformation 
of E parametrized by S, s 0. We sometimes refer to E-*S x lP  1 as a family of G- 
bundles parametrized by S. 

6.2. A morphism of two deformations E ~ S x I P  1 and E ' ~ S ' x l P  ~ of E (with 

base points s~S, s'eS') is a G-bundle morphism E-- ,E '  inducing identity: E 
=E~E'~ ,=E.  A morphism E ~ E '  is equivalent to an isomorphism of E with 

the pull back of E' by the map S-~ S' on the base. 

6.3. We can define in the obvious way the functor D E of deformations of E 
from the category of pointed schemes over k to the category of sets by 

associating to S, s o the set of isomorphism classes of deformations of E 

parametrized by S, s o. 

6.4. It follows from Theorem 4.2 and Proposition 4.3 that there is a unique 

dominant  1-PS such that E and Ez become isomorphic over a finite extension 
of the base field. We then say that E is of type 2. If k is algebraically closed 

then E is of type 2 if and only if E ~ E~. 

6.5. Let E - - , S x l P  ~ be a G-bundle and S irreducible. Let K=k(S)  be the 

function field of S. Let EK~IP~, the base change of E ~ S  x lP 1 by specK- -S ,  
be of type 2~X, (T)+ .  This implies that for all s in some nonempty open 

subset of S, E s is of type 2. We then call 2 the generic type of the deformation 

E. 

6.6. Definition. Let 2, p be 1-PS. We say E u tends or degenerates to Ea and write 
Eu,~E ~ if there exists a deformation E ~ S x I P  1 of Ez, with S an irreducible 
variety, whose generic type is kt (see Sect. 6.5 above). 

6.7. It is easy to see that Eu,,~Ez if and only if there is a deformation 

E~(Spec  A)x IP 1 =IP~ of Ez where A is a discrete valuation ring with residue 
field a finite extension of k and quotient field K, such that E K ~ E  u. (We can 

even assume the residue field to be k, since as we shall show later there is a 

versal deformation space for Ez over k itself; cf. Sect. 8.5.) 

6.8. Definition. We say that E~ is rigid if E u ~ E  ~ implies Eu~E ~. 

6.9. Proposition. Let 2, p be dominant 1-PS. I f  E,  has a B-reduction of type w(2) 

for some w~W then Eu,~E ~. 

Proof The notion of extension of structure group can be slightly generalised as 
follows, Let E ~ S x X  be a family of G-bundles on X (Sect. 6.1). Let p: S 

x G- ,S  x G be a family of homomorphisms i.e. p is a morphism over S such 
that for every seS the restriction p, of p to s x G=G is a homomorphism of 
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groups. Then we can form in the obvious way a G-bundle p , E ~ S  x X which 
when restricted to s x X--  X corresponds to the extension of structure group by 

Ps" 
We shall show below that there is a family of homomorphisms p: A n 

x B ~ A  1 xB,  where A 1 is the affine line, such that for 0 ~ z e A  1, p : B ~ B  is 

inner conjugation by an element of B and P0 is the composite B - 2  T - 2 ~  B 

(Sect. 2.1). Now assume that such a p exists. Let F be a B-reduction of E,  of 
type w(2). Consider the product family A l x  F--*A1 x IP 1. Extend the structure 
group by p as above. Since extension of structure group by an inner con- 
jugation does not change the isomorphism class (Sect. 4.1.2) we see that p , (A ~ 
x F) gives a degeneration of the B-bundle F to the split bundle i, Tw(xl. By 
further extending the structure group to G (and noting that (ji), Tw(~)~(ji) , T~ 
=Ea) we get a degeneration Eu~,E ~. 

So it only remains to construct p. Start with a 1-PS v such that (v, ct)>0 for 
every ee@ +. Since G m = A 1 - 0 ,  v gives rise to a map ( A t - 0 )  x B ~ ( A a - 0 ) x B  
defined by (z, tu)w-~(z, tv(z)uv(z) -1) where zeA 1 - 0 ,  tGT and ueU. For a root 

we have the isomorphism 0,: G , = A : ~ U ,  such that O,(e( t )x )=tO,(x)r  1 [5, 
Sect. 2.3]. Therefore p(z, tO,(x))=(z, tO~(z ("'~).x)). Since (v, c0 >0  for ec@ + this 
shows that p can be extended to A ~ x U~ as a morphism by setting p(0, O~(x)) 
= (0, e,), e~ the unit element of U,. Since U is the product of the U~'s p extends 
to A ~ x B with the required properties. 

6.10. Let E ~ S  x IP: be a family of G-bundles. By [10, expos6 221], we have an 
S-scheme B(EtS, 2)--,S whose fibre over seS is the space of B-reductions of E~ 
of type 2, with the natural universal property (cf, Sect. 5.2.1). 

6.11. Lemma. Let E--,S xIP 1 be a family of G-bundles. Let # be a 1-PS such that 
(#,cO<= 1 for ~e@ +. Then the morphism B(EIS,#)~S is smooth. 

Proof We think of a aeB(E[S,#)~ as a section of E~(G/B)~IP ~. The in- 
finitesimal criterion for the smoothness of the space of sections at cr is that 
HI(]P 1, o ' *N)=0  where N is the normal bundle of a(lP 1) in E~(G/B) (cf. [10, 

expos6 221]; also [11]). It is easy to see that tr*N=a*E~(g/b). But a*E~(g/b) 
has a filtration (given by the negative root spaces) whose associated graded is 

the direct sum of line bundles ~ Tu(up) (cf. [11]). Since (#, fl)> - 1  for fie@-, 
//e~- 

H:(IP 1, Tu(ur Hence the lemma. 

6.12. Corollary. I f  Eu~,E a and E x has a B-reduction of type WoV, veX , (T )+ ,  
then so does E u. More generally if Eu,~Eu, , ,~ . . . ,~Eu,  and Eu, has a B- 
reduction of type wov so does Eu . 

Proof The second assertion follows from the first by induction. To prove the 
first let E--*S x lP 1 be a family giving the degeneration Eu,~E a with E~o~-E a. 
By Lemma 6.11, B(E[S, wo(V))~S is smooth and by assumption its image 
contains s o . Since a smooth map is an open map its image contains a 
neighbourhood of s 0. It follows that B(E,, Wo(V)), which is a neighbouring fibre, 
is nonempty. 
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6.13, Proposition. Let )~,#6X,(T)+. Then E,~E;<:>E u has a B-reduction of 
type w(2) for some w6W.. 

Proof :~ follows from Corollary 6.12 above (since E~. has a reduction of type 
Wo2, cf. Sect. 4.1.2). ~ follows from Proposition 6.9. 

6.14. Corollary. I f  Eu,~Eu2 and Eur then Eu,,~Eu3. 

Proof Follows immediately from Proposition 6.13 and Corollary 6.12. 

6.15. Remark. The above corollary can also be deduced from Sect. 8.6 and 8.7. 

6.16. Proposition. Let 2 be a dominant 1-PS. I f  #~X,(T)  is the T-type of a B- 
reduction of E then It < 2. 

Proof Let It be the T-type of a B-reduction of Ex. Then we first show that 
(It, co) <(2, co) for every dominant integral co (Sect. 2.5). 

Let G~GL(V) be the irreducible representation with highest weight co (or 
nco, neZ+). Let V=ZV~ be the direct sum decomposition of V into 1-dimen- 
sional spaces V t on which T acts by the character l~X*(T). Then E~(V) 
=ETz(V 3 and Tz(V 3 is a line bundle of degree=(2, l) (Sect. 3.2). Since co is the 

highest weight any other weight 1 is of the form co-  ~ n,e ~, n ,>0.  Since 2 is 
~ t ~  + 

dominant, deg Vt<(2, co ). Therefore E~(V) is a direct sum of line bundles each 
of which has degree <(2, ~o). 

Let F be a B-bundle giving a B-reduction of E~ of type It. Since the highest 
weight space V,o of V is B-invariant F(V~,) is a line subbundle of F(V)=Ex(V). 
Now degF(V~)=(#,co) and since F(Vo) admits a nonzero homomorphism into 
at least one of T~(V 3 we must have (It, co)<(2, co). 

From Proposition 6.9 it follows that E~.~.E,. Let E ~ S  x X be a family of 
G-bundles giving the degeneration Ea.~E,. Then if z~X*(G), extending struc- 
ture group by Z: G~G,,, the family of line bundles z . E  has constant degree 
over S and hence (2, Z)= (It, Z). 

It only remains to prove that 2 - I t  is an integral combination of the simple 
coroots cr For this we can assume without loss of generality that G is 
semisimple and that the base field is algebraically closed. Let ( ~ G  be the 
simply connected covering group of G [8, expos6 23]. Let T,/} be respectively 
the maximal torus and the Borel subgroup of G which are the inverse images 
of T, B respectively. We have the commutative diagram of exact sequences: 

1 - - - ~  Z - - - - - - ~  (}------~ G -----+ 1 

I 

1 - - - - ~  Z - - - - - - ~  7-------* T - - - - - ~  1 

where Z is a finite commutative group scheme (not necessarily reduced when 
char k4=0). The above exact sequences give rise to exact sequences of sheaves 
in the flat topology (cf. [19, Chap. III] and [13]). We have the following 
cohomology diagram [-19, 13]: 
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(**) 

Ha(ipa,6 ) > HI(IP1, G ) a, ) H 2 ( ] p I , Z  ) 

II 
H l ( ~ l , ~ )  , H~OP~,Bt ~ ,H~(~ ' ,Z)  

!i 'l r, /~, i. p, 

HI ( Ip1 ,  T) ,H~(IP',T) ~ ,  H2(1p,, Z) 

We have Hl(lpX, T) = isomorphism classes of T-bundles on I P I = X , ( 7  ") by 
Lemma 3.3 (cf. [19, Chap. III, Propn. 4.9]). Similarly HI(Ip1, T)=X,(T)  and 
the map HI(IP 1, T )~HI( Ip  1, T) is the natural map X, (T )~X , (T ) .  

By the commutativity of(**) we have for FEHI(IP 1, B), 

63P, F=61j ,  F (1) 

Since F is of type #, p , F = # ~ X , ( T )  so that the left hand side of (1) is 63(#). 
Since j , F = j , i , 2  (both being Ez) we have 6aj, F=6aj ,  i,2. But 61j ,  i ,=63.  
Therefore the right hand side of (1) is 63(2 ). We thus have proved 63(#)=63(2) 
which implies that 6 3 ( 2 - # ) ~ X , ( T  ). Since X, (T)  is precisely the lattice gener- 
ated by a7 we are done. 

6.17. Corollary. Let 2, # be 1-PS. Then E ~ E  u if and only if #=w(2) for some 
wEW. 

Proof. We can assume, without loss of generality, that 2 and # are dominant. 
Ea has the canonical B-reduction of type )o and Eu has one of type p (Sect. 
4.1.2). If Ea'~Eu the above proposition gives 2__<# and # < 2  so that 2=p .  

6.18. Remark. A G-bundle is semistable (resp. stable) if and only if for any B- 
reduction the T-type # satisfies (#,m)__<0 (resp. <0) for all the dominant 
weights co (see [23, 24]). From Proposition 6.16 it follows easily that there are 
no stable bundles on IP 1 and that Ez is semistable <:~2 is in the centre of G. 
Further by Proposition 5.2 Ez is semistable <*Aut E~ is reductive <:~Aut E~ = G. 
From Proposition 7.3 below we get that Ez semistable ~ E a  rigid. When 2 is 
noncentral and dominant the Harder-Narasimhan flag of the unstable Ex is the 
reduction to P(2) obtained from the canonical T-reduction Ta by the extension 
of structure group T~P(2)  (cf. [24]). 

7. Deformations of E~ 

In this section, given a dominant 1-PS 2, we determine the set of 1-PS # such 
that Eu,~Ez (Theorem 7.4). We also classify algebraic equivalence classes 
(Theorem 7.7). 

7.1. Proposition. Let A be a discrete valuation ring with residue field k and 
quotient field K. Let E--*IP)~ be a family of G-bundles parametrized by spec A 
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such that EK~E u and Ek~E u with 2 a dominant 1-PS and # an arbitrary 1-PS, 
then # < L  

Proof. Let a be the canonical B-reduction of E u (w We consider a as a 
section of EK(G/B)--+IP~. Since IP~ is nonsingular and G/B is complete it 
follows from the valuative criterion that we can extend ~ to a section ~ over 
an open subset U of IPA ~ with codimension of I P ~ - U  in IPA ~ > 2, i.e. IPA ~ - -U  is 
only a finite set of closed points of IP~. Restricting ~ to IP~c~ U we get a 

section of Ek(G/B)--+IP ~ over the nonempty open set IP~ ~ U. Again by the 

properness criterion we can extend ~lIP~ ca U to a section a o over the whole of 

IP~. Thus the reduction a of E K gives in the limit a reduction a o of E k. 
We claim that #<2 ' ,  where 2' is the T-type of a o. To prove this let (o be a 

dominant integral weight of G and G--+GL(V) be the irreducible representation 
with co as the highest weight. Let V~, be the 1-dimensional weight space of V of 
weight co. Since V,., is B-invariant the reduction ~ gives the line subbundle L 

=ff*(EIU)(V,o ) of E(V) over U. Since the codimension of U in IP~ is > 2 L  
extends uniquely to a line bund l e / ,  on the whole of IPa ~. In fact the sections of 
L over an open subset S c I P  1 are by definition the same as the sections of L 

over S ~ U .  Therefore the map L--,E(V)IU over U extends naturally to 
/,--*E(V) over IPA ~ as a sheaf map, though L may not be a subbundle of E(V). 
On the other hand LIIP~ ca U, a line subbundle of Ek(V ) over IPd c~ U, extends 

as a subbundle L o of Ek(V ) on the whole of IP~ (by properness criterion by 

considering the subbundle as a section of a Grassmann bundle). Clearly L o is 
also the associated bundle cr*(Ek)(V,o ). 

Over IP~c~U the sheaf map LIIP~--+E(V)IIP 1 factors through LolIP~caU. 
1 Therefore the composite LIIP~--+Ek(V)--+Ek(V)/Lo is zero on IP~ ca U and hence 

on IP 1. Therefore we have a generic isomorphism LIIP~--+L o. Therefore 

d e g L I l P ~ < d e g L  o. But deg(LlIP~)=deg(LIlP~)=(#,co) and degLo=(2' ,co) 
where 2' is the T-type of %.  Therefore (#, co) < (2', co). 

If co i is a fundamental weight then for some s>0 ,  sr is the highest weight 

of a representation of G. Hence (2 ' -#,mi)=t-(2 ' -#,sr  By Proposition 

4 

S 

6.16 2 '<2 .  Therefore (2 --  #, COi) ~ 0. 

It remains to prove that (2-#,co~) is an integer and ( 2 - # , Z ) = 0  for 

)~eX*(G) i.e. 2 - # e Q  ~. Since Ea has a B-reduction of type Wo2 so does E u, by 

Corollary 6.12. Therefore by Proposition 6.16 w # - W o 2 e Q  ~, where w e W  is 
such that w# is dominant. But # - w # e Q  ~ (since s , # - # = - ( # ,  ~)~). Therefore 

# - W o 2 E Q  ~. Since 2 - W o 2 e Q  ~ it follows that 2 - # e Q  ~. 

7.2. Corollary. Let E-+S x IP 1 be a family of G-bundles and # a dominant 1-PS, 
Then the set Su={seSIE ~ is of type E,} is an open subset of its closure Su in S. 
Further Su= {scSIE, is of type vcX , (T )+  with #<=v}. 

Proof. Follows from the above proposition and the valuation criterion. 

7.3. Corollary. I f  2 is a 1-PS of the centre Z of G then Ea is rigid (c f  Sect. 6.8). 

Proof. Note that the characters of G and the fundamental weights of G 
together generate X*(T)| If )~ is a character of G then we have the line 
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- E .___~ n ~  1 bundle z ,  11-- A so that deg)~ ,EK=degz ,  E k which gives (#, Z) = (2, )0. Further 
if o) is a fundamental weight (2, co)= 0 since 2 c Z. Therefore # = L 

7.3.1. Remark. The above corollary also follows from deformation theory: since 
in this case 2 acts trivially on g, the infinitesimal deformation space 
H I(Ip', E(g)) = 0. 

We will now prove the main result. 

7.4. Theorem. Let 2, # be dominant 1-PS. Then Eu,~E ~ (Sects. 6.6, 6.7) if and 
only if #<=2 (Sect. 2.5). 

Proof We have already proved that Eu,~Ez implies /2 =<2 (Proposition 7.1). We 
have only to prove the converse. The idea of the proof is to get a sequence 
#1, . . - ,# ,  of 1-PS starting from # and going to 2 such that #~+1 is got from #~ 
by a simple process (Lemma 7.4.1 below) and then to construct a degeneration 
Eu,~E,,+, by SL(2)-theory. Then the transitivity of ~ (Corollary 6.14) shows 

Eu'~E ~. 

7.4.1. Lemma. I f  2,#~X,(T)+  and #<=2 then we can find a sequence i ~ 
= # 1 , . - . , # , = 2  of elements of X,(T)  (not necessarily dominant) such that #i+1 
=# i+c~  for some c~iEA with (#i,~i)>=O. 

Proof This is well known. See [16, p. 70]. 

7.4.2. Lemma. Let #I ,#2~X,(T) ,  not necessarily dominant, such that #2=#1 +c~ v 
with e tA and (#1,c0>0. Then E,, has a reduction to a Borel subgroup of type 
s,#z, where s, is the reflection corresponding to c~. 

Proof Let P~ be the minimal parabolic subgroup corresponding to the simple 
root ~. Then P~ is generated by B and U ~  and P = M . U '  where U' is the 
unipotent radical and M is the reductive part generated by T and U+~. Let Z~ 
=(kerc0 ~ which is the connected component of the centre C of M, 
M/C~PSL(2).  Further the root ~ induces ~X*(T/Z~)which is the simple root 
of the rank 1 group M/Z~=M. The coroot (g)~ is e", the image of c~ ~ under 
X,(T)~X,(T/Z~).  The simple reflection s~ induces the simple reflection g~ [5, 
29]. 

The projection ~ M / Z ~ = 2 f l  induces an isomorphism P~/B~YI/B(~IP 1) 
where/~ is the image of B. Therefore the B-reductions of the P~-bundle T,,(P~) 
are in bijective correspondence with/~-reductions of the M-bundle Tu,(M). Let 
2 be the T-type of a B-reduction of Tu~(P~) and ~ the T-type of the correspond- 
ing /~-reduction of T,~(M). Clearly for any )~X*(T) which extends to P~ we 
have (2, Z) =(#I,Z). Now X*(P~)|174 and X*(T)| 
=X*(Z~)|174 (cf. Sect. 2.3). Hence it follows that 2 = # t  + a e  ~. 
Further to determine a we have only to look at the/~-reduction which must be 

of the form ~=fi l  + a - ~ .  
Therefore it follows that the P~-bundle Tu,(P~) (and hence the G-bundle E,,) 

admits a B-reduction of type s,# 2 if and only if the M-bundle Tul(M ) admits a 
/~-reduction of type ~',fiz. Thus we are reduced to proving the lemma for SL(2) 
or (Zariski locally trivial) PSL(2)-bundles. Since any Zariski locally trivial 
projective bundle comes from a vector bundle (cf. [27] and Sect. 9.4 below) it 
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is easy to see that this is equivalent to proving the following for rank 2 vector 
bundles: The vector bundle C(m)GC(n) with m - n > O  has a line subbundle 
isomorphic to C(n-1). To prove this note that we can find sheaf morphisms 
Sl: (~(n-1)~C(m)(which  is a section of Hom(C(n-1) ,  C(m)).~(9(m-n+l)) 
vanishing only at the fibre over PeIP 1 and s 2" (9(n-1)~C(n) vanishing only at 
the fibre over Q+-P (by Riemann-Roch). Then slOs2: (9(n--1)~(9(m)Q(_9(n) 
makes O(n-1)  a subbundle. 

Now we have everything we need to complete the proof of Theorem 7.4. So 
suppose #<2.  Choose k t= /~ l , . . . , p ,=2  as in Lemma 7.4.1. Then by Lemma 
7.4.2. E~, admits a B-reduction of type w(~ti+l) for some w e W  and hence by 
Proposition 6.13, Eu,~E,,+I which implies Eu,~E ~ by transitivity (Corollary 
6.14). 

7.5. Definition. We call the bundles Ez, E, to be algebraically equivalent if there 
is a family of bundles E--*S x IP 1 parametrized by a connected variety S such that 
E~, ~E~ and E~2 ~ E .  for some $1, ss~S. 

7.6. Remark. Algebraic equivalence is symmetric in Ex, Eu and does not imply 
Eu.~E ~, for s 1 may have a neighbourhood in S where Eu does not occur. Of 
course Eu.~E z implies Eu and Ez are algebraically equivalent. 

Recall (w 2.4) that Q~ is the subgroup of X , ( T )  generated by the coroots q,~. 

7.7. Theorem. Let 2,12 be 1-PS. Then E, is algebraically equivalent to Ea if and 
only if ~ and 2 have the same image in X , (T) /Q ~. Therefore X , (T) /Q ~ (which is 
the "fundamental group" of G) classifies the algebraic equivalence classes of 
( Zariski locally trivial) G-bundles on IP 1. 

Proof If s~ is the reflection corresponding to cteA, s , ( 2 ) - 2 = - ( 2 ,  ~). ~. There- 
T ~' fore W operates trivially on X , (  )/Q and we can assume that both 2 and 

are dominant. 
Suppose E ,  is algebraically equivalent to E~. Let E-~S x IP ~ be a family in 

which both E~ and E~ occur. Assume S to be irreducible. Let veX,(T)+ be the 
generic type of this family. Then by Proposition 7.1 v < 2  and v</~. Therefore 
2,/~ and v have the same image in X,(T) /Q ~. If S is not irreducible argue as 
above with irreducible components and use the connectedness of S. 

To prove the converse we need the following lemma. We call veX,(T)+ 
minimal if v'~X,(T)+ and v'<v then v'=v. (See [8, expos6 20, Sect. 2].) 

7.7.1. Lemma. Each coset of X , (T) /Q v contains a unique minimal element. 
Further if v is the minimal element in a coset and v' is any dominant 1-PS in the 
same coset then v and v' are comparable: v < v'. 

Proof See [16, Sect. 13.2, Lemma B and Exercise 13, p. 72]. (There the root 
system is assumed to be semisimple. It is easy to see that the same works for 
reductive systems as well.) See also [-8, expos6 20]. 

Suppose 2 and # belong to the same coset and let )~o be the minimal 
element of that coset. Then by the above lemma 2 o <2  and 2o< #. Therefore 
by Theorem 7.4 (and Proposition 6.13 and the proof of Proposition 6.9) there 
is a family E ~ A  1 • 1 parametrized by the affine line such that E 0 ~ E  ~ and 

t EI(A1-0)~E~oX(A~--0) .  Similarly there is a family E' with E o ~ E  . and 
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E ' I (A1-0 )~ExoX(A1-0 ) .  So by patching E and E' along A ~ - 0  we get a 
family E"- ,  IP I x IP 1 parametrized by IP 1 such that E'~ ~Ex and E~ ~ E , .  

7.7,2. Remark. Note that we have actually connected E~ and E, by an irreduc- 
ible parameter variety, viz., 1P 1. 

7.8. Proposition. Let 2 be a dominant 1-PS. Then Ex is rigid if and only if 2 is 
minimal. In each algebraic equivalence class of G-bundles there is precisely one 
rigid bundle. 

Proof Follows immediately from Theorem 7.4 and Lemma 7.7.1. 

7.8.1. Remark. It follows from [16, Exercise 13, p. 72] that 2 is minimal ~=~ 
( 2 , ~ ) = 0 , 1 , - 1  for all ~6~. Therefore E~ is rigid ~ 2 is minimal ~=~ 
Hl(lP1,E~(g)) =0  since H~(IP ~, (9(n)) = 0  if and only if n >  --1. 

7.9. Remark. For GL(n), X,(T)/Q~=TI (Sect. 2.7). The algebraic equivalence 

class of a vector bundle of rank n is determined by its degree. 

7.10. Remark. Let X be a smooth projective curve of arbitrary genus. Let 
E-+X be a Zariski locally trivial G-bundle. Then E admits some B-reduction 
(cf. proof of Proposition 4.3). Let its type be 2. Then one can show, by similar 

T v methods as for IP 1, that the image of 2 in X , (  )/Q is independent of the 
chosen B-reduction of E and characterizes the algebraic equivalence class of E. 
When k=ll;  the same result holds for topological equivalence (see [23, Sect. 
5]). 

8. Versal Deformation Space 

We will now construct a versal deformation space for E=Ex, 2eX, (T)+  (See 
Remark 8.11 below for G-bundles'on curves of higher genus.) 

Let G act on the Lie algebra g by adjoint representation and E(g) the 
associated vector bundle (adjoint bundle). 

Suppose k=ll;. Since Hz(IPa,E(g))=0 we have a family of bundles para- 
metrized by an (analytic) neighbourhood of 0 in HI(IP1,E(g)) which is com- 
plete (or versal) in the sense that any deformation of E is induced locally from 
this [17, 21]. We indicate below how the results of Artin [1, 2] imply the 
analogous results for an arbitrary field k. 

8.1. By [26] it is quite easy to see that there exists a formal versal deformation, 
that is, there is a complete local ring A, with maximal ideal m and residue field 
k, and a compatible family of deformations of E over IP,]/m, such that any 
compatible family of deformations over a complete local ring is induced from 
this. In fact there exists a hull (local modul O i.e. a formal versal deformation 
whose infinitesimal deformation map is an isomorphism. See [26] and [28, 

Theorem 2.2, Remark 2.3 and Theorem 2.3]. 

8.2. This is a rather weak result and we will need that there is an (algebraic) 
versal deformation [2, Sect. 3] i.e. a deformation U--,S x IP 1 parametrised by an 
algebraic scheme S over k such that if E---,R x IP ~ is any deformation, with Ero 
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=E, rocR, R/k, then there is an &ale neighbourhood of to, i.e. an 6tale 

morphism (p: R ' ~ R  over k with roeq)(R), such that q)*E is induced from U by 
a morphism R'--,S. The existence of such a versal deformation follows from the 
existence of an effective versal deformation, by the algebraization theorems of 
Artin. However in this case as we shall show, it is easy to directly construct an 

algebraic family which is a formal versal deformation and check Artin's con- 
ditions for versality for the deformation functor D E. 

8.3. Construction. There are natural trivialisations of k 2 - 0 ~ l P  t on Ao=IP  1 

- o o  and A~o=IP1-0  and k 2 - 0 ~ l P  1 is given by the transition function 

id: AoraA ~ =Gm~G m. Using this trivialisation, for any line bundle L we can 
represent an element of HI(IP1,L), as a Cech cocycle, by a function on 
AoC~Ao~. By choosing representative cocycles for a basis of S~=HI(IP 1, Tx(U~)) 
we identify it with a finite dimensional vector space of functions from AoC~Ao~ 

to U~(~G~). Let S =  1-[ So. We define U ~ S x l P  1 to be the G-bundle obtained 

by patching up the trivial G-bundles on S x A o and S x Aoo by the transition 
function 

q0o~: S x G m ~ B - c G  

defined by (Po ~(s~ .. . . .  , s~N , z) = 2(z). ~o(so,(z) .... , s~,,(z)) where {13 l .. . .  , fiN} = 4~-, 
qo: IIU~-~U- is the group multiplication (cf. 2.8) and B -  is the Borel opposite 
to B and U -  its unipotent radical. Note that at 0eS, (po~(0,z)=2(z) so that at 
the base point 0 we have E x. 

8.4. Proposition. U ~ S  x IP 1, constructed as above, is an (algebraic) versal defor- 
mation (cf. 8.2) of E z whose infinitesimal deformation map is an isomorphism. 

Proof. First we check that this is a formal versal deformation (cf. 8.1). The 
functor D e (Sect. 6.3) satisfies the conditions Ha,  H2, H 3 of [26]. Hence a 
formal versal deformation exists. The tangent space to D E (the infinitesimal 
deformation space) is Hl(lp1,Ex(g)) and the versal deformation is formally 
smooth since the obstruction space H2(]P 1, E~(g))= 0. 

In fact any deformation parametrized by a smooth variety with the in- 
finitesimal deformation map an isomorphism gives a formal versal deformation 

which is a hull. Thus we have only to check that the infinitesimal deformation 

map To(S)~HI(IP~,E~(g)), where To(S ) is the tangent space to S at 0, is an 
isomorphism. Since 2 is dominant ()~,c~)>0 for c ~  +. Therefore Ht(IP t, Tz(U~)) 
= 0  for ctE~ § Therefore HI(IP1,E~(g))= ~'  HI(IP1, Tz(U~)). Since the differen- 

tial of the map ~o is an isomorphism, in fact identity if we make the obvious 

identifications, it follows that 

0 
0~ {~Oo ~( ts ,  z)},= o : s 

which shows that the infinitesimal deformation map is an isomorphism. Thus 
we have proved that U is a formal versal deformation. 

To prove U is actually versal, by Artin [2, Theorem 3.7], we have only to 

check that the map De(A)--,lim - De(A/m"), is injective, where A is the local ring 
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of an algebraic scheme with residue field k. If  E is a vector bundle this is 

guarant ied by the existence theorems of  Grothendieck [ E G A  III  5]. We can 

reduce the general case to that case as follows. The idea is to look u p o n  a G- 

bundle as a vector bundle with additional structure, analogous to considering 

on O(n)-bundle as a vector bundle with quadrat ic  forms on the fibres. 
Let r G--*GL(V) be a faithful representation. By a theorem of Chevalley 

[4]  there is an element 1MP(W), where W =  Vr| *s is a suitable tensor space, 

whose isotropy for the act ion of  GL(V) on  W is precisely G. Let C =  GL(V)/G 
be the orbit  of l under GL(V). Then given a G-bundle E we have a section of 

(p,(E)(C). Conversely if we have a GL(V)-bundle F (equivalently, a vector 

bundle) and a section of  F(W) with values in F(C) we have a reduct ion of  

structure g roup  of  F to G and hence a G-bundle. Thus we can view a G-bundle 

as a vector bundle together with a section of  an associated vector bundle. 

Looked  at this way the fact that DE(A)~li+im - DE(A/m") is injective follows from 

the existence theorems of  [ E G A  II I  5]. 

We now note some properties of  the versal family U ~ S  x IP 1. 

8.5. Zariski local triviality. Since by construct ion U s is Zariski locally trivial for 

s~S, by the versality of  U it follows that any small deformation of  Ex is Zariski 

locally trivial over the base field k itself. 

8.6. Versality in a neighbourhood. Since we are in the "unobs t ruc ted"  case it is 

easy to see that the conditions of  [2, Sect. 4.1] are satisfied by D E . Therefore 
U ~ S  x IP 1 which is versal at 0eS  remains so in a ne ighbourhood of 0 in S. 

8.7. Homogeneity. The maximal  torus T acts on  the associated line bundle 

Tx(Ut~ ) and on HI(IW, Tz(U~)) by the character ft. Thus we can make T operate 
on S. For  t s  T, 

% ~ ( t .  s, z)  = ;o(z) .  q ) ( t .  s~,(z) . . . .  ) = t .  ;~(z).  ~ ( s ~ l ( z ) , . . . )  t - 1  

(since ~p is T-equivariant). Therefore we have a lift of  the action of  T on  S to U 

and Us=U,~ for s~S. For  a #cX,(T) with (p, f l )>0,  for every fle~b-, the/~-orbit  

of s~S is a " r ay"  in S tending to 0. Thus the family S is "homogeneous"  and is 

determined by any "smal l"  ne ighbourhood of  0. 

8.8. Lemma.  Let s~S. Then U~E~ if and only/f s = 0 .  

Proof Suppose U~,~E~. Let C be the T-orbit of  s and (~ its closure. Consider  

the restriction UIC  x lP  1. Since for any x~C, Ux~E~ (Corollary 7.2) it is easy 

to see that there is an 0tale ne ighbourhood  f :  C ' ~ ( ~  of 0e(~ such that  f * U  

becomes a trivial family. Hence any tangent  to C at 0 will go to zero under 

the infinitesimal deformat ion map. But we know that the infinitesimal defor- 

mat ion  map  is an isomorphism. Therefore s=0 .  

8.9. Proposition. Let 2,12 be dominant 1-PS such that #<L Let S~, 
= {s~SIU~Eu}. Then S~u is a locally closed smooth subvariety of S and 

dim S~,= ~ {dim H~(IP ~, Tz(U~))-dim H~(IP ~, T~(U~))} 

= dim(Aut  Ex) - d im(Aut  Eu). 
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Proof S~. is open in its closure by Corollary 7.2. Because of homogeneity 
(Sect. 8.7) and openness of versality (Sect. 8.6) we see that for seSa., U is 
versal at s. Therefore the morphism inducing U, in a neighbourhood of s, from 
the versal family U.--+S. • IP 1 for E .  is smooth at s (since the tangent map of 
the inducing map, being the infinitesimal deformation map must be surjective). 
By Lemma 8.8, in an 6tale neighbourhood of s, S~. is the fibre of such an 
inducing map S~S. ,  over 0eS..  Hence S~. is smooth. To get the dim S~u we 
have only to note that 

dim S :  ~ dim H'(IP 1, T~(Up)) 

and 

d i m S , =  ~ dimHI(IP~,T~(U~)). 
/~er 

8.9.1. Remark. One can show that S~, • AutE ,  is locally isomorphic to B(E,, 
Wo2 ). The smoothness of S~u can be deduced from this. 

8.10. Remark. The varieties S~, are irreducible. For a given #, S~, are irreducible 
when 2 is sufficiently large (i.e. (2, c~) >> 0, V c~ e ~ +) by a result of Harder [ 12]. For rank 2 
vector bundles the varieties Sat can easily be seen to be irreducible. In fact :~z, 
are defined, in this case, by rank conditions on matrices and are determinantal 
varieties. See Remark 8.13, in general. 

8.11. Remark. Let X be a smooth projective curve of arbitrary genus. Then any 
G-bundle E ~ X  has an (algebraic) versal deformation (Sect. 8.2). We can see 
this as follows. First the conditions H1 ,H 2 and H 3 of [25] are easily verified 
for D~. Hence a formal versal hull exists (Sect. 8.1). 

To see the existence of a versal deformation we first deal with the vector 
bundle case. Let V ~ X  be a vector bundle. Let L be an ample line bundle on 
X such that HI(X,V| and H~ V| generates V| Clearly it is 
enough to construct a versal family for V| So we assume the above 
conditions for K Let dim H~ V)=n. Let I be the trivial bundle of rank n. 
Let Q be the Quot scheme of quotients of I whose rank and degree are those 
of K From the exact sequence 0 ~ K - - * I ~ V ~ 0  applying H o m ( - , V )  and 

taking the cohomology sequence we get a map H~ 
Hi(X, V* (9 V) ~ 0 and Hi(X, K* (9 V) = O. Now H~ K* (9 V) is the tangent 

space to Q at I~V~O,  and the above map is the infinitesimal deformation 
map for the universal quotient family V~Q • X (thought of as a deformation 
of V). Further HI(X,K*| implies Q is smooth at K Hence V ~ Q •  
is a formal versal family for K But it is not a hull since it may have a higher 
dimension. To get a hull pull up V to a smooth subvariety in an 6tale neigh- 
bourhood of VeQ which has tangent space at V supplementary to the kernel 
of the infinitesimal deformation map. This family is versal by [2], the veri- 
fication of condition (ii) of [2, Theorem 3.7] being same as in the proof of 
Proposition 8.4. 

To deal with G-bundles we again have only to view a G-bundle as a vector 
bundle with additional structure. Take a faithful representation G~--~GL(V), 
form the universal quotient family V-oQ •  as above for E(V). Form the 
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associated bundle V(GL(V)/G)~Q x X and let Z-~Q x x be the space of sec- 
tions [10, expos6 221]. One can check that 2; is smooth at E [25]. Then one 
proceeds as in the case of vector bundles to take a subvariety in an 6tale 
neighbourhood of E to get a versal deformation hull for E. 

8.12. Remark. For constructing versal deformations of bundles on IP 1 (and on 
curves of higher genus as well) we can avoid using Artin's general results. For, 

any B-bundle on S x A  1 becomes a T-bundle after pulling up by an 6tale S'--*S 
and thus we would get transition functions for any family of G-bundles E-~S 

x lP 1 for the covering S ' x  A0, S ' x  A~ and this transition function could be 
induced from q)o ~. 

8.13. Remark. Our results can be interpreted in terms of the generalised 
Schubert varieties introduced by Kazhdan-Lusztig in [31]. This will be done 
elsewhere. 

9. Non-connected Groups and Classical Groups 

9.1. Bundles with non-connected structure group. In this section G is a not 
necessarily connected group with its identity component  G O a reductive split 

group. Maximal torus, 1-PS,... etc. of G are the same as those of G ~ However 
the Weyl group W of G is N~(T)/T where NG(T ) is the normaliser of T in G. 
The Weyl group W ~ =N~o(T)/Tis a subgroup of W of finite index. 

9.2. Theorem. Let E-~IP 1 be a Zariski locally trivial G-bundle (G not nec- 
essarily connected). Then 

i) E admits a reduction of structure group to G ~ the identity component of G. 
ii) E~Ea  for a 1-PS. 
iii) The G-bundles E~ and Eu are isomorphic if and only if # = w(2) for some 

weW. 
iv) Suppose 2, # are dominant 1-PS. Then Eu,~Ea if and only if for some 

we W w(#) is dominant and w(#) <-_ 2. 
v) The versal deformation for E is the same as that for a G~ 
vi) The Weyl group W of G acts naturally on X , (T) /Q v (with W ~ acting 

trivially). The algebraic equivalence classes of Zariski locally trivial G-bundles 
on lP 1 are in bijective correspondence with the elements of (X ,(T)/Qv)/W. 

Proof i) See Remark 4.4. 

ii) Use i) and the connected structure group case (Theorem of Grothendieck- 

Harder, Sect. 4.2). 
iii) F rom the exact (nonabelian) cohomology sequence (in the 6tale to- 

pology) corresponding to 1--*G~176 (cf. [19, Chap. III, Sect. 4]) we 

see that E ~ E u  implies that 2 and # differ by an action of G/G ~ (by inner 

conjugation). Since representatives in G for the cosets of GIG ~ can be chosen 

in NG(T ) it follows that #=w(~,) for some wcW(cf .  [9, p. 136]). 
iv) Use iii) and the connected structure group case (Theorem 7.4). 
v) Let E--*S •  1 be a deformation of E. Let 
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E(G/G ~ 

be the Stein factorisation of the composite E ( G / G ~  x IP t ~ S .  Then f:  S ' ~ S  
is 6tale and ( f x  id)*E admits reduction of structure group to G ~ 

vi) Suppose 2,~ have the same image in (X,(T)/Qv)/W. Then for some 

w~W, 2 and w(#) are in the same coset in X , ( T ) / Q  v. Therefore by the con- 
nected structure group case (Theorem 7.7) Ea, Ew(,) are algebraically equivalent 

as G~ and hence as G-bundles (since Ew(~)~E~ as G-bundles). 

Conversely, suppose E;. is algebraically equivalent to E,  and E ~ S  x lP 1 a 

family of G-bundles with S irreducible and E , I ~ E  a, Es2,~E ~, sl ,s2ES. Then in 

an 6tale neighbourhood of s 1 (resp. s2) E admits a G~ E 1 (resp. E 2) 
with generic type v I (resp. v2). Since S is irreducible clearly v 1 =w(v2) for some 

0 w~W. Therefore the G~ E ~ and Ew(,) are algebraically equivalent and 
hence by the connected structure group case (Theorem 7.7) 2 and w(#) have the 

same image in X , ( T ) / Q  ~. Clearly the case when S is only connected can be 
reduced to the irreducible case. 

9.2.1. Remark. It follows that the deformations of a G-bundle are the "same"  
as those of the corresponding ad G~ ad G o being the adjoint group. 

We will now indicate the particular form taken by our results when G is 

one of the classical groups. From the standard description of maximal tori, 

Weyl groups (cf. [8, expos& 20-22]) and the root data (cf. [6, Tables]) it is easy 
to read off the results (cf. Sects. 2.5, 7.8.1, 9.2.1). 

9.3. Vector Bundles. A GL(n)-bundle is always Zariski locally trivial (cf. [27]) 

and in fact a GL(n)-bundle is equivalent to a vector bundle. From the de- 

scription of maximal torus etc. given in Sect. 2 the following result is easily 
deduced from our general results. 

i) Any vector bundle of rank n on IP 1 is isomorphic to a (unique) direct 

sum of line bundles (9(a00.. .(~(9(a,)  , with a 1 > ... > a ,  integers. 

Denote this vector bundle by A(a~, . . . ,  a,). 

ii) For integers b 1 >. . .  >b , ,  A(bl ,  . . . ,b , ) ,~A(a~,  . . . ,a,)  if and only if a t + ... 

+ a , = b t  +. . .  +b . and al +. . .  +a~>bx +. . .  +b > l < _ i < n - 1 .  
iii) The rigid vector bundles of rank n are A ( m +  1, . . . , m +  1,m . . . . .  m), me7Z. 

iv) A(b t . . . .  , b.) is algebraically equivalent to A(a~, ..., a,) if and only if ~ a i 
n i=1  

-= ~ b~ i.e. the two vector bundles have the same degree. 
i=1  

9.4. Projective Bundles. Let T be the image in PGL(n) of the standard torus T 

of SL(n) (Sect. 2.7). Then 

X.('F) = {lax, ..., a ,]  ~X. (T) |  a i - ai(mod 2g)}. 
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Any 1-PS of PGL(n) therefore lifts to GL(n) (though not to SL(n)). Therefore 
any Zariski locally trivial projective bundle comes from a vector bundle (cf. 
Sect. 2.15). Note that if V, W are vector bundles then IP(V)~IP(W)  if and only 
if there is a line bundle L such that V |  (use the exact sequence 
1 ~G,,--*GL(n)~PGL(n)--* 1). 

i) Any projective bundle is uniquely of the form IPA(al,  . . . ,a,)  with aieZ, 
a l > . . .  >a ,  and O < Z a i < n  (where A(a I . . . . .  a,) is the vector bundles defined 
in Sect. 9.3i)). Denote this bundle by lP(a I . . . . .  a,). 

ii) IP(b 1 . . . .  , b,),,,~IP(al, ..., a,)c~ A(bl,  ..., b ,) ,~ A (a l , . . . ,  a,) (see Sect. 9.3). 
iii) The rigid bundles are IP(1, ..., 1,0, ..., 0). 
iv) lP(b~ . . . . .  b,) is algebraically equivalent to IP(a 1 .. . .  ,a,) if and only if Sa i 

= S b  i. (Note that we have normalised Sal to be between 0 and n.) 

9.5. Orthogonal Bundles. The orthogonal group O(2l+l)(resp. 0(2/)) is the 
subgroup of GL(21+ 1)(resp. GL(21)) leaving invariant the quadratic form 

21 l l 

Q (Exiel)=X2-}- EXiXi+t (resp" 2xi'xi+l 
\ i = 0  i = 1  i = 1  / 

SO(21+l)(resp. SO(2l)) is the connected component of 0(2/+1) (resp. 0(2/)) 
defined by the determinant or, if char k=2,  by the Dickson invariant. The 
maximal torus T consists of diagonal elements and a 1-PS is of the form 
t~--~diag[1, t a', ..., W, t -a', .... t-" ']  (for SO(21) the initial 1 is dropped). The Weyl 
group of O(2/+1) is the same as that of SO(2l+ 1). The Weyl group of SO(21) 
is of index two in that of O(2/) (the "sign changes" need not be even cf. [6, 
p. 257, item (X)]). 

9.5.1. Type Bz(/=>2 ). 

i) A Zariski locally trivial O(2/+l)-bundle has the underlying vector 
l 

bundle (90 ~ {(9(ai)O(9(-al) } with a I >= ... >_az_>0 integers. The quadratic form 
i = 1  

is the orthogonal sum of the constant quadratic form " 2, x o on (9 and the 
hyperbolic form on (9(ai)G(9(-ai) given by the duality (9(ai)* = (9(-ai). 

Denote this bundle by B(a t . . . .  , at). Assume l>_ 2. 

ii) B(bl,  ...,bt),,,*B(a 1 . . . . .  at)e*.a 1 + ... +ai>=b 1 + ... +bi, 1 <_i<l and 
l l 

a i -  ~ b~(mod 2). 
i = 1  i = 1  

iii) The rigid bundles are B(0, ..., 0)(= trivial bundle) and B(1, 0, ..., 0). 
iv) B(bl , . . .  , bt) is algebraically equivalent to B(al , . . .  , at).*~ 

l l 

al-- ~ bi(mod 2). 
i = 1  i = 1  

9.5.2. Type Dfl_->3) 

i) A Zariski locally trivial O(2/)-bundle is uniquely of the form 
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l 

n(a,  . . . .  , a,)= Z {(~(a,)| ai)} 
i=t 

with a 1 =>... >al=>O integers and the quadrat ic  form as in 9.5.1 i). 

Assume I >_ 3. 

ii) D(b 1 .... , bz),,~D(al,... , al) if and only if 

al +...+ai>=bt +...+bi, 1_<i_<1-2, al +. . .+a t l +al>=bt +...+bt_l +bl, 

l l 

al +... +al_ l-al>=bt +... +bz_l -b  land ~ a i =  ~, bi(mod2 ). 
i=1 i=t 

iii) and iv) same as in 9.5.1. 

9.5.3. O(1). Since O(1)=2~ 2 the only O(1)-bundle is the trivial bundle. 

9.5.4. 0(2). It is easily seen that  SO(2)-~Gm, and that  0(2) is the semidirect 
product  7/2 x G,,, 7]. 2 acting on G,, by inversion: zF-,z-'. Using the nota t ion  of 
9.5.2i), D(a)=(9(a)OCJ(-a)~-~(9(a), a>O, gives an identification of O(2)-bundles 
with line bundles of  degree >0 .  Since line bundles on IP t are rigid it follows 
that  all O(2)-bundles are rigid. 

9.5.5. 0(3). We have SO(3)~-PGL(2) (One way of seeing this is to note that  a 
nonsingular  conic is i somorphic  to IPl). So the map  sending B(a) 
=(cO(~(a)q)(9(-a) to IP(a/2,-a/2) if a ( > 0 )  is even or to IP([a/2] + 1 , -  [a/2]) 
if a is odd gives a bijection between O(3)-bundles and PGL(2)-bundles. More-  
over  B(b),,,,,B(a)c>a>b. B(b) is algebraically equivalent  to B(a) if and only if 

a - b ( m o d 2 ) .  The  rigid bundles are B(0) and B(1). 

9.5.6. 0(4). We have a two sheeted covering SO(4)-+PGL(2)x PGL(2). (This can 
be seen from the i somorphism of a nonsingular  quadra t ic  surface with IP t x IPt). 

2 

The map which  sends  D(a,, a e ) =  2 {(9(ai)(~)(_9(--ai)}, a t ~ a 2 >= O, to ]P((a 1 -I-a2)/2, 
i=1 

- ( a  1 + a2)/2 ) x IP((a I - a2)/2 , - ( a  1 - a 2 ) / 2  ) if a I + a  2 is even or to 

lP([(a t + a2)/2 ] + 1, - [(a t + a2)/2]) x IP([(a t - a2)/2 ] + 1, - [(a t - a2)/23) 

if al+a 2 is odd gives a bijection of O(4)-bundles with unordered  pairs of 
PGL(2)-bundles of the same pari ty (i.e. belonging to the same algebraic equiva- 

lence class). D(bl,bz)w~D(al,a2) if and only if al+a2>bt+b2, a l - a a > b t - b 2  
and a 1 + a  2 - b  t + b 2 ( m o d 2  ). D(bl,b2) is algebraically equivalent  to D(al,a2) if 
and only if a t + a 2 - b  t + bz(mod 2). The rigid bundles are D(0, 0) and D(1, 0). 

9.6. Remark. For  or thogonal  bundles the condit ion Xai-Xbi(mod2 ) arises 
f rom the integrality for the fundamenta l  weights corresponding to the spin 

representat ions (cot_ 1 and % in the nota t ion  of [6, Tables]).  In [15] X a i m o d 2  

is called the Mumford  invar iant  and its relat ion with algebraic equivalence 

(item iv)) is p roved  when k=lE.  This result of  [15] also follows from [23, 
Proposi t ion  4.2 and Sect. 5]. 
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9.7. SympIectic Bundles. 

i) A n y  Sp(2n)-bundle (n>2) is Zar i sk i  loca l ly  t r iv ia l  [27]. T h e  u n d e r l y i n g  

v e c t o r  b u n d l e  is (9 (a j@. . .O(~(a , ) |  with  a l > . . . > a  . in- 

tegers,  the symp lec t i c  f o r m  be ing  the  s t a n d a r d  one.  D e n o t e  this b u n d l e  by 

C(a I . . . .  , a,). 
ii) C(b 1 . . . . .  b,)w*C(al, . . . ,a,)  if  a n d  o n l y  if a l + . . . + a i > b a + . . . + b l ,  

i<_l <_n. 
iii) T h e  t r iv ia l  b u n d l e  C ( 0 , . . . , 0 )  is the  o n l y  r igid bundle .  

iv) All Sp(2n)-bundles are  a lgeb ra i ca l ly  e q u i v a l e n t  (since Sp(2n) is s imply  

connected) .  
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