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Physical theories are approximations to Nature. Therefore robust theories, that is
theories that do not change in a qualitative manner under a small change of parameters,
have the higher probability to have a wider range of validity. This seems to be true also
for the fundamental theories of Nature. Using deformation theory of algebras we review
the stabilizing deformations leading from non-relativistic to relativistic and from
classical to quantum mechanics. Unlike previous treatments both deformations are
carried out on a finite-dimensional algebra setting. One then finds that the resulting
relavistic quantum algebra is itself unstable and admits a two-parameter stabilizing
deformation. Taking into account reasonable physical constraints to identify the
deformed variables, a new algebra is then proposed as the stable algebra of relativistic
quantum mechanics in tangent space. This is isomorphic to the algebra of the pseudo-

Euclidian group in five dimensions.






1. Deformations and stable theories

When, in the course of development of physical science, models are constructed
for the natural world, it is reasonable to expect that only those properties of the models
that are robust, have a chance to be reproduced in the observed phenomena. Models are
mere approximations of the natural world and it is highly unlikely that properties that
are too sensitive to small changes in the model (i. e. that depend in a critical manner on
particular values of the parameters) will ever be observed. Alternatively if a fine tuning
is needed to reproduce some natural phenomenon, then it is most certain that the model
is basically unsound and its other predictions are unreliable. It is therefore a good
methodological point of view to concentrate on the robust properties of the models or,
equivalently, on models which are stable, in the sense that they do not change, in a

qualitative manner, when some parameter changes.

The stable-model point of view made a long way in the field of non-linear
dynamics, where it led to the rigorous notion of structural stability[l]. As emphasised by
Flato[Z] and Faddeev[3] the same pattern seems to occur in the fundamental theories of
Nature. In fact, the two physical revolutions of this century, namely the passage from
non-relativistic to relativistic and from classical to quantum mechanics, may be

interpreted as the transition from two unstable theories to two robust stable theories.

In general, a mathematical structure is said to be stable (or rigid') for a class of
deformations if any deformation in this class leads to an equivalent (isomorphic)
structure. The idea of stability of the structures provides a guiding principle to test
either the validity or the need for generalisation of a physical theory. Namely, if the
mathematical structure of a given theory is not stable then, one should try to deform it
until one falls into a stable one, which has a good chance of being a generalisation of
wider validity. The mathematical theory of deformations developed along several lines,
the most developed branches being the deformations of analytic structures, the

deformations of algebraic manifolds and the deformations of algebras. In all cases the

IFor the physical applications it seems more natural to call these structures stable structures,
but in the mathematical literature it is always the term rigid that is used. In this paper I will use the

two terms with equivalent meaning.



cohomology groups play a key role in characterising the stability of the structures.

In physics it 1s the theory of deformations of Lie algebras that has, so far, played
the major role, although the deformations of other mathematical structures are
potentially as useful as the deformations of algebras. For physics it is useful to have an
explicit representation of the deformation parameters, which play the role of
fundamental constants in the deformed stable theories. I will therefore concentrate in
the theory of formal deformations of Lie algebras[4’5’6]. A formal deformation of a Lie
algebra L defined on a vector space V over a field K is an algebra £, on the space
V ® K[t] (where K][t] is the field of formal power series), defined by

[AB], = [AB], + _°z‘51 ¢,(A.B) t! (1.1)
1=

with A, B, qSi(A,B) € V and t € K. The adjoint representation of £, is
o(A) (B) = [AB], (12)

An n-cochain (relative to the adjoint representation) is a bilinear, skew-symmetric
mapping

Vx---xVaV
and the n-cochains form a vector space C%(p,V). In particular ¢i(A,B) in Eq.(1.1) must
be a 2-cochain.
One also defines:
# The coboundary operator

n+1 - -
dé(Ar, -5 Apyy) = 2 (1) Lp(A) #(As- -5 Ay, - Ap ) +

-~

1< <zj:5 nt1l (=) p(ApAGh Avy Ay A Anyg) (13)
# A cocycle ¢ € C?(p,V) whenever d¢ =0. The set of all n—cocycles is a vector space
denoted Z™(p).
# A coboundary if ¢ed(Cn'1(p,V)). The set of all coboundaries is a vector space
denoted B™(p).

# The quotient space
Z%(p)

) = g

is the n— cohomology group (relative to the p-representation). From (1.3) it follows that



d?¢ = 0. However not all cocycles need to be coboundaries and the n—cohomology

groups may be non-trivial.

The relevance of these concepts to the deformation problem formulated in
Eq.(1.1) is the following:

Using the deformed commutation relations (1.1) and differentiating the Jacobi

identity
[A,[B,C]t]t + [B,[C,A]t]t + [C,[A,B]t]t =0 (1.5)

in the variable t and then setting t = 0 one obtains
d¢, (A,B,C) =0
that is, for the deformation in (1.1) to be a Lie algebra, ¢, must be a 2-cocycle.

A deformation of L is said to be trivial if the algebra £, is isomorphic to L.

This means that there is an invertible linear transformation Tt: V-V such that

Ty([A,B];) = [T;A,T;Bly (1.6)
If all deformations 2, are isomorphic to L, then L, is said to be stable or rigid. Suppose
now that the second cohomology H?(p) is trivial. This means that all 2-cocycles are 2-
coboundaries. Then there must be a 1-cochain 7y such that ¢, =dy. Use the linear

transformation M} =exp{—ty} to transform the algebra £,
[ABl, = M;~1(IMjA,M{B]) :
From ¢, = dy one now obtains, by a simple ca.lcula.tion[ ]
#)(A,B) = ¢;(A,B) - [v(A),B] - [A(B)] + ~([A,B]) = 0
Therefore, the power series expansion for [A,B]{ begins with terms of second order in t
[ABl = [ABly + #5(AB) &% + ---
and from the Jacobi identity, as above, it follows d¢'2(A,B) =0.
Tterating the whole process all powers of t are successively eliminated. It means
that the limit
T,= M{ M{---
is the transformation that establishes the equivalence of £, and Lo In conclusion, the
vanishing of the second cohomology group is a sufficient condition for non-existence of

non-trivial deformations, i. e. it is a sufficient condition for stability (or rigidity) of the
Lie algebra. This is the content of the “rigidity theorem” of Nijenhuis and



Richardson [5] .

There 1s a mnice geometrical interpretation of the role of cocycles and
coboundaries in the rigidity of Lie algebra structures. The set L™ of all possible n-
dimensional Lie algebras is an algebraic manifold embedded in cN (with
N = (n®-n?)/2), the defining algebraic relations being the Jacobi identity equations
between the structure constants. Also, the natural topology in L™ is the one induced by

the structure constants. The isomorphism relation (1.6) is an action of the linear group

GL(n,C)

I® x GL(n,C) » L2 : (£,T)»T loLoTxT (1.7)

where £ € L™ denotes the Lie algebra law.
Denoting LO(A,B)E[A,B]O, 2 will be a rigid algebra if its orbit 0(1,0) under
GL(n,C) is open. Every vector in the tangent cone to L" at 2y is in the
2 —-cocycle space Z?(p) and the tangent space to the orbit 0(zy) at 2 is
B*(p).

The rigidity theorem of Nijenhuis and Richardson establishes only a
sufficient not a necessary condition for stability. Semisimple Lie
algebras, for example, have a vanishing second cohomology group[8:I and are
stable. However, whenever there are non-trivial 2-cocycles, these may still
not be the infinitesimals of a deformation, 1. e. they may not be integrable.
Primary obstructions to integrability are to be found in the structure of the third
cohomology group. Examples were constructed of rigid algebras with non-vanishing
second cohomology group[g_ll] and this fact led to the development of different, non-

cohomological, techniques to classify the rigid Lie a.lgebraslll—ls].

Here an important simplifying role is played by the techniques of non-standard
analysis. A Lie algebra law L is then said to be rigid if any perturbation £ is
isomorphic to L. A perturbation of L, is an algebra £ such that

£(A,B) ~ LO(A,B) (1.8)
for A,B standard or limited. The symbol ~ means infinitesimally close.

There is a decomposition of any perturbation of L, as follows

L =2y + g + by + -0+ ey " P (1.9)
which is unique up to equivalence. The ¢’s are standard antisymmetric bilinear



mappings, the ¢’s are non-zero infinitesimals and k <N.

The most useful result for the characterisation of the rigid Lie algebras is the
theorem that states that if L is rigid there is a standard non-zero vector X such that
ad L, X (ad 24 X(Y) =X, Y]) is diagonalizable. The converse result is not truc and to
clasmfy the ng1d algebras in dimension n one still has to exclude the non-rigid ones with
a diagonalizable vector. A large number is simply excluded by checking the rank of the
root system and for the rest (which are a finite number) one has to check explicitly the
isomorphism of the perturbation. This method allows, in principle, the classification of

all rigid algebras in any dimension. For details I refer to Refs.[12,14,15].

I will now review, briefly, the way in which deformation theory interprets the
passage from non-relativistic to relativistic and from classical to quantum mechanics as

the stabilising deformations of two unstable theories.

The Lie algebra of the homogeneous Galileo group, the kinematical group of non-

relativistic mechanics, is:

K, K ] (1.10c)

The second cohomology group does not vanish because, for example, ¢1(K1,K D)= lfl_}k‘]k
and ¢, =0 for all other arguments, is a 2-cocycle that is not a 2- cobounda.ry In fact,

the deformation
Ky K] = 1(}21ka (1.10d)
leads to the Lorentz algebra which, being semisimple, has vanishing second cohomology

group and is stable.

For the deformation leading from classical to quantum mechanics, recall that the
phase space of classical mechanics is a symplectic manifold W = (T*M,w) where T*M is
the cotangent bundle over configuration space M and w is a symplectic form. In local
(Da.rboux) coordinates {pi,q-} the symplectic form is

Z dp: A dgq;
1 i
The Poisson bracket gives a Lie algebra structure to the C®-functions on W

of 08 _ of 98
{te} = Z 3q; 9p; ap 2; (1.11)



in local coordinates.

The transition to quantum mechanics is now regarded as a deformation of this

Poisson a.lgebra[lﬁ]. Let for example T*M = RZ2. Then w= b w: dd A dd =
£ dxi AT 1<ijson !
l1<i<n

Consider the following bidifferential operator

Pl(fg) = Ly, .. o 9. ---9. () 8. ---9. 1.12
() = B, 00 55 (1.12)
i Ir

P!(f,g) is simply the Poisson bracket. P3(f,g) is a non-trivial 2-cocycle and, barring

obstructions, one expects the existence of non-trivial deformations of the Poisson
algebra.

Existence of non-trivial deformations have indeed been proved in a very general
context[”_zo]. They always exist if W is finite-dimensional and for a flat Poisson
manifold they are all equivalent to the Moya.l[21] bracket

lfely = 2smG P)(Ee) = (£} - Lo Po(te) + - - (113)

Moreover [f,glyg = l—lﬁ (f x5 B — & *p f) where f +, g is an associative star-product

fr, 5 = exp(ih P(fg) ) (1.14)
Correspondence with quantum mechanics formulated in Hilbert space is obtained by the

Weyl quantization prescription. Let f(p,q) be a function in phase space and f its Fourier

transform. Then, if to the function f we associate the Hilbert space operator

L EXQ Py
(f) = / f(xiy;) e B dx; dy;

where Qv =x;y and P, = -ia Bxi ¥ , one finds
1

[Q(f)')Q(g)] = —1h (([fvg]M)
with, in the left-hand side, the usual commutator of Hilbert space operators. Therefore
quantum mechanics may be described either by associating self-adjoint operators in

Hilbert space to the observables or, equivalently, staying in the classical setting of



phase-space functions but deforming their product to a *; —product and their Poisson
brackets to Moyal brackets.

In both the Galileo and the Poisson algebra cases, the deformed algebras are all
equivalent for non-zero values of % and of . This means that although we could have
derived relativistic mechanics a.ng quantum mechanics purely from considerations of
stability of their algebras, the exact values of the deformation parameters cannot be
obtained from algebraic considerations. The deformation parameters are therefore the
natural fundamental constants to be obtained from experiment. In this sense
deformation theory not only is the theory of stable theories, it also is the theory that

identifies the fundamental constants.

There is a basic difference in the deformations leading from non-relativistic to
relativistic and from classical to quantum mechanics. In the first case one deals with the
deformation of a finite-dimensional algebra and, in the second, with the more complex
case of the deformation of an infinite-dimensional algebra of functions. With the benefit
of hindsight one may now simplify the presentation by using, for classical mechanics,
instead of the Poisson algebra in phase space, a formulation in Hilbert space. Then the
transition appears in both cases as simple deformations of finite-dimensional Lie
algebras. This not only simplifies the presentation but is the appropriate setting for
further analysis of the stability of relativistic quantum mechanics. That is the subject of

Section 2.

2. The stable finite-dimensional Lie algebra of relativistic quantum
mechanics

A description of classical mechanics by operators in Hilbert space was proposed,
soon after the discovery of quantum mechanics, by Koopma.n[22] and von Neuma.nn[23].
A constant energy surface op in the phase space of N particles carries an invariant
measure pp , which is the restriction of the Liouville measure d3Nx d3Np to Qp. In the
space of square-integrable functions L2(QE’”E)’ the Hamiltonian flow T, induces an

unitary operator by

where w € Qp and feLz(QE,;zE). Unitarity is a consequence of the invariance of the



measure, p(TilF) = u(F), for a measurable set F € Q.

In the Hilbert space L2(QE,pE) classical mechanics has an operator formulation.
The time evolution is induced by an unitary operator U; as in quantum mechanics and
the observables are the smooth functions on O which act as multiplicative operators
in LZ(QE,”‘E)'

Considered as multiplicative operators in Hilbert space, the functions of
coordinates and momenta are an infinite-dimensional abelian algebra. However, in the
Hilbert space formulation, we need not comsider explicitly the infinite-dimensional
algebra because the full content of the theory is obtained by selecting a finite set of
paired observables (pi,xi) and defining its transformation properties under U; and its

algebraic properties which, in classical mechanics, are

[Pi,xj] = [Pi,Pj] = [xi,xj] =0 (2.2)
The transition to quantum mechanics is now effected by the replacement of this Abelian

algebra by the Heisenberg algebra
[p;:p;] = [x;,%;] =0 (2.3a)
[x,,p;] =i# 3 (2-3b)
3 is the identity operator, a trivial center of the algebra of observables.
The infinite-dimensional Moyal algebra is therefore replaced by the simpler finite-
dimensional Heisenberg algebra. The role of this Heisenberg algebra, in the context of
deformation theory, has however to be discussed carefully. Consider the one-dimensional

case of a classical abelian algebra [x,p] = 0. This abelian algebra is clearly not stable and
in its neighbourhood there is the algebra

[x,p] = icx (2.4)
or the Heisenberg algebra

[x,p] = 1439 (2.5)
which is the central extension of the abelian algebra.

The algebra (2.4? is a stable algebra. Indeed the only stable algebra in two dimensions is

isomorphic to[15

[Y.X] = X, (2.6)
but the Heisenberg algebra itself is not stable.

There are two ways to look at the instability of the Heisenberg algebra. First if



we consider it as a tridimensional algebra, [X,,X;] =X, (all the other commutators
being zero), the complete structure of its neighbourhood, in the space of Lie algebra
laws, 1s known[14]. Namely the Heisenberg algebra is a contraction of any algebra of the
same dimension that carries a linear contact form. Conversely any perturbation of the

Heisenberg algebra supports a linear contact form. For example from the Lie algebra of

SO(3)
[Xan] = Xs [X27X3] = Xl [X3vxl] = Xz

which is semisimple and therefore stable, with the following linear change of coordinates

lefxl YzzﬁXQ Y3ZﬁX3

one obtains

[Yi,Y5] = € Y3 [Y2Ys] = Y, [Ys,Yy] = €Y,
and in the ¢+0 limit one obtains the Heisenberg algebra.

We could also have considered the Heisenberg algebra as a two-dimensional
algebra with a trivial center. That is, we restrict our deformations to those that preserve

the zero commutator of X, with the other two elements. Consider in this case the

deformation

X, X3] = X; + X, + 8X;
With the linear change of variables

Y, =aX, + X, + 8%, Y, = a1 X,
we now fall on the stable two-dimensional algebra (2.6), [Y,,Y3] =Y,.

We conclude in both cases that the Heisenberg algebra is unstable and has a
stable algebra in its meighbourhood. Therefore it would seem, at first sight, that the
Hilbert space construction leads to conclusions different from the phase space
construction described in Section 1, which interprets the transition from classical to
quantum mechanics as a deformation from an unstable Poisson algebra to a stable
Moyal-Vey algebra. A simple reasoning shows however that this is not the case and that
the constructions are indeed equivalent and they are both the transition from an
unstable classical algebra to a stable quantum algebra. The apparent difference is
merely an artifact of the singling out of x as the observable, when in fact the
observables are all smooth functions of x (and p). Consider the explicit representation

_hd _
P =7 x=x
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The physical content of the theory will be the same if instead of the coordinate x we
consider any linear or non-linear function of x. In particular considering y = cxp(ix) one
obtains the algebra

[Pyl = &y
which is isomorphic to the stable two-dimensional algebra (2.3). Hence the Heisenberg
algebra is equivalent, through a non-linear coordinate transformation that preserves the
physical content, to a stable algebra. In this sense the transition from classical to
quantum mechanics is again seen to be a stabilising deformation of an unstable algebra.
The main reason why the coordinate choice leading to the Heisenberg algebra is
physically convenient is that the observable p has then a simple interpretation as the
generator of translations in x. This example also shows that, when selecting a finite
subset of observables rather than an infinite-dimensional space of functions, the notion
of linear equivalence of algebras, in the sense of Eq.(1.6), is not sufficient for the
stability analysis and one should also consider non-linear transformations preserving the

physical content of the theory.

The transition from non-relativistic to relativistic and from classical to quantum
mechanics have thus been cast as deformations of a finite-dimensional Lie algebra of
operators in Hilbert space. A trivial point in this construction which however has non-
trivial consequences is the fact that, to have both these conmstructions in a finite-
dimensional algebra setting, it is essential to include the coordinates as basic operators
in the defining (kinematical) algebra of relativistic quantum mechanics. The full algebra
of relativistic quantum mechanics will be the Lorentz algebra (1.7a,b,d), the
Heisenberg algebra for the momenta and space-time coordinates (P ,,,x,,) in Minkowski
space together with the commutators that define the vector nature (under the Lorentz

group) of the P, and x,. Defining

M.. = €-.-. J M - K.
1j ijk "k 01 i
and measuring velocities and actions in units of ¢ and & (that is ¢ = # = 1) one obtains
[M;unMpO'] =1 (Mppgua + Muogpp - Mvpg;w' - Mpagup) (2'7a‘)
MuPy]l = i (Pug,a—Pu g, (2.7b)
[M[llhx,\] = i (X}l gyA —‘XV gp,\) (2'7C)

[P,P,] = 0 (2.7d)
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[x#,x,,] =0 (2.7¢)
[P;nxu] = ig;w 3 (2.7f)

We know that the Lorentz algebra, being semi-simple, is stable and that each one of the
2-dimensional Heisenberg algebras (P II’XV) is also stable in the non-linear sense discussed
above. When the algebras are combined through the covariance commutators (2.7b,c),
the natural question to ask is whether the whole algebra is stable or whether there are

any non-trivial deformations.

Actually the algebra % :{M#,,,P ,‘,x#,ﬂ} defined by the Eqgs.(2.7) is not stable.
This will be shown by exhibiting a 2-parameter deformation of R to a simple algebra
which itself is stable. To understand the role of the deformation parameters consider
first the Poincaré subalgebra % :{M o o I‘}' It is well known that already this
subalgebra is not stable and may be deformed[2’24]to the stable simple algebras of the
De Sitter groups O(4,1) or O(3,2). Writing :

P, = My, (2.8)

the commutation relations [M,,M,] and [M,,,P,] are the same as before, that is
(2.7a,b), and [P ,,P,] becomes

[P,P,] = _i%M,‘,, (2.9)

Eqgs.(2.7a),(2.7b) and (2.9), all together, are the algebra

M Mgl = (- Mpg8ac—MacBhg + MpeZad + MadBbe) (2.10)
of the 5-dimensional pseudo-orthogonal group with metric

Ean = (1,-1,-1,-1,¢,) e, = *1
That is, the Poincaré algebra deforms to the stable algebras of 0(3,2) or O(4,1),
according to the sign of ¢,.

This instability of the Poincaré algebra is however physically harmless. It simply
means that flat space is an isolated point in the set of arbitrarily curved spaces. As long
as the Poincaré group is used as the kinematical group of the tangent space to the
space-time manifold, and not as a group of motions in the manifold itself, it is perfectly

consistent to take R—+co and this deformation goes away.

For the full algebra %= {M pvoP #,x#,ﬂ} the situation is more interesting. In this
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case the stabilising deformation is obtained by setting

P, = § My, (2.11a)
Xy = ¢ Mg, (2.11b)
3 = —§ My (2.11c)
to obtain
[P,P,] = _i-l%M,,,, (2.12a)
[xu%,) = —ie5 € My, (2.12b)
[Ppxy] = 1gu 3 (2.12¢)
P9 = —if{—z Xy (2.12d)
Xl =i €@ Py (2.12¢)

with [M,,,M,,], [M,,,P,] and [M,,,,x,] being the same as before.
The stable algebra %, pto which % as been deformed is the algebra of the 6-

dimensional pseudo-orthogonal group with metric

gaa = (1,-1,-1,-1, ¢, ¢) € €65 = £1
As in the case of the Poincaré algebra discussed above if one is mostly concerned with

the algebra of observables in the tangent space one may take the limit R-oo and finally

obtain
M Mool = i (Mo + MyoBpp — M pus — MpuoBup) (2-13a)
M. Pyl = i(Pug,\—Py &) (2.13b)
M%) = i (Xp 82— %0 g0 (2.13c)
PP} =0 (2.13d)
[xupXy) = —ie; & My, (2.13¢)
[P, = i gy (2.13f)
[P3 = 0 (2.13g)
[l = ies &P (2.13h)

as our candidate for a robust algebra of relativistic quantum mechanics. The main
features are the non-commutativity of the x, coordinates and the fact that 3, previously

a trivial center of the Heisenberg algebra, becomes now a non-trivial operator. These are
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however the minimal changes that seem to be required if stability of the algebra of
observables (in the tangent plane) is a good guiding principle. Two fundamental
constants define this deformation. One is ¢, a fundamental length, the other the sign of
€x-

Notice that there other ways to deform the algebra R to the simple algebra of
the pseudo-orthogonal group in 6 dimensions. They correspond to different physical
identifications of the generators M,,, M;,, and M,;. For example, putting

Pu = %’ (M4# + M5u)

e My, - M
Xp = 2 ( 4p 5#)
the coordinates and momenta are now commuting variables and the changes occur only

in the Heisenberg algebra and the nature of 3, namely

L
[Pp)xu] = 1(’1%7 Mpu + Suv 3)

.o
[Pudl = —igr Py

Y
[x#,.‘l] =1 —I%—, Xy

However this identification of the physical observables in the deformed algebra does not
seem so natural as the previous one. Namely the fundamental length scale is tied up to
the large scale of the manifold curvature radius, in the sense that, if we take R'-c0, the

whole deformation vanishes.

The g0 algebra (2.13) has a simple representation by differential operators in a

five-dimensional space with coordinates (¢ p,q)

. 9

P[l = IW (2.143.)
: 2 )

My = i (&4 52 - 5,,56—,—‘) (2.14b)

X, :gﬂ—ie(fﬂa%—csné—?ﬁ) (2.14c¢)

3 =1-ie 2 (2.14d)

dn
In this representation the deformation has a simple interpretation. The space-time

coordinates x, in addition to an usual (continuous spectrum) component have a small
angular momentum component corresponding to a rotation (or hyperbolic rotation) in
the extra dimension. And the center of the Heisenberg algebra picks up a small

momentum in the extra dimension.
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The algebra (2.13) is seen to be the algebra of the pseudo-Euclidian groups
E(1,4) or E(2,3), depending on whether ¢ is —1 or +1. For the construction of
quantum fields it is the representations of these groups that should be used. Notice
however that only the Poincaré part of E(1,4) or E(2,3) corresponds to symmetry
operations and only this part has to be implemented by unitary operators. The space-
time fields ¥(x) are functionals over the auxiliary variables (¢,5), the correspondence
being established by the representation (2.14). The construction of the generalised
version of the usual quantum field theory models may then be carried out in a fairly

simple manner.

Being mostly concerned with the characterisation of a general stable framework
for relativistic quantum mechanics, it is outside the scope and the spirit of this paper to
discuss specific models. I would like however to mention that a simple model-

independent quantum mechanical sum rule follows from the double commutator

[x,[p,x]] = €5 e P (215)
Taking the expectation value of both sides in a normalised state ¥ and using generalised

momentum eigenvectors for the decompositions of the unit fdk |k><k| , one obtains

/ dk k { |<¢| x [k>* - Re (<y| x* [k><klp>} = 3 & <ylplv> (2.16)

If the state ¢ has a large momentum component, the right hand side becomes large and

this dipole momentum-type sum rule may lead to observable effects.

3. Remarks

# The idea of modifying the algebra of the space-time components x, in such a
way that they become non-commuting operators has already appeared several times in
the physical literature. Rather than being motivated (and forced) by stability
considerations, the aim of these proposals has been to endow space-time with a discrete
structure, to be able, for example, to construct quantum fields free of ultraviolet
divergences. Sometimes they simply postulate a non-zero commutator, others they are
guided by the formulation of field theory in curved spaces. Although the algebra we
arrived at, in Egs.(2.13), is so simple and appears in such a natural way in the context
of deformation theory, it seems that, strangely, it differs in some way or another from

the past proposals.
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In one scheme, for example, the coordinates are assumed to be the generators of
rotations in a 5-dimensional space with constant negative curvature. This possibility
was proposed long ago by Snyder[25] and the consequences of formulating field theories
in such spaces have been extensively studied by Kadishevsky and collaborators[26’27].
The coordinates commutation relations [x,,x,] are identical to (2.13e) however, because
of the representation of the momentum operators, the Heisenberg algebra is different

and, in particular, [P,,x,] has non-diagonal terms.

Ba.na.i[28] also proposed a specific non-zero commutator which only operates
between time and space coordinates, breaking Lorentz invariance. Many other
discussions exist concerning the emergence and the role of discrete or quantum space-
time, which however, in general, do not specify a definite complete operator

algebra[29_41] .

# Faddeev[3] pointed out that, besides the stabilising deformations leading from
non-relativistic to relativistic and from classical to quantum mechanics, the Einstein
theory of gravity might also be considered as a deformation in a stable direction. This
theory is based on curved pseudo Riemann manifolds. Therefore, in the set of Riemann
spaces, Minkowski space 1s a kind of degeneracy whereas a generic Riemann manifold is
stable in the sense that in its neighbourhood all spaces are curved. The deformation
parameter is the gravitation constant y which thus gains the same statute, as a

fundamental constant, as k& and c.

We have however seen that a natural way to stabilise the algebra is through a 2-
parameter deformation (¢,R). It seems that the R parameter is the one that relates to
the curvature of the manifold, on the large, and this is the reason why I have called

Rog oo 1L Eqs(2.13) the deformed algebra in tangent space.

On the other hand many of the authors that have concerned themselves with the
issue of the fundamental length were aiming at obtaining a natural scale for the masses
of the elementary particles. However the inverse of the mass scale of what are now
called the elementary particles leads to such length values that, for example, the effect
of the deformed commutators (2.13¢,h) should have by now been detected. So, in the
end, it might well be that the deformation parameter ¢, if it exists, is not directly

rclated either to the mass scale of elementary particles or to the gravitational constant.
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# In this paper all the algebra deformations that were considered are
deformations in the classical sense of Gerstenhaber, Nijenhuis and Richardson. Another
type of deformation that has received a great deal of attention lately, not only for
algebras and groups[42’43] but for other mathematical structures as well[44], is the
notion of g-deformation. The g-deformations involve exponential functions of the
algebra elements and therefore are deformations of the universal enveloping algebra, not
deformations of the algebra in the classical sense. However first steps have been given to
establish a stability theory for q—deformations[45] and recently also a connection was
established between g-deformations and regular *-deformations in an enlarged phase-
space[46’47]. Therefore it is probably interesting to reanalyse the problem of stability of

relativistic quantum mechanics in a q-deformation context as well.
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