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DEFORMATIONS WHICH PRESERVE
THE NON-IMMERSIVE LOCUS OF A MAP-GERM

DAVID MOND

Introduction.

Singular germs of maps f: (C2,0)~— (C3,0) present three distinct kinds of
degeneracy: non-immersiveness, non-transverse self-intersection, and triple self
intersection. In finitely determined germs, these may be measured by the number
C of cross-caps into which the singularity breaks up in a stable perturbation, the
Milnor number u(D}/Z,) of the quotient, by the natural Z,-action, of the
double-point scheme D?f, and the number T of ordinary triple points which
emerge in a stable perturbation, respectively. In fact, finiteness of all three
numbers is equivalent to finite determinacy ([8]), and so is a necessary and
sufficient condition for the existence of a versal unfolding ([5], [6]). However, in
many contexts, geometrical or other constraints may force one or more of these
degeneracies to be infinite. One way of recovering the notion of versal unfolding
in such a case is to consider only unfoldings in which the degeneracy in question is
left unchanged, and this is our approach here. We introduce the notion of
2-trivial unfoldings: that is, unfoldings in which the non-immersive locus of f is
deformed trivially. This generalises a technique used in [9]. Our principal result
is an infinitesimal criterion for versality within the category of X-trivial unfold-
ings, for germs of corank 1, Theorem 2.4, and thus in particular an infinitesimal
criterion for X-stability. We apply this in §3 to a variety of examples, and show in
particular that the germ parametrising the swallowtail surface of catastrophe
theory is Z-stable; moreover, if exp [7]: TR — R? is the map parametrising the
tangent developable surface of a real analytic space curve, then the germ of
exp [v] at the point (¢, 0)e TR is XZ-stable if the curvature of y at t is non-vanishing
and the torsion is non-vanishing or vanishes to first order, or if there is
a non-degenerate zero of curvature at ¢. It should be noted that none of these
germs has a (finite-dimensional) versal unfolding in the usual sense. Our versality
theorem has some unusual technical features; in particular, the space of infinitesi-
mal deformations considered is not a module over the ring of functions on the
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source. In the process of dealing with this difficulty, a canonically defined analytic
ring comes to light, leading to a canonical factorisation of the map-germ f. We
describe this briefly in §4.

The author thanks Andrew du Plessis for useful discussions, and Gunther
Bengel for help with the proof of 2.1.

§1. Preliminary definitions and notation.

Most of our notation is standard in singularity theory, following the usage of
Mather in [6] and of Wall in [ 12], though we prefer Mather’s 6( /) to Wall’s V(f).

Let f: (C",0) > (C?,0) be an analytic map-germ (all maps and germs will be
analytic in this paper), let W < J*(n,p) be a subvariety, and suppose that
Ff(©)eW. We say that an unfolding F: (C" x C% 0} - (C* x C%,0) of f is
W-trivial if the family

FfTW) ———— EFT(W)

0 » C?

is trivial as a deformation of possibly non-reduced spaces. Here j* F(x,u) =
Ffux).

For example, when W is the set of zero 1-jets in J*(n, 1), our definition is stricter
than that of y-constant deformation — we require that during the unfolding of f,
the algebra structure of ¢,/J, remain constant up to isomorphism.

The W-trivial unfolding F of f is W-versal if whenever G is another W-trivial
unfolding of f then G is equivalent to an unfolding induced from f. The germ f is
W-stable if it is its own W-versal unfolding.

We now concentrate on the case where W= 2! < J(n,p), and n < p. For
brevity we shall write jif ~1(2!) as 2!(f). We aim to prove an infinitesimal
criterion for Z*-versality of Z*-trivial unfoldings. This necessitates first a notion
of tangent space, and before that, some notation. If F: (C* x C%0) - (C? x C% 0)
is any unfolding of f: (C",0) - (C?,0), with F(x,u) = (f(x, u), ), then denote by
o,F the partial derivative df/du; evaluated at u = 0. Thus, 6,F € 6(f), the vector
space of infinitesimal deformations of f. Then set

0Z'(f) = {0,F| F is a XZ'-trivial unfolding of f}

This is the space of infinitesmal X!-trivial deformations of f. A priori it is not even
clear that it is a vector space. We will show that it is, and further, that it has
a manageable algebraic structure, which will be central in the proof of our



DEFORMATIONS WHICH PRESERVE THE NON-IMMERSIVE LOCUS. .. 23

versality criterion. One should observe that for a given f:(C”,0) — (C?,0), the set
of germs g: (C",0) — (C?,0) such that X'(f) and XZ'(g) are isomorphic, is not
a vector or even an affine space, and thus X! (f) cannot be identified with this set
of germs. Because of this, Damon’s general results on versality ([3]) do not apply
here.

All map-germs f:(C", 0) - (CF, 0) that we consider in this paper will be assumed
to be finite, and so by the Weierstrass preparation theorem ([4] chapter IV) will
induce in @, the structure of a finite ¢,-module.

§2. Construction of the space of infinitesimal Z-trivial deformations; statement
and proof of main theorem.

Suppose that j*f(0) e W and that p: (J*(n, p), jf(0)) — C" satisfies p~}(0) = W as
germs at j*f(0) of analytic spaces. Then the unfolding F of f is W-trivial if and
only if the unfolding d,,F of p oj*f defined by

d, F(x,u) = (p 0 j*f,(x),u)

is A -trivial (see [ 6] or [12] for the definition of the contact group ). Since it is
easy to calculate the tangent space to the set of ¢, trivial unfoldings, this suggests
the method we will use for calculating 8Z( f).

Let us now return to the case W = ', Given a map-germ f with j*f(0)e Z?,
choose p as above, and set df = p o df. For an unfolding F of f, write dF instead of
dy F. From the preceding remarks, it follows that 8,dF € TA#,df. We now define
amapd,: 0(f) - 0(df) by d,.(9; F) = 8,dF. Then 0Z'(f) < d }(T#,df). We will
shortly prove the opposite inclusion. Observe first that we can describe J* quite
explicitly once a choice of p is made. So for simplicity suppose that df,(0),.. .,
df,_ 1(0) are linearly independent and take for p the map L: (C",CP) » CF~"*!
sending the matrix whose rows are a,,...,, to (det (x;,. .., a,), det(a;,. .., o, 4,
Uyyg)s ..., det(ay,...,a,_, ). If Fis an unfolding of f (which for simplicity of
notation we take on one parameter), then one calculates easily that

0,dF = (det(&y,as,. .., a,) + det(xy,ds,...,0,) + ... +det(a, a,...,4,),
det(dy,.. .0, 1s%4q) + ... +det(@y,. ., 01,0t q)s.--
det(dy,...,0,-1,%,) + ... +det(ay,..., 0,1, 4%,))

where o; = df; (f; = ith component of f), and & = d((¢, F);). Writing elements of
0(f) and 6(df) as column vectors, we can express the linear operator d, as
a matrix; when n = 2, p = 3, then it is

o6 oo 8 o oo 0
0x, 0x;  9x, O0x, 0x; 0x, 0x, 0x,

o 0 ¥ o of, o Y o
Ox, dx, 0x; 0Ox, Ox, O0x, Jx, 0x

(*)
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2.1 LEMMA. Let G(x, u) = (g(x, u), u) be any d-parameter unfolding of df, and let
FO, L fDe0(f)satisfy d, f @) = 8,G. Then there exists a d-parameter unfolding
H(x,u) = (h(x,u),u) of f, such that

(i) 6H=F" i=1,...,d
(ii) dH = G.
Proor. Choose coordinates for f such that
SOt osXn) = Xpse e s X s fulXts oo 5 X0 oo, fo(X g X))

For i=1,...,n—1, let h(x,u) be any function such that dh;/du;(x,0) = /9,
hi(x,0) = fi(x). In order that H satisfy (ii), it is necessary and sufficient that for
j=n,...,p,

(lz) det(dxhl""’dxhn-—b dxhj) T Gi-n+1>
(where d_h; is the differential of h with respect to the x variable). This is a first
order linear PDE in the h; (since we have already fixed h,,...,h,_,), which we

may write in the form

"

Z ot (o, W) Ohy /0y (X, ) = Gyt 1.

k=1
In order that H be an unfolding of f, and satisfy (i), we require also
(1) Ohy/du(x,0) =fP(x) j=1,...d
(") hi(x,0) = fi(x).

Observe thatin (1,), a,(x,0) = 1. By the general theory of linear first order PDE’s,
the solutions of (1) satisfy an ODE along the bicharacteristics (x(t), u(z)) defined
by

x(1) = (x(r)u(z)) k=1,...,n

@
ufr)=0 j=1,....d

To get a well-posed Cauchy problem, we choose as initial hypersurface the
hyperplane x, = 0, since it is transverse to the bicharacteristics. Along the
bicharacteristics, h; satisfies

) dh;/dt(x(), u(t)) = gi—p+ 1 (x(z), u(7))

with initial values hy(x,,. .., x,_,0,u) which, if we ignore (1') and (1”), can be an
arbitrary function b(x,,...,x,.,u). Once b, is chosen, the standard existence
and uniqueness theorems guarantee the existence of a solution. We must show
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that by choosing b; appropriately, the solution will satisfy also (1') and (1”).
Clearly, we must set

4 bi(xyy. o3 Xy—1,0) = filxyy. .. 5%, 1,0)
5) b fouix,. .., %y-1,0) = f9(xy,. .. X, 1,0).

This presents no difficulty. Now restrict to the bicharacteristic through
(X4- -+ »Xn—1,0,0), which is simply (x,, ..., x, - ,7,0); we find that the solution of
(3) with initial conditions (4) and (5) automatically satisfies (1”), since G is an
unfolding of df, and ¢; _,,,, (x,0) = &f;/0x,(x).

Now differentiate (1;) with respect to u; and set u=0. Note that for
k=1,...,n—1,0h/0uix,0) = fU(x) and h(x,0) = fi(x), by our choice of the
hy, and that we have established that h(x,0) = fi(x). We obtain a differential
equation in which the only unknown quantity is é2h;/0x,0u;(x,0). Along the
bicharacteristics through (x;,. .., x,_,0,0) this can be regarded as an ODE in
0Oh;/0uy(x,0) with initial condition oh;/du(x,,...,x,_,0,0) = F9%%1s. s Xn-1,0)
(by (4)). However, this is precisely the differential equation satisfied by f;?, by
definition of the operator J* (this is the first time we invoke the hypothesis that
J*( [ = 0,G). Thus, the uniqueness of the solutions of ODE’s with initial condi-
tion, guarantees that (1) is satisfied, and this completes the proof, relative to the
choice of coordinates made at the outset. However, it is clear that the statement of
the Lemma is independent of choice of coordinates.

We will refer to the unfolding H constructed above as a lifting of G.
2.2 PROPOSITION. 0X'(f) = d; {(TA,df).

PRrOOF. Given g e T#,df, there exists a 1-parameter J,-trivial unfolding G of df,
with 8,G = §. By 2.1, for any element f0(f) such that d,(f) = g, there exists
a 1-parameter unfolding F of f such that 8, F = f, dF = G. As G is #-trivial, F is
X -trivial.

Observe that we have now established that 82!(f) is a vector space. However it
is not in general an 0,-submodule of 8(f), since d, is not O, -linear.

2.3 PROPOSITION. 0X'(f) is an O ,-module of 0(f) via f*.
PROOF. Suppose that f€8Z'(f) and re 0,. Then we have
d,(ro N)f) = (ro NA() + fidy(ro NFOX)) + ... + f,d,(ro £)3/6X,).

As TX df isan 0,-module, we need only show that for each i, J* (rof) 6/6~X,-)e TAdf.
Denote by 9/0Y;,k = 1,...,p — n + 1, the standard generators of 8(df) over 0,,.
Then d,((r of)9/6X;) is a sum of terms of the form

det(df;,....df;,_.deof)df,.,.....d)d/d%.
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By the chain rule, each of these is contained in (df)* My piy 6(df), and this is
itself contained in T#,df.

As we are assuming that f is a finite mag-germ, then by the Weierstrass
Preparation Theorem, 0(f) is a finite ¢ ,-module via f*, and hence since 0, is
Noetherian, by 2.3 2'(f) also is a finite ¢ -module.

Now we come to the main result:

2.4 THEOREM. Let f: (C",0) — (C?, 0) be a finite map-germ with a singularity of
type Z* at 0. Then a Z*-trivial d-parameter unfolding F of f is Z-versal if and only
if
1)) T f + C{8,F,...,0,F) = 6Z'(f).

(The second term on the left is the C-vector-space generated by the 0;F).

Proof. “Only if” is straightforward; the proof is almost identical to the
corresponding part of the versality theorem on page 189 of [ 5], though note that
we use the symbols T.of, f and T.of,F where Martinet uses Tf and TF; starting
with a 1-parameter X!-trivial unfolding G of f, the supposition that G is equival-
ent to an unfolding induced from F implies that ¢, G belongs to the left hand side
of (1). “If” also follows closely the scheme of the proof in [5], but there are
important differences. We need

2.5 Lemma. Let F:(C" x C%,0)— (C? x C%0)and G:(C" x C*,0)—(C” x C*,0)
be X'-trivial unfoldings of f Then there is a X'-trivial unfolding, L:
(C" x C* x C%0)—> (C? x C* x C'0), such that F = i*L and G = j*L, where
it C? > C? x Ctand j: C* - C? x C® are the usual embeddings.

ProoF. dF and dG are both X -trivial unfoldings of df, and we may embed
them both into a J,-trivial unfolding R of df, such that dF = i* Rand dG = j * R,
as follows: suppose that dF(x,u) = (M(x, W df (@ (x),u), dG(x,v) =
(N(x,v)-df (f,(x)), v), where M(x,u)eGl(p — n + 1,0, ), N(x,0)e GL(p — n + 1,
O +p), M(x,0) = N(x,0) = Identity matrix, and &(x, u) = (¢,(x),u) and ¥(x,v) =
(¥,(x), v) are diffeomorphisms with ¢ and ¢, both equal to the identity. Then set

R(x,u,0) = (M(x, u). N(x, ). df (0, (¥, (), u, )

The result now follows by 2.1 (observe that the proof of 2.1 allows us to assume
that the unfoldings F and G are embedded in the lifting of R).

In order to show that a X'-trivial unfolding F satisfying (1) is X!-versal,
following Martinet we take any other X*-trivial unfolding G, form a “direct sum”
unfolding H as in 2.5, and then show that H is equivalent to an unfolding induced
from F. Martinet’s proof consists of two steps, the geometric lemma ([5] XIV.2)
and the algebraic lemma ([5] XIV.3). Our proof differs only in the algebraic
lemma; in order to apply the geometric lemma we need
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2.6 LEMMA. Let H: (C" x C',0) = (C? x C",0) be a X'-trivial unfolding of f
(C",0) — (CP,0) such that

Tsd,f+ C(8,H,...,0,_ H> = 0Z\(f).

(Note the difference between this and (1)). Then there exist vector fields

-1

X =0/0u, + Y, E(w)d/ou; + Y, X;(x,u)d/dx;
i=1 j=1

r—1
Y = 3fou, + Y, E@fau+ 3, Y018/,
i=1 i=1

such that DH(X) = Yo H.
Proor. The equation DH(X) = Yo H can be solved if and only if
oh/ouge Tst,H + O4{6h/du,,. .. ,0h/0u,_ )},

where To/,H = 0,,,{0h/0x,,...,00/0x,} + 0,,4{0/0y,,...,0/3y,} is just the
parametrised version of T/, f. Now, let D,: (0, +4)" = (0,44 "' be the par-
ametrised version of d,, obtained from d, by replacing terms involving the
components of f by the corresponding components of & (so that J* is the
restriction to {u = 0} of D,). Clearly D (0h/du,)e TH,dH, where T ,dH =
On+a{Oh/Ox,. .., 00/0x,} + H*Myy g O, 4{0/0yy,...,0/3y,}, and so we com-
plete the proof with

2.7 LemMa. If H is an r-parameter X*-trivial unfolding of f, and if

(1) Tst,f+ C(8,H,...,0,_ H)> = 0Z'(f).
then
(3) Tel,H + 0,{0h/ouy,...,0hfou,_,} = D;*(TK dH).

ProOOF. (Compare the proof of XIV.3 in [5]). The proof of 2.3 shows that
D*~YTx,dH) is an 0,.,-module via H*, which is finitely generated since H is
a finite map-germ. If n: CP*" — C* is the standard projection, and we define the
0, .s,module M by

M = D YT dH)/Ts/,H
then it is a straightforward matter of checking to see that
) M/n*4,-M = 0Z'(f)/ T, f.

Since M is a finite 0, ,,-module via H*, (1') and (2), together with Nakayama’s
Lemma, imply that (3) holds.

The proof of 2.4 now proceeds exactly as does the proof on page 195 in [5], as
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described before Lemma 2.6. If F satisfies (1), and G is another unfolding, say on
b parameters, then (1') is satisfied by the direct sum unfolding H (taking
r=d + b), since &;H = §,F, for i=1,...,d. Then by 2.6, 2.7 and Martinet’s
geometric lemma, H is equivalent to the (d + b — 1)-parameter unfolding ¢ * H,,
where t: C?*® - C?*%~ 1 forgets the last coordinate and H, is obtained from H by
restriction of the parameter space to C***~! x {0}. Lemmas 2.6 and 2.7 now
apply to H,, and so H, isequivalent to the pull-back of the unfolding H, obtained
from H, by restricting the last of its parameters to 0; inductively, one deduces that
H is equivalent to the pull-back of F, and since G is a pull-back of H (G = j* H),
this proves the versality of F in the category of X'-trivial unfoldings of f.

§3. Examples..

1. If f is finitely .«/-determined, then df is finitely # -determined, for by the
Gaffney-Mather geometric criterion for finite determinacy ([12] page 492), jif
must be transverse to X! off 0; that is, df must be a submersion at every point of
df ~}(0)\ {0}, and this condition is equivalent to the finite # -determinacy of df, It
follows that 6X'(f) is of finite codimension in 8(f). This follows also more
directly from the fact that 6(f) > 6XZ*(f) o T/, f. Since dim (8(f)/0Z(f)) =
dim (0(df)/ T, df ), by 2.4 a necessary and sufficient condition for Z!-stability is
that cod (&, f) = cod (X, df). For the germs listed in [ 7] and [8], this holds only
for

Sk (6, 9) = (6%, y° + x¥*1y) k2 0
X (6,)) = (x,1° — x%y,xy? + y*),
and for those listed in [10], it holds only for
(x,3) = (%, y> + x*"1y), k20

2. Let f(x,y) = (x,xy + y¥*~ 1, y3)~(H,‘ in the notation of [7]). Then df (x, y) =
(x + (3k — 1)y**~2,3y2), s0 cod (A, df) = 1. The unfolding

F(x,y,uy, . th_y) =

3k—1

=0xy + YT uy wyt a0 U )

is Z*-trivial, and since an s/,-versal unfolding of S requires one extra parameter
(add 4, y to the third component), it follows that F is X!-versal. In this unfolding,
the k — 1 virtual triple points of f (see [8], page 374) are realised, in the sense that
for generic parameter values u, f, has k — 1 distinct triple points. This may be
shown by calculating the equations of the triple-point variety of F in the target
C* x C*~, (using for example the second Fitting ideal of a presentation of
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fF, (Ocn+x-1)), which turn out to be
X= Y=u1 +u22+... +uk_1Zk_1 =0,
with respect to coordinates X, Y, Z on C3.

3. The germs fi(x,y) = (x,¥%y%), fa(x.y) = (x, % xy*), f3(x,y) = (x,y*> +
xy, ¥t + 3xy2), fo(x, y) = (x,y* — x2y, y* — §x%y?)areall Z'-stable. We leave the
prooffor f; and f, as an exercise in the definitions: using the matrix (x) one shows
firsi that 0Z'(f) = 0,0/0X + 0,0/0Y + {C{x,y*} + y>C{x,y*}0/6Z, and then
calculates T/, f; using 4.1:16(i1) of [7]. For f,, we now sketch the proof: if
g(x,y) = (x,y® — x%y) is obtained from f by forgetting the last component, then
Tel,g = 0,0/0X + {0, — {y}}8/dY, so every element f € 8(f) satisfies an equa-
tion

f = ayd/dY + ¢d/0Z (mod Tst, f)

where o € C and c e (0,. Now a calculation shows easily that f € 8Z(f)if and only
if =0 and ceR,, where R, = {re,|dr/dye(3y* — x*)}. Now R, is an
0;-submodule of @, via f*, and finite, as f is clearly finite. So by Nakayama’s
Lemma, we need only check that

Roa/az < Tdef'i' .//{3 Roa/az.

By using the Division Theorem ([4] chapter IV), one sees easily that
Ry =TI* + f~1(0,) (where I = (3y® — x?)), and since f~'0,0/0Z < T, f, we
need only check that

120/8Z < Tl / + 4+ 120/0Z.

Now #;-I*> o (x,y%)I?, and therefore we need only find (3y* — x2)?6/0Z,
y(3y* — x*)?9/0Z and y*(3y* — x*)?0/0Z in Tl £ In fact these are, respect-
ively, equal to of({9Y + X*}0/0Z), tf ({—9/4(y* — x*y))d/0x + 3/2 y*0/dy) +
of ((9/4) Y0/0X — Z3/0Y — X*Y8/0Z) and of ({9Y? + 12X%Z)5/0Z).

The proof of the Z'-stability of f, closely resembles this last proof, except that
it is slightly simpler, since in this case the map g obtained by forgetting the last
component of f; is stable.

The map-germs f;, f; f; and f, are all defined over R, and f}, f, and f, are in
fact equivalent to the germ at points (¢,, 0) e TR of the map exp [y] parametrising
the tangent developable surface of a space curve, where, respectively, the curva-
ture and torsion of y at ¢, are both non-zero, curvature is non-zero and torsion
vanishes to first order at ty, and there is a non-degenerate zero of curvature at ¢,
see [2], [9], [11]. The germ f; has as image the swallowtail surface (the dis-
criminant of a versal unfolding of an A, singularity) familiar from catastrophe
theory.
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Our theorems on Z-stability and versality apply without change in the real
analytic category, but in order to extend them to the C* category, it is necessary
to prove that Z!(f) is a finite module over the ring &, of smooth function germs
on (R?,0). The corresponding result in the analytic case follows from the fact that

, is Woetherian, and the Noetherian property fails for rings of C® function
germs However, Edward Bierstone has informed me that finiteness of 62'(f)
over &, can be proved using the results of [1].

§4. The ring Ro(/) and the canonical factorisation.

In the proof of 2.3 (that 82 (f) is an @,-module via f*), it was in fact shown
that 8Z!(f) is closed under multiplication by elements of the set

Ro(f) = {geO,|det(df, ,...,df; _,.dg)e(df)*(I) G, for all
1gi,<...<i,_; £p}.

Here I is the ideal generated by then x nminors of the generic n x p matrix. The
smooth part of the variety it defines is of course the submanifold Z* of L(n, p). In
fact Ro(f) is a local subring of ¢,, with maximal ideal .#, N Ry(f), over which, as
we have seen, 02( ) is a module. We list some of its further properties, including
a more succint characterisation, in

4.1 ProrosiTioN. Let f:(C",0) = (CP,0) be an analytic map-germ (not necess-

arily of corank 1), and suppose n < p. Then

@) Ro(f)={g€C,ldg n f71Q"1(C?) = f71Q"(CP)C,}.

(i) If f is of corank 1, then Ro(f) = {ge 0, dged(f "' 0,)0, for all C-linear
derivations ¢: ¢, - 0,}.

(i) If f; = Yo fr00 (withy, ¢ diffeomorphisms), then Ro(f;) = ¢~ H(Ro(f2)-

(iv) Ro(f)is an analytic ring: if g,,...,9,€ Ro(f) and g = (g,,...,9,):(C",0) —
(C*,0), then g~ 10, = Ro(f). Moreover, Ry(f) is finitely generated as an
analytic ring.

Proor. Parts (i), (i) and (iii) are straightforward, as is the fact that R,(f)is an
analytic ring. Its finite generation follows from the fact that since f is finite, ¢, is
a finite f~'0, module, and therefore its ¢),-submodule Ry(f) is also finite.
A fortiori, Ry(f) itself is also Noetherian. If g,,. . ., g, generate the maximal ideal
in Ro(f) (as an ideal), then since Ry(f) = f ~'(0,), we have (gy,. .., ¢,)0, >
f *.#,0,, and so from the finiteness of f we deduce the finiteness of g. It follows
that Ro(f) is a finite 0,-module via g*, and hence, by Nakayama’s Lemma, that
Ro(f) = g0, since clearly Ry(f) = g7 10, + g* #.R, (f).

The last property leads to the canonical factorisation of the title of this section:
ifasin the proof of 4.1(iv), Ro(f) = g~ *(0,), then in particular f ~ Y0, = g~(0)),
and so there exist analytic functions h,,.. .»h,e0; such that, setting
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h = (hy,...,h,), wehave f = hog. Maps g constructed in this way have a special
property:

4.2 PROPOSITION. Let f and g be as described in the preceding paragraph. Then
Ro(9) = 9~ 1(0).

Proor. This follows from 4.1 (ii); for evidently, by 4.2(ii), for any C-derivation
a: @n - (Om a(Ro(f))(pn = a(f_ 1(Op)@n'

It would be interesting to characterise the maps h arising in the paragraph
preceding 4.2.
Our final observation on this topic is

4.3 PRrOPOSITION. If f is a finite map-germ of corank 1, then Ry(f) separates
points, and thus the first map in the canonical factorisation is injective.

Proor. We show that if I = ¢, is any proper ideal not contained in
(x1s---»X%,_1) and R(I) = {ge 0,| 0g/dx,€ I}, then R separates points. The con-
clusion then follows, for once a map-germ f of corank 1 is written in linearly
adapted coordinates f(xy,...,%,) = (X1, .., Xp— 15 fllX1s 0 o0 s X oos [olX gy ey X)),
Ro(f) = R() with I = (0f,/0x,, Of, + 1/0%,,. . .,0f,/0x,). The finiteness of f is then
equivalent to I ¢ (xq,...,%,_1).

It will be convenient to write y instead of x,, and to denote points in C” in the
form (x, y).

If I =« J then R(I) = R{J), so if R(I) separates points, so also does R(J).
Therefore we may assume that [ is principal, generated by p(x, y). We may also
assume that pé(x;,...,x,_ ), and then by the division theorem that p is a poly-
nomial y* + ¢,_(x)y* "' + ... + ¢o(x). Evidently all functions of x,, ...,x,_,
alone lie in R(I), so it is necessary to show only that R(I) separates points with
equal x coordinates. Let U = C"~! be a neighbourhood of 0 in which all of the
coefficients ¢; are holomorphic, let x, e U, and let y,, y, and z,, z, be two pairs of
distinct points in C. Then there exists g e C[y] such that g'(y) is divisible in C[y]
by p(x,, y), and g(y;) = z;. The existence of such a polynomial g is an easy exercise
in polynomial interpolation: the condition on g’ amounts to no more than
acondition onits divisor, that v(g') = v(p(x4,-) at each of the zeros of p(x,,-), and
to this finite condition is appended the condition on the values of g at y, and y,.
Now, by the division algorithm, we may write any polynomial g(y) in the form

(1) 9 = q()p(xo, y)* + ap + o,y + ... + ) +

+ G 1 [P0, Y)Y + tr s [ yP(XP(x0, Y)Y + ... + gy [ ¥ 72 p(xo, Y)dy,

where we integrate formally, i.e. | y’dy = y'*'/j + 1. Upon differentiation, it is
clear that in order that ¢’ be divisible by p(x,, y), we must have a; = ... = o, = 0.
We conclude that the polynomial g(y) whose existence was invoked in the
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previous paragraph, must have this special form (with o; = ... = o, = 0). Then
g can be extended to a function §on U x C by allowing x to vary in the defining
equation (1). Evidently, je R(I), and §(xo,y1) # §(Xo,y,)- This completes the
proof. ‘
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