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We recall a construction of non-commutative algebras related to a one-parameter
family of (deformed) spheres and tori, and show that in the case of tori, the ∗-algebras
can be completed into C*-algebras isomorphic to the standard non-commutative
torus. As the former was constructed in the context of matrix (or fuzzy) geometries, it
provides an important link to the framework of non-commutative geometry, and opens
up for a concrete way to study deformations of non-commutative tori. Furthermore,
we show how the well-known fuzzy sphere and fuzzy torus can be obtained as formal
scaling limits of finite-dimensional representations of the deformed algebras, and their
projective modules are described together with connections of constant curvature.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732099]

I. INTRODUCTION

Over the last decades, there has been an increasing interest in non-commutative geometries and
many applications in mathematics, as well as mathematical physics, have emerged. However, it is fair
to say that there is no single framework for a non-commutative version of geometry, although there
are several interesting ones; one of the more well-known theories was presented by Alain Connes.12

Another approach, which has been frequently applied in physics, is the concept of “fuzzy spaces”,
where the algebra of smooth functions on a manifold is replaced by a sequence of matrix algebras
(of increasing dimension). This was first introduced in Ref. 16, in the case of S2, where it was used to
regularize Membrane Theory, and it was later extended to the torus.15, 17 Several constructions have
been used to establish existence of such matrix analogues for arbitrary surfaces (and manifolds),
e.g., Refs. 8, 9, and 18, and, in particular, it was proven that the construction of fuzzy spaces is
possible for every (quantizable) compact Kähler manifold.10 Even though the proof in Ref. 10 is
constructive, it provides no practical means, with which explicit realizations can be constructed
(apart from the case of the torus). Moreover, it does not provide any insight about differential and
metric properties of these fuzzy spaces. Such investigations were later undertaken and culminated
in a non-commutative matrix geometry (cf. Refs. 14, 19, and 20).

However, only a few explicit examples were around (mainly the fuzzy sphere and the fuzzy
torus), and it was not satisfactorily understood how geometry and topology presented themselves
in sequences of matrix algebras. For instance, the constructions giving the fuzzy sphere and the
fuzzy torus are very different in nature. In Refs. 1 and 2 explicit sequences of matrix algebras were
constructed as fuzzy analogues of surfaces described as inverse images of polynomials in R3. In
particular, a one parameter family of surfaces, interpolating between spheres and tori, was consid-
ered and all finite dimensional (Hermitian) representations of the corresponding non-commutative
algebras were found and classified. For the first time, one could explicitly study how representation
theory reflects the topology of surfaces and how smooth deformations of the geometry induce smooth
changes in the representations (see also Refs. 5 and 6).

Although there is (yet) no final definition of non-commutative geometry, there is a very natural
generalization of topology to the non-commutative setting. Namely, via the Gelfand representation,
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commutative C*-algebras can be shown to be in correspondence with function algebras (of con-
tinuous functions) on locally compact Hausdorff spaces. Therefore, one may consider C*-algebras
as the analogue of (in general non-commutative) algebras of continuous functions on topological
spaces. One of the most well known examples is the non-commutative torus.11 It is defined as the
universal C*-algebra generated by two unitary elements U, V satisfying the relation V U = qU V
for some q ∈ C with |q| = 1.

In this note, we shall investigate the relation of the construction of the fuzzy tori in Refs. 1 and
2 to the topological non-commutative torus defined above. After all, even though they arise from
different tori (in a metric sense; the first is deformed and the latter is round), they should provide
the same topology, if these concepts are compatible. This comparison is a priori not well defined,
since the deformed tori do not have a C*-algebraic structure; there is no natural norm. However,
we shall prove that it is possible to introduce a C*-norm in which the completion is isomorphic to
the non-commutative torus. We believe that this introduces an important link between two distinct
frameworks, as well as indicating that they are compatible from a topological point of view.

We start by recalling the notion of a fuzzy manifold and give a short description of the two
most well-known examples: the fuzzy sphere and the fuzzy torus. Then we review the construction
of the non-commutative algebras related to (deformed) spheres and tori, and a basis for these
algebras is constructed, in which one can complete the deformed torus algebras into C*-algebras
isomorphic to the standard non-commutative torus. Finally, we consider projective modules (as well
as finite dimensional representations) of the non-commutative torus in this framework, together with
connections of constant curvature.

II. THE FUZZY SPHERE AND THE FUZZY TORUS

In general, a fuzzy analogue of a Poisson manifold M can be thought of as a sequence of maps
{Tα}∞α=1, where each Tα is a linear map from A = C∞(M) (or, perhaps, a subalgebra) to the set of
Hermitian Nα × Nα matrices, such that Nα increases as α tends to infinity. The sequence of maps
should (at least) have the following properties:

lim
α→∞ ||Tα( f )|| < ∞, (2.1)

lim
α→∞ ||Tα( f h) − Tα( f )Tα(h)|| = 0, (2.2)

lim
α→∞

∣∣∣∣
∣∣∣∣ 1

i�α

[Tα( f ), Tα(h)] − Tα({ f, h})
∣∣∣∣
∣∣∣∣ (2.3)

for all f, h ∈ A, where �α = �(Nα) is a strictly decreasing positive function of Nα (cf. Ref. 3). The
third property is the most prominent, telling us that the Poisson bracket of functions is approximated
by the commutator of matrices. In Ref. 16, such a sequence was constructed for the round sphere
using Hermitian representations of su(2). Namely, define the Hermitian matrices S1, S2, S3 by giving
their non-zero matrix elements as

(
S1

)
k,k+1 = 1

2

√
k(N − k) = (

S1
)

k+1,k k = 1, . . . , N − 1

(
S2

)
k,k+1 = − i

2

√
k(N − k) = −(

S2
)

k+1,k
k = 1, . . . , N − 1

(
S3

)
k,k = 1

2
(N + 1 − 2k) k = 1, . . . , N .

They satisfy [Sa, Sb] = i
∑3

c=1 εabc Sc and S2
1 + S2

2 + S2
3 = N 2−1

4 1, which, in particular, means that
they provide an N-dimensional representation of su(2). Furthermore, setting Xa = 2√

N 2−1
Sa implies
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that

[Xa, Xb] = 2i√
N 2 − 1

3∑
c=1

εabc Xc

X2
1 + X2

2 + X2
3 = 1.

The round sphere can be considered as embedded in R3 via the standard spherical coordinates x1

= r sin θcos ϕ, x2 = r sin θsin ϕ and x3 = r cos θ , together with the Poisson structure

{ f, h} = 1

sin θ

(
(∂θ f )(∂ϕh) − (∂ϕ f )(∂θ h)

)
.

The maps Tα (with Nα = α) are then defined as Tα(x1) = X1, Tα(x2) = X2, Tα(x3) = X3 and extended
to arbitrary polynomials by symmetrization of the corresponding non-commutative polynomial. One
can then check that relations (2.1)–(2.3) are fulfilled with � = 2/

√
N 2 − 1 (see Ref. 16 for details).

In the case of the torus,15, 17 one introduces the unitary N × N matrices g and h, with non-zero
components

gkk = qk−1 k = 1, . . . , N

hk,k+1 = 1 k = 1, . . . , N − 1

hN ,1 = 1,

where q = e2iπ /N. Note that these matrices satisfy hg = qgh. Starting from the Fourier modes

Ym1,m2 = ei(m1ϕ1+m2ϕ2),

where m1, m2 ∈ Z, together with the Poisson bracket

{ f, h} = (
∂ϕ1 f

)(
∂ϕ2 h

) − (
∂ϕ2 f

)(
∂ϕ1 h

)
,

one defines

Tα(Ym1,m2 ) = q
1
2 m1m2 gm1 hm2

and extends it through linearity. Again, one may check that these maps fulfill (2.1)–(2.3) with �

= sin (π /N).

III. CONSTRUCTION OF NON-COMMUTATIVE ALGEBRAS

Let us recall how to construct non-commutative algebras related to level sets of a polynomial
in R3.1, 2, 4–6 Given a polynomial C ∈ R[x, y, z] ≡ R[x1, x2, x3], one can define a Poisson bracket
by setting

{ f, g} = ∇C · (∇ f × ∇g
)
, (3.1)

for f, g ∈ C∞(R3). In particular, it follows that {xi, xj} = εijk∂kC. By construction, the polynomial
C(x, y, z) Poisson commutes with all functions, which implies that the Poisson structure restricts
to the inverse image 	 = C− 1(0). Thus, it defines a Poisson structure on the quotient algebra
R[x, y, z]/ 〈C(x, y, z)〉, which can be identified with polynomial functions on 	.

To construct a non-commutative version of the above algebra, one starts with the free (non-
commutative) associative algebra C[X, Y, Z ] and imposes the relations

[X, Y ] = i� : ∂zC :

[Y, Z ] = i� : ∂x C : (3.2)

[Z , X ] = i� : ∂yC :

where � ∈ R and : ∂ iC : denotes a choice of ordering of the (commutative) polynomial ∂ iC. Let us
assume that there exists a sequence of increasing integers {Nα}∞α=1 together with a strictly decreasing
sequence �α = �(Nα) such that one can find a Nα-dimensional representation of the above relations
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with � = �α and such that (2.1) holds; we denote the corresponding sequences of matrices by {Xα},
{Yα}, and {Zα}. Defining linear maps Tα , from polynomial functions on 	 to Nα × Nα matrices,
by Tα(x) = Xα , Tα(y) = Yα and Tα(z) = Zα , and extending linearly to polynomials in x, y, z by an
arbitrary choice of ordering, gives a sequence of maps fulfilling relations (2.2)–(2.3) of a fuzzy space.
Namely, since relations (3.3) imply that a change in ordering will only differ by terms proportional
to � (hence, tending to 0 as α → ∞), (2.2) is fulfilled. Moreover, by construction, the commutator
is proportional to a non-commutative ordering of the Poisson bracket, which, together with the
previous fact, implies that (2.3) holds. Thus, the construction as outlined above, will generically
provide a fuzzy analogue of the surface 	.

In Refs. 1 and 2, the authors considered the polynomial

C(x, y, z) = 1

2

(
x2 + y2 − μ

)2 + 1

2
z2 − 1

2
, (3.3)

whose inverse image C− 1(0) describes a sphere for μ < 1 and a torus for μ > 1. One computes that

{x, y} = z {y, z} = 2x(x2 + y2 − μ) {z, x} = 2y(x2 + y2 − μ)

and the corresponding non-commutative relations were chosen as

[X, Y ] = i�Z , (3.4)

[Y, Z ] = i�
(

2X3 + XY 2 + Y 2 X − 2μX
)
, (3.5)

[Z , X ] = i�
(

2Y 3 + Y X2 + X2Y − 2μY
)
. (3.6)

The algebra is then defined as C�,μ = C[X, Y, Z ]/I , where I is the two-sided ideal generated by the
above relations. Using the “Diamond lemma,”7 it was proved that C�,μ is a non-trivial algebra for
which a basis can be computed.2 We shall also consider C�,μ to be a ∗-algebra with X* = X, Y* = Y
and Z* = Z.

In the Poisson algebra, the polynomial C is a Poisson central element of the algebra. It turns out
that a non-commutative analogue of C is a central element in C�,μ. Namely, by setting

Ĉ = (
X2 + Y 2 − μ1

)2 + Z2, (3.7)

one computes that [X, Ĉ] = [Y, Ĉ] = [Z , Ĉ] = 0. Thus, in analogy with (3.3) it is natural to also
impose Ĉ = 1 in C�,μ. As we shall see, the presentation of the algebra in terms of X, Y, and
Z is appropriate when comparing with spherical geometries (and the “fuzzy sphere”); there is,
however, another choice of basis which naturally makes contact with non-commutative tori. By
setting W = X + iY and eliminating Z = 1

i� [X, Y ], the remaining relations may be written as(
W 2W ∗ + W ∗W 2) (1 + �

2) = 4μ�
2W + 2(1 − �

2)W W ∗W, (3.8)

1

4

(
W W ∗ + W ∗W − 2μ1

)2 + 1

4�4

(
W W ∗ − W ∗W

)2 = 1. (3.9)

Furthermore, by introducing


 = 1

2�

(
W W ∗ − W ∗W

) + i

2

(
W W ∗ + W ∗W − 2μ1

)
,

the above algebra can be presented as

W
 = q
W ; W ∗
 = q̄
W ∗, (3.10)

W ∗
∗ = q
∗W ∗ ; W
∗ = q̄
∗W, (3.11)
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∗
 = 

∗ = 1, (3.12)

W W ∗ = z
 + z̄
∗ + μ1, (3.13)

W ∗W = −z̄
 − z
∗ + μ1, (3.14)

where q = e2π iθ , z = eiπθ /2i cos πθ and θ is related to � via � = tan πθ .
Note that the above relations are quite similar to those of the standard non-commutative torus,

generated by two unitary operators U, V satisfying V U = qU V . The difference is the deformed
unitarity of the operator W . Let us now define the algebra together with the parameter ranges that
we shall be interested in.

Definition 3.1: Let μ, θ ∈ R such that μ > 0 and |μ cos πθ | > 1. By A0
μ,θ , we denote the

quotient of the (unital) free ∗-algebra C 〈W, W ∗,
,
∗〉 and the two-sided ideal generated by
relations (3.10)–(3.14).

Again, one can make use of the Diamond lemma7 to explicitly compute a basis of A0
μ,θ .

Proposition 3.2: A basis for A0
μ,θ is given by

T �m = qm1m2/2
m1 W m2

S�n = q−n1n2/2
n1 (W ∗)n2 ,

where �m = (m1, m2) ∈ Z × Z≥0 and �n = (n1, n2) ∈ Z × Z≥1. Moreover, it holds that

T �m T�n = q− �m×�n/2T �m+�n

S �m S�n = q �m×�n/2S �m+�n,

where �m × �n = m1n2 − n1m2.

Proof: To prove that T �m and S�n provide a basis for the algebra, we make use of the “Diamond
lemma”, and refer to Ref. 7 for details. Thus, relations (3.10)–(3.14) are put into the reduction system

S1 = (W
, q
W ) S2 = (W
∗, q̄
∗W ) S3 = (W ∗
∗, q
∗W ∗)

S4 = (W ∗
, q̄
W ∗) S5 = (

∗, 1) S6 = (
∗
, 1)

S7 = (W W ∗, z
 + z̄
∗ + μ1) S8 = (W ∗W,−z̄
 − z
∗ + μ1),

and a compatible ordering is chosen as follows: if two words are of different total order (in
W, W ∗,
,
∗), then the one with lower order is smaller than the one with higher order. If two
words are of the same order, they are comparable if the orders in W, W ∗,
,
∗ are separately equal.
Then the ordering is lexicographic with respect to the alphabet 
,
∗, W, W ∗. With this ordering
one easily checks that pi ≥ qij, where Si = (pi,

∑
jqij). Furthermore, this ordering has the descending

chain condition.
There are several ambiguities to be checked in this reduction system. For instance, let us consider

W W ∗
. One needs to check that it reduces to the same expression if we use S7 to replace W W ∗ or
S4 to replace W ∗
. One computes(

z
 + z̄
∗ + μ1
)

 − W

(
q̄
W ∗) = (

z
 + z̄
∗ + μ1
)

 − qq̄
W W ∗

= (
z
 + z̄
∗ + μ1

)

 − 


(
z
 + z̄
∗ + μ1

) = 0.

The other ambiguities can also be checked to be resolvable. Hence, by the Diamond lemma, a basis
for the algebra is provided by the irreducible words. Denoting (
*)n = 
− n the irreducible words
are given by T �m and S�n . To prove the product formulas, one simply uses the relations to reorder the
expressions. �
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IV. RELATION TO THE STANDARD NON-COMMUTATIVE TORUS

Let U, V be the generators of the non-commutative torus Cθ ;11–13 i.e., the universal C*-algebra
generated by the relations

V U = ei2πθU V

U ∗U = UU ∗ = 1

V ∗V = V V ∗ = 1.

In what follows, we will show that one can map A0
μ,θ into Cθ and use the induced norm to complete

A0
μ,θ to a C*-algebra isomorphic to Cθ . Let us start by proving a result about the spectrum of a

particular element in Cθ , that is used to construct a ∗-homomorphism from A0
μ,θ to Cθ .

Lemma 4.1: If |μ cos πθ | > 1 and μ > 0 then the element μ1 + zeiπϕU + z̄e−iπϕU ∗, with z
= eiπθ /2i cos πθ , is positive and invertible in Cθ for all ϕ ∈ R.

Proof: The element is clearly Hermitian and let us write

μ1 + zeiπϕU + z̄e−iπϕU ∗ ≡ μ1 − B.

To study the spectrum, we consider the invertibility of the element (μ − λ)1 − B for different λ. It
is a standard fact that this element is invertible if 1

|μ−λ| ||B|| < 1. One computes

1

|μ − λ| ||B|| = 1

2|(μ − λ) cos πθ |
∣∣∣∣eiπϕU + eiπϕU ∗∣∣∣∣ ≤ 1

|(μ − λ) cos πθ | ,

which is less than one if |(μ − λ) cos πθ | > 1. Since |μ cos πθ | > 1 by assumption (and μ > 0), it
follows that 1

|μ−λ| ||B|| < 1 for all λ ≤ 0. Hence, μ1 − B is invertible and the spectrum is contained
in (0, ∞). �
Thus, it follows from Lemma 4.1 that if μ > 0 is chosen such that |μ cos πθ | > 1 then both√

μ1 + zU + z̄U ∗ and its inverse exist in Cθ .

Proposition 4.2: The map φ, defined by

φ(W ) =
(√

μ1 + zU + z̄U ∗
)

V

φ(
) = U,

induces an injective ∗-homomorphism from A0
μ,θ to Cθ .

Proof: First of all, one has to check that the map is well defined, i.e., it respects the relations in
A0

μ,θ ; for instance, denoting R = μ1 + zU + z̄U ∗, one computes

φ(W W ∗ − z
 − z̄
∗ − μ1) =
√

RV V ∗√R − zU − z̄U ∗ − μ1

= R − zU − z̄U ∗ − μ1 = 0,

by using the relations in Cθ . The remaining relations are checked in a similar way. Now, let us prove
that φ is injective. It follows from Proposition 3.2 that an arbitrary element a ∈ A0

μ,θ can be written
as

a =
∑

�m∈Z×Z≥0

a �m
m1 W m2 +
∑

�n∈Z×Z≥1

b�n
n1 (W ∗)n2 ,

(where all but a finite number of coefficients are zero) which implies that

φ(a) =
∑

�m
a �mU m1 (

√
RV )m2 +

∑
�n

b�nU n1 (V ∗√R)n2 .

Note that Lemma 4.1 implies that R(qk) = μ1 + zqkU + z̄qkU ∗ is positive and invertible for all
k ∈ Z, which in particular implies that (

√
R)V = V

√
R(q̄) and V ∗√R = (√

R(q̄)
)
V ∗. Thus, one

Downloaded 16 Oct 2012 to 130.236.83.30. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



073505-7 J. Arnlind and H. Grosse J. Math. Phys. 53, 073505 (2012)

concludes that

φ(a) =
∑

�m
a �m

( m2−1∏
k=0

√
R(q̄k)

)
U m1 V m2 +

∑
�n

b�n

( n2∏
k=1

√
R(q̄k)

)
U n1 (V ∗)n2 .

Since elements of the form ∑
�m∈Z×Z

c �mU m1 V m2

form a basis of a dense subset of Cθ , it follows that if φ(a) = 0 then one must have a �m = b�n = 0 for
all �m and �n. Hence, a = 0, which proves that φ is injective. �
Since φ is injective, one can define a C*-norm on A0

μ,θ by setting ||a|| = ||φ(a)|| for all a ∈ A0
μ,θ ,

and by Aμ,θ we denote the completion of A0
μ,θ in this norm. Moreover, φ can be extended to Aμ,θ by

continuity, and (by a slight abuse of notation) we shall also denote the extended map by φ.

Proposition 4.3: The map φ : Aμ,θ → Cθ is an isomorphism of C*-algebras.

Proof: As in Lemma 4.1, one can show that μ1 + z
 + z̄
∗ is positive and invertible in Aμ,θ .
Hence, one constructs the inverse of φ by setting

φ−1(V ) = 1√
μ1 + z
 + z̄
∗ W

φ−1(U ) = 
,

(which is easily shown to be a well defined map) and extending it as a ∗-homomorphism through
continuity. �
V. PROJECTIVE MODULES

In Ref. 2 all finite-dimensional Hermitian ∗-representations of C�,μ were constructed and clas-
sified. It was found that, in the case of algebras related to tori, the parameter θ has to be a rational
number for finite dimensional representations to exist; which is in the same spirit as for Cθ . Firstly,
we compare these finite dimensional representations and show that one can be obtained as a for-
mal scaling limit of the other. Secondly, we display how the standard projective modules of the
non-commutative torus can be presented for Aμ,θ , as well as their connections of constant curvature.

A. Finite dimensional representations

For rational θ , where there exists an integer N such that qN = ei2πNθ = 1, there are finite-
dimensional representations of Cθ , given by setting U = g and V = h, where g and h are the
matrices introduced in Sect. II. If one considers relations (3.10)–(3.14), and introduces W̃ = εW
and sets μ = 1/ε2, relations (3.13) and (3.14) become

W̃ W̃ ∗ = ε2
(
z
 + z̄
∗) + 1,

W̃ ∗W̃ = ε2
( − z
 − z̄
∗) + 1,

which reduces to the fact that W̃ is unitary as ε → 0. Clearly, Eqs. (3.10)–(3.12) are invariant under
this rescaling, and the resulting set of relations coincides with those defining Cθ as ε → 0. In Ref. 2,
the non-zero matrix elements of W = X + iY , in an N-dimensional irreducible representation (for
μ > 1), were found to be

WN ,1 =
√

μ + 1

cos πθ

Wl,l+1 =
√

μ + cos 2πlθ

cos πθ
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for l = 1, . . . , N − 1, which implies that

W̃N ,1 = ε

√
1

ε2
+ 1

cos πθ
→ 1

W̃l,l+1 = ε

√
1

ε2
+ cos 2πlθ

cos πθ
→ 1

as ε → 0. Even without any rescaling, it holds that 
 is a matrix with the N roots of unity on the
diagonal. As a complementary remark, let us note that the Lie algebra su(2), which defines the fuzzy
sphere (as in Sec. II), can be obtained from (3.4)–(3.6) as the limit ε → 0 when setting X̃ = X/ε,
Ỹ = Y ε, Z̃ = Z/ε as well as � = kε.

B. Projective modules

In Ref. 11, finitely generated projective modules of the non-commutative torus Cθ were intro-
duced. For the sake of comparison, let us see how these modules can be presented for A0

μ,θ . Let ξm,n

be the vector space S(R × Zn), i.e., the space of Schwartz functions in one real variable x and one
discrete variable k ∈ Zn . By defining(

φW
)
(x, k) = W (x, k)φ(x − ε, k − 1), (5.1)

(
φW ∗)(x, k) = W (x + ε, k + 1)φ(x + ε, k + 1), (5.2)

(
φ


)
(x, k) = e2π i(x−mk/n)φ(x, k), (5.3)

(
φ
∗)(x, k) = e−2π i(x−mk/n)φ(x, k), (5.4)

where ε = (m + nθ )/n and

W (k, x) =
√

μ + sin
(
2π (x − mk/n) − πθ

)
cos πθ

, (5.5)

one can check that ξm,n becomes a right A0
μ,θ module.

The standard derivations on Cθ , defined by

∂1U = iU ∂2U = 0

∂1V = 0 ∂2V = iV,

and extended to the smooth part of Cθ , can be pulled back to the smooth part of Aμ,θ (defined as the
inverse image of the smooth part of Cθ ) giving

∂1
 = i
 ∂2
 = 0

∂1W = i(z
 − z̄
∗)
(
μ1 + z
 + z̄
∗)−1

W

∂2W = iW.

Furthermore, a connection may be defined on the above modules in a standard manner. Namely, the
linear operators ∇1, ∇2 : ξm,n → ξm,n, given as

(∇1φ
)
(x, k) = 1

2π

dφ

dx
(x, k)

(∇2φ
)
(x, k) = i

ε
xφ(x, k),
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define a connection on ξm,n, i.e., they fulfill

∇i (φ · a) = (∇iφ
) · a + φ · (∂i a

)
for i = 1, 2 and a in the smooth part of Aμ,θ . One easily computes that

[∇1,∇2] = i

2πε
1,

i.e., the connection has constant curvature.
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