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We use a deformed quasiparticle random phase approximation formalism to describe simultaneously the
energy distributions of the singleb Gamow-Teller strength and the two-neutrino doubleb decay matrix
elements. Calculations are performed in a series of doubleb decay partners withA=48, 76, 82, 96, 100, 116,
128, 130, 136, and 150, using deformed Woods-Saxon potentials and deformed Skyrme Hartree-Fock mean
fields. The formalism includes a quasiparticle deformed basis and residual spin-isospin forces in the particle-
hole and particle-particle channels. We discuss the sensitivity of the parent and daughter Gamow-Teller
strength distributions in singleb decay, as well as the sensitivity of the doubleb decay matrix elements to the
deformed mean field and to the residual interactions. Nuclear deformation is found to be a mechanism of
suppression of the two-neutrino doubleb decay. The doubleb decay matrix elements are found to have
maximum values for about equal deformations of parent and daughter nuclei. They decrease rapidly when
differences in deformations increase. We remark on the importance of a proper simultaneous description of
both doubleb decay and single Gamow-Teller strength distributions. Finally, we conclude that for further
progress in the field, it would be useful to improve and complete the experimental information on the studied
Gamow-Teller strengths and nuclear deformations.
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I. INTRODUCTION

The recent experimental confirmation of neutrino oscilla-
tions has reinforced the interest in nuclear processes involv-
ing neutrinos; see[1] and references therein. Nuclear double
b decay is a rare second-order weak interaction process that
takes place when the transition to the intermediate nucleus is
energetically forbidden or highly retarded. Two main decay
modes are expected in this process: The two-neutrino mode,
involving the emission of two electrons and two neutrinos,
and the neutrinoless mode with no neutrino leaving the
nucleus. While the first type of process is perfectly compat-
ible with the Standard Model, the second one violates lepton
number conservation and its observation is linked to the ex-
istence of a massive Majorana neutrino. For this reason, con-
siderable experimental and theoretical effort is being devoted
to the study of this process[2].

From the theoretical point of view, one particular source
of uncertainty is the evaluation of the nuclear matrix ele-
ments involved in the process. They have to be calculated as
accurately as possible to obtain reliable estimates for the lim-
its of the doubleb decay half-lives. Since the nuclear wave
functions and the underlying theory for treating the neutrino-
less and the two-neutrino modes are similar, the usual proce-
dure is to test first the nuclear structure component of the
two-neutrino mode against the available experimental infor-
mation on half-lives.

The proton-neutron quasiparticle random phase approxi-
mation (pnQRPA or QRPA in short) is one of the most reli-

able and widely used microscopic approximations for calcu-
lating the correlated wave functions involved inb and
doubleb decay processes. The method was first studied in
Ref. [3] to describe theb strength and was also successfully
applied to the description of doubleb decay [4] after the
inclusion of a particle-particle(pp) residual interaction, in
addition to the particle-hole(ph) usual channel. Many more
extensions of the QRPA method have been proposed in the
literature; see Ref.[5] and references therein.

An extension of the pnQRPA method to deal with de-
formed nuclei was done in Ref.[6], where a Nilsson poten-
tial was used to generate single-particle orbitals. Subsequent
extensions including Woods-Saxon type potentials[7], re-
sidual interactions in the particle-particle channel[8], self-
consistent deformed Hartree-Fock(HF) mean fields with
consistent residual interactions[9], and self-consistent ap-
proaches in spherical neutron-rich nuclei[10], can also be
found in the literature. In Refs.[9,11], b-decay properties
were studied on the basis of a deformed self-consistent HF
+BCS+QRPA calculation with density-dependent effective
interactions of Skyrme type. A deformed QRPA approach
based on a phenomenological deformed Woods-Saxon poten-
tial was used to calculate the Gamow-Teller strength distri-
butions for the two decay branches in doubleb decay of
76Ge [11,12].

Recently, the issue of nuclear deformation, which has usu-
ally been ignored in the QRPA-like treatments of nearly
spherical nuclei, was raised in Refs.[12,13]. In Ref. [12], it
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was found that differences in deformation between the initial
and final nuclei can have large effects on the doubleb decay
half-lives. Within the deformed QRPA using an axially sym-
metric Woods-Saxon single-particle basis, the particular case
of the two-neutrino doubleb decay(2nbb-decay) of 76Ge
was analyzed[12]. The effect of deformation on the other
double b decay processes of experimental interest has not
been sufficiently studied yet, see[12,14,15] and references
therein.

In this work, we extend these deformed calculations
[9,12] by studying first the singleb branches that build up
the doubleb process and then the 2nbb-decay process itself.
We focus on theb− Gamow-Teller(GT) transitions of the
doubleb emitters as well as on theb+ Gamow-Teller transi-
tions of the daughter nuclei ending up at the same interme-
diate virtual nucleus. The cases considered are those where
the two-neutrino doubleb decay half-lives have been mea-
sured, namely

48Ca→ 48Ti; 76Ge→ 76Se;

82Se→ 82Kr; 96Zr → 96Mo;

100Mo → 100Ru; 116Cd→ 116Sn;

128Te→ 128Xe; 130Te→ 130Xe;

136Xe→ 136Ba; 150Nd→ 150Sm.

In Sec. II, we present a brief summary containing the
basic points in our theoretical description. Section III con-
tains the results obtained for the ground-state properties of
the nuclei mentioned above. In Sec. IV, we present our re-
sults for the GT strength distributions and discuss their de-
pendence on the deformed mean field and residual interac-
tions. Section V contains the results for the two-neutrino
double b decay calculations. The conclusions are given in
Sec. VI.

II. BRIEF DESCRIPTION OF THE THEORY

In this section, we summarize briefly the theoretical for-
malism used to describe the Gamow-Teller transitions. More
details can be found in Refs.[9,12,11].

The single-particle energies and wave functions are gen-
erated from two different methods to construct the deformed
mean field, which is assumed to be axially symmetric. In one
case, we start from a deformed Woods-Saxon(WS) potential.
The parameters of this potential are taken from Ref.[16].
The isospin dependence of this parametrization allows one to
extend it to any mass region. Previous QRPA calculations
have shown that it provides a realistic description of the
ground-state properties of deformed nuclei as well as good
results onM1 excitations[17] for nuclei in various mass
regions. The quadrupole deformation of the WS potential is
determined by fitting the microscopically calculated quadru-
pole moment to the corresponding experimental value. The
hexadecapole deformation is expected to be small for these
nuclei and we assume it is equal to zero.

In the other method, we follow a self-consistent Hartree-
Fock procedure to generate microscopically the deformed
mean field. This is done with density-dependent effective
interactions of Skyrme type. Contrary to the previous case,
the equilibrium deformation of the nucleus is obtained now
self-consistently as the shape that minimizes the energy of
the nucleus. In this work, we present the results obtained
with the most common of the Skyrme forces, Sk3[18], al-
though sometimes we also show for comparison results ob-
tained with the force SG2[19].

In both schemes, WS and HF, the single-particle wave
functions are expanded in terms of the eigenstates of an axi-
ally symmetric harmonic oscillator in cylindrical coordi-
nates, using 11 major shells in the expansion. Pairing corre-
lations between like nucleons are included similarly in both
cases in the BCS approximation with fixed gap parameters
for protons and neutrons. The gap parameters are determined
phenomenologically from the odd-even mass differences
through a symmetric five-term formula involving the experi-
mental binding energies. The values obtained from this pro-
cedure for the nuclei under consideration can be seen in
Table I.

The deformed quasiparticle mean field is now comple-
mented with a spin-isospin separable residual interaction that
contains two parts, an attractive particle-hole and a repulsive
particle-particle. The coupling strengths of these forces,xGT

ph

andkGT
pp , are defined as positive. The strength of theph force

is usually determined by adjusting the calculated positions of
the GT giant resonances to experiment. The strength of the
pp force is determined by fitting theb-decay half-lives ofb
emitters. This fitting procedure was systematically carried
out in Ref. [8], where the strengthsxGT

ph and kGT
pp were con-

sidered to be smooth functions of the mass numberA. The
result found using a Nilsson potential as the deformed mean
field wasxGT

ph =5.2/A0.7 MeV andkGT
pp =0.58/A0.7 MeV. Nev-

ertheless, this parametrization clearly depends on the model
used for single-particle wave functions and energies, as well
as on the set of experimental data considered. Therefore,
these coupling strengths can be used as a reference but can-
not be safely extrapolated to different mean fields or different
mass regions. As we shall see in the next section, the
strengths from Ref.[8] reproduce well the data when using
the WS potential, but one needs a somewhat smaller value of
xGT

ph to reproduce the GT resonance with the HF mean field.
We introduce the proton-neutron QRPA phonon operator

for GT excitations in even-even nuclei,

GvK

+ = o
pn

fXpn
vKan

+ap
+ + Ypn

vKanapg , s2.1d

wherea+ sad are quasiparticle creation(annihilation) opera-
tors,vK are the RPA excitation energies, andXpn

vK, Ypn
vK are the

forward and backward amplitudes, respectively. The solution
of the QRPA equations can be found solving first a disper-
sion relation[20], which is of fourth order in the excitation
energiesvK.

In the intrinsic frame, the GT transition amplitudes con-
necting the QRPA ground stateu0l to one-phonon statesuvKl
satisfying
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GvK
u0l = 0 GvK

+ u0l = uvKl s2.2d

are given by

kvKusKt±u0l = 7 M±
vK, s2.3d

where

M−
vK = o

pn

sqpnXpn
vK + q̃pnYpn

vKd,

M+
vK = o

pn

sq̃pnXpn
vK + qpnYpn

vKd, s2.4d

and

q̃pn = unvpSK
np,

qpn = vnupSK
np,

SK
np = knusKupl, s2.5d

wherev’s are occupation amplitudessu2=1−v2d.
Finally, the GT strengthBsGT±d in the laboratory system

for a transitionI iKis0+0d→ I fKfs1+Kd can be obtained as

BsGT±d =
gA

2

4p
fdK,0kvKus0t

±u0l2 + 2dK,1kvKus1t
±u0l2g .

s2.6d

The 2nbb decay is described in second-order perturbation
of the weak interaction as two successive Gamow-Teller
transitions via virtual intermediate 1+ states. The half-life of
the 2nbb decay

T1/2
2n s0gs

+ → 0gs
+ d = fG2nuMGT

2n u2g−1 s2.7d

is given as a product of a phase-space integralG2n and the
Gamow-Teller transition matrix elementMGT

2n , which con-
tains the nuclear structure effects. For a transition connecting
initial and final ground states, it is given by

MGT
2n = o

K
o

mi,mf

k0f
+isKt−ivK

mflkvK
mfuvK

milkvK
miisKt−i0i

+l
svK

mf + vK
mid/2

,

s2.8d

whereK=0, 61 andmi, mf label the number of intermediate
1+ RPA statesvK

mi, vK
mf reached from the initialu0i

+l and final
u0f

+l nuclear ground states, respectively. The overlap
kvK

mfuvK
mil is needed to take into account the nonorthogonality

of the intermediate states reached from the initial ground
state to those reached from the final ground state. It is given
by [12]

kvK
mfuvK

mil = o
,i,f

fX,f

vK
mf

X,i

vK
mi

− Y,f

vK
mf

Y,i

vK
migR,f,i

kBCSfuBCSil,

s2.9d

where,i, f label the quasiparticlepn pairs for the initial and
final nucleus, respectively. The factorR,f,i

includes the over-
lap of single-particle wave functions of the initial and final
nuclei [12],

TABLE I. Pairing gaps for protons and neutronsDp, Dn (MeV), and charge radiirc (fm).

Nucleus Dp Dn Expt. rc [24] rc Sk3 rc SG2 rc [25]

48Ca 2.18 1.68 3.4736(8) 3.586 3.549 3.471
48Ti 1.90 1.56 3.592 3.628 3.597 3.571
76Ge 1.56 1.54 4.127(8) 4.130 4.083 4.057
76Se 1.75 1.71 4.152(9) 4.170–4.180 4.113–4.143 4.119
82Se 1.41 1.54 4.122(8) 4.204 4.159 4.131
82Kr 1.72 1.64 4.1921(11) 4.196 4.196 4.173
96Zr 1.53 0.84 4.3508(12) 4.433–4.443 4.342–4.389 4.376

96Mo 1.53 1.03 4.377(10) 4.448–4.457 4.369–4.388 4.381
100Mo 1.60 1.36 4.447(10) 4.516 4.439–4.466 4.448
100Ru 1.55 1.30 4.453 4.516 4.457 4.449
116Cd 1.47 1.37 4.625 4.703–4.715 4.653 4.643
116Sn 1.77 1.20 4.625 4.709–4.753 4.702 4.609
128Te 1.13 1.28 4.735 4.803–4.805 4.746 4.732
128Xe 1.32 1.27 4.776 4.836–4.839 4.782–4.786 4.778
130Te 1.06 1.18 4.742 4.812–4.816 4.750 4.739
130Xe 1.31 1.25 4.783 4.845–4.846 4.796–4.801 4.784
136Xe 0.98 1.44 4.799 4.878 4.815 4.804
136Ba 1.27 1.03 4.833 4.902 4.847 4.837
150Nd 1.23 1.05 5.047 5.114 5.055 5.046
150Sm 1.44 1.19 5.047 5.108 5.046 5.047
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R,,8 = kpup8lknun8lsup
i up8

f + vp
i vp8

f dsun
i un8

f + vn
i vn8

f d .

s2.10d

The BCS overlap factorkBCSfuBCSil is derived in Ref.[12].
An approximate expression is given by

kBCSfuBCSil < p
Vp

p
k=1

NVp

suk
fuk

i + vk
fvk

i dp
Vn

p
j=1

NVn

suj
fuj

i + v j
fv j

id ,

s2.11d

with NV the number of single-particle states with the same
values of parity and projectionV of the full angular momen-
tum on the nuclear symmetry axis.

We note that for the case of the spherical QRPA, the deri-
vation of the overlap factor of the intermediate nuclear states
generated from the initial and final nuclei was outlined in
Ref. [21]. For the case of the deformed QRPA, the generali-
zation of this derivation was presented in[12]. There, the
importance of the BCS overlap factor, which is an integral
part of the overlap factor of the two sets of the intermediate
nucleus, on the evaluation of the doubleb decay nuclear
matrix elements was maintained. Then, this procedure of the
derivation of the overlap factor of intermediate nuclear states
was followed also in Ref.[15], however with a significant
approximation. The role of the BCS overlap factor was ne-
glected. Of course, this can affect the final results signifi-
cantly, especially in the cases when deformations of the ini-
tial and final nuclei are different.

III. GROUND-STATE PROPERTIES

In this section, we present results for the bulk properties
of the nuclei under study based on the quasiparticle mean-
field description. We consider both the WS potential and
Skyrme HF approaches.

In the case of HF, the first step is to study the energy
surfaces as a function of deformation. For this purpose, we
perform constrained calculations[22], minimizing the HF
energy under the constraint of keeping fixed the nuclear de-
formation. We can see in Fig. 1 the total HF energy plotted
versus the quadrupole deformation parameter

b =Îp

5

Qp

Zrc
2 , s3.1d

defined in terms of the microscopically calculated quadru-
pole momentQp and charge root mean-square radiusrc.

The results in Fig. 1 correspond to HF calculations with
the force Sk3, which are qualitatively similar to the results
obtained with other Skyrme forces, such as SG2 and SLy4
[23]. We observe that the HF calculation predicts in some
instances(Ge, Se, Zr, Cd, Sn, Te, Xe) the existence of two
energy minima close in energy, giving rise to possible shape
isomers in these nuclei. Solid lines represent the energy
curves of the parent nuclei suffering the doubleb decay,
while dashed lines represent the energy curves of the corre-
sponding daughter nuclei.

We can see in Table I the experimental and the micro-
scopically calculated charge root mean-square radiirc with

the forces Sk3 and SG2. We quote the two, oblate-prolate,
results in those cases where the energies for the two shapes
are very close. The values obtained for the charge radii are in
good agreement with the experimental values from Ref.[24].
They are also in good agreement with the results obtained
from relativistic mean-field calculations[25].

In Table II, we can see the theoretical and experimental
quadrupole deformation. Experimental values have been ex-
tracted from the measured quadrupole moments from two
different methods. In the first one, the quadrupole deforma-
tion is obtained from Eq.(3.1), using the empirical intrinsic
moments derived from the laboratory moments of Ref.[26]
assuming a well defined deformation. In the second case, the
quadrupole deformations are taken from Ref.[27], where
they were derived from experimental values ofBsE2d
strengths. In this case, the sign cannot be extracted.

Our theoretical values have been derived microscopically
from the forces Sk3 and SG2, using the intrinsic quadrupole
moments obtained as ground-state expectations of theQ20
operator and the microscopic charge radii quoted in Table I.
We show the results obtained for the equilibrium shapes us-
ing the Skyrme forces Sk3 and SG2. In those cases where a
second minimum appears at close energy, we also show
within square brackets the corresponding deformation. We

FIG. 1. Binding energy(MeV) as a function of the quadrupole
deformation parameterb obtained from deformed Hartree-Fock cal-
culations with the Skyrme force Sk3. Experimentalb values from
Refs. [26] and [27] are represented as the extreme values of the
black boxes. The experimental difference of binding parent and
daughter binding energies is given by the distance between the two
horizontal lines(see text).
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compare our results with the results from relativistic mean-
field calculations of Ref.[25] and with results from system-
atic calculations[28] based on macroscopic-microscopic
models(finite range droplet macroscopic model and folded
Yukawa single-particle microscopic model). The agreement
between all the theoretical calculations is very remarkable
and in general they are within the range of experimental
values determined from Refs.[26] and[27]. The experimen-
tal b values from Refs.[26] and[27] are represented in Fig.
1 by the end points of the black boxes.

There is still another important piece of experimental in-
formation relevant to doubleb decay that we wish to explore
here. This is theQbb energy of the decay. The energy re-
leased in a doubleb process in a transition from ground-state
to ground-state is given by

Qbb = fMparent− Mdaughter− 2meg

= f2smn − mp − med + BEsZ,Nd − BEsZ + 2,N − 2dg,

s3.2d

in terms of the nuclear massesM’s, or similarly, in terms of
the binding energiesBE’s of parent sZ,Nd and daughter
(Z+2, N−2) nuclei.

We can see in Table III the experimental values ofQbb.
They are compared with the values calculated with the force
Sk3. The agreement with experiment is reasonable taking
into account that we are dealing with differences of energies
ranging from 400 MeV inA=48 systems to 1200 MeV in
A=150 and a tiny percent error in the theoretical masses may

induce a relatively large error inQbb values. From Table III,
we can see that to match the experimental energies, we
need to increase slightly the energy difference in
A=48,76,82,116,128,130,136 and to decrease it in
A=96,100,150.

In this work, we have used Sk3 as a representative of the
Skyrme forces without any attempt to optimize the agree-
ment with the experimentalQbb values. Even if Sk3 force
may not be the best Skyrme force to accurately predict the
right Qbb values, it is very interesting to see that experimen-
tal and theoretical values are in many cases quite close. For
the cases examined here, it appears that theQbb values are

TABLE II. Theoretical and experimentalb values, see text.

Expt. Theory

Nucleus Ref.[26] Ref. [27] This work (Sk3) This work (SG2) Ref. [25] Ref. [28]

48Ca 0.000 0.101(17) 20.002 20.001 0.000 0.000
48Ti 10.17(10) 0.269(7) 20.002 20.003 20.009 0.000
76Ge 10.095(30) 0.2623(39) 0.161 0.157 0.157 0.143
76Se 10.163(33) 0.3090(37) 20.181[10.157] 20.191[10.049] 20.244 20.241
82Se 10.104(32) 0.1944(26) 0.126 0.150 0.133 0.154
82Kr 0.2022(45) 0.106 0.103 0.119 0.071
96Zr 0.081(16) 0.207[20.167] 0.016[10.147] 0.223 0.217

96Mo 10.068(27) 0.1720(16) 0.147[20.164] 20.006[10.119] 0.167 0.080
100Mo 10.139(30) 0.2309(22) 0.236 0.167[20.191] 0.253 0.244
100Ru 10.136(22) 0.2172(22) 0.175 0.157 0.194 0.161
116Cd 10.113(11) 0.1907(34) 0.206[20.207] 0.209 20.258 20.241
116Sn 10.043(10) 0.1118(16) 0.264[20.134] 0.251[20.034] 0.003 0.000
128Te 10.011(10) 0.1363(11) 20.088[10.102] 0.094[20.091] 20.002 0.000
128Xe 0.1837(49) 0.148[20.122] 0.150[20.133] 0.160 0.143
130Te 10.035(23) 0.1184(14) 20.076[10.051] 20.039[10.066] 0.032 0.000
130Xe 0.169(6) 0.108[20.098] 0.161[20.132] 0.128 20.113
136Xe 0.086(19) 0.001 0.016 20.001 0.000
136Ba 0.1242(8) 0.009 0.070 20.002 0.000
150Nd 10.367(86) 0.2848(21) 0.266 0.271 0.221 0.243
150Sm 10.230(30) 0.1931(22) 0.207 0.203 0.176 0.206

TABLE III. Experimental and theoreticalQbb sMeVd values ob-
tained with the Skyrme force Sk3.

Doubleb transition sQbbdexp sQbbdSk3

48Ca→48Ti 4.272 2.95
76Ge→76Se 2.039 1.36
82Se→82Kr 2.995 2.58
96Zr→96Mo 3.350 5.59

100Mo→100Ru 3.034 3.57
116Cd→116Sn 2.805 1.88
128Te→128Xe 0.867 20.10
130Te→130Xe 2.529 1.20
136Xe→136Ba 2.468 0.80
150Nd→150Sm 3.367 3.59
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fairly well reproduced forA=82,100,150 and that deviations
from experiment in the worst case are 2.25 MeV inA=96,
where Qbbsexpd=3.35 MeV andQbbsSk3d=5.59 MeV. In the
future, it will be interesting to test other Skyrme forces
which may give better fits to theQbb values. A case of par-
ticular concern for doubleb decay calculations is that ofA
=128 for which the Sk3 force givesQbb=−0.10 MeV.
Clearly, in this case further work is needed to make self-
consistent calculations that give the rightQbb and GT
strengths.

We also notice that, as illustrated in Fig. 1, by changing
slightly the deformation value in the vicinity of the equilib-
rium deformation, one can change the binding energy corre-
spondingly and get into agreement with the experimental
Qbb value. This procedure could be justified from the point
of view that, in principle, in the HF method one could con-
sider several collective degrees of freedom and that the ab-
solute minimum in the multidimensional landscape could
correspond to a slightly differentb value. We can see in Fig.
1 the experimental value ofd=BEi −BEf as the distance be-
tween the two horizontal lines plotted in each panel. The
solid horizontal line refers to the energy of the parent while
the dashed horizontal one refers to the daughter binding en-
ergy. One of them is always a reference and signals the en-
ergy to keep fixed(parent forA=96,100,150 and daughter in
A=48,76,82,116,128,130,136). The other line indicates the
binding energy needed to reproduce the experimentald
=BEi −BEf. Therefore, the cuts of this horizontal line with
the corresponding energy curve indicates the deformations
where this condition is satisfied.

Figure 2 shows the results obtained with HF-Sk3 for the
GT strength distributions in128Te and 136Xe, which are
among the cases where the calculatedQbb is worse and the
change inb needed to fitQbb is larger. We show the results
obtained with the equilibrium deformationsb=−0.088 in
128Te andb=0.001 in136Xe as well as with the deformations
that fit theQbb values,b=−0.005 in128Te andb=0.102 in
136Xe. We can see that the strength distributions obtained
with both deformations are similar except for a small dis-
placement in energies. In all the other cases the effect is even
smaller and the strength distributions obtained with the equi-
librium deformation or with the slightly changed deforma-
tion are practically unchanged. In the next section, we show
GT strengths obtained at the HF minimum.

In the case of the Woods-Saxon potential, where the de-
formation is an input parameter, we take the values from

both Refs.[26] and [27]. Since for each nucleus the two
references give two different values of theb parameter, we
show in the next section the GT distributions obtained with
the two values to take into account this uncertainty.

IV. GAMOW-TELLER STRENGTH DISTRIBUTIONS

In this section, we show and discuss the Gamow-Teller
strength distributions obtained from different choices of the
deformed mean fields and residual interactions.

We notice that the relevant strength distributions for the
double b decay are theBsGT−d distribution of the parent
nuclei and theBsGT+d distribution of daughter nuclei.

As a general rule, the following figures showing the GT
strength distributions are plotted versus the excitation energy
of the daughter nucleus. The distributions of the GT strength
have been folded with Gaussian functions of 1 MeV width to
facilitate the comparison among the various calculations, so
that the original discrete spectrum is transformed into a con-
tinuous profile. These distributions are given in units of
gA

2 /4p and one should keep in mind that a quenching of the
gA factor, typically gA,eff=s0.7−0.8d gA,free, which appears
squared in the GT strength, is expected on the basis of the
observed quenching in charge exchange reactions.

In the case of theBsGT+d distributions, we first observe
the different scale, which is about one order of magnitude
smaller than theBsGT−d scale. This is a consequence of the
Pauli blocking. In the nuclei considered here, the number of
neutronsN is much larger than the number of protonsZ. The
difference between totalBsGT−d and BsGT+d strengths
(Ikeda sum rule, which is fulfilled in our calculations) is then

FIG. 3. HF-Sk3 Gamow-Teller strength distributionsfgA
2 /4pg in

150Nd and 150Sm for various values of the coupling strength
xGT

ph sMeVd.

FIG. 4. HF-Sk3 Gamow-Teller strength distributionsfgA
2 /4pg in

150Nd and 150Sm for various values of the coupling strength
kGT

pp sMeVd.

FIG. 2. HF-Sk3BsGT−d strength distributionsfgA
2 /4pg in 128Te

and 136Xe calculated with the equilibrium deformationsbequild and
with the deformation that fits the experimentalQbb valuessbfitd.
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a large number given by 3sN−Zd and practically determined
by the magnitude of theBsGT−d strength.

We start in Fig. 3 with a discussion of the dependence of
the GT strength distributions on the coupling strength of the
particle-hole residual interactionxGT

ph for a fixed value of the
particle-particle coupling constantkGT

pp =0. The results corre-
spond to HF with the force Sk3 in theA=150 case. We can
see on the left panel theBsGT−d strength distribution of the
parent nucleus150Nd and on the right panel theBsGT+d
strength distribution of the daughter nucleus150Sm. The pair-
ing gap parameters are given in Table I and the deformations
are given in Table II. We can see in Fig. 3 how the most
important effect ofxGT

ph on theBsGT−d strength distribution is
a shift of the strength toward higher excitation energies. This
displacement of the GT strength is accompanied by a reduc-
tion of the strength. This reduction can be more clearly ap-
preciated on theBsGT+d strength distribution because the
scale in this case is about two orders of magnitude smaller,

as it should be to fulfill the Ikeda sum ruleofBsGT−d
−BsGT+dg=3sN−Zd=90, 78 for Nd and Sm, respectively.
Therefore, the coupling constantxGT

ph plays an important role
to reproduce the position of the GT− resonance. On the other
hand, the sensitivity of the GT strength distribution on the
particle-particle coupling constantkGT

pp is not so important, as
can be seen from Fig. 4, where we can see the GT strength
distributions for a fixed value ofxGT

ph =0.156 MeV[8] and for
several values ofkGT

pp on the example of HF with the force
Sk3 in theA=150 case. As we can see, the position of the
resonance does not change appreciably. Therefore, other
methods, such as fitting the half-lives of unstable nuclei in
the same mass region, have to be used to get phenomeno-
logically their values.

In the next set of figures(Figs. 5–14) we show, for each
couple of doubleb decay partners, the results obtained for
the BsGT−d strength distributions of the parent nuclei on the
top panels and for theBsGT+d strength distributions of the
daughter nuclei on the bottom panels. Also shown are the
experimental data whenever they are available. In each fig-
ure, the left panels correspond to HF+BCS+QRPA calcula-
tions with the force Sk3 and the right panels to WS+BCS
+QRPA calculations. In the case of HF, we use the equilib-
rium deformations. We show with dashed lines the 2qp re-
sults for HF+BCS calculations where the residual interaction
is not considered. This serves as a reference and can be used
to see the necessity of the residual force to get into agree-

FIG. 5. Gamow-TellerBsGT−d and BsGT+d strength distribu-
tions fgA

2 /4pg in 48Ca and48Ti plotted as a function of the excita-
tion energies of the corresponding daughter nuclei. Left panels
show results from HF(Sk3) calculations without residual interaction
(dashed lines) and with residual interactions withxGT

ph =0.10 MeV,
kGT

pp =6/A MeV (solid lines). Right panels show results using WS
potentials withxGT

ph and kGT
pp from Ref. [8] and with two different

values for the quadrupole deformation:b1 from Ref. [26] (solid
line) and b2 from Ref. [27] (dashed line). Experimental data are
from Ref. [30]. Notice that no quenching factor has been included
in the calculations.

FIG. 6. Same as in Fig. 5 for76Ge and76Se. Data in76Se are
from [31]. Vertical lines in76Ge are experimental data from[32].

FIG. 7. Same as in Fig. 5 for82Se and82Kr. Vertical lines in82Se
are experimental data from[32].

FIG. 8. Same as in Fig. 5 for96Zr and96Mo.
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ment with experiment. Solid lines are the results obtained
with xGT

ph =0.1 MeV andkGT
pp =6/A MeV, which produce a

good fit to all the measured GT resonances of doubleb emit-
ters, as well as to the two-neutrino doubleb decay matrix
elements, as we shall see in the next section. This small
value of thexGT

ph coupling constant needed to reproduce the
experimental GT resonances within a self-consistent ap-
proach with Skyrme forces is in agreement with the same
observation reported in Refs.[11,13] and reflects the fact that
one needs less residual interaction when using realistic effec-
tive density-dependent forces than when using phenomeno-
logical potentials to generate the single-particle energies and
wave functions.

In the case of calculations with the WS potentials shown
on the right-hand panels, we show results for the two differ-
ent experimental deformations as obtained from Refs.[26]
(solid lines) and[27] (dashed lines), which are given in Table
II. The calculations are done for a fixed value of thexGT

ph and
kGT

pp constants as obtained from the parametrization in Ref.
[8].

Some general common features to all figures can be es-
tablished first. Concerning the HF calculations, the value of
xGT

ph given by the parametrization of Ref.[8] is an overesti-
mation when dealing with self-consistent Skyrme HF calcu-
lations. Actually, a small value ofxGT

ph =0.1 MeV is already
able to reproduce the experimental position of the GT reso-

nance. This is a consequence of the structure of the two-body
density-dependent Skyrme force that contains terms like spin
exchange operators leading to a spin-spin interaction in the
self-consistent mean field, which is absent in the WS poten-
tial. The agreement with the experimental energy of the GT
resonance is in this case very good, as can be seen in the
casesA=76,82,100,116,128,130, where this information is
available. Indeed, the experimental giant GT resonances
shown in these figures represent the centroids of broad
bumps. The resonance in48Ca reported at 10 MeV in Ref.
[29] and used in the fitting procedure of Ref.[8] is also in
good agreement with our results.

With respect to the calculations performed with the WS
potential, we can see that larger deformations produce peaks
in the GT distributions displaced to higher energies. This is a
consequence of the larger separation of the single-particle
energies when the deformation increases. Thus, since the de-
formation derived from Ref.[27] is larger than that of Ref.
[26], solid lines appear in general on the left of dashed lines.

It is also remarkable the good agreement with experiment
obtained in this case. This agreement is mainly determined
by the fixed value ofxGT

ph from Ref. [8], which is still valid
when describing the mean field with a WS potential. One
should keep in mind that the parametrization of Ref.[8] was
obtained using a Nilsson potential.

In Table IV, we compare the total GT strength measured
and calculated with both HF and WS. When a standard

FIG. 9. Same as in Fig. 5 for100Mo and100Ru. Vertical lines in
100Mo are experimental data from[33].

FIG. 10. Same as in Fig. 5 for116Cd and116Sn. Vertical lines in
116Cd are experimental data from[33].

FIG. 11. Same as in Fig. 5 for128Te and128Xe. Vertical lines in
128Te are experimental data from[32].

FIG. 12. Same as in Fig. 5 for130Te and130Xe. Vertical lines in
130Te are experimental data from[32].
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quenching factor of 0.6 is included in the theoretical results,
fair agreement is found between theory and experiment.

V. TWO-NEUTRINO DOUBLE b DECAY
MATRIX ELEMENTS

In this section, we analyze the effects of deformation, as
well as the effect of the mean field and residual interactions
on the 2nbb-decay. First, we discuss the sensitivity to defor-
mation of the nuclear structure contributionMGT

2n to the 2nbb
half-lives. This is done in Fig. 15, where we show the matrix
elementsMGT

2n as a function of both parent and daughter de-
formations. The figure corresponds to the decay96Zr
→96Mo calculated within a Woods-Saxon scheme with re-
sidual interactions from Ref.[8]. We have changed freely the
deformations of both parent and daughter nuclei without any
constraint from experiment. In this way, we can study quali-
tatively the effect of deformation. The experimental values
for MGT

2n shown in Fig. 15, as well as in the next figures, have
been extracted from the adopted experimental half-livesT1/2

2n

given in Ref.[34]. From the experimental half-lives and the
corresponding kinematical factorsG2n, we extract two ex-
perimental nuclear matrix elements from Eq.(2.7) by assum-
ing values for the axial coupling constantgA=1.25 orgA=1.
These two values are plotted in Figs. 15–18 as horizontal
lines.

From Fig. 15 we can see that the matrix elementsMGT
2n

have maximum values for equal deformations of both parent

and daughter and these values decrease rapidly when the
difference between the deformations of parent and daughter
increases. In particular, we observe that theMGT

2n value ob-
tained within a spherical picturesbparent=bdaughter=0d is
about the upper limit and only comparable with values ob-
tained with the same deformations for parent and daughter in
the deformed picture. As soon as the deformations of parent
and daughter change, we get a reduction in theMGT

2n matrix
elements that cannot be obtained from a spherical descrip-
tion. The mechanism of this reduction due to the different
deformations was studied in Ref.[12], where it was found
that the overlap factor in Eqs.(2.8)–(2.11) is at the origin of
the suppression. We can see in Fig. 15 that the experimental
values ofMGT

2n , plotted as thick segments in each curve, are
compatible with particular values of parent and daughter de-
formations.

We show in Fig. 16 the difference between parent and
daughter nuclear quadrupole deformations for the double-b
emitters. The dots correspond to the results obtained from
self-consistent HF calculations with the Skyrme force Sk3,
while the extreme values on the vertical segments indicate
the maximum and minimum differences compatible with the
experimental values in Table II. These are also the extreme
values used in WS calculations in Fig. 17.

TABLE IV. Experimental and calculated(HF-Sk3 and WS)
summed GT strength. A standard quenching factor 0.6 has been
included in the theoretical results.

Expt. HF-Sk3 WS

oBsGT+d 48Ti 1.42±0.2 1.00 1.79
76Se 1.45±0.07 0.48 2.06

oBsGT−d 76Ge 19.89 21.78 22.65
86Se 21.91 25.34 26.09

100Mo 26.69 29.14 29.93
116Cd 32.70 34.79 36.41
128Te 40.08 43.22 43.44
130Te 45.90 46.85 46.66FIG. 13. Same as in Fig. 5 for136Xe and136Ba.

FIG. 14. Same as in Fig. 5 for150Nd and150Sm.

FIG. 15. 2nbb-decay matrix elements of96Zr as a function of
both parent and daughter deformations. The two dashed horizontal
lines correspond to experimentalMGT

2n extracted from Ref.[34] us-
ing gA=1.0 andgA=1.25. The thick segments in each curve corre-
spond to the experimental values ofMGT

2n .
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In the next two figures(Figs. 17 and 18) we show the
matrix elementsMGT

2n for the same doubleb emitters studied
in the last section as a function of the particle-particle
strengthkGT

pp . The experimental values extracted by assuming
gA=1.25 orgA=1 are shown by the lower and upper hori-
zontal lines, respectively.

It is well known [4] that thepp interaction introduces a
different mechanism of suppression of theMGT

2n matrix ele-
ments, which is also interesting to study in our case. In this
way, we can compare the effect of thepp force with the
effect due to deformation. We first discuss in Fig. 17 the
effects of deformation in the WS case by taking the available
experimental quadrupole deformations and then we discuss
the HF case by considering the self-consistent deformations.

In the WS case(Fig. 17), we use the same potential pa-
rameters, gaps, andph residual interaction as those used in
the singleb calculations in the previous section. For defor-
mations, we take all the experimental possibilities for parent
and daughter given in Table II and cross them to calculate
MGT

2n . Then we show in the figure the upper and lower results
obtained as a function ofkGT

pp and we draw a shadow region
between them. We also show for comparison the results ob-
tained in the spherical case(dashed lines).

The first thing to notice is the already mentioned reduc-
tion of MGT

2n as the magnitude ofkGT
pp increases, which takes

place for both spherical and deformed cases, although the
effect of thepp force is larger in the spherical case. The
spherical curves decay faster than the deformed ones with
kGT

pp . This means that the deformed results are more stable
(more insensitive) to the particular strength of thepp inter-
action.

Another interesting feature to mention is that, as expected
from the analysis in Fig. 15, deformation introduces in most
cases a reduction factor with respect to the spherical result.
Only when the deformations of parent and daughter are very
similar can the results obtained in the deformed case be
larger than the spherical ones. This is, for instance, the case
of A=82 (see Table II), where the experimental quadrupole
deformations[27] are b=0.1944 in the case of the parent
nucleus 82Se andb=0.2022 in the case of the daughter
nucleus82Kr.

In Fig. 18, we show the results corresponding to HF cal-
culations with the force Sk3. In this case, the quadrupole
deformations are obtained self-consistently(see Table II) and
are the same as those used in the previous section to calcu-
late the GT strength distributions in the singleb decays. The
coupling strength of theph residual interaction has been
takenx=0.1 MeV as in the previous section. Contrary to the
case of singleb decay, where the position of the GT reso-
nance is determined by the strength of theph force and al-
most independent of thekGT

pp force, we can see in Fig. 18 the
sensitivity of the 2nbb decay to thepp force. We find that
the experimental values ofMGT

2n are roughly reproduced with
values ofkGT

pp =6/A MeV. This is the reason why we used
these values also in the HF calculations of the GT distribu-
tions in the previous section.

To illustrate even further the effect of deformation on the
MGT

2n matrix elements, we show in Fig. 19 the HF+BCS
+QRPA results with the Skyrme force SG2 for the decay
96Zr→96Mo corresponding to the decay of a prolate parent to
a prolate daughter or to the decay of a spherical parent into a
spherical or a prolate daughter. The actual deformations used
in these calculations are those consistently obtained with the

FIG. 16. Difference between parent and daughter quadrupole
deformations in double-b emitters. Dots are self-consistent results
from Skyrme Sk3 calculations. Vertical lines indicate the maximum
and minimum experimental differences(see Table II), which are
used in WS calculations.

FIG. 17. 2nbb-decay matrix elements calculated with Woods-
Saxon potentials as a function of the particle-particle interaction
strength kGT

pp . Dashed lines correspond to the results assuming
spherical nuclei. Solid lines correspond to the results obtained by
using the maximum and minimum differences between the experi-
mental deformations of parent and daughter(see Table II). Horizon-
tal lines are the experimentalMGT

2n extracted from Ref.[34] using
gA=1.0 andgA=1.25.
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force SG2, as can be seen in Table II, namelyb=0.016,
0.147 for the parent96Zr andb=−0.006, 0.119 for the daugh-
ter 96Mo. We can see that the transition from the spherical
shape to the prolate shape reduces considerably the matrix
elements as compared to the spherical/spherical or to the
prolate/prolate cases, which are comparable. This reduction,
due to the different deformations, makes the results compat-
ible with the experimental values.

VI. CONCLUDING REMARKS

Using a deformed QRPA formalism, which includesph
and pp separable residual interactions, we have studied the
GT strength distributions for the two decay branchesb− and
b+ in doubleb decay processes, as well as the two-neutrino
double b decay matrix elements. In the same manner in
which two-neutrino doubleb decay is used to calibrate the
nuclear matrix elements for neutrinoless doubleb decay, the
single b decay branches of parent and daughter are used to
test the matrix elements for two-neutrino doubleb decay.

Two different methods, a deformed Skyrme HF approach
and a phenomenological deformed WS potential, are used to
construct the quasiparticle mean field, which includes pairing
correlations in BCS approximation.

In the case of HF, the deformation is determined self-
consistently and we are able to reproduce the experimental
charge radii and quadrupole moments. In the case of WS, the
input deformation is taken from experiment and we use two
values for each nucleus, one corresponding to the measured
quadrupole moment of the first 2+ state and the other ex-
tracted from the measuredBsE2d values. The latter can be
considered as an upper limit of theb value. More experimen-
tal work would be needed to improve and complete the ex-
perimental determination of the quadrupole moments based
on the first of these methods.

Starting from this quasiparticle basis, we perform a pn-
QRPA calculation with separable forces to obtain the energy
distributions of the GT− strength in the parent nucleus and
the GT+ strength in the daughter nucleus, and from them the
2nbb-decay matrix elements. It is well known from previous
studies that theph force allows a reasonable fit of the GT
resonance, and that thepp force also affects theBsGT−d and
BsGT+d distributions. This knowledge has been applied in
our paper to test existing parametrizations of theph andpp
residual forces and to see how good agreement can be ob-
tained between experiment and theory with HF and WS
methods. To our knowledge, we have considered for the first
time simultaneously all the possible two-b emitters and their
corresponding daughters comparing theirBsGTd to experi-
ment. We find that we need different strengths of theph force
to reproduce the position of the GT resonance, depending on
the HF or WS basis. In the first case, a small value ofxGT

ph

=0.1 MeV reproduces all the measured GT resonances. In
the second case, the parametrization obtained in Ref.[8]
sxGT

ph =5.2/A0.7 MeVd, using a Nilsson potential, is still valid
when using a WS potential. The fact thatxGT

ph is smaller in
HF than in WS can be understood as arising from the fact
that the HF mean field already contains the average effect of
spin-spin interaction terms. In both cases, we reproduce rea-

FIG. 18. 2nbb-decay matrix elements obtained from Skyrme
(Sk3) deformed Hartree-Fock calculations as a function of the
particle-particle interaction strengthkGT

pp . Horizontal lines are the
experimentalMGT

2n extracted from Ref.[34] using gA=1.0 andgA

=1.25.

FIG. 19. 2nbb-decay matrix elements of96Zr obtained from
Skyrme(SG2) deformed Hartree-Fock calculations as a function of
the particle-particle interaction strengthkGT

pp . The dotted curve cor-
responds to calculations using the prolate shapes for parent and
daughterbp=0.147,bd=0.119(see Table II). The dashed curve is
for spherical shapes and the solid curve is for spherical parent and
prolate daughterbp=0.016, bd=0.119 (see Table II). Horizontal
lines are the experimentalMGT

2n extracted from Ref.[34] using gA

=1.0 andgA=1.25.
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sonably well not only the position of the resonances but also
the total GT strength. It should also be mentioned that the
GT− strength of the parent nucleus and the GT+ strength of
the daughter are located at different energies, a feature that is
relevant for doubleb decay because it introduces a reduction
of the doubleb decay probabilities. It would be very useful
to improve and complete the experimental information on
GT strength distributions by(p,n) and(n,p) charge exchange
reactions on nuclei participating in doubleb decay.

We have also explored the theoreticalQbb values obtained
with the HF method. We find that with the Sk3 force used
here, the agreement with the experimentalQbb is not perfect
and that it will be worthwhile to look for a Skyrme force that
may optimize agreement with experiment on both GT
strengths andQbb values. However, taking into account that
there is no fitting parameter at all, the agreement between
theory and experiment is good. So far, no other approach
used to study doubleb decay has been able to obtainQbb

values so close to experiment. This is an important advantage
of the HF method that deserves further exploration.

The effect of deformation on the 2nbb-decay matrix ele-
ments has been studied first by considering the deformations
of both parent and daughter as free parameters. It is found
that the matrix elements are suppressed with respect to the
spherical case. More precisely, a sizable reduction effect is
found that scales with the deformation difference between
parent and daughter. This suppression mechanism, which is
ignored in spherical treatments, may play an important role
in approaching the theoretical estimates to experiment.

In the case of the WS potential, we have studied the
2nbb-decay matrix elements by considering the maximum
and minimum differences between the experimental defor-
mations of parent and daughter. This procedure generates a
region of decaying rates that would be narrowed from an
improved experimental determination of the quadrupole de-
formations.

In the case of HF calculations, we find that using the
self-consistent deformations obtained from the minimization
of the energy and residual interactions with coupling
strengths given byxGT

ph =0.1 MeV andkGT
pp =6/A MeV, we

are able to reproduce simultaneously the available experi-
mental information on the GT strength distributions of the
singleb branches and the 2nbb-decay matrix elements.
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