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We use a deformed quasiparticle random phase approximation formalism to describe simultaneously the
energy distributions of the singl@ Gamow-Teller strength and the two-neutrino doujgledecay matrix
elements. Calculations are performed in a series of doBliecay partners with=48, 76, 82, 96, 100, 116,

128, 130, 136, and 150, using deformed Woods-Saxon potentials and deformed Skyrme Hartree-Fock mean
fields. The formalism includes a quasiparticle deformed basis and residual spin-isospin forces in the particle-
hole and particle-particle channels. We discuss the sensitivity of the parent and daughter Gamow-Teller
strength distributions in singlg decay, as well as the sensitivity of the douSlelecay matrix elements to the
deformed mean field and to the residual interactions. Nuclear deformation is found to be a mechanism of
suppression of the two-neutrino douhfedecay. The doublgs decay matrix elements are found to have
maximum values for about equal deformations of parent and daughter nuclei. They decrease rapidly when
differences in deformations increase. We remark on the importance of a proper simultaneous description of
both doubleB decay and single Gamow-Teller strength distributions. Finally, we conclude that for further
progress in the field, it would be useful to improve and complete the experimental information on the studied
Gamow-Teller strengths and nuclear deformations.
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I. INTRODUCTION able and widely used microscopic approximations for calcu-

The recent experimental confirmation of neutrino oscilla-ating the correlated wave functions involved § and
tions has reinforced the interest in nuclear processes invoh@ouble 8 decay processes. The method was first studied in
ing neutrinos; se¢l] and references therein. Nuclear double Ref. [3] to describe thes strength and was also successfully
B decay is a rare second-order weak interaction process th@Pplied to the description of doublé decay[4] after the
takes place when the transition to the intermediate nucleus igclusion of a particle-particlépp) residual interaction, in
energetically forbidden or highly retarded. Two main decayaddition to the particle-holéph) usual channel. Many more
modes are expected in this process: The two-neutrino modextensions of the QRPA method have been proposed in the
involving the emission of two electrons and two neutrinosliterature; see Refl5] and references therein.
and the neutrinoless mode with no neutrino leaving the An extension of the pnQRPA method to deal with de-
nucleus. While the first type of process is perfectly compatformed nuclei was done in Reff6], where a Nilsson poten-
ible with the Standard Model, the second one violates leptomial was used to generate single-particle orbitals. Subsequent
number conservation and its observation is linked to the exextensions including Woods-Saxon type potentiak re-
istence of a massive Majorana neutrino. For this reason, corsidual interactions in the particle-particle chanf@], self-
siderable experimental and theoretical effort is being devotedonsistent deformed Hartree-Fo¢klF) mean fields with
to the study of this procedg]. consistent residual interactior]9], and self-consistent ap-

From the theoretical point of view, one particular sourceproaches in spherical neutron-rich nucj&D], can also be
of uncertainty is the evaluation of the nuclear matrix ele-found in the literature. In Refd9,11], B-decay properties
ments involved in the process. They have to be calculated asere studied on the basis of a deformed self-consistent HF
accurately as possible to obtain reliable estimates for the lim+BCS+QRPA calculation with density-dependent effective
its of the doubleB decay half-lives. Since the nuclear wave interactions of Skyrme type. A deformed QRPA approach
functions and the underlying theory for treating the neutrino-based on a phenomenological deformed Woods-Saxon poten-
less and the two-neutrino modes are similar, the usual proceial was used to calculate the Gamow-Teller strength distri-
dure is to test first the nuclear structure component of théutions for the two decay branches in doulgledecay of
two-neutrino mode against the available experimental infor®Ge [11,12.
mation on half-lives. Recently, the issue of nuclear deformation, which has usu-

The proton-neutron quasiparticle random phase approxially been ignored in the QRPA-like treatments of nearly
mation (pnQRPA or QRPA in shoytis one of the most reli- spherical nuclei, was raised in Ref42,13. In Ref.[12], it
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was found that differences in deformation between the initial In the other method, we follow a self-consistent Hartree-
and final nuclei can have large effects on the doybtlecay = Fock procedure to generate microscopically the deformed
half-lives. Within the deformed QRPA using an axially sym- mean field. This is done with density-dependent effective
metric Woods-Saxon single-particle basis, the particular casmteractions of Skyrme type. Contrary to the previous case,
of the two-neutrino double8 decay(2vBB-decay of ®Ge  the equilibrium deformation of the nucleus is obtained now
was analyzed12]. The effect of deformation on the other self-consistently as the shape that minimizes the energy of
double B decay processes of experimental interest has ndhe nucleus. In this work, we present the results obtained
been sufficiently studied yet, s¢&2,14,15 and references with the most common of the Skyrme forces, SKiB), al-
therein. though sometimes we also show for comparison results ob-
In this work, we extend these deformed calculationstained with the force SGR19].
[9,12 by studying first the singlg8 branches that build up In both schemes, WS and HF, the single-particle wave
the doubleB process and then the/@B-decay process itself. functions are expanded in terms of the eigenstates of an axi-
We focus on the3~ Gamow-Teller(GT) transitions of the ally symmetric harmonic oscillator in cylindrical coordi-
double B emitters as well as on th&" Gamow-Teller transi- nates, using 11 major shells in the expansion. Pairing corre-
tions of the daughter nuclei ending up at the same intermdations between like nucleons are included similarly in both
diate virtual nucleus. The cases considered are those whecases in the BCS approximation with fixed gap parameters
the two-neutrino doublg decay half-lives have been mea- for protons and neutrons. The gap parameters are determined
sured, namely phenomenologically from the odd-even mass differences
, through a symmetric five-term formula involving the experi-
Ca— *°Ti;  "“Ge— "Se; mental binding energies. The values obtained from this pro-
cedure for the nuclei under consideration can be seen in

825e— 8%r;  9%zr — *Mo; Table I.
The deformed quasiparticle mean field is now comple-

100\o — Ry:  bcd — M8gn: mented with a spin-isospin separable residual interaction that

contains two parts, an attractive particle-hole and a repulsive
1281 _, 1280 130rg_, 13040 particle-particle.. The coupling strengths of these forq@?,,

and«%, are defined as positive. The strength of pieforce

is usually determined by adjusting the calculated positions of
1365, 13535 150\q _, 1505, y y ad) g p

the GT giant resonances to experiment. The strength of the

In Sec. Il, we present a brief summary containing thePp force is determined by fitting thg-decay half-lives of3
basic points in our theoretical description. Section Il con-emitters. This fitting procedure was systematically carried
tains the results obtained for the ground-state properties ¢iut in Ref.[8], where the strengthgl} and «25 were con-
the nuclei mentioned above. In Sec. IV, we present our residered to be smooth functions of the mass nunthefhe
sults for the GT strength distributions and discuss their detesult found using a Nilsson potential as the deformed mean
pendence on the deformed mean field and residual interadield wasy&y=5.2/A%” MeV and «25=0.58/A%" MeV. Nev-
tions. Section V contains the results for the two-neutrinoertheless, this parametrization clearly depends on the model
double B decay calculations. The conclusions are given inused for single-particle wave functions and energies, as well
Sec. VI as on the set of experimental data considered. Therefore,
these coupling strengths can be used as a reference but can-
not be safely extrapolated to different mean fields or different
mass regions. As we shall see in the next section, the
In this section, we summarize briefly the theoretical for-strengths from Ref{8] reproduce well the data when using
malism used to describe the Gamow-Teller transitions. Moréhe WS potential, but one needs a somewhat smaller value of
details can be found in Ref§9,12,11. X&T to reproduce the GT resonance with the HF mean field.
The single-particle energies and wave functions are gen- We introduce the proton-neutron QRPA phonon operator
erated from two different methods to construct the deformedor GT excitations in even-even nuclei,
mean field, which is assumed to be axially symmetric. In one
case, we start from a deformed Woods-Sa@i$) potential. rr=> [x%a:a; + Yﬁ*ﬁ%aw]y (2.1
The parameters of this potential are taken from R&6]. <
The isospin dependence of this parametrization allows one to
extend it to any mass region. Previous QRPA calculationsvherea™ () are quasiparticle creatigi@nnihilatior) opera-
have shown that it provides a realistic description of thetors, wy are the RPA excitation energies, axtk, YX are the
ground-state properties of deformed nuclei as well as gooébrward and backward amplitudes, respectively. The solution
results onM1 excitations[17] for nuclei in various mass of the QRPA equations can be found solving first a disper-
regions. The quadrupole deformation of the WS potential ission relation[20], which is of fourth order in the excitation
determined by fitting the microscopically calculated quadru-energieswy.
pole moment to the corresponding experimental value. The In the intrinsic frame, the GT transition amplitudes con-
hexadecapole deformation is expected to be small for thesgecting the QRPA ground staf@) to one-phonon statéey)
nuclei and we assume it is equal to zero. satisfying

Il. BRIEF DESCRIPTION OF THE THEORY
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TABLE I. Pairing gaps for protons and neutroag, A, (MeV), and charge radiic (fm).
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Nucleus Ap A, Expt. r. [24] r. Sk3 re SG2 re [25]
“8Ca 2.18 1.68 3.4738) 3.586 3.549 3.471
48T 1.90 1.56 3.592 3.628 3.597 3.571
SGe 1.56 1.54 4.128) 4.130 4.083 4.057
76se 1.75 1.71 4.159) 4.170-4.180 4113-4.143 4.119
825e 1.41 1.54 4.128) 4.204 4.159 4131
82Ky 1.72 1.64 4.192011) 4.196 4.196 4173
9zr 1.53 0.84 4.35082) 4.433-4.443 4.342-4.389 4.376
%Mo 1.53 1.03 4.3700) 4.448-4.457 4.369-4.388 4.381
10%v0 1.60 1.36 4.440.0) 4516 4.439-4.466 4.448
100Ru 1.55 1.30 4.453 4516 4.457 4.449
Hecd 1.47 1.37 4.625 4.703-4.715 4.653 4.643
11850 1.77 1.20 4.625 4.709-4.753 4.702 4.609
12871¢ 1.13 1.28 4.735 4.803-4.805 4.746 4.732
128¢e 1.32 1.27 4.776 4.836-4.839 4.782-4.786 4.778
1301¢ 1.06 1.18 4.742 4.812-4.816 4.750 4.739
13%e 1.31 1.25 4.783 4.845-4.846 4.796-4.801 4.784
136¢e 0.98 1.44 4.799 4.878 4.815 4.804
1368 1.27 1.03 4.833 4.902 4.847 4.837
150\d 1.23 1.05 5.047 5.114 5.055 5.046
1505 m 1.44 1.19 5.047 5.108 5.046 5.047
[, l00=0 T [0)=|wx) (2.2 To(05s— 05 =[G IME ] (2.7
are given by is given as a product of a phase-space inte@%land the
(w]ot*|0) = F MK, (2.3)  Gamow-Teller transition matrix elememt2’, which con-
where _ta_ir_ls the nu_clear structure effegt;. F(_)r a transition connecting
initial and final ground states, it is given by
MK = 2% (07, X2 + T, Y2K),
” vz =S s (Ol loR oRloR Xalot107)
m m;
M= 2 @ X35 + G Y ), (2.4 K mm (off + a2
Ty (28)
and
By = U0, 357, whereK=0, =1 andm;, m; label the number of intermediate
1* RPA statesoy', wi" reached from the initig0;) and final
Uy = 0,357, |0f) nuclear ground states, respectively. The overlap
(wRflogh is needed to take into account the nonorthogonality
ST = (v|oy|m), (2.5  of the intermediate states reached from the initial ground

) ) state to those reached from the final ground state. It is given
wherev’s are occupation amplitudés?=1-v?). by [12]
Finally, the GT strengtiB(GT*) in the laboratory system
for a transitionl;K;(0*0) — I;K{(1*K) can be obtained as mm mm
2 CHENEDY [X@’K X7K = YgRYex ]Re «(BCS|BCS),
_9a )2 £1A)2 om0 o
B(GT*) = ~2[ ¢ o x| oot*[0)? + 28 1{ | 1t*]0)?]. o
41 (2.9

(2.6)

The 2v88 decay is described in second-order perturbationvhere€;{; label the quasiparticlerv pairs for the initial and
of the weak interaction as two successive Gamow-Tellefinal nucleus, respectively. The factgy,,, includes the over-
transitions via virtual intermediate’ states. The half-life of lap of single-particle wave functions of the initial and final
the 2vBB decay nuclei[12],
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Reer = (7-r|77’)(v|v’>(u'wu;, + v'wv;,)(u'vufy, + v'VvL,). annt {-652
(2.10 -a16} --656
The BCS overlap factofBCS|BCS) is derived in Ref[12]. 0 I 560
An approximate expression is given by 704 —H1 H :816
No_ No, i A
®cslBCcs) = I IT (uuic+ v [T T (ufu} +vjo}), i ™
Q, k=1 Q, j=1 12F 1824
(2.11 g4 P—F— 4972
with N the number of single-particle states with the same i T
values of parity and projectioft of the full angular momen- 852r 17
tum on the nuclear symmetry axis. 56k ] 050
We note that for the case of the spherical QRPA, the deri- [
vation of the overlap factor of the intermediate nuclear states -1068f " - -1084
generated from the initial and final nuclei was outlined in i -
Ref. [21]. For the case of the deformed QRPA, the generali- 1972 171088
zation of this derivation was presented [ih2]. There, the _1076: 11002
importance of the BCS overlap factor, which is an integral Y
part of the overlap factor of the two sets of the intermediate o T v
nucleus, on the evaluation of the doulfiedecay nuclear -132f = 1224
matrix elements was maintained. Then, this procedure of the = _ T A 178
derivation of the overlap factor of intermediate nuclear states N
was followed also in Ref[15], however with a significant d140b . . v Y e 1232
approximation. The role of the BCS overlap factor was ne- 0.5 g 0.5 0.5

glected. Of course, this can affect the final results signifi-
cantly, especially in the cases when deformations of the ini-

. . . . FIG. 1. Binding energyMeV) as a function of the quadrupole
tial and final nuclei are different. g oY ) g P

deformation paramete®# obtained from deformed Hartree-Fock cal-
culations with the Skyrme force Sk3. Experimengalalues from

[ll. GROUND-STATE PROPERTIES Refs. [26] and [27] are represented as the extreme values of the
. _black boxes. The experimental difference of binding parent and
%aughter binding energies is given by the distance between the two

of the nuclei under study based on the quasiparticle mear, i;ontal lines(see text

field description. We consider both the WS potential an

Skyrme HF approaches.
In the case of HF, the first step is to study the energ)}he forces Sk3 and SG2. We quote the two, oblate-prolate,

surfaces as a function of deformation. For this purpose, WéeSUItS in those cases where the energies for the two"shapes
perform constrained calculatiorf@2], minimizing the HF are very close. The values obtained for the charge radii are in

energy under the constraint of keeping fixed the nuclear de300d agreement with the experimental values from Rl
formation. We can see in Fig. 1 the total HF energy pIottedThey are also in good agreement with the results obtained

versus the quadrupole deformation parameter from relativistic mean-field calculatior{25]. .
In Table Il, we can see the theoretical and experimental

7 Qp quadrupole deformation. Experimental values have been ex-
B=\3573 (3.1 tracted from the measured quadrupole moments from two
r ; :
different methods. In the first one, the quadrupole deforma-
defined in terms of the microscopically calculated quadru+ion is obtained from Eq(3.1), using the empirical intrinsic
pole momenQ, and charge root mean-square radigs moments derived from the laboratory moments of R26]

The results in Fig. 1 correspond to HF calculations withassuming a well defined deformation. In the second case, the
the force Sk3, which are qualitatively similar to the resultsquadrupole deformations are taken from Rgf7], where
obtained with other Skyrme forces, such as SG2 and SLythey were derived from experimental values BfE2)

[23]. We observe that the HF calculation predicts in somestrengths. In this case, the sign cannot be extracted.
instanceqGe, Se, Zr, Cd, Sn, Te, Xe&he existence of two Our theoretical values have been derived microscopically
energy minima close in energy, giving rise to possible shap&om the forces Sk3 and SG2, using the intrinsic quadrupole
isomers in these nuclei. Solid lines represent the energgphoments obtained as ground-state expectations ofQtqe
curves of the parent nuclei suffering the doulfledecay, operator and the microscopic charge radii quoted in Table 1.
while dashed lines represent the energy curves of the corréVe show the results obtained for the equilibrium shapes us-
sponding daughter nuclei. ing the Skyrme forces Sk3 and SG2. In those cases where a

We can see in Table | the experimental and the microsecond minimum appears at close energy, we also show
scopically calculated charge root mean-square nadwith  within square brackets the corresponding deformation. We
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TABLE Il. Theoretical and experimentg@ values, see text.

Expt. Theory

Nucleus Ref[26] Ref. [27] This work (Sk3) This work (SG2  Ref.[25]  Ref.[28]
48Ca 0.000 0.100L7) —-0.002 -0.001 0.000 0.000
481 +0.1710) 0.2697) —-0.002 —0.003 —0.009 0.000
SGe +0.09530) 0.262339) 0.161 0.157 0.157 0.143
763e +0.16333) 0.309G37) —0.181[+0.157 —0.191[+0.049 —0.244  —0.241
825e +0.10432)  0.194426) 0.126 0.150 0.133 0.154
82Kr 0.202245) 0.106 0.103 0.119 0.071
%zr 0.08%16) 0.207[-0.167 0.016[+0.147 0.223 0.217
%Mo +0.06827) 0.172q16)  0.147[-0.164  —0.006[+0.119 0.167 0.080
%00  +0.13930) 0.230922) 0.236 0.167-0.197 0.253 0.244
0%Ru  +0.13622) 0.217222) 0.175 0.157 0.194 0.161
18cd +0.11311)  0.190734)  0.206[—0.207 0.209 -0.258  —0.241
16y 4+0.04310) 0.111816)  0.264[—0.134 0.251[—0.034 0.003 0.000
12Te  1+0.01%10) 0.136311) —0.088[+0.10  0.094[—0.091 -0.002 0.000
1285 @ 0.183749)  0.148[-0.127 0.150[—0.133 0.160 0.143
130re  4+0.03523) 0.118414) —0.076[+0.05] —0.039[+0.06§ 0.032 0.000
130 e 0.1696) 0.108[—0.099 0.161[—0.132 0.128 -0.113
136e 0.08619) 0.001 0.016 -0.001 0.000
13¢Ba 0.12428) 0.009 0.070 —0.002 0.000
10Nd +0.36786)  0.284821) 0.266 0.271 0.221 0.243
%%Sm  +0.23q30) 0.193122) 0.207 0.203 0.176 0.206

compare our results with the results from relativistic mean-induce a relatively large error iQ; values. From Table Il

field calculations of Ref[25] and with results from system- we can see that to match the experimental energies, we
atic calculations[28] based on macroscopic-microscopic need to increase slightly the energy difference in
models(finite range droplet macroscopic model and foldedA=48,76,82,116,128,130,136 and to decrease it in
Yukawa single-particle microscopic mogleThe agreement A=96,100,150.
between all the theoretical calculations is very remarkable In this work, we have used Sk3 as a representative of the
and in general they are within the range of experimentaBkyrme forces without any attempt to optimize the agree-
values determined from Reff26] and[27]. The experimen- ment with the experimentaDg; values. Even if Sk3 force
tal B values from Refs[26] and[27] are represented in Fig. may not be the best Skyrme force to accurately predict the
1 by the end points of the black boxes. right Qg values, it is very interesting to see that experimen-
There is still another important piece of experimental in-tal and theoretical values are in many cases quite close. For
formation relevant to doublg decay that we wish to explore the cases examined here, it appears thatQhgvalues are
here. This is theQg,; energy of the decay. The energy re-
leased in a doublg process in a transition from ground-state
to ground-state is given by

TABLE Ill. Experimental and theoretic&;; (MeV) values ob-
tained with the Skyrme force Sk3.

Qg = [Mparent™ Mdaughter™ 2Me] Double 3 transition (Qppexp (Qgp)ska
=[2(m,-m,—my) + BE(Z,N) -BE(Z+2,N~-2)], 4804, 48T 4.979 205
(3.2 %Ge— "®se 2.039 1.36
: - : 8256 8K 2. 2.
in terms of the nuclear massbgs, or similarly, in terms of gef%geMr 3 222 c 22
the binding energie8BE's of parent(Z,N) and daughter 1°°Mr_> 100; : :
(Z+2, N-2) nuclei. o Ru 3.034 3.57
We can see in Table Ill the experimental valuesQpfs. %Cd— *%n 2.805 1.88
They are compared with the values calculated with the force 12876 128e 0.867 -0.10
Sk3. The agreement with experiment is reasonable taking 1301, 130k e 2.529 1.20
into account that we are dealing with differences of energies 136y o, 13635 2.468 0.80
ranging from 400 MeV inA=48 systems to 1200 MeV in 150N g 150 3.367 3.59

A=150 and a tiny percent error in the theoretical masses may
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FIG. 2. HF-Sk3B(GT") strength distribution§ga/4] in *%°Te FIG. 3. HF-Sk3 Gamow-Teller strength distributidigg /4] in
and **e calculated with the equilibrium deformatideq) and ~ °Nd and **°%Sm for various values of the coupling strength
with the deformation that fits the experimen@jp; values(Bg). x%“T (MeV).

fairly well reproduced forA=82,100,150 and that deviations .
from experiment in the worst case are 2.25 MeVAir 96, both Refs.[26] and [27]. Since for each nucleus the two

where -=3.35 MeV and =559 MeV. In the references give two d_ifferent value_s qf tﬁeparamet_er, we
future Qifﬁ\jsﬁ? be interesting 8ﬁf§;t3) other Skyrme forces S1OW in the next section the GT distributions obtained with
which may give better fits to the),, values. A case of par- the two values to take into account this uncertainty.

ticular concern for doublg decay calculations is that &

=128 for which the Sk3 force giveQﬁB:—o_lo MeV. IV. GAMOW-TELLER STRENGTH DISTRIBUTIONS

Clearly, in this case further work is needed to make self- In thi " h d di the G Tell
consistent calculations that give the rigitz; and GT h this section, we show and discuss the Lamow- Tetier
strengths. strength distributions obtained from different choices of the

We also notice that, as illustrated in Fig. 1, by changingdeformed mean fields and residual Interactions.
slightly the deformation value in the vicinity of the equilib- We notice that the relevant st_ren_gth_dlstrlbutlons for the
rium deformation, one can change the binding energy correqc’”bl_eﬁ decay are th_EB(_GTf) distribution of the Pafe“t
spondingly and get into agreement with the experimentalicléi and theB(GT") distribution of daughter nuclei.
Qg value. This procedure could be justified from the point AS @ general rule, the following figures showing the GT
of view that, in principle, in the HF method one could con- strength distributions are plotte_d versus the excitation energy
sider several collective degrees of freedom and that the atf the daughter nucleus. The distributions of the GT strength
solute minimum in the multidimensional landscape couldh@ve been folded with Gaussian functions of 1 MeV width to
correspond to a slightly differerg value. We can see in Fig. facilitate the. comparison among thg various calcqlatlons, o)
1 the experimental value af=BE,-BE; as the distance be- that the orlglpal discrete spe_ctru_m is transfqrmeql into a con-
tween the two horizontal lines plotted in each panel. Thet'g‘uous profile. These distributions are given in units of
solid horizontal line refers to the energy of the parent while9a/4 and one should keep in mind that a quenching of the
the dashed horizontal one refers to the daughter binding erda factor, typically gae;=(0.7-0.8 gafee Which appears
ergy. One of them is always a reference and signals the effguared in the GT strength, is expected on the basis of the
ergy to keep fixedparent forA=96,100,150 and daughter in Observed quenching in charge exchange reactions.
A=48,76,82,116,128,130,186The other line indicates the In the case of th&(GT") distributions, we first observe
binding energy needed to reproduce the experimestal the different scale, which is about one order of magnitude
=BE,-BE;. Therefore, the cuts of this horizontal line with smaller than thé3(GT") scale. This is a consequence of the
the corresponding energy curve indicates the deformationBauli blocking. In the nuclei considered here, the number of
where this condition is satisfied. neutronsN is much larger than the number of protahsThe

Figure 2 shows the results obtained with HF-Sk3 for thedifference between totaB(GT ) and B(GT") strengths
GT strength distributions in?®Te and **®Xe, which are (lkeda sum rule, which is fulfilled in our calculatioris then
among the cases where the calcula@gg is worse and the

change ing needed to fiQg; is larger. We show the results 60 —T—T— —T— T 03
obtained with the equilibrium deformation8=-0.088 in L *Na BGTy 4 1 | Fsm B(GT+) |
128Te andB=0.001 in****e as well as with the deformations B - dos
that fit the Qg values,=-0.005 in***Te and$=0.102 in — %0 i — 0 )
136xe. We can see that the strength distributions obtained [ - os | T ———ey |
with both deformations are similar except for a small dis-  2°[ 1M 1%t
placement in energies. In all the other cases the effectis even [ _.'\,,\ "‘\ ]
smaller and the strength distributions obtained with the equi- ¢ leams J | MR AR\ S )
librium deformation or with the slightly changed deforma- 0 10 2 0 10 20
ghtly g E, [MeV) E, [MeV]
tion are practically unchanged. In the next section, we show
GT strengths obtained at the HF minimum. FIG. 4. HF-Sk3 Gamow-Teller strength distributidigg /4] in

In the case of the Woods-Saxon potential, where the de¥®Nd and °%m for various values of the coupling strength
formation is an input parameter, we take the values from; (MeV).
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FIG. 5. Gamow-TellerB(GT") and B(GT*) strength distribu- FIG. 7. Same as in Fig. 5 f§fSe and?Kr. Vertical lines in®%Se

tions [g3/4] in “Ca and*®Ti plotted as a function of the excita- are experimental data frof32).
tion energies of the corresponding daughter nuclei. Left panels

show results from HESk3) calculations without residual interaction g5 it should be to fulfill the Ikeda sum rulE[B(GT")

(dashed linesand with residual interactions Witj@%’}zo.lo MeV, —B(GT")]=3(N-2)=90, 78 for Nd and Sm, respectively
«25=6/A MeV (solid lines. Right panels show results using WS heref h i ' h ol . | '
potentials withy21 and &2 from Ref.[8] and with two different Therefore, the coupling constagg; plays an important role

GT o1 , to reproduce the position of the GTesonance. On the other

values for the quadrupole deformatiof; from Ref. [26] (solid o A
line) and B, from Ref. [27] (dashed ling Experimental data are hand, the sensitivity of the GT strength distribution on the

. . D : :
from Ref.[30]. Notice that no quenching factor has been incIudedpamCle particle CO”P"”Q ConStangT IS not so important, as
in the calculations. can be seen from Fig. 4, where we can see the GT strength

distributions for a fixed value gfghT:O.156 MeV[8] and for

a large number given by(B-Z) and practically determined Several values okg} on the example of HF with the force
by the magnitude of th8(GT") strength. Sk3 in theA=150 case. As we can see, the position of the

We start in Fig. 3 with a discussion of the dependence oféSonance does not change appreciably. Therefore, other
the GT strength distributions on the coupling strength of théN€thods, such as fitting the half-lives of unstable nuclei in
particle-hole residual interactiogfl for a fixed value of the ~th€ same mass region, have to be used to get phenomeno-
particle-particle coupling constar2-=0. The results corre- 10gically their values.. _
spond to HF with the force Sk3 in the=150 case. We can [N the next set of figuregrigs. 5-14 we show, for each
see on the left panel the(GT") strength distribution of the CcouPle of doubles decay partners, the results obtained for
parent nucleus®Nd and on the right panel th8(GT*) the B(GT") strength distributions of the parent nuclei on the

strength distribution of the daughter nuclé&®m. The pair-  ©P panels and for th&(GT") strength distributions of the

ing gap parameters are given in Table | and the deformationd@ughter nuclei on the bottom panels. Also shown are the
are given in Table II. We can see in Fig. 3 how the mosteXperimental data whenever they are available. In each fig-

important effect ofy2} on theB(GT") strength distribution is Y’ the left panels correspond to HF+BCS+QRPA calcula-

a shift of the strength toward higher excitation energies. Thi§ions with the force Sk3 and the right panels to WS+BCS

displacement of the GT strength is accompanied by a reductQRPA calculations. In the case of HF, we use the equilib-

tion of the strength. This reduction can be more clearly ap-”um deformations. We show with dashed lines the 2qp re-

preciated on theB(GT*) strength distribution because the sults for HF+BCS calculations where the residual interaction
is not considered. This serves as a reference and can be used

scale in this case is about two orders of magnitude smallet : ) :
9 b see the necessity of the residual force to get into agree-

20 . . 20
s HF Ge 1 WS "Ge s 30 . — ———30
.;\ - 2gp — QRPAG) 25+ HF Zr + WS :’l| Zr 425
O 0 — QRPA L --o. QRPAG) {10 20 2 T --- ®RPA@) ;'; 120
Pl A i1 s o 1sp — o 1 oo s
N J1% A 10} A i J10
0 X H ey A - 0 5 A I i | s
HF 0 Pt Y s = 0
0.6 {06 A ]
o I 3 HF *Mo T Ws *Mo |, 5
O 04H J04 ~ [ ’
& i S 2F --- 2 1 — QRPA) {1
02} o 102 i — QReA --- QRPA()
R 0 1F 3 Jos
0 20 o NN A NV, S 0
0 5 10 15 0 5 10 15 20
E, [MeV] E_ [MeV]
g 76 . 76,
FIG. 6. Same as in Fig. 5 fofGe and’®Se. Data in"®Se are
from [31]. Vertical lines in’%Ge are experimental data frof82]. FIG. 8. Same as in Fig. 5 fofzr and**Mo.
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FIG. 9. Same as in Fig. 5 fd?™o and*°®Ru. Vertical lines in FIG. 11. Same as in Fig. 5 fdf®Te and*?Xe. Vertical lines in
10%0 are experimental data frofi33]. 128Te are experimental data frof82].

ment with experiment. Solid lines are the results obtained;anc.(a' -I(—jh's lsgconsslfquen?e of tf;}e structure of the t\l/_vko-boc_jy
with y2=0.1 MeV and x22=6/A MeV. which produce a ensity-dependent Skyrme force that contains terms like spin

d f|(t3Tt '” the m rGJ GT reson ’n fd " exchange operators leading to a spin-spin interaction in the
?OO 0 a” et etﬁsut\z te;o 3 ceseg Omt . self-consistent mean field, which is absent in the WS poten-
€rs, as well as 1o the two-neutrino outs ecay matnx  al. The agreement with the experimental energy of the GT
elements, as we shall see in the next section. This sm

| £ they o i tant ded t q th sonance is in this case very good, as can be seen in the
value of (n€xgy coupling constant needed 1o reproduce ecasesA:76,82,100,116,128,130, where this information is

expenmental GT resonances .W'th'n a self-cc_m5|stent Pzvailable. Indeed, the experimental giant GT resonances
proach with Skyrme forces is in agreement with the sam

observation reported in Refgl1,13 and reflects the fact that hown in these figures represent the centroids of broad

. . . . " bumps. The resonance ffiCa reported at 10 MeV in Ref.
one needs less residual interaction when using realistic effe%

tive density-dependent forces than when using phenomen 29] and used in the fitting procedure of R¢g] is also in

loaical botentials t nerate the sinale-article enerai N ood agreement with our results.
ogical potentials to generate the single-particle energies and respect to the calculations performed with the WS
wave functions.

In the case of calculations with the WS potentials sho otential, we can see that larger deformations produce peaks

the riaht-hand ul : Vﬁ' it ]P th Itw d'ffW n the GT distributions displaced to higher energies. This is a
ont € ngnt- a{'l ga][\e S \;\_/e show ri?u. Sd0; € Roél er'consequence of the larger separation of the single-particle
ent experimental deformations as obtained from 6] energies when the deformation increases. Thus, since the de-
(solid lineg and_[27] (dashed linep W.h'Ch are given in Table formation derived from Ref[27] is larger than that of Ref.
”;),;rhe calculations are done for a fixed value qf Wﬂér apd 26], solid lines appear in general on the left of dashed lines.
kgt constants as obtained from the parametrization in Ref.™ /. o\« " harkable the good agreement with experiment
[8]. . obtained in this case. This agreement is mainly determined

blSo;ne(&j ?eneral common fﬁatures t(l) alll f|gureshcan lbe € y the fixed value oﬁ(ghT from Ref. [8], which is still valid

tablished first. Concerning the HF calculations, the value o -~ g -

P given by the parametrization of RB] is an overesti- hen descnk_)lng _the mean field with a WS potential. One
Xet 9 y P . . should keep in mind that the parametrization of R8f.was
mation when dealing with self-consistent Skyrme HF Calc”'obtained using a Nilsson potential
lations. Actually, a small value of7=0.1 MeV is already '

bl q h ) I " fthe GT In Table IV, we compare the total GT strength measured
able to reproduce the experimental position of the '®SO3nd calculated with both HF and WS. When a standard

. 30 60 . . 60
ws Ued {25 sof HF "re  lws re 150
— QRPAGR) 120 — QRPAG) 140
- RPAG) {15 -— ey f\[i 130
10 \ {20
5 AL Jwo
0 DN S ] SN N
- WS Men 11 ws %e
L los — . {04
1 — Q@RPAG) los WG
-—- QRPAG) y A I
1 N {04 AN R [
k& NSV {o2 ~ YW
1 ! 3 0 1 1 L S
5 10 15 20 5 10 15 20
E, (MeV] E_ [MeV]
FIG. 10. Same as in Fig. 5 fdt%Cd and*'%sn. Vertical lines in FIG. 12. Same as in Fig. 5 fdf°Te and**°ke. Vertical lines in
118Ccd are experimental data frof83]. 1307e are experimental data frof82].
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T 6 T T 60 TABLE IV. Experimental and calculatedHF-Sk3 and W$
I HF Xe + WS Xe 150 .
50 summed GT strength. A standard quenching factor 0.6 has been
-540 N A ‘;g included in the theoretical results.
&} A A P ,"ll‘. 20
(Y :“I ] . -
oY\ 1 e oot e TR
P i ' ' - SB(GT") 487 1.42+0.2 1.00 1.79
o6t HF & “Ba | WS Ba los 76 .
o I — GG Se 1.45+0.07 0.48 2.06
C 04} 1L oo g A 104 SB(GT) "*Ge 19.89 21.78 22.65
1 1
B sl P 1 AN RN Y 8se 21.91 25.34 26.09
A, AR ~, ~. / \\JI LUAAN
PAAYAN /\ BN o ARAN 0 190 26.69 29.14 29.93
O v Y e % lecy 32.70 34.79 36.41
= = 1281 40.08 43.22 43.44
FIG. 13. Same as in Fig. 5 fdf®e and**®Ba. 13071 45.90 46.85 46.66

qUenChing factor of 0.6 is included in the theoretical reSUItSand daughter and these values decrease rap|d|y when the
fair agreement is found between theory and experiment.  gjfference between the deformations of parent and daughter
increases. In particular, we observe that Mg; value ob-
V. TWO-NEUTRINO DOUBLE 8 DECAY tained within a spherical picturéSyarent Bdaughter0) 1S
MATRIX ELEMENTS about the upper limit and only comparable with values ob-
) ) ) tained with the same deformations for parent and daughter in
In this section, we analyze the effects of deformation, agne deformed picture. As soon as the deformations of parent
well as the effect of the mean field and residual interactiongq daughter change, we get a reduction inM@r matrix
on the 28B-decay. First, we discuss the sensitivity to defor-glements that cannot be obtained from a spherical descrip-
mation of the nuclear structure contributibtg to the /88 tion. The mechanism of this reduction due to the different
half-lives. This is done in Fig. 15, where we show the matriXdeformations was studied in RdfL2], where it was found
2v . R ! X .
elementsMy as a function of both parent and daughter de-hat the overlap factor in Eq2.8—(2.11) is at the origin of

formations. The figure corresponds to the dec&r  the suppression. We can see in Fig. 15 that the experimental

96 i H . .
— Mo calculated within a Woods-Saxon scheme with re-yajues ofM24, plotted as thick segments in each curve, are

sidual interactions from Ref8]. We have changed freely the compatible with particular values of parent and daughter de-
deformations of both parent and daughter nuclei without any¥grmations.

constraint from experiment. In this way, we can study quali- \We show in Fig. 16 the difference between parent and
tatively the effect of deformation. The experimental Va|U95daughter nuclear quadrupole deformations for the dogble-
for M2 shown in Fig. 15, as well as in the next figures, haveemitters. The dots correspond to the results obtained from
been extracted from the adopted experimental half-Wgs  self-consistent HF calculations with the Skyrme force Sk3,
given in Ref.[34]. From the experimental half-lives and the while the extreme values on the vertical segments indicate
corresponding kinematical facto3®”, we extract two ex-  the maximum and minimum differences compatible with the
perimental nuclear matrix elements from E2.7) by assum-  experimental values in Table Il. These are also the extreme

ing values for the axial coupling constagi=1.25 orga=1.  values used in WS calculations in Fig. 17.
These two values are plotted in Figs. 15-18 as horizontal

lines.
From Fig. 15 we can see that the matrix elemevifg
have maximum values for equal deformations of both parent

T r T T 60
sol HF “na f ws 'Na {s0
- T — QrPAG) 140
) T --- QRPAG) 130
A 20} + {20
10 + \ {10
0 [aidant + ppa? o (]
q 150, 150,
o6l HF Sm] WS sm [o6 PO Sy AT
o '.‘ . — QRPA(B) 8 02 0 02 04
S 04}1 _ gf“ + --- QRPAQ) 104 Bdaughtu
E H I
02Rh T 102 . .
\A_ i NG FIG. 15. 2/8B-decay matrix elements fZr as a function of
% 5 10 15 20 0 5 10 15 20 250 l:_)oth parent and daughter_ deforn;atlons. The two dashed horizontal
E_ [MeV] E_ [MeV] lines correspond to experimentill; extracted from Ref{34] us-
ing ga=1.0 andg,=1.25. The thick segments in each curve corre-
FIG. 14. Same as in Fig. 5 fdP™Nd and**°Sm. spond to the experimental values M.
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FIG. 16. Difference between parent and daughter quadrupole
deformations in doublg emitters. Dots are self-consistent results
from Skyrme Sk3 calculations. Vertical lines indicate the maximum
and minimum experimental differencgésee Table Ij, which are
used in WS calculations.

In the next two figuregFigs. 17 and 18we show the
matrix elementdviZ; for the same doubl@ emitters studied
in the last section as a function of the particle-particle
strength«. The experimental values extracted by assuming
0a=1.25 orga=1 are shown by the lower and upper hori-
zontal lines, respectively.

It is well known [4] that thepp interaction introduces a N
different mechanism of suppression of th& matrix ele- o N, LTINS
ments, which is also interesting to study in our case. In this 0 002 004 006 O 002 004 006 008
way, we can compare the effect of tipp force with the K,y [MeV] K, [MeV]

effect due to deformation. We first discuss in Fig. 17 the

effects of deformation in the WS case by taking the available FIG. 17. 28B-decay matrix elements calculated with Woods-

experimental quadrupole deformations and then we discus3axon potentials as a function of the particle-particle interaction

the HF case by considering the self-consistent deformationstrength «ff;. Dashed lines correspond to the results assuming
In the WS cas€Fig. 17), we use the same potential pa- spherical nuclei. Solid lines correspond to the results obtained by

rameters, gaps, argh residual interaction as those used in using the maximum and minimum differences between the experi-

the singleg calculations in the previous section. For defor- mental deformations of parent and daugtisee Table ). Horizon-

mations, we take all the experimental possibilities for parend! lines are the experimentalgy extracted from Ref[34] using

and daughter given in Table Il and cross them to calculat@a=1.0 andga=1.25.

M&r. Then we show in the figure the upper and lower results |, Fig. 18, we show the resuilts corresponding to HF cal-
obtained as a function ofgy and we draw a shadow region cylations with the force Sk3. In this case, the quadrupole
between them. We also show for comparison the results olfeformations are obtained self-consisteiitige Table I and
tained in the spherical cagdashed lines are the same as those used in the previous section to calcu-
The first thing to notice is the already mentioned reducHate the GT strength distributions in the singlelecays. The
tion of M2} as the magnitude ot increases, which takes coupling strength of theph residual interaction has been
place for both spherical and deformed cases, although thiakeny=0.1 MeV as in the previous section. Contrary to the
effect of thepp force is larger in the spherical case. The case of single3 decay, where the position of the GT reso-
spherical curves decay faster than the deformed ones withance is determined by the strength of fiteforce and al-
«%. This means that the deformed results are more stablmost independent of the?; force, we can see in Fig. 18 the
(more insensitiveto the particular strength of thgp inter-  sensitivity of the 288 decay to thepp force. We find that
action. the experimental values Mé”T are roughly reproduced with
Another interesting feature to mention is that, as expectedalues of k£3=6/A MeV. This is the reason why we used
from the analysis in Fig. 15, deformation introduces in mostthese values also in the HF calculations of the GT distribu-
cases a reduction factor with respect to the spherical resultions in the previous section.
Only when the deformations of parent and daughter are very To illustrate even further the effect of deformation on the
similar can the results obtained in the deformed case bMZ; matrix elements, we show in Fig. 19 the HF+BCS
larger than the spherical ones. This is, for instance, the caseQRPA results with the Skyrme force SG2 for the decay
of A=82 (see Table Ij, where the experimental quadrupole °°Zr— %Mo corresponding to the decay of a prolate parent to
deformations[27] are 8=0.1944 in the case of the parent a prolate daughter or to the decay of a spherical parent into a
nucleus #’Se and8=0.2022 in the case of the daughter spherical or a prolate daughter. The actual deformations used
nucleus®Kr. in these calculations are those consistently obtained with the
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FIG. 19. 2BB-decay matrix elements of°Zr obtained from
Skyrme(SG2 deformed Hartree-Fock calculations as a function of
the particle-particle interaction strengd. The dotted curve cor-

02f BTe »%Xe - Te 5% %e 02 _ '
\ responds to calculations using the prolate shapes for parent and
u T ] daughterB,=0.147,3;=0.119(see Table ll. The dashed curve is

M7 MeV]
(=]

(=4 54

- 8

L 5

[ L
g
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=

of \ . \ 40 for spherical shapes and the solid curve is for spherical parent and
— Ny —————P prolate daughtei3,=0.016, 83=0.119 (see Table . Horizontal
02 Boxe —'*Ba | 150Nd »%m | 02 lines are the experimentallZ; extracted from Ref[34] using ga
T~ =1.0 andgs=1.25.
B N\
oF = 1 1o In the case of HF, the deformation is determined self-
L \ . T consistently and we are able to reproduce the experimental
0 002 004 006 O 002 004 006 008 charge radii and quadrupole moments. In the case of WS, the
Ky [MeV] K, [MeV] input deformation is taken from experiment and we use two

values for each nucleus, one corresponding to the measured
FIG. 18. 2ppB-decay matrix elements obtained from Skyrme quadrupole moment of the first* Ztate and the other ex-
(Sk3) deformed Hartree-Fock calculations as a function of thetracted from the measureB(E2) values. The latter can be
particle-particle interaction strengt®. Horizontal lines are the considered as an upper limit of tigevalue. More experimen-
experimentalMg; extracted from Ref[34] usingga=1.0 andga  tal work would be needed to improve and complete the ex-

=1.25. perimental determination of the quadrupole moments based
on the first of these methods.
force SG2, as can be seen in Table Il, namgky0.016, Starting from this quasiparticle basis, we perform a pn-

0.147 for the parert®Zr and3=-0.006, 0.119 for the daugh- QRPA calculation with separable forces to obtain the energy
ter °®Mo. We can see that the transition from the sphericaldistributions of the GT strength in the parent nucleus and
shape to the prolate shape reduces considerably the mattie GT" strength in the daughter nucleus, and from them the
elements as compared to the spherical/spherical or to th2vBB-decay matrix elements. It is well known from previous
prolate/prolate cases, which are comparable. This reductiostudies that theh force allows a reasonable fit of the GT
due to the different deformations, makes the results compatesonance, and that tip force also affects th&(GT") and
ible with the experimental values. B(GT") distributions. This knowledge has been applied in
our paper to test existing parametrizations of pieand pp
residual forces and to see how good agreement can be ob-
tained between experiment and theory with HF and WS
Using a deformed QRPA formalism, which includge  methods. To our knowledge, we have considered for the first
and pp separable residual interactions, we have studied théime simultaneously all the possible ty®emitters and their
GT strength distributions for the two decay brancjgesand  corresponding daughters comparing thBiGT) to experi-
B in double 8 decay processes, as well as the two-neutrinanent. We find that we need different strengths ofgthdorce
double 8 decay matrix elements. In the same manner into reproduce the position of the GT resonance, depending on
which two-neutrino doublgd decay is used to calibrate the the HF or WS basis. In the first case, a small valued®¥
nuclear matrix elements for neutrinoless douBldecay, the =0.1 MeV reproduces all the measured GT resonances. In
single B decay branches of parent and daughter are used the second case, the parametrization obtained in F3f.
test the matrix elements for two-neutrino doullelecay. (x2h=5.2/A°7 MeV), using a Nilsson potential, is still valid
Two different methods, a deformed Skyrme HF approactwhen using a WS potential. The fact th;@} is smaller in
and a phenomenological deformed WS potential, are used tdF than in WS can be understood as arising from the fact
construct the quasiparticle mean field, which includes pairinghat the HF mean field already contains the average effect of
correlations in BCS approximation. spin-spin interaction terms. In both cases, we reproduce rea-

VI. CONCLUDING REMARKS
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sonably well not only the position of the resonances but also In the case of the WS potential, we have studied the
the total GT strength. It should also be mentioned that thvgs-decay matrix elements by considering the maximum
GT strength of the parent nucleus and the*Gtrength of  and minimum differences between the experimental defor-
the daughter are located at different energies, a feature that igations of parent and daughter. This procedure generates a
relevant for doubleg decay because it introduces a reductionregion of decaying rates that would be narrowed from an
of the doubleg decay probabilities. It would be very useful jmproved experimental determination of the quadrupole de-
to improve and complete the experimental information orgrmations.

GT strength distributions bgp,n) and(n,p) charge exchange | the case of HF calculations, we find that using the

reactions on nuclei participating in doubtedecay. self-consistent deformations obtained from the minimization

We have also explored the theoreticy); values obtained of the ener . : . . .
: . . gy and residual interactions with coupling
with the HF method. We find that with the Sk3 force usedStrengths given by(g'}:o.l MeV and«2=6/A MeV, we

gi(rjet';;'f.tag.r”eg;ner(‘)trmthhﬁgetg)l(g;:'g??%bk'sraztfgfg;ef;at are able to reproduce simultaneously the available experi-
twi worthwhi Y mental information on the GT strength distributions of the

may optimize agreement with experiment on both GTsingle/&‘ branches and theyBB-decay matrix elements.
strengths an@g; values. However, taking into account that

there is no fitting parameter at all, the agreement between

theory and experiment is good. So far, no other approach ACKNOWLEDGMENTS
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