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DEFORMING A PL SUBMANIFOLD
OF EUCLIDEAN SPACE INTO A HYPERPLANE

jo2e VRABEC

Abstract. Let M be a closed, fc-connected, m-dimensional PL submanifold
of R2""-*-1 (i < k < m - 4). The main result of this paper states that if
m - k is even, then every embedding of M into R2m~k can be isotopically
deformed into R2m-*-' ; and specifies which embeddings of M into R2m_*
can be deformed into R2™-*-1 incase m — k is odd.

Introduction

For arbitrary polyhedra X and Y let W(X , Y) denote the set of PL em-
beddings of X into Y and let J^(X, Y) be the set of PL isotopy classes of
such embeddings.

Let M be a closed PL submanifold of a Euclidean space R* . If we iden-
tify Uq, as usual, with the hyperplane R9 xO in Rq+ , every embedding of
M in Rq is at the same time an embedding in Rg+X. Clearly, the inclusion
i: %(M , R") <-► %(M, Rq+X) induces a function

it:Jr(M,Rq)^(M,Rq+X),

and this function is the object of our study. The most interesting problems
concerning it are to determine its range (i .e. to decide which embeddings of
M in Rq+ can be isotopically deformed into Rq ) and its point inverses (i .e.
which pairs of embeddings into Rq are isotopic in Rq+X ).

Of course, this problem is too hard to hope for a concrete general solution.
The oldest specific result of this kind that the author knows of is due to Tindell
[ 13], who proved that if M is a product of two spheres, then at least for some
q the function it is not constant.

We shall take for M a fc-connected manifold and q will be the smallest
number such that the set S(M, Rq+ ) is (in general) nondegenerate, i .e. q =
2m-k-l [14]. The same problem in the smooth category (beside the analogous
problem for immersions) was treated by Rigdon in his dissertation [9].   He
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determined the image of it under the restriction 0 < 2k < m - 5 . Apparently
his results have not been published. A proof of Rigdon's theorem for k - 0,
m > 6 is contained in Yasui's paper [16].

Our restriction is 1 < k < m - 4, and our main result (Corollary 3.2) is a PL
version of Rigdon's theorem on the image of it. In particular, im is surjective
if and only if either m-k is even or 2-Hk+x(M) = 0, and i, is constant if and
only if either m - k is even and Hk+X(M ; Z2) = 0 (in which case M unknots
in R m~ , by [14]) or m - k is odd and Hk+X(M) has no 2-torsion. We also
prove (Corollary 3.3) that two embeddings of M in R m ' are isotopic in
R m~   if and only if their restrictions to M -(m-disk) are isotopic in R m~ ~  .

We shall conclude this introduction by fixing our notation and terminology.
We work throughout in the PL category and all our terms (manifold, map,
homeomorphism, etc.) must be interpreted accordingly. We refer to Cohen [2]
for regular neighborhood theory and to Hudson [4] for the rest of standard PL
topology.

Let M and Q be manifolds. An embedding / : M —> Q is proper if it is
a proper map and fx(dQ) = dM ; if M c Q and the inclusion is a proper
embedding, we say that M is a proper submanifold of Q .

If /o ' f\'- M -+ Q are embeddings, then a concordance of M in Q from
f0 to /, is an embedding F: I x M —> I x Q (where / := [0,1]) such that
F~x(i xQ) = i x M and F(i,x) = (i,f¡(x)) for i = 0,1 and x G M. The
concordance F is fixed on Ac M (or keeps A fixed) if F(t ,a) = (t ,/0(a))
for each t g I and a g A ; in this case we also say that F is a concordance
reU.

An isotopy of M in Q is a concordance of M in Q that is level preserving,
i.e. F(t x M) c t x Q for each t G I ; we shall consistently denote by Ft
the embedding M -> Q such that F(t,x) = (t,Ft(x)) (t G I ,x g M). A
concordance or isotopy is proper if it is a proper embedding.

An isotopy of Q is a proper isotopy F of Q in Q such that FQ = id. The
isotopy F carries A c Q onto B c Q if FX(A) = B . F moves the embedding
/ : M —* Q to the embedding g: M —► Q if g - Fxf.

For each positive integer n we shall denote by R" the «-dimensional Eu-
clidean space (and R° := {0}) ; 0" will be the origin of R", D" the product
of n copies of the interval [-1,1] (we never write D for D ), and Sn~ the
boundary of Dn . For each integer k > 0 we identify R" with the subspace
R" x 0k of Rn+k , and correspondingly we think of Dn and Sn~x as lying in
Dn+k and Sn+k~x , respectively.

Let R+ := [0, oo) and R_ := (-co, 0], and for /' = + , - let R" := Rn_l x R.
and S" := R"+x n Sn. In §1 we shall also use the two hemispheres in the
direction of the first coordinate: let S" ¡:= (RixR")nS"   (/ = + ,-).

Let Q be an oriented ^-manifold. If a and b are integral PL chains (e .g.
oriented compact manifolds) in Q such that their dimensions add up to q and
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their supports |a| and \b\ intersect transversely, define sc(a , b ; Q), the inter-
section number of a with b in Q , as usual by adding up the local intersection
indices of a with b at all points of \a\ n \b\. If a and b are not transverse
but satisfy the weaker conditions

\da\n\db\ = 0,
\a\nCl(\db\nintQ) = 0,
\b\nCl(\da\nintQ) = 0,

define sc(<z ,b;Q) as follows: choose mutually transverse chains a , b' such
that a approximates a (in the sense that da = da and the cycle a-a bounds
in Q ) and b' approximates b and then set sc(a, b ; Q) := sc(a , b' ; Q).

Whenever the intersection number function sc involves one of the manifolds
R" , D", or Sn , we assume these manifolds oriented in some standard way;
the actual choice of "standard" is not of much consequence since we shall not
be much interested in the signs.

A codimension 0 submanifold of an oriented manifold will normally be
assumed to have the induced orientation.

When we write homology (or chain) groups without specifying the coeffi-
cients, integer coefficients are understood.

1. HOMOTOPY GROUPS OF PL BLOCK EMBEDDING SPACES
OF SPHERES INTO SPHERES

Some of the groups of the title will be coefficient groups in our main theo-
rems. In this section we shall therefore explain the necessary facts. We shall
give a definition of homotopy groups of PL block embedding spaces without
mentioning the embedding spaces themselves.

Let Q be a compact ^-manifold and M a compact proper w-submanifold
of Q . For an arbitrary positive integer p denote by fi E(M , Q) the set of all
locally flat proper embeddings e : Dp x (M, dM) —» Dp x (Q , dQ) (i .e. e is a
proper embedding on each member of the pair) such that e\Sp~x x M = id ; let
npE(M, Q) be the set of locally flat proper concordance classes (rel Sp~ ' x M)
in Q E(M , Q) (here we have in mind concordance of pairs, of course). We
shall be interested only in the cases with q - m > 3 ; then every embedding of
Dp x (M, dM) in Dp x (Q , dQ) is locally flat, all concordances between such
embeddings are locally flat, and concordance classes are the same as isotopy
classes or ambient isotopy classes. For an arbitrary e in Q E(M, Q) we shall
denote by [e] G npE(M, Q) the class of e. In what follows we shall often
write ilp for £lpE(M, Q) and np for npE(M, Q).

Let f:Dp-+Dp be any embedding. For an arbitrary e G fi denote by
e/f the mapping Dp xM -► Dp xQ which agrees with (/ x idQ)e(f x id^)-1
on f(Dp) x M and is the identity elsewhere. Clearly e/f G Cl  .
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1.1. Lemma. If f: Dp —► Dp is an orientation preserving embedding, then
[e/f] = [e] for each eefl^.

This follows easily from the fact that / is isotopic to the identity.
Define g+, g_: Dp -» D" by

*±«i.tp):=(\(tx±l),t2,...,tp).

For any ex, e2G fi   let ex + e2 : Dp x M -* Dp x Q be the embedding which
agrees with ex/g_ on [-1,0] x Dp~x x M and with e2/g+ on [0,1] x Dp~x x
M. Obviously, ex + e2 G Clp , and [ex + e2] depends only on [ex] and [e2].
This means that + is a binary operation on fi and that it induces a binary
operation, also denoted +, in n . It can easily be deduced from Lemma 1.1
that the latter operation makes n a group and that for p > 1 this group is
abelian (the zero element is the class of the inclusion Dp x M <—► Dp x Q , and
for any e Gil and any orientation reversing embedding /: Dp —► Dp , [e/f]
is the opposite of [e] ). In fact, this is the p th homotopy group of the A-set
of "block embeddings" of (M ,dM) into (Q,dQ) (cf. Morlet [8, p. 343] and
Burghelea, Lashof, and Rothenberg [1, pp. 121-122]).

In applications (§§2-3) we shall be interested only in the case (Q, M) =
(Dq , Dm) with q - m > 3. In calculations we may replace the pair (Dq , Dm)
by (Sq~ , Sm~ ). Indeed, using the familiar conewise extension of embeddings
and isotopies we can prove:

1.2. Lemma. Let 1 < m < q - 3. The function which assigns to each e G
fi E(Dm ,Dq) its restriction to Dp x Sm~x induces an isomorphism

p: npE(Dm,Dq) - npE(Sm-X ,Sq~X).

The conewise extensions to which we alluded above are identity on Dp x0m
or I x Dp x 0m , respectively. Therefore the proof of 1.2 gives at the same time
the following:

1.3. Corollary. Each element of n E(Dm ,Dq) can be represented by an em-
bedding Dp+m -» Dp+q in ÇlpE(Dm ,Dq) which is identity on Dp x 0m. If
ex, e2G ilpE(Dm , Dq) are both identity on Dp x 0m and if [ex] = [e2], then
there exists a proper isotopy from ex to e2 which is fixed on Dp x 0m (and
Sp-xxDm).

This means that npE(Dm ,Dq) = np(Vqm), where Vq m is the block PL
Stiefel manifold of Rourke and Sanderson [10, p. 274].

Take any e: Dp x Dm - Dp x Dq belonging to ilpE(Dm ,Dq); let e.g.
e(x,y) = (f(x,y),g(x,y)), where / and g map Dp x Dm into Dp and
Dq, respectively. The map e*: Dp x Dx x Dm -+ Dp x Dx x Dq defined by
e#(x,t,y) := (f(x,y),t,g(x,y)) obviously belongs to QpE(Dm+x ,Dq+x),
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and [e*] depends only on [e]. Moreover, the function
X: npE(Dm ,Dq) - npE(Dm+x ,Dq+x)

defined by I,[e] := [e*] is a homomorphism; we shall call it the suspension ho-
momorphism because it is induced by the suspension map of embedding spaces
as defined by Husch [6] in greater generality. Define

o:npE(Sm-x ,Sq-X)^KpE(Sm ,Sq),

also called the suspension homomorphism, by o := pl.p~ . For any n let
^: R" —> R"+1 be the shift map: y/(x) := (0 ,x). Unknotting of codimension
3 disk pairs implies:
1.4. Lemma. Suppose that 1 < m < q - 3.  Let e G QpE(Sm~x ,Sq~x).  If
e: Dp x Sm -» Dp x Sq from QpE(Sm ,Sq) agrees with (idxy/)e(idxip)~x

on Dp x (0 x Sm~ ) and maps the hemispheres Dp x S^ and Dp x 5,m_ into
Dp x Sq    and Dp x Sq _, respectively, then [e] = o[e].

Husch [6] proved:

1.5. Proposition. Ifl<m<q-3, then the suspension homomorphisms
zZ: npE(Dm ,Dq) - npE(Dm+x ,Dq+x) and

o:nE(Sm-X,Sq-X)^nE(Sm,Sq)

are surjective for q > p + 1 and bijective for q > p + 1.
Proof. Husch obtained this (in the more general situation) by nontrivial argu-
ments from the exact homotopy sequences of certain Kan fibrations.  In our
situation, however, the proof is very simple.   Let q > p + 1  and take any
e:DpxSm^DpxSq from ClpE(Sm ,Sq). Since Dp x Sq is p-connected

and since Dp unknots (rel5p_ ) in Dp x Sq , by Zeeman's Unknotting Theo-
rem, there is an e in [e] such that e'\Dp x 1 x 0m = id. Because of uniqueness
of relative regular neighborhoods we can now deform e to an e" G [e] which
embeds Dp x S,"1, properly into Dp x Sq . (/' = +,-). By Lemma 1.4 this
implies that [e] = [e"] is in the image of a .

Injectivity of a when q > p + 1 is proved by essentially the same argument;
we only replace Dp by / x Dp .   a

Proposition 1.5 is very useful at studying the groups n E(Sm ,Sq) with p
approximately equal to q - m, for it reduces the problem to a few cases with
very small m, which are usually easier to handle than the general case. For
example, we have the following proposition (cf. [11, 2.8]), which is a direct
consequence of the two subsequent lemmas.

1.6. Proposition. If q>3 and 2q> p + 3, then npE(S° , Sq) » np(Sq).

In the following two lemmas, the number 1 e R is identified with 1 x 0" G
Rn+   for any n (similarly for the number -1).
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1.7. Lemma. If q >3 and 2q > p + 3, then the function which assigns to each
embedding e: Dp x 1 -» Dp x Sq in ClpE(l ,Sq) the composite

(Dp,Sp-X) ^(Dpxl ,S"-X x 1) -i (Dp x Sq ,S"-X x 1) *& (S« .1),

induces an isomorphism n E(l, Sq) —* n (Sq , 1).
Proof. The map in question is easily seen to be a homomorphism. The in-
verse homomorphism is induced by the function which assigns to each map
f:(Dp,S"~x) -» (Sq , 1) the embedding Dp x 1 -» Dp x Sq given by (x, 1) i-»
(x , /(*)). (The proposed inverse is really a right inverse for all p and q, and
is a left inverse if Dp unknots in Dp x Sq , i .e. if q > 3 and 2# > /? + 3.)   D

1.8. Lemma. If q > 3, then the restriction induced homomorphism n E(S ,Sq)
—* n E(l ,Sq) is an isomorphism.
Proof. Denote this restriction homomorphism by r . To prove injectivity of r
take any embedding e G£lpE(S° ,Sq) suchthat e\Dp x 1 is isotopic (reld) to
the inclusion. By the isotopy extension theorem there exists an isotopy F of
D"xSq , fixed on the boundary, suchthat Fxe\Dpxl =id. Then Fxe\Dpx(-l)
is an embedding, on the boundary equal to the inclusion, of Dp x (-1) into
Dp xSq -Dp xl & Dp xRq . Therefore Fle\Dp x (-1), and hence e, are
isotopic (reld) to the inclusion.

To prove surjectivity of r take any e G fi E(l ,Sq); we have to show that
Sp~x x (-1) bounds a p-disk in M := (Dp x Sq)-e(Dp x 1). But this follows
from Irwin's Embedding Theorem since M is contractible: one can show by a
general position argument that M is 1-connected and by standard methods of
homology theory that Ht(M) = 0.   D

Propositions 1.6 and 1.5 and Lemma 1.2 imply the following well-known
theorem (cf. [11,2.11]).

1.9. Theorem. If q - m> max{p +1,3}, then
npE(Sm~X ,Sq~x) = npE(Dm ,Dq) = 0.

The main objective of this section is to calculate the groups npE(Sm~ ,Sq~ )
- n E(Dm ,Dq) with q - m = p > 3. These are already nontrivial. In fact,
they are equal to their orthogonal analogues w (K m), the homotopy groups
of Stiefel manifolds, which are well known. For most cases this follows from
[11, 2.11] or from results of Lashof [7]. However, in the sequel we shall need
the explicit isomorphisms described in Theorems 1.13 and 1.15 below, and
therefore we include direct, elementary proofs.

Let p > 1 and m > 0. Pick any a G Sm+P - Sm. For each e G
QpE(Sm,Sm+p) set

(1.10) s(e) := sc(Dp x a,e(Dp x Sm);Dp x Sm+P).
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Clearly s(e) depends only on [e], and therefore s induces a function, also
denoted by s, from npE(Sm ,Sm+p) to Z. It follows from the definition
that the latter function is a homomorphism, independent of the point a . The
following lemma, too, is a simple consequence of the definitions (cf. [14, pp.
149-150]).

1.11. Lemma. For each m and p, the following diagram is commutative up to
sign:

npE(Sm-x ,Sm+p-x) -?-+ npE(Sm ,Sm+p)

I« 1«
z -► z

For w = 0 we can similarly define a homomorphism s+: npE(S ,SP) —► 2
by assigning to each e G fi E(S ,SP) the number

s+(e):=sc(Dp xa,e(Dp x l);Dp xSp).

We can prove (see [14, p. 149]) that

(1.12) s = (I + (-l)p)s+   form = 0.

We shall now describe the groups npE(Sm , Sm+P). For any e G ClpE(S° ,SP)
s+(e) is the degree of the map proj2oe: (Dpxl ,5p_1xl) —► (Sp , 1). Therefore
Lemmas 1.7 and 1.8 imply:

1.13. Theorem. If p > 3, then s+: n E(S ,SP) —► Z is an isomorphism.

1.14. Corollary [14, 6.1]. The homomorphism s is trivial if p is odd, and the
image of s is 21 if p is even.

This follows from 1.13, (1.12), 1.5, and 1.11.
For the groups npE(S'   ,S    P) with m > 0 we havewiui   rri ** \j   wc nave

1.15. Theorem. Let m > 0 and p > 3. // p is even, then s: npE(Sm ,Sm+p) ->
2Z is an isomorphism. If p is odd, then n E(Sm ,Sm+p) « Z2.
Proof. For even p the theorem follows from 1.13, (1.12), 1.5, and 1.11 by
induction on m.

Suppose that p is odd. By 1.5 and 1.13 we only have to prove that the kernel
of o: npE(S°,Sp) -* npE(Sx ,SP+X) is mapped by s+ onto 2Z.

Take any e: Dp x S° ^ Dp x Sp in ClpE(S° , Sp). If we represent p~x[e]
by the embedding Dp x D —► Dp x Dp+X which is the conewise extension
of e (and of the inclusion of Sp~x x Dx into Sp~x x Dp~x), we obtain a
representative e : Dp x Sx -► Dp x Sp+X of o[e\ = pLp~X[e] such that

e\Dp x (0 x 5°) = (idx^)e(idx^)-1 (see Lemma 1.4),
e'(int(Dp x S\ .)) c in\(Dp x Sp+X) for i = +, -, and
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e\D" x{u, -u} = id, where u := 1 = (1,0) = (1,0P+X).
Now suppose that o[e] = 0. Then there exists an isotopy F of Dp x Sp+X,

fixed on the boundary, such that for some ¿>0 we have Ft — id if 0 < t < ô
and Ft\Dp x Sx = e  if l-S<t<l.

Beside u consider the points v := (0,1) = (0,1,0") and a := (O^1 , 1) in
Sp+X . Let L := {(x , 0P , y) G Sp+X \y > 0} ; thus L is the "upper" half of the
1-sphere Sx in the coordinate plane spanned by u and a . Note that a is the
midpoint of L and dL = {u , - u} = S° . Using the properties of e and Z7
stated above we can calculate s+(e) as follows:

s+(e) = sc(Dp x (0P , 1), £>(£>" x h) ; Dp x Sp)

= sc(/)p x a , e'(Dp xv);Dpx0xSp)

= ±sc(Dp xL,e'(Dp xv);Dp xSp+X)

= ±sc(IxDp xL,F(SxD" xv);I xDp xSp+X)

= ±sc(/ xD" xL,d(F([ô,l -S]xDp xv));I xDp xSp+X)

= ±$c(d(I xD" xL),F([ô,l -â]xDp xv);I xDp xSp+X)

= ± sc(/ x Dp x dL,F([ô , 1 - Ô] x D" x v) ;/ x Dp x Sp+X)

= ± sc(F"'(/ x Dp x dL), [Ô , 1 - Ô] x D" x v ;I x Dp x Sp+X)

= ± sc(F"'(/ xDp xS°),IxDp xv;IxDp x Sp+X)

= ± sc(/ x Dp x v , F~\l x Dp x S°) ;I x Dp x Sp+X).

Now,
F-X:IxDpxS°^IxDpxSp+X

is essentially an element of fi XE(S° ,SP+X). Since p + 1 is even, Corollary
1.14 implies that the number in the last line of the above calculation is even.
We have thus proved that 5+(kerff) c 2Z.

Conversely, it follows from 1.14 that for each integer n there exists an em-
bedding g: I x D" xS° -* / xD" x Sp+X such that g\d(I x Dp) x S° = id
and

sc(/x£>" xv ,g(I xDp xS°);I xD" xSp+X) = 2n.

We can even choose g level preserving with respect to the first factor /, and
then we can extend g to an isotopy G of Dp x Sp+ , fixed on the boundary.
Since G, is identity on Sp~ xSp+ andDpxS there exists, by uniqueness of
regular neighborhoods, an isotopy G1 of Dp x Sp+ which keeps the boundary
and Dp x S° fixed and carries G~X(DP x Sp+X) onto Dp x Sp+tx (i = + ,-).
If we set CiG~x =: F, we are in the previous situation: e := Fx\Dp x S
is in QpE(Sx ,SP+X), e := (id xy/)~xe'(idxy/) is in QpE(S°,Sp), and by
construction we have o[e] = [e] = 0 (see Lemma 1.4).  Moreover, as shown
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above,
s+(e) = ± sc(7 xDp xv ,F~x(IxDp xS°);IxDp x Sp+X)

= ±sc(I x Dp x v ,g(I x Dp x S°);I x Dp x Sp+X)
= ±2«.

This proves that 2Z c s+(ker a) and concludes the proof of Theorem 1.15.   D

1.16. Lemma. If p > 3, then for any positive integer m each element of
n E(Dm ,Dm+p) can be represented by a level preserving embedding, i.e. an
embedding Dp x Dm —► Dp x Dm+P of the form (x , y) i-> (x , tp(x , y)) (for a
suitable <p:DpxDm^Dm+p).

The reader can find much deeper results of this sort e .g. in Lashof [7]. Here
we give a short proof of the stated simple version, which will be sufficient for
our purposes.

Proof. As shown in the proof of Lemma 1.7, an arbitrary element of n E(\ ,SP)
has a level preserving representative f:Dpxl —> Dp x Sp , say f(x, 1) =
(x, cp(x)).   The latter extends to a level preserving embedding Dp x D   —*
Dp x Dp+X   in ÇlpE(Dx ,DP+X)  defined by (x,y) ^ (x,y-tp(x)).   Hence
each element of n E(D , Dp+ ) has a level preserving representative, by Lem-
mas 1.8 and 1.2. Since, by 1.5, a repeated suspension homomorphism maps
npE(D , Dp+ ) onto npE(Dm , Dm+P), each element of the latter group has a
level preserving representative.   G

We shall now give a new description of an isomorphism of n E(Sm , Sm+P)
onto Z or Z2. An arbitrary embedding e G fi E(Sm ,Sm+p) can also be
interpreted as an element of £lpE(Sm , sm+p+1). By Theorem 1.9, e represents
the zero element of npE(Sm , sm+p+ ), and hence there exists a proper isotopy
Fofö'x Sm in Dp x sm+p+[ (relö) from e to the inclusion. For a given
e there are many such isotopies (even essentially different ones), but they all
have the same intersection number (in Z or Z2 ) with a "straight" (p + l)-disk.
More precisely:

1.17. Proposition. Let p > 3, m > 0, d := l-(-l)i', and Zd :=I/dI (= Z
or Z2). There exists a unique surjective homomorphism k: n E(Sm ,Sm+p) —»
Id such that for any e G Clp(Sm ,Sm+p) and any proper concordance F of
D" x Sm in D" x sm+p+x (rel d) with FQ = e and Fx = id the following
relation holds, where a := (0m+p+l , l) e sm+p+x :

k[e] = sc(/ xD" xa,F(I xD" xSm);IxDp x sm+p+x)   mod d.

If m > 0 or if p is even, k is an isomorphism.
Proof. Note that the second assertion of this proposition follows from the first
one since n E(Sm ,Sm+p) » ~ld unless m = 0 and p is odd.
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We shall write m + p + 1 = : q . For an arbitrary proper concordance F: I x
(Dp x Sm) —> I x (Dp x Sq) which satisfies the conditions

F\IxSp-XxSm = id,        F0(DP x Sm) C Dp x Sq'X ,        F,=id.
let

p(F) := sc(7 x D" x a ,F{I x Dp x Sm);I x Dp x Sq).
Let G be another such concordance, suppose that GQ = F0, and compare p(G)
with p(F). Define

H:DxxDpxSm-+DXxDpxSq

by
(F(t,x,y), ift>0,

H(t ,x , v) := {
\rxGrx(t,x,y),    if t < 0 ,

where r, := (-id) x id x id: Dx x Dp x Sq — Dx x Dp x Sq. Then H G
Çlp+xE(Sm ,Sq), and therefore Corollary 1.14 implies that

s(H) = sc(Dp+x x a,H(DP+X x Sm);Dp+x x Sq) G dl.

On the other hand it is easy to see that s(H) = p(F) - p(G). This means that
the residue class mod d of p(F) depends only on F0, i.e. the function p
induces a function X': ilpE(Sm ,Sq~x) -► ld .

Take embeddings e , e G ílpE(Sm , Sq~x) representing the same element of
npE(Sm , Sq~ ). If we choose a proper isotopy G of Dp x Sm in Dp x Sq~
with G0 = e and Gx = e, and a proper isotopy F of Dp x Sm in Dp x Sq
with F0 = e and Fx = id (both isotopies keeping the boundary fixed), then the
concatenation F' of G and F satisfies p(F') = p(F) (because the image of
G misses / x Dp x a), and consequently X(e) = k'(e). Therefore X induces
a function k: n E(Sm ,Sq~ ) —► ld . A similar simple argument shows that k
is a homomorphism.

Surjectivity of k will be proved by induction on m . Take first m = 0. Let
u := (1, 0P) G Sp and take a degree 1 map /: (Dp ,SP'X)^ (Sp , u). Choose
a homotopy G: I x (Dp ,SP'X)^ (Sp+X, u) such that G0 = f and GX(DP) = u
and define a proper isotopy F of Dp x S   in Dp x Sp+X by

Ft(x , i) := (x,i- G,(x))       (0 < t < 1, x G Dp , i = ±1).
Then F0 G ClpE(S° , Sp), Fx = id, and F is fixed on Sp~x x S° . Clearly

p(F) = sc(7 xDp xa,F(IxDp xS°);IxD" x Sp+X)

= sc(IxDp xa,F(IxDp x l);I x Dp x Sp+X)
= local degree of G over the point a

= degree of G: (I x Dp ,0(7 x £>")) -► (Sp+X ,SP~X)
= deg/=l.

This proves that k: n E(S ,SP) —•• Zd is surjective.
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For the induction step it suffices to prove that the following diagram is com-
mutative:

npE(Sm,Sq'x) -^-^ npE(Sm+x ,Sq)

i> I'4- 4-

Ld -* Ld

The proof of this is fairly straightforward. Take any e G ílpE(Sm ,Sq~x).
Choose a proper isotopy F of DP x Sm in Dp x Sq (reld) such that F0 = e
and Fx = id (so that k[e] - p(F) mod d). Represent o[e] by an embedding
e G ClpE(Sm+x,Sq) which agrees with (id x^)e(id xy/)~x on Dp x (0 x Sm)

and embeds Dp x S™*1 properly into Dp x Sq ( (/ = + ,-; see Lemma 1.4).
There exists a proper concordance F' of Dp x Sm+   in Dp x Sq+   such that

F'0 = e[,       F,' = id,       F'\IxSp-xxSm+x= id,

F'\(I x Dp) x (0 x Sm) = (idxip)F(id xy/)~x ,

and

(/ x Dp x 0 x Sq) n F'(I xDp x Sm+X) = (idxy/)F(I x Dp x Sm)

(so that k[e'] = p(F') mod d) ; in fact, the first four conditions for F' define an
embedding of d(I xDpx S^x) into d(I xDpx Sq+X)  (i = + ,-), which can
then be extended to a proper embedding of I xDp x S™*1 into I xDp x Sf*1 .

Let a := (0q , l) G Sq and a' := (0q+x , 1) = y/(a) G Sq+X . Then

p(F') = sc(/ x D" x a ,F'(I x Dp x Sm+X);I x Dp x Sq+X)
= sc(/ x Dp x a , (id x y/)F(I x Dp x Sm) ; / x Dp x 0 x Sq)
= sc(I x Dp x a ,F(I x Dp x Sm);I x Dp x Sq)
= MF).

and Proposition 1.17 is proved.   D

We shall conclude this lengthy section with an extension of the function s.
Let p > 1 and m > 1. Let A be an integral relative p-cycle in (Dp x
Sm+P ,SP~ x Sm+P) (e.g. a compact, oriented, proper /7-submanifold of
D" x Sm+P)  such that the support of dA  misses Sp~x x Sm.   For each e
in ÇlpE(Sm ,Sm+p) let

s(A,e) := sc(A,e(D" x Sm);Dp x Sm+P).

Again, s(A , e) does not really depend on e but only on [e]. However, it is
not independent of A . In fact we have the following lemma.
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1.18. Lemma. Suppose that dA represents n times the "positive" generator
of Hp_x(Sp~x x Sm+P). Then s(A,e) = n- s(e) + s(A, id) for each e G
ÇlpE(Sm ,Sm+p).

Proof. Take any a G Sm+P - Sm . By hypothesis there exists an integral p-
chain C in Sp~x xSm+p suchthat dC is the formal linear combination dA-
n(Sp~ xa). Since m > 1 the p-cycle A-C-n(Sp~xxa) is homologous to zero
in Dp x Sm+P and therefore it has zero intersection number with e(Dp x Sm)
for each e g ClpE(Sm , Sm+P). Hence

s(A ,e) = s(n(Dp xa),e) + sc(C,e(Dp x Sm);Dp x Sm+P)

= n.s(e) + (_i)" sc(C,Sp-x x Sm ;Sp-x x Sm+P).

Inserting e = id here we find that the second term in the last line above is equal
to s(A , id), whence we obtain the formula asserted in the lemma.   D

2. Puncturing a closed submanifold of Rq

Throughout this section let M denote an arbitrary closed, k-connected m-
dimensional submanifold of R* , where 1 < k < m - 4 and q :— 2m - k - 1 .
Choose an w-disk A c M and let M0 := M - int A.

Recall that <Ê?(X, Rq) denotes the set of all embeddings of a polyhedron X
into Rq and that J"(X, Rq) is the set of isotopy classes of such embeddings.
In this section we shall describe the set ^(M0 , R*) and find a relation between
^(M0 , Rq) and J*(M, Rq). The following are our results:

2.1. Theorem. There exists a canonical bijection

y:S(M0,Rq)~> Hk+x(M;nm_k_xE(Dk+x ,Dm)).

Recall that nm_k_xE(Dk+x ,Dm) is Z if m - k is odd and is Z2 if m - k
is even (Lemma 1.2 and Theorem 1.15).

2.2. Addendum. If P is a spine of MQ , then 2y is, up to sign, the composite
of the function

Jr(M0,R9)^Hm'k'X(P;-),

e * e*(Alexander dual of [e(dM0)] G /7m_,(Rí - ^P) ;-)),

and the sequence of isomorphisms

Hm-k-X(P;-)*Hm-k-X(M0;-)*Hk+x(MQldM0;-)

*Hk+l(M,A;-)nHk+l(M;-)

(coefficients nm_k_xE(Dk+x ,Dm) everywhere).
Let r : g(M ,Rq)-> ^(M0 , Rq) be the restriction map and let r. : J"(M, Rq)

-*■ ̂(Mr, ,Rq) be the map induced by r .
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2.4. Theorem. The composite yr^ maps S(M,Rq) onto the 2-torsion sub-
group of Hk+X(M ; nm_k_xE(Dk+x, Dm)) (the elements of order < 2 ). In par-
ticular, r, is surjective if m-k is even.

The second assertion of this theorem follows from the first one since

*m-k-&Dk+l.Dm) = T2

if m-k is even.

2.5. Corollary. If m-k is odd and Hk+X(M) has no 2-torsion or if m - k is
even and Hk+X(M ; Z2) = 0, then an arbitrary embedding e: M —* Rq is isotopic
(inside Rq ) to an embedding e such that e'\M0 = id and hence e is isotopic
inside Rq+   to the inclusion.

Proof. The stated conditions imply, by 2.4, 1.2, and 1.15, that rt is constant.
This gives the first assertion of 2.5. The second assertion is proved by push-
ing the interiors of the m-disks A and e(A) slightly into intR*+ and then
deforming (reld) the latter disk onto the former inside R^+1 .   D

Throughout the rest of this section we shall write m - k - 1 = : p . Note that
our hypothesis that k > 1 implies that q > 2p + 2. According to Wall [15,
Theorem 3], M0 has a p-dimensional spine P c intM0. We choose and fix
such a P for the rest of this section.

Proof of Theorem 2.1. Denote by Imm the set of all immersions of M0 into R*
and by [Imm] the set of "immersion concordance classes" of such immersions;
that is, immersions /0, ix : M0 —> Rq represent the same element of [Imm] if
and only if there exists an "immersion concordance" between iQ and /,, i .e.
an immersion F : I x M0 -* I x Rq which maps t x MQ into t xRq by it
(t = 0,1) and sends (int/) x M0 into (int/) x Rq .

It is easy to see that the inclusion ^(M0 ,R9) <-* Imm induces a bijection
y(M0 , Rq) >-» [Imm]. Indeed, by a general position argument an arbitrary
immersion i: M0 -* R9 is regularly homotopic (hence immersion-concordant)
to an immersion i' which is an embedding on P and hence an embedding on
a small regular neighborhood N of P. It we take an isotopy in M0 which
shrinks M0 to N and compose all stages of this isotopy with i', we obtain a
regular homotopy from i to an embedding. By a similar reference to general
position and uniqueness of regular neighborhoods we can transform an arbitrary
immersion concordance between two embeddings eQ, ex : M0 —► R9 into a
concordance, and consequently into an isotopy, between e0 and ex .

If /' : MQ —» Rq is an immersion, then by G. P. Scott's block bundle variant
[12] of the Haefliger-Poenaru PL immersion theory [3], the only obstructions to
immersion concordance between i and the inclusion lie in the groups

HS(M0 ; {ns(Vq J» = HS(P ; {nsE(Dm , Dq)})
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(a little more about this will be said in the proof of Proposition 2.8). Since
nsE(Dm , D") = 0 for 5 < p, by Theorem 1.9 (note that q - m = p > 3), and
since HS(P ;-) = 0 for s > p, the only obstruction lies in

HP(P ; npE(Dm , Dq)) « HP(P ; npE(Dm-p , Dm))

(there is no twist in the coefficients since M is orientable); the latter isomor-
phism is induced by a higher suspension isomorphism of the coefficient groups
(see Proposition 1.5). By standard obstruction theory (our obstruction to im-
mersion concordance is just the usual obstruction to homotopy between two
sections of a Kan fibration), assigning to each immersion i the correspond-
ing obstruction element in the group Hp(P;n E(Dm~p ,Dm)) determines a
bijection of [Imm] onto this group. In this way we get a bijection

(2.6) C:^(M0,Rq)^Hp(P;npE(Dm-p,Dm)).

We denote by y the composite of £ with the isomorphisms (2.3). Theorem
2.1 is proved.   D

From now on we shall write npE(D +x ,Dm) -: n . In our proof of Ad-
dendum 2.2 and Theorem 2.4, the first step will be representing the bijection
C of (2.6) by a simple, geometrically defined function giving explicit simplicial
cocycles.

Choose a triangulation (T ,TM , Tp) of the triple (Rq , M , P) and let T" ,
T'm , Tp be the second barycentric subdivisions of the complexes T, TM , Tp.
Then TV(7*, T1^), the simplicial neighborhood of P in T1^ , is a regular neigh-
borhood of P in M justas M0 is, and by uniqueness of regular neighborhoods
we can replace M0 by N := N(P , T'^) in our proofs. Let W :— N(P , T").
Then the pair (W , N) is a regular neighborhood of P in (Rq , M).

The pair (W, N) has a canonical handle decomposition: the handles are the
stars in (T" ,T'¿¡) of the barycenters of the simplices of Tp . We shall use only
the handles of index p . So let er, , o2, ... be the p-simplices of Tp and for
each i let bi be the barycenter of cr and

At := N(bl, T"M),       Bt := N(bt, T"),       C, := N(bt, Tf).
Denote by P0 the underlying space of the (p - l)-skeleton of Tp . Each pair
(5(, A¡) is a /7-handle pair of ( W, N) ; it is attached to the pair

WQ:=N(PQ,T"),       N0:=N(P0,T'¿)

and has core disk Ci.
Let D := M-int N. Denote by ÏÏ^(N , W) the set of all embeddings N — W

that are identity on PuNQ and embed each handle A¡ of N properly into the
handle Bi of W. Let WQ(M, R") be the set of all embeddings e: M — R" such
that e\N belongs to &0(N ,W) and e(D) is properly embedded in Rq-inXW.
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2.7. Lemma. The composites &0(N, W) <-* %(N, Rq) -» J(N, R9) and
%¿M, Rq) <-> %(M , Rq) -* jr(M, Rq)

are surjections.
Proof. This follows from standard theorems of PL topology. Take e.g. an em-
bedding e: M -*Rq . Since the pair (N0 , dN0) is (k + 1 = 2m - #)-connected,
N0 unknots in R9 [4, Theorem 10.3, p. 201], so e is isotopic to an embedding
ex such that ex | JV"0 = id. In the second step we use uniqueness of relative regular
neighborhoods to find an embedding e2, isotopic to ex, such that e2\N0 — id
and e2(M - 7v"0) c R9 - W0. In the third step we use ^-connectedness of
Rq - int W0 and the fact that q > 2p + 2 to construct an isotopy of R* which
is fixed on WQ and moves e2\C¡ to the inclusion for each /. The fourth step is
similar to the second one and produces an embedding e4 G ̂ 0(M , Rq), isotopic
to e. The proof that i?0(N ,W) maps onto ^(N ,Rq) is almost equal.   D

Now we come to our intermediate goal, i .e. a geometric interpretation of the
bijection Ç of (2.6). Orient M and all p-simplices of Tp . For each p-simplex
<7( G Tp choose a homeomorphism

g¡:(D" ,Dm,D" ,Sp-XxDm)-> (5,., A,, Ci, B¡ n WQ)

which is orientation preserving on the first three terms of the quadruple. For an
arbitrary e G &Q(N , W) let z(e) G Cp(Tp;np) = Zp(Tp;np) be the simplicial
cocycle which assigns to each /»-simplex ai G Tp (with the chosen orientation)
the element of n represented by the embedding f := g7leg¿: Dm -¿ D9
(which indeed belongs to SlpE(Dk+x , Dm)).

2.8. Proposition.  £([*]) = [z](e) := [z(e)] G HP(P ; np) for each e G ̂ 0(N, W).
Proof. Take an embedding e G^0(N ,W) and choose a homotopy F : I x N —»
R* (relA^UP) between N<—>Rq and e. By a block bundle variant of Haefliger
and Poenaru [3, p. 83] there is a Kan fibration over I x N (actually over a
suitable partially ordered triangulation of I x N considered as a A-set) with
total space ¿%F consisting of "representations of TN to TRq "; ^F has fibers
isomorphic to the block PL Stiefel manifold Vq m [10, p. 274] and is such
that its sections correspond bijectively to those homotopies of representations
of TN in TR9 which cover the map F (see also Scott [12]). We omit the
precise definition of ¿%F .

Finding an immersion concordance between N <—► R* and e is by Scott [ 12]
equivalent to finding a homotopy between the representations 77Y <-+ TR9 and
de : TN —> TRq , hence to constructing a section S of ¿%F such that 5"|0 x N
corresponds to 77Y «*-» TRq and 5|1 x 7Y to de. Obviously it suffices to
construct S over / x (A^UP). Since e - id on A^ we can take S "constant"
over I x N0. Thus the pth suspension

(L")¿[e)GHp(P;npE(Dm ,Dq))
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(this is the cohomological obstruction introduced in the proof of Theorem 2.1)
is the cohomology class of the obstruction to extending S over the rest of
Ix(N0llP), i.e. the cohomology class of the simplicial /»-cocycleon Tp which
assigns to each /»-simplex oi the homotopy class in n (V ) determined by
S\d(I x Ct) (where S is given by de over 1 x C( and by the inclusion over
the rest of d(I xC¡)).

We shall now transfer this to the standard model using the homeomorphisms
g¡ : Dq -► Bi and their differentials dgi : TDq -+ TBi. We shall thus con-
sider the elements of np(Vq J determined by dg7Xdedgi = df: TDm\Dp -*
TDq\Dp. We can regard TDm and TDq as restrictions of TRm and TR9,
respectively, and it will be convenient for us to look at these not just over Dp
but over the whole Rp ; we can think of this Rp as the /»-sphere d(I x Dp)
with the point 01+p removed and of Dp as 1 x Dp c d(I x Dp). In accor-
dance with this we extend fj:DpxDm~p^>DpxDm to a proper embedding
Rp x Dm~p —► Rp x Dq~p , again denoted by fi, which is equal to the inclusion
outside Dp x Dm~p .

We shall henceforth assume that all f are level preserving: f¡(x,y) =
(x ,<p¡(x ,y)) for some cpt: Rp x Dm~p —> Dm (and cp^x.y) = y if x G
Rp - int Dp ); this is permissible by Lemma 1.16 and will be of great help in the
sequel.

For n — m ,q consider the product block bundle R" xDn over (some suitable
cell decomposition of) R" and the self-homeomorphism y/n of R" x R" defined
by y/n(x ,y):—(x,x + y). The space ^n(R" x D") will be our model for the
tangent block bundle TRn (recall that the tangent block bundle of a manifold
Q is not a specific block bundle but an isomorphism class of block bundles over
various cell complexes on Q, with total space a regular neighborhood of the
diagonal in Q x Q and with "zero section" x >->• (x ,x)). Actually we shall
replace this TR" back by R" x D" and, accordingly, TRn\Rp by RpxD" (we
ought to write Rp x 0n~p x D" here but we suppress the 0"~p factor). Hence
each differential df¡ : rRm|Rp -► TR9\RP , which is by definition a restriction of
f¡ x f¡, will be replaced by the proper embedding

7-,. := W:\ft x fi)Wm. R" x (Dp x Dm~p) - Rp x (Dp x Dm),

which is given by 7V(£ , x , y) = (¿;, x .tpfê + x , y)).
We see now that CLp)¿([e\) is represented by the p-cocycle on Tp that

sends each /»-simplex rj; to the proper isotopy class of Fi:2Dp x Dm —*
2DP x D9 . (We must take the cube 2DP := [-2,2]" rather than Dp as
our "parameter space" here in order to have the identity along the boundary.
Clearly this replacing Dp by 2Dp can do no harm. We could have preserved
our standard D" at the expense of introducing some reparametrizations and
other minor complications earlier in the construction.) By definition of suspen-
sion, (Z,p)t[z(e)] is represented by the /»-cocycle which sends each oi to the
proper isotopy class of the embedding (£ , x , y) i-> (£, x , cpfé , y)). The latter
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is obviously properly isotopic (reld(2Dp) x Dm) to F¡, which concludes the
proof of Proposition 2.8.   D
Remarks. 1. In our proofs of Theorem 2.1 and Proposition 2.8 we have never
really used the fact that MQ is a punctured closed, k-connected manifold.
Therefore the same proofs demonstrate the existence of the bijection Ç and
validity of Proposition 2.8 if M0 c Rq is an arbitrary compact, connected m-
manifold having a /»-dimensional spine P where 3<p = q-m<m-2;
however, if M0 is nonorientable, we must twist the coefficients of the group
Hp(P;n ) along with the orientation of the normal block bundle of MQ in
Rq.

2. One can construct a direct and elementary, but fairly long and compli-
cated, proof that the function [z] : %AN, W) —> HP(P ; np) induces a bijection
S(N , Rq) —► HP(P ; np) (also in the more general situation of Remark 1 above).
In this way one can avoid immersion theory and Proposition 2.8.

We shall now define two other functions from ^¡¡(N, W) to the /»th coho-
mology of P. The definition of the first one will be based on the cone over
P . Denote this cone by cP and for each subpolyhedron S c P let cS be the
subcone of cP with base S.

2.9. Lemma. The inclusion P<-+Rq can be extended to an embedding of cP
in R9.

Proof. Choose a general position map /: t\P —► R* such that f\P = id. The
dimension of the singular set of / is at most 0. Therefore there exists a "hori-
zontal section" P' of cP so close to the vertex of the cone that the portion of
cP above P' is embedded by /. This means that the obvious homeomorphism
P —► f(P') can be extended to an embedding cP —► Rq . Since P unknots in
Rq the lemma follows.   D

Choose, and fix, an embedding cP -» Rq (which is identity on P ) such that
the images of both cP and cP0 are in general position with M. To simplify
the notation we shall denote the image of this embedding simply by cP . Our
general position requirement means that

dim((cP - P) !~\ M) < I    and    dim((cP0 - P) n M) < 0.

Assume that the triangulation T of Rq was chosen so that appropriate sub-
complexes of T triangulate cP and cP0. Then cP n W is a collar on P
and, for each /»-simplex ai G Tp , cai n W is a collar on ct; . For each i let
o\ :- coi n dW and C\ := a\ n Bi. Note that a't and C\ are /»-disks and

(2.10) do\ ndN = cPondN = 0,       dC\ ndN = 0.

Define a function u: %0(N ,W) - C"(Tp) = Zp(Tp) as follows: for each
e G WA\N, W) and each (oriented) /»-simplex ai G Tp let

(<r-, u(e)) := sc(cov , e(dN) ;Rq) = sc(<7;', e(dN ) ; dW),
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where coi is oriented incoherently with a¡ and then a\ coherently with cof\W
(since e G ë?0(N ,JV), the intersection numbers are well defined by (2.10)).
Denote by [u(e)\ the cohomology class of u(e) and define [u]: ^(N, W) —►
HP(P) byeM [u(e)]. Recall that r : f(A7, R9) -» g(N , Rq) is the restriction
map.

2.11. Lemma. rifg^M,Rq)) = [w]_1(0). For any e G %¿N,W), [u(e)\ is
up to sign the Alexander dual of [e(dN)\ G Hm_, (Rq - P).
Proof. We first prove the second assertion. The usual construction of the
Alexander dual (for a certain sign convention) is the following: let /: D —► Rq
be an extension of e\dN such that f(D) misses the (/» - l)-skeleton of cP ;
then the dual of [e(dN)] is the cohomology class of the cocycle a G Zp(Tp)
given by (o¡, a) :- sc(er , f(D) ; Rq). Now

(a,, u(e)) = - sc(coi,f(dD);R9) = (-1)" sc(d{cot) ,f(D) ;R9)
= (-l)P(sc(<7,., f(D) ; R9) - sc(c(c*x() , f(D) ; R9))
= (-l)"(oi,a-ôb),

where b G Cp~ (Tp) assigns to each oriented (p - l)-simplex t g Tp the
number sc(ct, f(D); R9). Thus [u(e)] = ±[a] as asserted.

The first assertion of Lemma 2.11 is now easy to prove. If e G ̂ 0(M, R9),
then e(dN) bounds e(D) c R9 - P and hence [M(e|A0] = 0. Conversely,
if e G %o(^ • ̂ ) ^s sucn tnat tM(e)l = 0, then e(dN) bounds homologically
in R9 - P, and therefore, as R9 - P is (m - 2)-connected, e(dN) bounds
a singular w-disk in Rp - P . Now Irwin's Embedding Theorem implies that
e(dN) bounds a nonsingular w-disk in Rq - int W, i .e. e G r(^0(M ,Rq)).   D

Recall the homeomorphisms gi : Dq -* Bi used in the definition of the co-
cyles z(e). Pick a point y G Sm~x - Sk and let Kt := g^D" x y) for each
/»-simplex oi G Tp . For each e G ê?0(N , W) define v(e) G Zp(Tp) by

(a,, v(e)) := sc(Ki, e(dN) ; dW)

(orientation in Kj is induced by gt ). Let [v]: ^0(N , W) —» HP(P) be given
by [v](e) := [v(e)].

2.12. Lemma.  [v] = [u].
Proof. Take any e G g?Q(N , W) and any /»-simplex oi G Tp . By (2.10) we can
write

(ot, u(e)) = sc(C', e(dN) ; dW) + sc(o[ - int C\, e(dN) ; dW)
= sc(C', e(dN) ; dW) + sc(<r,' - int C\, ÓW ; dW),

and it follows from Lemma 1.18 that

sc(Cl, e(dN) ; dW) = sc(#( , e(dN) ; dW) + sc(C', dN ; ÔW)
= ((T(. ^(e^ + sc^.dN-dW).
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Hence

(oi, u(e)) = (ff., v(e)) + sc((T,', dN ; dW)
= (oi,v(e)) + (oi,u(id)).

Thus u(e) = v(e) + «(id). Since [w(id)] = 0, by Lemma 2.11, it follows that
[u(e)] = [v(e)].   D
Proof of Addendum 2.2 and Theorem 2.4. Recall that we have replaced M0 by
AT. If m - k is even (/» odd), it follows from Corollary 1.14 that [v] = 0.
Then Lemmas 2.12 and 2.11 imply that ^Q(N ,W) lies in the image of r, hence
(by Lemma 2.7) all of J^(N ,Rq) is in the image of rt. For odd p, Addendum
2.2 is a trivial consequence of Theorem 2.4 (since n   = Z2).

Suppose that m - k is odd (/» even). Note that according to our definitions
(see 1.2 and (1.10))

(oi,v(e))=sp((oi,z(e)))

for each embedding e G ̂ 0(N ,W) and each /»-simplex o¡ G Tp . This equal-
ity, Lemma 2.12, and Proposition 2.8 imply commutativity of the following
diagram, in which 2 denotes multiplication by 2 and (sp/2)t is the isomor-
phism induced by the coefficient isomorphism \sp: n E(Dm~p ,Dm) —► Z (see
Theorem 1.15):

g-Q(N, w) —S-  ro(AT, W)- S(N, Rq)

Lemmas 2.7 and 2.11 now obviously imply Addendum 2.2 and Theorem 2.4
for even p .   u

3. Deforming a submanifold of R9+1 into Rq

As in §2, let M denote an arbitrary closed, /c-connected m-dimensional
submanifold of Rq , where 1 < k < m - 4 and q := 2m - k - 1 ; let A be an
w-disk in M and M0 := M - int A. The symbols g?(M ,Rq) (for the set of
embeddings M -► Rq ) and J(M, Rq) (for the set of isotopy classes of such
embeddings) will now be shortened to ïïq and yq , respectively. Analogously
we define ^?+ and J~9+ . Our aim in this section is to describe the image of
the function JrS - ^?+1 induced by the inclusion %q «-> %q+x.

Write d := 1 + (-l)m~k and ld := 1/dl. In [14] we showed that there
exists a canonical bijection ô: Jr9+X -» Hk+X(M;ld) (this Ô is the function
¿(id, -) of [14, Theorem 1.2]). Here we will prove the following theorem (for
notation see 1.2, 1.17, 2.1, and 2.4).

(«1 [V]

H"(P)   -
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3.1. Theorem. The following diagram commutes up to sign:

r«     -    S*     Ü   ^(M0,R«)^//,+1   (M;^_,_,7i(7)*+1(7)'"))
r        i « i (^).

%q+X    -   ^+' ■-» Hk+¿M;Zd)
where (kp)t is the isomorphism induced by the coefficient isomorphism

kp:nm_k_xE(Dk+x,Dm)^2d.

The following two corollaries, which subsume Corollary 2.5, are immediate
consequences of Theorems 3.1, 2.1, and 2.4.

3.2. Corollary. The image of Sq ~* Jrq+X is mapped by ô onto the 2-torsion
subgroup of Hk+X(M ; ld). In particular, if m-k is even, then every embedding
M —► Rq+   is isotopic to an embedding M —* Rq .

3.3. Corollary. Two embeddings of M in Rq are isotopic in Rq+X if and only
if their restrictions to M0 are isotopic in Rq.

In the proof of Theorem 3.1 we shall employ the following notation of §2:
p := m-k - I,
P is a /»-dimensional spine of M0,
(T ,TM,TA,Tp) is a triangulation of (Rq , M , A, P),
PQ is the (/» - 1)-skeleton of Tp ,
N:=N(P,T'¿), N0:=N(P0,T'¿),
W := N(P , T"), W0 := N(P0 , T"),
D:=M -intN,
cr   (/ = 1 ,2 , ... ) are the /»-simplices of Tp ,
(Bi, A¡) is the canonical /»-handle of (W , N) (ix. the closure of the com-

ponent of (W - WQ , N - N0)) intersecting oi,
Ci :— Ai n oi is the core of (B¡ ,A¡), and
np:=npE(Dm-p,Dm).

In addition let V := W x Dx c R9 x R = R9+x . Choose a collar on dV in
R?+1 - int V : let h : I x dV — Rq+X - int V be an embedding such that

h(0, x) = x for each xGdV,
h(I x dW) c Rq (here W = W x 0),
h(I xdN) = M0-iniN,
h(t ,(w , 1)) = (w ,t+ 1) for each w g W and t G I,
h(I xdV)cRq x(-<x>,2].
Denote by ££ the set of all e G%q that satisfy the following conditions:
e\P U N0 = id,
e(Aj) is properly embedded in 5., for each /,
e(h(t ,x)) = h(t ,e(x)) for each tGl and x G dN,
e(int A) c R" - W - h(I x dW).

Let gq+x be the set of all e G %q+x such that e\N = id, e(intD) c Rq+X - V,
and e(7>)n(PoxR+) = 0.
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3.4. Lemma. The composites %q <-+ %q - J^? and gq+x -> l?9+1 -» J^+1
are surjective.

Proof. The proof of the second assertion is similar to the proof of Lemma
2.7: given any e G <E?q+x we use the fact that N unknots in Rq+ to deform
e to an embedding which is identity on N, and then we use uniqueness of
relative regular neighborhoods and general position to get the image of intD
into Rq+X -V-(PQxR). To prove the first assertion of 3.4 we can start with
an embedding e in the set g?0(M ,R9) of Lemma 2.7. We use uniqueness of
relative regular neighborhoods to get the image of h(I x dN) into h(I x dW)
and the image of int A into R9 - W - h(I x dW). Then we apply Hudson's
Theorem 1.1 of [5] to "straighten" the image of h(I x dN) in h (I x dW).   D

Proof of Theorem 3.1. Let us recall the definition of the bijection ô . Orient
M. Take any isotopy class e G Jr?+ and pick an ee«n ^09+x . Thinking of
e(D)U(-D) asan m-cycle in R9+x-P let ß(e) G Hp(P;ld) be the Alexander
dual of [e(D) U (-D)] G Hm(R9+x -P\ld). It was proved in [14, 7.1] that
ß(e) depends only on e and that by setting ût(e) := û(e) we get a bijection
r3t : Jr9+ >-» HP(P ; ld). The function ô is then the composite of ût and the
canonical isomorphism HP(P;ld) k, Hk+X(M;ld) (see (2.3)).

The Alexander dual of an w-cycle z in Rq+ -P can be calculated as follows
(cf. the proof of Lemma 2.11). Let cP be the rectilinear join of P with a
point c on the ray Qq x R+ . If the support of z misses cP0 , then the Alexander
dual of [z] g Hm(Rq+ - P;ld) is, up to sign, the cohomology class of the
simplicial /»-cocycle on Tp which assigns to each oriented /»-simplex ai G Tp
the intersection number sc(ccr , z ; R9+ ) mod d. Here it will be convenient to
push the point c to "infinity", i.e. we shall replace the cone cP with P x R+ .
Therefore û,(e) = û(e) is up to sign the cohomology class of the simplicial
/»-cocycle

(3.5) a. wsciffj xR+,e(D);Rq+X)   mod d.

To prove Theorem 3.1 we must be able to evaluate f)„ on the isotopy class
(in Rq+ ) of an arbitrary e G %q (actually it suffices to consider embeddings
e g&q ). This cannot be done immediately since û(e) is not defined for all e ;
we must first deform e (by an isotopy in Rq+ ) to an embedding e  belonging
to gr '.

Take, therefore, an arbitrary e G WQq . An isotopy G: I x M —► / x R?+l from
e to an e e ê?0q+ is constructed as follows. Let Gt(x) := e(x) for all t G I if
x is in one of P , N0, or A. For each /»-handle Ai of N let G|/ x A¡ be an
arbitrary proper isotopy of A¡ in B¡xD (keeping Ci and ^nA^ fixed) such
that GQ\Ai = e\Ai and GX\A{ = id; that such an isotopy exists follows from
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Theorem 1.9. Finally, on the collar A (7 x dN) define Gt  (0 < r < 1) by

nil.,      u      \Ks.eW)        if t<s,G,(h(s ,x)) := < ,
,V \h(s,Gt_s(x))   if t>s.

Note that the embedding e :— Gx : M —► R9+x belongs to ^?+1 and is given by

' x if x GN,
e'(x) = | h(j x id)G(j x id)(s ,y)   if x = h(s, y) G h(I x dN),

L e(x) if x G A,

where /:/—►/ is the reflection j(s) := 1 -s. It follows that, up to sign, û(e')
is the cohomology class of the simplicial /»-cocycle (see (3.5)):

<x;. h» sc(C,. x [1,2],e'h(I x (Dn^,));A(7 x OF))   mod <7

Observe that

C, x [1,2] = A(7 x (C(. x 1)) = h(j x id)(7 x (C;. x 1)),
<?'A(7 x (D n 4.)) = A(j x id)G(; x id)(/ x (D n ^,))

= AO'xid)G(7x(7)n^1.)),
A(7 x OF) = A(j x id)(7 x 9F).

It follows that a representative cocycle for û(e') is given by

(3.6) (j|.i-»±sc(7xCI.xl,(7(7x(Z)ni4|.));7xöF)   mod¿,

where the sign is independent of i.
Clearly, the embedding e does not determine the isotopy G uniquely. Nev-

ertheless, choosing for each e G ̂  one such G arbitrarily we get a function
ß: g9 —* ë?09+x (e i-> e — Gx). Formula (3.6) for a representative cocycle of
uß(e) and Proposition 1.17 imply that the following diagram commutes up to
sign (the set ê?0(N, W) was defined just before Lemma 2.7, the function [z]
in Proposition 2.8, and r is the restriction):

g*   —r— Z0(N,W) -Í2L» Hp(P;np)

«|(A/»).

^+1 -2-*np(P;ld)

As each e G %09 is isotopic to ß(e), Theorem 3.1 is now an easy consequence
of Proposition 2.8, the definition of y at the end of the proof of Theorem 2.1,
and Lemma 3.4.   o

A variant of the proof of Theorem 3.1 proves the next theorem. Here M is
assumed to have the same intrinsic properties as before, but we do not assume
that M lies in (or can be embedded into) R9 .
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3.7 Theorem. Every embedding of M in R9+x is isotopic to an embedding
e: M -> Rq+X such that e(M0) c Rq and e(intA) c intRi+1. Two embeddings
with the stated properties are isotopic in Rq+ if and only if their restrictions to
M0 are isotopic in Rq.
Proof. Choose an embedding of MQ in R* [4, 8.3, p. 181] and extend it to
an embedding e0: M —► R9+1 such that e0(intA) c intR^+1. From now on we
shall identify M with e0(M).

Assume the notation and the definitions given after the statement of Corollary
3.3. Let 2>q+x be the set of all embeddings M -+ Rq+X which send int A into
intR^+1 and embed MQ into Rq in the same way as the embeddings belonging
to gg do. Define ßx : gq+x -> gq+x exactly as the function ß in the proof
of Theorem 3.1 and let r,: gq+x —> g?0(N ,W) be the (obviously surjective)
restriction map. Then (kp)t[z]rx — ±ußx, which is verified in the same way as
the relation (kp)t[z]r = ±uß at the end of the proof of Theorem 3.1. Hence,
and by Proposition 2.8, the following diagram is commutative up to sign:

Hp(P;np)

(V).

Sq+Xt ^Hp(P;ld)
Theorem 3.7 follows.   D

Very similarly one can prove, referring to [14, 1.4], the following theorem:

3.8. Theorem. Let Q bean (m-k)-connected (q+l)-manifold without bound-
ary and R be a (q+l)-diskin Q. Then every embedding of M in Q is isotopic
to an embedding e: M -* Q such that e(M0) c dR and e(intA) c Q - R.
Two embeddings with these properties are isotopic in Q if and only if they are
homotopic in Q and their restrictions to M0 are isotopic in dR.
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