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Deforming Hypersurfaces of the Sphere
by Their Mean Curvature

Gerhard Huisken

Dept. of Mathematics, Australian National University, Canberra, Australia

Let M", n=2 be a compact hypersurface without boundary which is smoothly
immersed in a Riemannian manifold N"*! of constant positive sectional curva-
ture K. Let M = M, be locally given by a diffeomorphism

Fy: UcR"—> Fy(U)ca Mo N™* 1.

We say that M is moving along its mean curvature vector H if there is a
whole family F (-, t) of diffeomorphisms corresponding to surfaces M,, such that
the evolution equation

0
é—t—F(x, tHy=H(x,t) xeU

F(,0)=F, )

is satisfied. In [6] we studied hypersurfaces moving along their mean curvature
vector in a general Riemannian manifold N**'. It was shown that all hypersur-
faces M|, satisfying a suitable convexity condition will contract to a single point
in finite time during this evolution.

Here we want to show that in a spherical spaceform some convergence
results can be obtained without assuming convexity for the initial hypersurface
M,. In particular, we will see that some hypersurfaces do not contract during
this flow, but straighten out and become totally geodesic, i.e. in case N"*'=§"""
they converge to a “big §" .

To be precise, let g={g;;} and A= {h;;} be the induced metric and the second
fundamental form on M and denote by H=g'’h;;, |A|*=h"/h;; the mean curva-
ture and the squared norm of the second fundamental form respectively.

0.1 Theorem. Let n>2 and N"*! be a spherical spaceform of sectional curvature
K. Let M, be a compact connected hypersurface without boundary which is smooth-
ly immersed in N, and suppose that we have on M,

|AI2<n—i—IH2+2K, ng3
2

I

3 4
AP <7 H* 43 K, n=2.

3
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Then one of the following holds:

a) Equation (1) has a smooth solution M, on a finite time interval 0=t<T
and the M,’s converge uniformly to a single point as t —» T.

b) Equation (1) has a smooth solution M, for all 0 <t < oo and the M,’s converge
in the C*-topology to a smooth totally geodesic hypersurface M .

0.2 Remarks. (i) In case a) the hypersurface becomes first convex and then very
spherical at the end of the contraction, compare ([6], Theorem 1.1) and ([5],
Theorem 1.1).

(ii) In certain cases it is possible to predict a priori whether a hypersurface
will contract or straighten out during the evolution. For simplicity let N"**
=8§"*1 and assume that all hypersurfaces under consideration satisfy the
assumptions of Theorem 0.1. Suppose that M satisfies some symmetry condi-
tion, for example, suppose that M, is symmetric with respect to reflection in
the center of S"*' cIR"*2. Since equation (1) is invariant under isometries, this
condition continues to hold as time goes on. So M, contains always at least
two antipodal points and must fall in category b). A similar argument applies
to many other symmetries of course. On the other hand it is clear that all
surfaces lying completely on one side of a big $* will contract. Also all surfaces
having less total area than a big S" fall into the first category since the mean
curvature flow is area decreasing.

(iii) The Theorem implies that all hypersurfaces of $**' satisfying (2) are
diffeomorphic to S". Note also that we show in Lemma 2.3 that (2) is just strong
enough to force the intrinsic sectional curvature of M, to be positive.

(iv) Condition (2) is optimal for dimensions n= 3. In fact, consider the hyper-
surfaces M™" " (s, r)=S™(s) x §" ™(r) with m<n and r*+s?=1. One can see
that the second fundamental form of M™" ™(s,r) in $"*!(1) has an eigenvalue
A of multiplicity m and an eigenvalue g of multiplicity n—m, and Au=—1
(see e.g. [2], §4). In case m=1 an easy calculation then shows that without

loss of generality 4= —;, #=£ and

1 (n—2) s
2_ T g2y T
|41 n—1 H =2 (n—1 r*’
Thus, for all ¢ >0 we can find hypersurfaces of the type S* x $"~! in $"* ! satisfy-
ing 1
A’ <—— H?*+2%e.
n—1
We do not get the best possible result in dimension n=2 due to a technical
difficulty in Lemma 1.4.

We will derive evolution equations for some important quantities in §1 and
show that condition (2) is preserved by the evolution. We will then use (2)
in §2 to control the eigenvalues of the second fundamental form. This yields
the essential decay estimate in Theorem 2.1, which can then be used in §3 and
§4 to show that the shape of M, approaches more and more the shape of
a sphere during the evolution.
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1. Evolution Equations and Preliminary Estimates
We recall Theorem 1.1 and Theorem 7.1 from [6], which read as follows in

the context of a spherical space form N"*1,

1.1 Theorem. (i) Evolution equation (1) has a smooth solution M, on a maximal
time interval 0 <t < T =< o0 for any smooth, compact initial surface M. If T < o0,
then max |A|* becomes unbounded for t - T,

(i) If M, is locally convex, ie. at each point all eigenvalues of its second
fundamental form are strictly positive, then M, will contract to a single point
in finite time.

We are going to use the same notation as in [5] and [6], in particular
we write V for covariant differentiation in M, A for the Laplace-Beltrami opera-
tor on M, and denote by a bar, if we mean the connection in N"*!. In our
case the Riemann curvature tensor of N"* ! is given by

R_aﬂwi:K{g_ay g_ﬂé'—g—aui g_y[}} (3)
such that Lemma 2.1 and Lemma 2.2 in [6] take the simple form
1.2 Lemma. For any hypersurface M" in N**1 we have
3
i 2>~ —|FH|?
() 1PAPZ 5 VH]

. 1 2(n—1)
:__wwHP2ZE " \pH?
(i) |V A} nIVHI 2 |VH|

{
(i) 414 12=2<h;;, V;V;HY +2| VA12+2Z+2nK(1A|2-—H2) where
Z=H tr(4®)—|A*. "

We also established evolution equations for the metric and the second funda-
mental form on M, see ([6], §3). These evolution equations now take a less
complicated form.

1.3 Lemma. We have
(i)gzgij: —2Hh;;,
(ii)%hij=dhij—2Hh,-, hi+|A|1*h;+2KHg;;—nKh;;
(iii)%HzAH+H(IA|2+nK),
(iv)% [A2=A|A?~2|VA?+2 |A|2(|A|2+nK)-—4nK<|A|2—% H2>.

G 1 1 R
0 go{(1 =y ) =aliap )2l war o)

1
+2(|A|2—;H2)([A|2—nK).
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This follows immediately from the corresponding equations in [6] since R.pys
is given by (3) and since V'R, ;,5=0.

. . . . 1
Since in (2) we assumed the strict inequality to hold on M, there is 0 <e<—
depending on M, such that with "

1
— a2
B,=2(1—¢) nz3 2 ) n—-l+e nz3 @
po=ti—o) n=2  "TIn-f| 3 ’
442¢ B
we have everywhere on M, the inequality
AP <o, H?+B,K. 5

1.4 Lemma. Inequality (5) is preserved on M, for all times 0<t<T S oo where
the solution of (1) exists.

Proof. From Lemma 1.3 we get the evolution equation
0
5(IAIZ—anH2)=A(IAIZ—%HZ)—?-U VA?—o,|FHI?)+2B,K(A* +nK)
1
+2(|A|2—oc,,H2—/3,,K)(|A|2+nK)——4nK(|A|2—; HZ).
The definition of «,, B, in (4) implies

2B,,K(}A|2+nK)—4nK(|A|2—%Hz)

2n—p
< —-2K@2n—B){|A]* —2,H* - B,K}

= _2K(2n—ﬁn){|Alz—°‘nH2_ e K}

such that

0
5{(|A|2—oz,,H2—ﬂ,,K)§A(|Alz—a,,H2-—ﬁ,,K)—Z(| VAP ~o,|VHP?)

+2(| A1 +(B,—mK)( A — o, H? — B, K).

3
Now, since a,,§n+2 for all n>2, the conclusion follows from Lemma 1.2 (i)

and the parabolic maximum principle.

2. A Pinching Estimate

In this step of the proof we want to control the eigenvalues of the second
fundamental form. We show that the eigenvalues k; of A approach each other
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in two cases: if time becomes large or if the mean curvature blows up. To
that purpose we consider the quantity

1 1

AP —— H? =~} (k;—x)?
n n =~
i<j

which measures how far the k; diverge from each other.

2.1 Theorem. There are constants Cy< 00, 6,>0 and 6,>0 depending only on
the initial surface M, such that the estimate

1
IAlZ_EH2§CO(K+H2)1~a0_e—éot

holds for all 0<t< T < 0.

For technical reasons it turns out to be best to study the function

1

|A|2—EH2
l=@mvpy 770
where a=a,,—;+2n(%l—), b=p,K. We will show that for some small 6=0,

this function decays exponentially, thus proving Theorem 2.1. Since all quantities
under consideration are independent of a choice of orientation, we may assume
that M is orientable.

First of all we need an estimate for the time derivative of f,.

2.2 Lemma. For all 0 <06 <o, where o, only depends on M, we have the inequali-
ty

4(a—0)H 273

2H2+ Vifss ZH>_W [VHP? —neKf,+20 A f,.

0
— <
L SAf,+

Proof. As a first step we get from Lemma 1.3 an evolution equation for fj:

0 1

Efo=m{zl (IAIZ—% H2)~—f0 A(aHZ)—2<| VAIZ-*(%-i-afO) IVHIZ)}

+2f, {b|A|>*—2anKH?*—bnK}.

aH*+b

Furthermore, we have

Fifo= gy | (AP B~ e}
1

M
1 H
Af":m{A (|A|2—; H2>—f0 A(aH2)}—4 aHaZﬁ ViH, V. fo?
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such that in view of f, <1 we get

O rcarrd—M i vmy——2 (pap—(asl)iwnp
8tf°= fo aH?*+b >0 aH*+b T
+2f0aH2+b{blA[ 2anKH?—bnK}.
&
Now we use a=oc,,—;l~+§—n(—n—_—1), b=§,K and get from Lemma 1.4

{b|A|2—2anKH2~an}=ﬁ,,K{IA|2—2a ﬂl H2—nK}

g,b’,,K{a,, H2+(ﬂ,,—n)1<—%(a,,——’1;+ﬁh) HZ}.

2 1
Since o, — — (oc,, _ ;) —0 this is for all n>2 less than

B.

_K{n%l H2+nsﬁ,,K}§ —neK {aH?+b}.

1 1
— —_ > 1
) <a+n>=16 g, in fact we get

a much better lower bound for n= 3. Thus we finally derive from Lemma 1.2(i)

Now observe that for all n=2 we have "

4aH 273

s SHH Vo) — g gy VHIP = 2neKfo. (®)

)
*a;foéllfo'*'
For convenience of notation we will write W=(aH?+b) in the following. We
have
AW? =g P{(W° 1 2aHV, H)
=20aHW* 'AH+40(c—1)a?H>W° 2|VH|*+2acW° 2|VH|?
such that from Lemma 1.3 we derive

0
L W= AW —4g(c—1)a? HE W 2|VH|2—2ac W~ ' |VH|?

ot
+26aH?> WY (|4 > +nK).
Hence we deduce from (8)

0 )

Eﬂ;:é—t (fo W= Af,—2V fo, Vi(W?))
S AaHW 1T, fy, ViHY =23 W= |PH|* —2neKJ,
—do(0—1)a? H*W° 2 f,|VH|*~2ac W™ f,|VH|?
+20aH?* W 1(JA|*+nK).
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This equals
Afa+4(awa)HW_l<Vifo's V1H>
—2neKf,+20aH?*f, W Y(|A]?+nK)—2 3¢ W° ' |VH|?
—2f,W ' \VH|*{ac+2a’6(c—1) W~ ' H?—4(a—o)acW ! H?}

and the last bracket is positive provided s <1a.
So we obtain

0
g;faédfq+4(a—0)HW_l<Vifm V;H)—27%¢W ' |FH|?
—2neKf,+20f,(A)? +nK)
and the assertion of the Lemma follows for all 0 <o < e
In order to exploit the negative |V H|*-term on the RHS of this inequality
by the divergence theorem, we now need a suitable lower bound for 4f,. Such

a lower bound can be derived since condition (5) forces the sectional curvature
of M to be positive.

2.3 Lemma. If (5) holds on a hypersurface M with sectional curvature K,,, then
K\, satisfies the inequality

Ky=%te(aH? +b)
where a and b are defined as above.

Proof. Let again k; be the eigenvalues of 4 with corresponding eigenvectors
e;. Then the sectional curvature K, (e;, e;) in direction e;, e; is given by Gauly’
equation:

Ky(e;, e)=K+K;k;.

Consider then the identity

1 1 2 n 1 2
|A|2——n_1 H?*= -2k, K2+(K1+K2_n___1‘ H) + 2 <K1~n——* H) - 0

We deduce from assumption (5) and the definition of a, , and g,
1
2K+2Kl Kzgm H2—|A'2+2K
>

“n—1

>e(aH? +b).

H>—a, H*—(8,—2) K

This can be done for all pairs (i, j), i+j and the conclusion follows, since M
is a hypersurface.
From Lemma 1.2 (iit) we have

1
AA2=2<h,,, V,.V,.H>+2[17A|2+22+2nl<(|A|2—E HZ)
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where Z=H tr(A4%) —|A|* Then the absolute terms are equal to

2($ 05 )-2(3 ) 42K T

i=1 i<j

=23 Kk(—K)? + 2K Y (k;— )

i<j i<j
=22 Ky (e, ej)(Ki_Kj)z
i<j
and we derive from Lemma 2.3 the estimate

A4 z2<h,

jo

1
A V,-H>+2|VA[2+ns(aH2+b)(|A|2—; HZ).

We insert this inequality in (7) and obtain

1
Afoz W—l{2<h,.j, P, l7jH>+2]VA|2+nsW(|A|2——; H2)

2 2
—~ HAH— |VH|"~2af, HAH—2af0H7H|2}
—4aHW 'V, H, V. fo>

1
where again W=(aH?+b). Now we denote by hj= Ny Hg;; the traceless

second fundamental form and observe that

2 1

- |I7H|2+2af0|I7H|2§2(a+;)|l7H|2§2|l7A|2
by Lemma 1.2 and the definition of a. Then it follows that

1
Afo= W“‘{2(hg-, V,-V,-H)-i—nsW(iAF—; H2)
—~2aHf,AH—-4aH{V;H, Zfo)}.
Multiplying by W° we derive
Afe=WAfo+fo AW +2Vifo, VW)
1
gW"“{Z(h?j, l7,-l7jH>+naW<|A|2——~r; H2>—2a(1—a)Hf0AH}
—da(l—o) HW YWV, H,V.f,>+8ca? H* W°~ 2 f,|VH|?

—802a* H fy W 2|VH|*+40(c—1)a®> H* W2 f,|VH|?
+2acW° L |FH|?
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such that finally

Af,22W RO, ViV HY +ne WS,
~2a(1—c) HW ' f, AH—4a(1—o) HW ™ '(V,H, V.[.>.

To proceed further, we multiply this inequality by f?~' and integrate. Note
—1
that ¥, h;=—— V; H. Then

ne [ ffWdp< —(p—D[fF2VfI*dp

+ P-UVH|P du

+2(P DfwWe B VHI VL f27 2 dp
+4a(1—a)fW” 2|h | VH|IVHI2 [P~ dpu
+4[a* H* W2 f2|VH*dpu

+2a2+p) [ HIW=' 271 IVH|VSf,| dp.

Using now the relations

1
9 = (|A|2——H2) —f, W, |aH|S W,
. (10)
N o2 2 -
<L — <
XyS5 X +2ny, fiEW
we derive

24 Lemma. Let p=2. Then jor all >0 and all 0<o < we have the

estimate
ne [ PWdu<(mp+1)+S) (W 2 PHP dp+n" o+ D) [ 22 IVf1Pdp

We want to emphasize that this estimate has nothing to do with the evolution
equation (1). It only depends on the positivity of the sectional curvature of
M.

Now we can bound high IP-norms of f,, provided o is of order p~

1
n(n—1)

1/2.

2.5 Lemma. There are constants C, <00, 6, >0 depending only on M, such that
Jor all
p=1427¢7t, g<e?277pTV?

we have the inequality
(f2drsCre.

Proof. We multiply inequality (6) by pfS~ ! and obtain

0 -1 pp-
é—tffa”du+P(p—l)ffa”_lefaIZdu+2’38p§W" LETUVH? dp

<4pfalH W' VH||VS,|f2 " dp
+2pa [|APfFdp—nepK [ fFdu
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where on the LHS we neglected the positive term due to the time dependence
of the volume. In view of (10) the first term on the RHS can be estimated
by

Ep(p— D[P dut8 Ty fWemt g VAP

and since p—122"¢7 !, |A|>* <2nW we conclude

0
S 1P dut o= D[ fF 2L du+ 2 ep [ W T IVH du
<donp (fFWdu—nepK |frdp.

Using now Lemma 2.4 with 7=%&p~ /% and the assumption on o we get

a
Ejffdué—mpl([ﬁf’du

and hence

§fPapsffldul—o-e " Px"
The conclusion of the Lemma then follows with

C,= sup (supf)(Mol+1)

o0, 31 Mo
and any 0 <9, <nekK.
Since o has only to decay like p~'/? and not like p~ ', we also get
2.6 Corollary. For all
p=mle 426, g<¢?278pT12 (11)

we have
(F1AP™f2dp)' /P <2C, 7%

for all 0=t <TZ o0,

Proof. Condition (5) implies |4|>* <2nW and so

(f1AP™fPaw P <2(f W fFdw'P=2([fEdp)'?
with
O"=0‘+ﬂ382 2—8p—1/2+mp—1/2(m~182 2—-8)=82 2—7p-1/2

p

and the assertion follows from Lemma 2.5.
To prove Theorem 2.1, we now bound the function g,=f, ¢*?? for some
small ¢>0. Let g, ,=max(g,—k, 0), A(k)={xeM|g,>k} and

T,
[ f dpdt, T,<T

0 AR

Ty
lA®Ir,= | 1Atk dt=
0

For all 6, m and p satisfying (10) we see from Corollary 2.6 that

(J14PPm g2 dpw)P<2C, ™22, (12)
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Moreover, for small o it follows from Lemma 2.5 that the L'-norm of g, decays
exponentially:

1
1—=
fg.dus|M,| r(fgEdu)'”
S(Mo|+D)([f2dw)" P e < Cy (1Mo|+1) e 72, (13)

Since 6, was chosen less than ue K, we get from Lemma 2.2 the inequality
0
57 8o S48, +4a— o) HW 1 (Vig,, ViH)=272e W [VH|* +20|A[* g,

where again W=(aH?+b). After multiplying by pg?~! we use the Sobolev in-
equality [4] in exactly the same way as in ([5],§5) and ([6],§5) to derive
for Ti<T

T, T, 1
i Jgz,kdudtgczpuA(k)uvn(f jIAI2'g£’dudt> .
0 AW 0 AWk

Here y> 1, r< oo and ¢, depend only on n and k is bigger than some k, depending
on M, and &. We choose fixed

p12re*2'%, 0,822 p; 1

and obtain from the exponential decay estimate in (12)

T, 1/r T, 1/r
(f IIAIZ’gé’;’dudt) g( j(zcle""*'”)wt) <cs(cr, Py O1).
0

0 Ak
Thus
[h—kIP A7, Sca [ARY, Yh>kZko

with a constant independent of T,. By a well-known result ([7], Lemma 4.1)

we obtain
ga’;éko‘l'd, dp=c4.2l71)’/(7+1) ”A(ko)“}i{l

On the other hand we see from (13) that

Ty T,
[AGMr,= [ | dudiski' § g dude<cs

0  A(ko) 0 M,

o1t/2

with a constant not depending on T;. Hence g,,=f,, e is uniformly bounded

and Theorem 2.1 follows.

3. A Gradient Estimate

We use Theorem 2.1 to get an estimate on the gradient of the mean curvature.

3.1 Theorem. For all n>0 there is a constant C,<co depending on n and M,
such that
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|[VH|>?<(nH*+C,) e %"?

holds on 0 <t < T = o0.

Proof. In a spaceform the evolution equation of |VH |2 in ([6], Lemma 6.2)
takes the form

0
3 \VH>=A\VH|?—2|V?H|*+2|A*|VH|*+2H<V;H, V.i4%>
+2<V;Hh;,,, V;Hh;,).
Schwarz’ inequality yields
0
FT IWH2<A|VH|* +8n|A|?|VA|?
and condition (5) leads to

i
5 IPH?< A|VH|?+16(H? +nK) |V A|*. (14)

The following estimates will also be needed.

3.2 Lemma. (i) There is a constant Cq depending only on Co, K, 6o and n such
that

2 2 1 2 2 2 1 2 ( 1) 2 2 2
—_—— < ——— —_ 7
‘{at H (|A| H >>_A(H (|A| H )) 3 H*|VA|*+C4|VA|

1
+4]AP H2<]A|2—; H2)

NN P 1 4(n—1) 1

o S < 2__ 2 U 2 2 2__ 2

(ii) at(|A| nH>=A<|A| nH) T VAP +214] (|A| nH)
2

(iii) 57 A1 Z 4|1~ 12| 4P|V AP +4[A[* (AP +0K)

1
——8n|A|2K(|A|2——; H2)

Proof. From Lemma 1.3 we get

6 2 1 24 2 2_1 24 2 2_1
E(H (|A12—ZH ))-A(H <|A| ~H )) 2H (|VA| . |VH|2)
——2(|A[2—% H2) |VH12—4H<l7iH, V,-(IAIZ—% H2>>

1
+4]A4 H2(|A|2—; H2>.



Deforming Hypersurfaces of the Sphere by Their Mean Curvature 217

We estimate with the help of Theorem 2.1
2 1 2 0 0
AH(VH, G\|AI" = H*))|=[8H V Hhyy, Vb))

<8|H||FA|VH| |hG| <8|H||/n|VAI® Co(K +H?)1 o012
2(n—1)
3n

A

H2 |VA|2+C6(0-05 CO: K’ n)lVAlz

and the first inequality follows from Lemma 1.2(ii). The second estimate is imme-
diate from Lemma 1.3(v) and Lemma 1.2(ii), whereas the last one follows from
the evolution equation for |4|* and Schwarz’ inequality.

Combining now the first two inequalities of this Lemma with the rough
estimate 2(n—1)/3n> 1/4 we see that

1 1
g=H2(|A12—; H2)+2(C6+nK)(]A|2—; HZ)
satisfies

) 1
3t géAg—i(Hz-i-nK)lVAlz+4|At2(|A|2——; Hz) (H*+ Cg¢+nK). (15

The idea is to add enough of g to |[VH|? to swallow up the positive gradient
terms on the RHS of the evolution equation of |FH|?. Consider the function

f=eP([VH|* +68g)—n|Al*.

Combining then (14), Lemma 3.2(iii) and (15) we get for all  sufficiently small
and some C,=C,(Cq, n,K)

0 1
Jrsafe c7(lAr*+1><|A|2—; H2) o 4| AP,

Using now Theorem 2.1 and Young’s inequality we obtain
J —dpt/2
a—t' f é Af+ C8 e °°

where Cg depends on #, C,, Cy,00.n and K. Then f is bounded by C,
=(max f+2Cg 8, !) and therefore

Mo

PHIPS (1] 41+ Co) e ™",

1 . .
This implies Theorem 3.1 since |4} gn—_—l H?+2K and n is arbitrary.
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4. Convergence

We now use the estimates in Theorem 2.1 and Theorem 3.1 to show that the
mean curvature on M, can only blow up if M, becomes convex. In that case
we are in the situation of Theorem 1.1(ii) and conclude that M, contracts to
a point. If on the other hand the mean curvature on M, remains uniformly
bounded, it follows from (5) and Theorem 1.1(i) that M, exists for all times
0<t< oo, and we can then use the exponential decay estimates in Theorem
2.1 and Theorem 3.1 to show that M, converges to a totally geodesic hypersur-
face.

Due to an idea originating from [3] we use Myers’ theorem to compare
the mean curvature at distant points of M,.

4.1 Theorem (Myers). If for the Ricci curvature R;; of M the inequality R;;2
(n—1) Bg;; holds along a geodesic of length at least nB~'/? on M, then the geodesic
has conjugate points.

Now we can show

4.2 Theorem. If max |H| becomes unbounded for t - T< 0, there is 8<T, such
M,
that M, is convex.

Proof. From Theorem 3.1 we obtain that for every n>0 there is C(y) with
[VH|<3in?H?4+C(g) on 0<t<T=co. Let us assume that H,, =max H

M,
becomes unbounded from above for t — 7. Then there is some 6 < T depending
on 5 with C(n)<4n?H2,, at t=0, so

[VH|Sn* HE,,,

at time t=0. Now let x be a point on M, where H assumes its maximum.
Along any geodesic starting at x of length at most #~! H_. ! we then have
H>(1-n)H,,,. We know from Lemma 2.3 that the Ricci curvature on M,
is at each point bounded from below by (n—1)}eaH? Thus by Theorem 4.1
those geodesics reach any point of M, if % is small, such that

Hming(l_r,)Hmax on M0'

So H_;, and H,_, have the same sign and by suitable choice of 8 we can
make H,;, arbitrarily large. In particular, we get from Theorem 2.1 that for
some 6 we must have

1
IA‘Z—';—I H2<0

everywhere on M,. This implies (see e.g. identity (9)) that all eigenvalues of
the second fundamental form on M, have the same sign, i.e. convexity.

It remains only to show that in case T=o00 the surfaces M, converge to
a smooth totally geodesic hypersurface M, as ¢t > co. Since |H| is bounded,
we have from Theorem 2.1 and Theorem 3.1 the estimates



Deforming Hypersurfaces of the Sphere by Their Mean Curvature 219

1
AP —— H*SCe™®',  [PHPSCe™ %", (16)

In view of Lemma 2.3 and Myers’ theorem the diameter of M, is uniformly
bounded and so

Hmax - Hmin é Ce*dot/Z .
Furthermore, we always have H,,, =0 and H_;,<0. Otherwise the evolution
equation for the mean curvature in Lemma 1.3(iii) could only have a solution
on a finite time interval, see ([6], Lemma 4.1). Thus H? decays exponentially
and we get from (16) that

max |A|? L Ce %2,
M,

Having established this, one easily obtains as in ([5], § 10) and ([6], § 7) exponen-
tial decay estimates for all derivatives F™A and C®-convergence to a totally
geodesic hypersurface M .
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