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Abstract

Influenza-like illness (ILI) is among the most common dis-
eases worldwide. Producing timely, well-informed, and reli-
able forecasts for ILI is crucial for preparedness and optimal
interventions. In this work, we focus on short-term but high-
resolution forecasting and propose DEFSI (Deep Learning
Based Epidemic Forecasting with Synthetic Information), an
epidemic forecasting framework that integrates the strengths
of artificial neural networks and causal methods. In DEFSI,
we build a two-branch neural network structure to take both
within-season observations and between-season observations
as features. The model is trained on geographically high-
resolution synthetic data. It enables detailed forecasting when
high-resolution surveillance data is not available. Further-
more, the model is provided with better generalizability and
physical consistency. Our method achieves comparable/better
performance than state-of-the-art methods for short-term ILI
forecasting at the state level. For high-resolution forecasting
at the county level, DEFSI significantly outperforms the other
methods.

Introduction

Influenza-like illness (ILI) poses a serious threat to global
public health. Worldwide seasonal influenza causes three to
five million cases of severe illness and 290,000 to 650,000
deaths annually. Traditionally, ILI surveillance data from the
Centers for Disease Control and Prevention (CDC) has been
used as reference data to predict future ILI incidence. The
surveillance data is provided with a coarse resolution and
is usually updated regularly. For example, in the USA it
has been provided previously at HHS region level and re-
cently at state level. Considering the heterogeneity between
different subregion locations and populations, accurate pre-
dictions with a finer resolution, e.g. at county level in the
USA, is crucial for local public health decision making, op-
timal mitigation resource allocation among subregions, as
well as household or individual level preventive actions in-
formed by neighboring prevalence. We focus on the problem
of high-resolution ILI incidence forecasting based on ILI
surveillance data of coarse resolution.

In this paper we use flat-resolution forecasting to de-
note the forecasting of ILI incidence with the same resolu-
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tion as the surveillance data; and high-resolution forecast-
ing to denote the forecasting with a higher geographical res-
olution than provided in surveillance data. To be concrete,
in this paper flat-resolution means state level while high-
resolution means county level, since the highest resolution
CDC surveillance data is at state level.

A challenge in high-resolution disease forecasting is
the lack of surveillance data at a finer spatial scale. The
data driven methods suffer from this limitation, includ-
ing statistical methods such as ARIMA (Benjamin, Rigby,
and Stasinopoulos 2003), ARGO (Yang, Santillana, and
Kou 2015; Yang et al. 2017) and artificial neural net-
works (ANN) methods such as Long Short Term Memory
(LSTM) (Volkova et al. 2017; Venna et al. 2017; Wu et al.
2018). Even for a few states where county level surveillance
data is available, training ANN methods for them is diffi-
cult due to the small size of the data. Causal methods have
recently been introduced to enable high-resolution forecast-
ing (Yang, Karspeck, and Shaman 2014; Nsoesie et al. 2013;
Zhao et al. 2015). They estimate the parameters of the un-
derlying disease model from the surveillance data. Then ILI
incidence prediction is made from the output of simulations
using the identified disease model. Calibrating these models
is challenging due to the high dimensionality of the param-
eter space.

Another challenge to the epidemic forecasting domain is
the generalization and physical consistency of data driven
models due to the paucity of representative samples in na-
ture. Meanwhile it is difficult for causal models to repre-
sent complex processes that are not conceptually well under-
stood using known scientific knowledge. This motivates our
work to address the shortcomings of data driven and causal
models by using synthetic data generated by epidemiolog-
ical theories in conjunction with observed data to improve
epidemic forecasts. In a recent independent effort, Karpatne
et al. (Karpatne et al. 2017) formally conceptualized the
paradigm of theory-guided data science (TGDS) that seeks
to exploit the promise of data science without ignoring the
treasure of knowledge accumulated in scientific principles.
Our work starts from a similar perspective but is different in
that multi-agent models enable high-resolution forecasting
and better generalizability of our models. This is important
due to behavioral uncertainty of a social technical system.

To address the above challenges, we propose a novel epi-
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Figure 1: DEFSI framework. In this framework, a region-
specific disease parameter space is constructed based on
surveillance data. Then the synthetic training data consist-
ing of both state level and county level weekly ILI incidence
curves is generated by simulations parameterized by sam-
ples from the parameter space. A two-branch deep neural
network model is trained on the synthetic data. The trained
model takes surveillance data as the input during forecast-
ing.

demic forecasting framework, called Deep Learning Based
Epidemic Forecasting with Synthetic Information (DEFSI).
It combines multi-agent system and deep neural network
techniques from artificial intelligence (AI). The idea is to
model the non-linear relationship between the past higher
level (state) ILI incidences and the future higher (state) and
lower level (county) ILI incidences with a deep neural net-
work. The novelty of our approach is to generate the train-
ing data using a multi-agent simulation that is based on a
synthetic population and contact network, where agent het-
erogeneities and unstructured interactions among agents are
modeled. With a multi-agent model, individual or household
level behavior can also be modeled as well as the public
health intervention measures changing the disease dynam-
ics. The purpose is to use simulations to create training data
as similar as possible to the surveillance data observed in the
real world.

To the best of our knowledge, DEFSI is the first to com-
bine a realistic multi-agent model with deep learning for
epidemic forecasting. Our major contributions are as fol-
lows: (1) DEFSI enables accurate high-resolution forecast-
ing with flat-resolution observations as inputs. (2) DEFSI
proposes a two-branch neural network model for ILI fore-
casting. It combines within-season observations (observed
data points of the current season that characterize the on-
going epidemic) and between-season historical observations
(observed data points from similar weeks of the past seasons
that characterize general trends around the current week). (3)
DEFSI constructs region-specific training datasets at multi-
ple spatially fine-grained scale with low costs. We initialize
region-specific simulations with realistic parameter settings
learned from the corresponding surveillance data. (4) Exten-
sive experiments on ILI incidence forecasting for two states
of the USA show that DEFSI achieves comparable/better
performance than the state-of-the-art methods at state level.
For high-resolution forecasting at county level, DEFSI sig-
nificantly outperforms the comparison methods.

Problem Setup

Given an observed time-series of weekly ILI incidence for
a specific region, we focus on predicting ILI incidence for
both the region and its subregions in short-term. Without
loss of generality, in this paper we consider making predic-
tions for a state of the USA and all counties of the state,
using CDC state level ILI incidence data (CDC 2018a).
In this setting, state level forecasting is flat-resolution,
while county level forecasting is high-resolution. Let y =
〈y1, y2, · · · , yT , · · · 〉 denote the sequence of weekly state
level ILI incidence, where T is the last week of which the ILI
incidence is given. Similarly, yC = 〈yC

1
, yC

2
, · · · , yC

T
, · · · 〉

denotes the sequence of weekly ILI incidence for a partic-
ular county C within the state. Assume that there are K
counties D = {C1, C2, · · · , CK} in the state. Let yD

t =
{yCt |C ∈ D} denote ILI incidence of all counties in the
state at week t. The consistency constraint on county level
incidence is yt =

∑
C∈D

yCt . The problem is defined as pre-

dicting both state level and county level incidence at week t,
where t = T +1, denoted as zt = (yt,y

D
t ), given historical

state level incidence.

DEFSI

Framework DEFSI framework consists of three major
components (shown in Fig. 1): (1) Disease model parameter
space construction: Given an existing disease simulator, we
estimate a marginal distribution for each model parameter
based on the state-specific surveillance data; (2) Synthetic
training data generation: We generate a synthetic training
dataset at both flat-resolution and high-resolution scales for
that state by running simulations parameterized from the pa-
rameter space; (3) Deep neural network training and fore-
casting: We design a two-branch deep neural network model
trained on the synthetic training dataset and using surveil-
lance data as inputs for predictions. We will elaborate the
details in the following subsections.

SEIR-based Epidemic Simulation The SEIR disease
model is widely used for ILI diseases (Kuznetsov and Pic-
cardi 1994). Each person is in one of the following four
health states at any time: susceptible (S), exposed (E), in-
fectious (I), recovered or removed (R). A person v is in the
susceptible state until he becomes exposed. If v becomes
exposed, he remains so for pE(v) days, which is called
the incubation period, during which he is not infectious.
Then he becomes infectious and remains so for pI(v) days,
which is called the infectious period. Finally he becomes re-
moved (or recovered) and remains so permanently. While
the SEIR model characterizes within-host disease progres-
sion, between-host disease propagation is modeled by trans-
mission from person to person with a probability parameter
τ , through either complete mixing or heterogeneous connec-
tions among people.

In this work, we adopt the agent-based simulator Epi-
Fast (Bisset et al. 2009). The outputs are individual level
infected cases with the infected days of a simulated season.
They can be aggregated to any temporal and spatial scale,
such as daily (weekly) state (county) level ILI incidence.
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Vaccine intervention IV (i.e. quantity of vaccines applied to
the population and the timing of the application) is applied
in our simulations. A distribution on the parameter space
P(pE , pI , τ,NI , IV ) is estimated from CDC historical data,
where NI denotes the number of infections at the beginning
of a flu season.

Disease Model Parameter Space Of the parameters in P ,
(pE , pI) are known from literature (Marathe et al. 2011).
We assume (τ,NI , IV ) follows distributions that can be es-
timated from historical data. For clarity, we define an epi-
demiological week in a calendar year as ew, and a seasonal
week in a flu season as sw. The historical time-series of CDC
surveillance data used to construct parameter space is seg-
mented into seasons by cutting at ew40 of each year (i.e.
ew40 of a calendar year corresponds to sw1 of a flu season).

Firstly, we collect observations of each parameter value
by the following: (1) Transmissibility (τ ): We compute sea-
son attack rate ar (i.e. fraction of population getting in-
fected in the season) of each historical season for the tar-
get state and its neighbor states (i.e. geographically contigu-
ous states). We calibrate a transmissibility value for each of
ar as the solution to minτ |AR(EpiFast(τ)) − ar|, where
AR(·) computes attack rate from the output of EpiFast(·).
(2) Initial Case Number (NI ): We collect the ILI inci-
dence of the first week of each season for the target state
and its neighbors. (3) Vaccine Intervention (IV ): We col-
lect 6 vaccination schedules of the past six influenza seasons
in USA (CDC 2018b). Each schedule consists of timing and
percent coverage of vaccine application throughout the sea-
son. We assume that the state level vaccine schedule is the
same as the nationwide schedule.

Secondly, for τ(NI), we fit the collected samples to sev-
eral distributions including normal, exponential, gamma,
and uniform. Then we run KS-test to choose a distribution
with highest significance (refer to the supplementary file
(Wang, Chen, and Marathe 2019) for more details). For IV ,
we assume the 6 vaccination schedules follow a discrete uni-
form distribution. In this way, a region-specific parameter
space P is constructed.

Training Dataset from Simulations Let ℓ denote the
length (number of weeks) of each flu season simulated by
EpiFast. For each run of a simulation, a specific parame-
ter setting is sampled from P , and the simulator is called
to generate state and county level weekly incidence, called
synthetic epicurve. Week 1 in the synthetic epicurve cor-
responds to sw1 of a flu season. Large volumes of high-
resolution synthetic data are generated by repeating the sam-
pling and simulating process.

DEFSI Neural Network Model In traditional time-series
modeling problem, ILI incidences of the few previous
weeks are used as the observations for the prediction of
the current week. In DEFSI, we use two kinds of obser-
vations: (1) Within-season observations, denoted as x1 =
〈yt−a, · · · , yt−1〉, are ILI incidence from previous a weeks
of the current season. They are used as the main observa-
tions to follow the weekly trend. (2) Between-season ob-
servations, denoted as x2 = 〈yt−ℓ∗b, · · · , yt−ℓ∗1〉, are ILI

Figure 2: DEFSI neural network architecture. This archi-
tecture consists of two branches. The left branch consists
of stacked LSTM layers that encode within-season obser-
vations x1, and the right branch is designed to be LSTM
based layers that encodes between-season observations x1.
A merge layer is added to combine two branches.

incidences of the same sw from the past b seasons. They
are used as the surrogate information to improve forecasting
performance.

The Long Short Term Memory (LSTM) network (Hochre-
iter and Schmidhuber 1997) is adopted in our neural network
architecture to capture the dynamic temporal behavior of the
observations. An LSTM layer consists of a sequence of a(b)
cells, of which the current cell takes one ILI incidence from
x1(x2) as well as the output and the cell state of its previous
cell as inputs. We design a two-branch deep neural network
model to combine within-season observations and between-
season observations. As shown in Fig. 2, the left branch con-
sists of stacked LSTM layers that encode within-season ob-
servations x1 = 〈yt−a, · · · , yt−1〉. The right branch is a sin-
gle LSTM layer that encodes between-season observations
x2 = 〈yt−ℓ∗b, · · · , yt−ℓ∗1〉. A merge layer is added before
the dense layer to combine the outputs from two branches. In
DEFSI model, the left and right LSTM-based branches take
x1 and x2 as inputs respectively. The merge layer requires
the outputs of two branches must be of the same dimension.
The final output dimension is the same as zt.

We are interested in a predictor f , which predicts the cur-
rent week’s state level and county level incidences zt based
on the previous a weeks of within-season state level ILI in-
cidences x1 and the previous b seasons of between-season
state level ILI incidences x2:

ẑt = f([x1,x2]t, θ) (1)

where θ denotes parameters of the predictor, ẑt denotes the
prediction of zt. The loss function L is defined as mean-
square-error, with consistency constraint on outputs:

min
θ

L(θ) =
∑

t

||zt − f([x1,x2]t, θ)||
2,

with consistency constraint ŷt =
∑

C∈D

ŷCt

(2)

Adam optimization algorithm is used to learn θ. An activity
regularizer is added to ẑt for consistency constraint.
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Variants of DEFSI Model The two-branch neural net-
work architecture is flexible for multiple variants: (1)
DEFSI: Two-branch neural network as shown in Fig. 2. (2)
DEFSI-L: Only the left branch is used to take within-season
observations. (3) DEFSI-RDENSE: Changing the LSTM
layer of the right branch with Dense layers, which means
that the model does not care about the temporal relationship
between between-season data points. We will discuss the re-
sults of different variants in Experiments.

Multi-step Forecasting In practical situations, we are in-
terested in making predictions for several weeks ahead. In
DEFSI, the left branch of the model appends the most recent
state level prediction to the input for predicting the target at
the upcoming week, and the right branch uses the state level
ILI incidences from the past seasons with sw equals to the
upcoming week number.

Experiments

Datasets CDC ILI incidence : The CDC surveillance of
weekly ILI incidence at state level from ew40, 2010 to
ew18, 2018. ILI Lab tested flu positive counts of New
Jersey : The state level and county level ILI Lab tested flu
positive counts of season 2017-2018 in NJ. The data is avail-
able from ew40 to the next year’s ew20. Google data and
Weather data are collected for comparison methods (see
the supplementary file (Wang, Chen, and Marathe 2019) for
details).

Comparison Methods Our method is compared with
5 state-of-the-art methods. They are LSTM (single layer
LSTM) (Hochreiter and Schmidhuber 1997) and AdapLSTM
(CDC + Weather data) (Venna et al. 2017) from artificial
neural network methods; ARIMA (classic ARIMA) (Ben-
jamin, Rigby, and Stasinopoulos 2003) and ARGO (CDC
+ Google data) (Yang, Santillana, and Kou 2015) from sta-
tistical methods; and EpiFast (Beckman et al. 2014) from
agent-based causal models. AdapLSTM, LSTM, ARGO and
ARIMA are used for state level forecasting. EpiFast is ap-
plied for both state level and county level forecasting.

Experiment Setup Our experiments are performed on
two states: Virginia (VA) and New Jersey (NJ). For each
state, we separate the time sequence into 8 flu seasons
from 2010-2011 to 2017-2018 by cutting at ew40. We use
the dataset of 2010-2011 to 2016-2017 seasons as training
dataset; and use the dataset of 2017-2018 season for testing.
At each time step in the testing season, each model makes
predictions 5 weeks ahead, i.e. horizon = {1, 2, 3, 4, 5}.
In DEFSI, the training dataset is used to estimate disease
parameter space, while for other comparison methods, it
is used for training forecasting model directly. The col-
lected county level ILI data of NJ is only used for evalu-
ating. More detailed settings (including estimated parameter
space in DEFSI, parameter settings for comparison meth-
ods) are elaborated in the supplementary file (Wang, Chen,
and Marathe 2019). The metrics used to evaluate the fore-
casting performance are: root mean squared error (RMSE),
mean absolute percentage error (MAPE), Pearson correla-
tion (PCORR).

Performance of Flat-resolution Forecasting We forecast
state level ILI incidence for VA, 2017-2018 and NJ, 2017-
2018. Fig. 3 shows the forecasting performance on RMSE,
MAPE, PCORR. (1) Performance on RMSE (left column
of Fig. 3): In VA, DEFSI, DEFSI-L, DEFSI-RDENSE,
ARIMA, LSTM achieve similar performances that are bet-
ter than EpiFast, AdapLSTM. In NJ, DEFSI and its variants
consistently outperform others across the horizon, which on
average have 15%-64% improvement on RMSE. (2) Perfor-
mance on MAPE (middle column of Fig. 3): In VA, ARGO
performs the best among all methods except with horizon
1 where DEFSI-L performs the best. Meanwhile, DEFSI,
DEFSI-L are comparable with ARGO. In NJ, DEFSI-
RDENSE achieves the best performance closely followed
by DEFSI. (3) Performance on PCORR (right column of
Fig. 3): In both VA and NJ, DEFSI-L outperforms others on
Pearson correlation (i.e. around 0.96 with horizon 1) which
on average have 20%-100% improvement compared with
others, followed by DEFSI, DEFSI-RDENSE, and ARGO.
Overall, DEFSI and its variants make comparable/better pre-
dictions than the comparison methods at state level.

Performance of High-resolution Forecasting The per-
formance of county level forecasting is evaluated on NJ
2017-2018. The horizon is extended to 10 for better ob-
servations. In Fig. 4, we show county level ILI forecast-
ing performance on each metric. The metric value of each
node in the figure is the average value across 21 counties
in NJ. Our method consistently outperforms the compari-
son method EpiFast on RMSE (about 53% reduction) and
PCORR (about 60% increase). However, EpiFast performs
better than our method on MAPE with horizon less than
4, while the error increases dramatically as the horizon in-
creases. Overall, our method significantly outperforms the
comparison method on county level forecasting.

Discussion In general, AdapLSTM and EpiFast do not
perform very well in our experiment compared with other
methods. For AdapLSTM, weather factors are considered
for post adjustment of LSTM outputs. As stated in (Venna et
al. 2017), the weather factors are estimated using time delays
computed by apriori associations and selected by the largest
confidence. However, in our experiment, they all show very
low confidences (less than 0.3). This may cause arbitrary
adjustment for predictions and consequently poor perfor-
mance. For EpiFast, one possible reason is that we did not
find a good estimate of the underlying disease model for a
specific region and season due to the noisy CDC observa-
tions. As we discussed in the Introduction, if the observed
data is too noisy then the learned underlying model tends
to make predictions with large errors. Through the results,
DEFSI enables high-resolution forecasting that outperforms
EpiFast. Meanwhile, it achieves comparable/better perfor-
mance than the comparison methods at state level forecast-
ing. Our experiments demonstrate that DEFSI integrates the
strengths of ANN methods and causal methods to improve
epidemic forecasting.

The Significance of IV in P Any intervention actions
taken during a flu season will obviously affect the disease
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(a) VA, 2017-2018

(b) NJ, 2017-2018

Figure 3: State level ILI incidence forecasting performance on RMSE, MAPE, PCORR. A log y-scale is used in RMSE and
MAPE.

Figure 4: County level ILI incidence forecasting performance on RMSE, MAPE, PCORR for NJ, 2017-2018. A log y-scale is
used in RMSE and MAPE.

spread. Our method described above constructs a parameter
space P(pE , pI , τ,NI , IV ) that includes the vaccine inter-
vention IV . In this section, we investigate how IV affects
DEFSI model by generating two synthetic training datasets:
(1) vaccine-case: simulations with IV (the training dataset
used in Experiments); (2) base-case: simulations that share
the common settings of pE , pI , τ,NI with vaccine-case ex-
cept IV = ∅.

We train DEFSI on vaccine-case and base-case respec-
tively with the same settings described in Experiment Setup,
denoted as DEFSI-vac and DEFSI-base. State level forecast-
ing on VA 2017-2018 is evaluated. Fig. 5 shows the perfor-
mance on RMSE, MAPE, and PCORR. DEFSI-vac consis-
tently outperforms DEFSI-base on RMSE and PCORR, es-
pecially with small horizon less than 5. On MAPE, DEFSI-
vac performs better than DEFSI-base with small horizon less
than 5, while the situation inverses as the horizon increases.

Our experiments show the significance of realistic interven-
tions in P for good forecasting performance of our method.
Our proposed framework is extensible for further available
realistic interventions, such as school closure and quaran-
tine, to further improve forecasting performance.

Conclusion

In this paper we propose DEFSI, a novel epidemic fore-
casting framework combining deep neural network meth-
ods with causal models. In DEFSI, a two-branch neu-
ral network model and its variants are designed to com-
bine within-season and between-season observations. The
model is trained on a region-specific synthetic dataset con-
structed at multiple spatially fine-grained scale. The trained
model enables accurate high-resolution forecasting with flat-
resolution observations as inputs. Extensive experiments on
NJ and VA showed that DEFSI achieved comparable/better
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Figure 5: Performance comparison between DEFSI models trained on base-case synthetic training dataset (DEFSI-base) and
vaccine-case synthetic training dataset (DEFSI-vac). VA, 2017-2018.

performance than the state-of-the-art methods on state level
forecasting and consistently better performance than others
on county level forecasting. A direction for future work is
to further investigate the use of synthetic data generated by
social, epidemiological and behavioral theories in conjunc-
tion with observed data to improve epidemic forecasts.
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