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Abstract

The ultimate promise of diffusion MRI (dMRI) models is specificity to neuronal microstructure, 

which may lead to distinct clinical biomarkers using noninvasive imaging. While multi-

compartment models are a common approach to interpret water diffusion in the brain in vivo, the 

estimation of their parameters from the dMRI signal remains an unresolved problem. Practically, 

even when q space is highly oversampled, nonlinear fit outputs suffer from heavy bias and poor 

precision. So far, this has been alleviated by fixing some of the model parameters to a priori 

values, for improved precision at the expense of accuracy. Here we use a representative two-

compartment model to show that fitting fails to determine the five model parameters from over 60 

measurement points. For the first time, we identify the reasons for this poor performance. The first 

reason is the existence of two local minima in the parameter space for the objective function of the 

fitting procedure. These minima correspond to qualitatively different sets of parameters, yet they 

both lie within biophysically plausible ranges. We show that, at realistic signal-to-noise ratio 

values, choosing between the two minima based on the associated objective function values is 

essentially impossible. Second, there is an ensemble of very low objective function values around 

each of these minima in the form of a pipe. The existence of such a direction in parameter space, 

along which the objective function profile is very flat, explains the bias and large uncertainty in 

parameter estimation, and the spurious parameter correlations: in the presence of noise, the 

minimum can be randomly displaced by a very large amount along each pipe. Our results suggest 

that the biophysical interpretation of dMRI model parameters crucially depends on establishing 

which of the minima is closer to the biophysical reality and the size of the uncertainty associated 

with each parameter.
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 INTRODUCTION

Diffusion MRI (dMRI) is sensitive to the micrometer-scale displacement of water molecules 

and has therefore become an invaluable clinical diagnostic tool, particularly in 

neuroimaging. Empirically, the diffusion signal in brain tissue is sensitive to the density, 

orientation and permeability of barriers (e.g. myelin) and the presence of various cell types 

and organelles (e.g. cell bodies, dendrites, axons, neurofilaments and microtubules) (1). In 

other words, dMRI can in principle provide information about the tissue microstructure on a 

much smaller scale than that of the actual image resolution: micrometers versus millimeters. 

This technique has therefore found numerous applications in the study of processes and 

pathologies known to alter the microstructure of white or gray matter: brain development (2–

6), aging (7,8), stroke (9,10), traumatic brain injury (11,12), multiple sclerosis (13,14), 

Alzheimer’s disease (15,16), etc.

There are two complementary approaches for analyzing the diffusion signal: either signal 

representations or tissue models, with the distinction between the two along the lines of 

sensitivity versus specificity.

Signal representation is a phenomenological, i.e. model independent, approach. Arguably 

the most popular signal representation is the cumulant expansion (17), which is a Taylor 

expansion of the logarithm of the signal in the powers of the diffusion weighting parameter 

b: 

[1]

where S0
 = S(b = 0),  is the mean diffusivity, and gi are the components of the 

unit vector g in the direction of the applied diffusion-weighting gradient. Dij and Wijkl are 

the components of the diffusion and kurtosis tensors, respectively (18,19).

While being sensitive to the underlying tissue microstructure, empirical signal 

representations such as diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) 

lack specificity. For example, a change in fractional anisotropy (FA) or in mean kurtosis in a 

white matter region can be the result of demyelination, axonal degeneration, inflammation, 

etc. Therefore, the complementary approach is to fit an analytical expression derived from a 

theoretical model to the measured dMRI signal, in search of improved specificity.

Modeling of the dMRI signal relies on distinct assumptions about tissue structure and is by 

construction specific to a particular tissue type, in contrast to the universally applicable 

series [1]. The promise of microstructural specificity has recently elevated the interest to 

dMRI models of neuronal tissue. In the past few years, several such models for white or gray 

matter have been proposed (20–28).

While each of these models has its own specific assumptions, they have many common 

features. The tissue is separated into two (sometimes three or more) compartments with 
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negligible exchange between them, each weighted by a volume fraction fi such that Σifi = 1. 

The two principal compartments represent the intra-and extra-neurite spaces. The neurites 

(dendrites and axons) are modeled as long narrow cylinders. The presence of these highly 

anisotropic structures is a distinctive signature of neuronal tissue and of all corresponding 

models. The orientation distribution function (ODF) of the neurites however has been 

modeled in a variety of fashions, from perfectly parallel orientations (20,22,26) to an 

expansion in spherical harmonics up to L = 2 (24) and L = 4 (25), as well as by employing 

convenient functional forms with few parameters (e.g. the Watson distribution, characterized 

by a main orientation and a concentration parameter κ (27)).

Diffusion inside neurites is characterized by a diffusivity Da along the neurite; for clinically 

relevant diffusion times (t > 50 ms), the intra-neurite perpendicular diffusivity is negligible 

and neurites can be modeled as “sticks” (cylinders with zero radius). The extra-neurite 

compartment encompasses both the extracellular matrix and cell bodies, assuming they are 

in fast exchange over the diffusion time t. It is usually modeled as a Gaussian anisotropic 

compartment, orientationally correlated with the neurite ODF, and characterized by axial 

and radial diffusivities De,‖ and De,⊥. When accounted for, the third, cerebrospinal fluid 

(CSF) compartment is modeled as Gaussian isotropic, characterized by a diffusivity Diso = 3 

µm2/ms at body temperature.

The total number of parameters that need to be estimated quickly increases with model 

complexity. This, in itself, is not a problem since q space is often oversampled; it is not 

uncommon to have N ~ 100 q-space points.

Unexpectedly, even when the number of measurements exceeds the number of neuronal 

tissue model parameters by an order of magnitude, parameter estimation (fitting) suffers 

from extremely poor precision. The typical fix to this problem is to make further simplifying 

assumptions in the model and set certain parameters to a priori values (27,29). 

Unfortunately, while making the fit more precise, fixing parameters to given values with 

little or no biological validation may introduce substantial bias in the remaining, estimated 

parameters. This approach seems to defeat the purpose of biophysical modeling: if 

parameters can no longer mirror the underlying biological reality, they become mere 

“indices”, potentially with as little specificity as the model-independent metrics of the 

cumulant series [1].

In this work, we examine parameter estimation in detail for a representative two-

compartment model where the above issues are already manifest. We have specifically 

chosen this model so that it meets the following criteria simultaneously: (i) it is 

representative of a broad class of neuronal models mentioned above; (ii) it captures the main 

geometrical and biophysical features of neural tissue; and (iii) it is simple enough (with only 

five parameters) to allow us to uncover the fundamental issues in parameter estimation in a 

way that is still tractable and easy to illustrate. Because the model is fully representative of a 

broad class, we expect these issues to come up in models with more parameters, as it has 

been independently analytically confirmed in a parallel line of work (30).
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The model considered here, which we previously dubbed NODDIDA (6), is a variation of 

NODDI (neurite orientation dispersion and density imaging) (27) with all diffusivities 

released (NODDI with diffusivity assessment) and the CSF compartment neglected. 

NODDIDA is better suited to a clinical acquisition setting than CHARMED (composite 

hindered and restricted model of diffusion) (21), AxCaliber (22) or ActiveAx (20): the 

diffusion gradients are sufficiently small and the diffusion time sufficiently long for the non-

Gaussian effects in each compartment to be neglected, such as restricted diffusion across the 

neurite diameter. A detailed description of both NODDI and NODDIDA is provided in the 

next section. By examining the minimization landscape of the parameter estimation problem 

defined by this model, we reveal the existence of an intrinsic duality of solutions, and 

thereby uncover the underlying reasons for the poor precision and significant bias (unrelated 

to Rician noise bias) in parameter estimation.

 THEORY

We consider the water dMRI signal to originate from two distinct compartments, restricted 

intra-neurite and hindered extra-neurite, and we neglect the CSF compartment for simplicity. 

As in NODDI, we assume neurites to be perfectly aligned locally, forming coherent domains 

(fiber tract segments or sub-bundles) (Fig. 1), and we model the orientation distribution of 

these domains by an axially symmetric Watson distribution, characterized by a concentration 

parameter κ. Small values of κ correspond to large fiber dispersion (e.g. gray matter) and 

large values of κ to highly aligned axons (e.g. white matter tracts). The model signal in the 

unit diffusion gradient direction g with the b-matrix bggT is therefore

[2]

where f is the intra-neurite water fraction, Da is the intra-neurite diffusivity, D̂e (n) = De,‖ 

nnT + De,⊥ (1 − nnT) is the local axially-symmetric extra-neurite tensor with the eigenvalues 

given by the axial and radial diffusivities De,‖ and De,⊥, and  is 

the Watson ODF characterized by the mean orientation µ and the concentration parameter κ 

around this orientation; the ODF normalization factor 1/M is given in terms of a confluent 

hypergeometric function. For a more intuitive measure of orientation dispersion, κ is related 

to the mean cosine squared, c2, over the neurite ODF (27):

[3]

Assuming the main orientation µ can be obtained independently by calculating the principal 

eigenvector of the overall diffusion tensor, there are six parameters to be estimated in this 

model: f, Da, De,‖, De,⊥, κ and S0. The estimation of the unweighted signal amplitude S0 is 

very robust and presents no practical difficulty. Fitting is a minimization procedure of an 

objective function F with respect to all model parameters. Effectively, the objective function 

to be minimized here is
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[4]

in a remaining five-dimensional (5D) parameter space, where N is the number of q-space 

measurements Si. While different optimization criteria can be used, in this work we chose, 

without loss of generality, to focus on nonlinear least squares estimation. In this context, the 

data analyzed, whether stemming from acquisitions or simulations, will have a signal-to-

noise ratio (SNR) of 5 or higher, such that Rician bias is minimal and the least squares 

minimization is equivalent to the maximum likelihood (31).

In NODDI, although an additional isotropic compartment is considered, which adds a 

parameter fiso to the model, both local intra- and extra-neurite axial diffusivities are set equal 

to each other and fixed to a given value Da = De,‖ = D‖ (1.7 µm2/ms in adults and 2 µm2/ms 

in newborns (27,32)). Additionally, the radial diffusivity of the extra-axonal space (i.e. 

perpendicular to the sub-bundle) is related to other parameters via the mean-field tortuosity 

model (33): 

[5]

thus constraining the model significantly. The validity of these approximations has been 

discussed elsewhere (6).

In this work, we focus on the possibility of characterizing the full two-compartment model 

with all diffusivities released, and the issues and questions that arise while finding the 

minimum of the function F in Equation [4].

 METHODS

MATLAB scripts from the NODDI toolbox (34) were modified to suit the assumptions of 

NODDIDA: free independent estimation of Da
, De,‖ and De,⊥ in addition to f, κ and S0, and 

no CSF compartment (fiso = 0). The fitting procedure was also modified to use a Levenberg–

Marquardt algorithm with box constraints, implemented in C and compiled for MATLAB 

(35). Optimization settings included the following: initial damping factor 10−3/stopping 

thresholds 10−17/maximum iterations 1000. The Jacobian was provided analytically. The 

box constraints were f ∈ [0 1]; Da, De,‖, De,⊥ ∈ [0 4]; κ ∈ [0 64]. The upper bound on 

diffusivities was relaxed to 4 µm2/ms instead of 3 µm2/ms because of possible overshoot of 

the free diffusivity value at 37 °C due to noise, Gibbs ringing and/or CSF pulsation.

 Experiment

 Clinical data—Data from one healthy volunteer (67 year old female) was used to 

provide an initial assessment of the fitting behavior. The subject was scanned after giving 

informed consent as approved by our Institutional Review Board. MRI images were 

acquired on a 3 T Siemens system (mMR Biograph, Siemens Medical Solutions, Erlangen, 
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Germany) with a 12-channel head coil for reception. Diffusion-weighted images were 

acquired with b = 0 (four averages with anterior–posterior and one average with posterior–

anterior phase encoding directions), b = 1 ms/µm2 (20 directions), b = 1.5 ms/µm2 (20 

directions) and b = 2 ms/µm2 (30 directions), using a twice-refocused spin-echo echo planar 

imaging (EPI) sequence. Other imaging parameters were TE/TR = 96/8200 ms, FOV = 230 

× 230 mm2, in-plane resolution = 2.5 × 2.5mm2, 50 slices, thickness = 2.5mmand no gap. 

Images were reconstructed using the adaptive combine algorithm.

Pre-processing consisted in combined eddy-current and EPI distortion corrections with 

FSL’s “EDDY” (36). A parametric FA map was calculated after tensor fitting using a 

weighted linear least squares algorithm (37). It was used as a guide for region of interest 

(ROI) drawing and voxel selection. The posterior limb of the internal capsule (PLIC) was 

manually drawn and an additional FA threshold was applied to the ROI (FA > 0.4) (Fig. 2). 

The PLIC was chosen as an ROI because it represents a relatively large white matter tract 

and, compared with the corpus callosum, has limited Gibbs ringing artifacts (38) and CSF 

contamination. The latter feature also justifies neglecting the CSF compartment in the 

model. The mean SNR over all voxels in the PLIC and all directions at b = 2 ms/µm2 was 

5.3 (39), which is above the threshold for significant Rician bias (40) and justifies the use of 

the least squares minimization.

In a first step, Equation [2] was fit to the data from each voxel in the PLIC using a different 

uniformly distributed random initialization within the parameter intervals1 0.2 ≤ f ≤ 0.8; 0.5 

≤ Da, De,‖ ≤ 3; 0.1 ≤ De,⊥ ≤ 2.0; 1/3 ≤ c2 ≤ 1, with c2 further converted into κ. In a second 

step, three representative voxels of interest were chosen: one in the right PLIC (FA = 0.62), 

one in the splenium (FA = 0.89) and one in the right thalamus (FA = 0.34). For each of the 

voxels, the nonlinear fit was performed for 2500 different initializations, randomly chosen 

from the same parameter intervals as specified above, in order to determine the dependence 

of the fit output on initialization.

Last, one slice in the mid-axial plane was selected. For each brain voxel in the slice, the 

nonlinear fit was performed with 50 different random initializations. Out of the 50 outcomes, 

the one associated with the lowest objective function F (Equation [4]) was retained. A 

parametric map illustrating the “best fit” solution in each voxel was produced.

 Human Connectome Project (HCP) data—One dataset was downloaded from the 

WU-Minn HCP database (subject no. 100307). Briefly, the diffusion protocol consisted in 

18 b = 0 images and b = 1/2/3 ms/µm2 with 90 directions each. Other parameters included 

TE = 89.5 ms/TR = 5520 ms/FOV = 210 × 180 mm2, in-plane resolution = 1.25 × 1.25 mm2, 

111 slices, thickness = 1.25 mm.

A parametric FA map was calculated after tensor fitting using a weighted linear least squares 

algorithm (37) and was used as a guide for ROI drawing and voxel selection. The PLIC was 

manually drawn and an additional FA threshold was applied to the ROI (FA > 0.4).

1All diffusivities are expressed in µm2/ms throughout.
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As for the clinical dataset, Equation [2] was first fit to the data from each voxel in the PLIC 

using a different uniformly distributed random initialization. In a second step, a 

representative voxel of interest was chosen in the right PLIC (FA = 0.83). The nonlinear fit 

was repeated for 2500 different random initializations.

 Simulations

Synthetic dMRI signals were calculated based on the model described in Equation [2], with 

ground truth parameter values taken to be the two possible solutions (Sets A and B) found 

through the fitting procedure on the single PLIC voxel described above. For reference, 

values are collected in Table 1.

The simulated clinical protocol consisted in one b = 0 and two shells (b = 1 and b = 2 ms/

µm2) with 30 directions each, aiming to represent a clinically feasible and widespread 

diffusion protocol.

An extended protocol (one b = 0, four shells – b = 1/2/5/10 ms/µm2 with 30 directions each) 

was also simulated.

First, for both protocols, the outputs of the nonlinear fit were evaluated for both noiseless 

and SNR = 50 synthetic data. Although Rician noise was added to the data, the SNR level 

was chosen to be sufficiently high to justify the use of a least squares algorithm. Moreover, 

if issues are apparent in the case of a relatively high SNR (for typical dMRI data), one can 

only expect them to be more pronounced at lower SNR. The fitting procedure was repeated 

for 2500 different initializations and noise realizations. As previously, the starting point was 

randomly chosen from the parameter intervals 0.2 ≤ f ≤ 0.8, 0.5 ≤ Da, De,‖ ≤ 3, 0.1 ≤ De,⊥ ≤ 

2.0, 1/3 ≤ c2 ≤ 1, with c2 further converted into κ.

Second, for the simulated clinical protocol only, the 5D fitting landscape was evaluated in 

3D sub-spaces by calculating the value of the objective function F in Equation [4] for all 

combinations of f = 0.2:0.01:0.8, Da = 0.5:0.01:3.6 and κ = [2:0.1:20, 21:1:64]. The 

remaining parameters (De,‖; De,⊥) were fixed to combinations corresponding to either the 

true or the spurious minimum of each ground truth, i.e. (De,‖; De,⊥) = (2.10; 0.74) or (0.32; 

0.85) for Set A, and (De,‖; De,⊥) = (0.16; 1.48) or (1.94; 0.87) for Set B. Landscapes of 

objective function values were calculated in the absence of noise, as well as for three 

different noise levels (SNR = 35/50/70).

 RESULTS

 Experiment

 Clinical data—The chosen ROI included both left and right PLIC and amounted to 228 

voxels. Figure 3 presents the parameter estimation results in this ROI. The histograms of 

estimated model parameters across the ROI are extremely broad, likely much more than 

could be expected from biological variability. This hints at the fact that the minimization 

landscape makes the fitting procedure highly sensitive to algorithm initialization and noise. 

Essentially, nonlinear fitting can output virtually anything. The scatter plots in Figure 3B 
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also reveal a substantial degree of correlation between estimated parameters, in particular 

between f and Da.

While this is the most challenging case scenario – each voxel is characterized by a different 

ground truth, noise realization and algorithm initialization – it represents a realistic 

application of the NODDIDA model in vivo. Indeed, experimental data is corrupted by noise 

and displays biological variability, and there is currently insufficient biological knowledge to 

provide the algorithm with an educated initial guess rather than a random one.

The sole impact of algorithm initialization can be visualized in Figure 4, where the fitting 

procedure was repeated 2500 times on the same voxels, changing only the initial guess. 

These histograms reveal a systematic bimodal behavior in each voxel examined. In other 

words, given a certain biological ground truth and noise realization, there can still be two 

solutions to the problem: one with Da < De,‖, low f and low orientation dispersion (high 

value of κ or c2), and the other with Da > De,‖, high f and high orientation dispersion (low 

value of κ or c2). For both sets of solutions, the parameters are within biologically 

acceptable ranges; hence we cannot give any preference to one over the other. For the PLIC 

voxel, these two solutions are identified as Set A and Set B, respectively, and the complete 

set of parameter values is provided in Table 1.

The choice of solution based on goodness of fit (i.e. yielding the smallest value of the 

objective function F) is represented in Figure 5. Neighboring voxels belonging to a given 

structure can be allocated to qualitatively different solutions (i.e. in one voxel the Type A 

solution is selected, while in the other the Type B solution is selected) using this criterion. 

This indicates that the solution closest to the biophysical reality is not necessarily the one 

with the minimal objective function when the data is corrupted by noise.

 HCP data—The chosen ROI included both left and right PLIC and amounted to 884 

voxels. Figure 6A presents the parameter estimation results in this ROI. The histograms of 

estimated model parameters across the ROI are narrower than those obtained from the 

clinical dataset, revealing directly a bimodal distribution. The bimodality remains present at 

the single-voxel level, as illustrated in Figure 6B.

 Simulations

 Clinical protocol—As announced, the two ground truths utilized in simulations were 

Set A and Set B (Table 1). For each of these ground truths (identified by solid red lines), 

Figure 7 shows histograms of fit outputs resulting from 2500 runs.

In the noiseless case (black histograms), each run had a different initialization. The bimodal 

behavior observed experimentally in the single voxel is reproduced, with the correct solution 

having a slightly higher frequency of outcomes than the incorrect one. Some other solutions 

exist as well, although with very low frequency and predominantly for Set A; they are most 

likely the result of highly unfavorable initializations.

In the realistic SNR = 50 case, each run had both a different noise realization and 

initialization. The distributions remain clearly bimodal (blue and yellow histograms; the 
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color is attributed based on the value of the Da estimate relative to the true one), with each 

peak now displaying some width around its mean value, due to noise.

It therefore appears that, for a given ground truth, the noiseless minimization landscape of 

NODDIDA contains at least two local minima. Figures 8 (ground truth Set A) and 9 (ground 

truth Set B) each provide 3D illustrations of two cubical projections from the full 5D 

minimization landscape: one containing the true (global) minimum, and the other containing 

the false (local) minimum, with the remaining two parameters fixed as described in the 

methods section.

In the noiseless case, the region around each of these minima appears as a narrow pipe. This 

topological representation, combined with the previous simulation results in the absence of 

noise, implies that the initialization determines into which of the two pipes the algorithm 

will fall, but from there on the minimum along the chosen pipe is systematically found, as 

confirmed by the bimodal distribution of outcomes with very narrow peaks.

On the other hand, in the finite SNR case, the landscape is dominated by random noise 

fluctuations. Due to the flatness (i.e. lack of contrast in the objective function) of the noise-

free landscape along the direction of the pipe compared with the noise power, the estimators’ 

solution can be found in a large vicinity along each pipe.

This particular projection along the parameters (f, Da, κ) high-lights the most challenging 

topological features of the landscape. Indeed, the parameter De,⊥ is the least problematic, as 

its values are similar between the true and the false minimum, while the projection along (f, 

De,‖, κ) shows two very distinct minima, but a very short pipe around each minimum. An 

example of landscape F(f, De,‖, κ) is provided in Supplementary Figure S1. The 

identification of (f, Da, κ) as the most problematic subset of parameters is also supported by 

Figure 3B, which shows that the strongest spurious correlations indeed occur between f, Da 

and κ. In other words, there is a 1D “quasi-flat” manifold rather than a higher-dimensional 

“quasi-flat” surface.

For the purpose of the landscape characterization shown in Figures 8 and 9, the objective 

function F was evaluated over two 3D sub-spaces delimited by f = [0.2 0.8], Da = [0.5 3.6] 

and κ = [2 64], each encompassing one pipe (e.g. Fig. 8Aa and Ab). Each sub-space thus 

contained 61 × 311 × 225 = 4 268 475 evaluations of F. In the noiseless case, we 

determined, for each f, the location and value of the minimum F in the corresponding (Da, κ) 

plane. Figure 10 shows the corresponding plots of F along the core of the pipe as a function 

of f. The values of F along the pipes for SNR = 70, 50 and 35 are also represented; they 

provide an indication of how the F value for the true minimum is transformed by a particular 

noise realization and which location along the pipe can become the minimum as a result of 

noise.

In the noiseless case, the F value of the global minimum is zero, and therefore distinguishes 

itself from the local minimum along the spurious pipe. However, the latter remains very well 

marked (F ~ 10−6) and disconnected from the global minimum, such that the algorithm can 

still land in the spurious minimum depending on initialization values. In the finite SNR 

cases, two features should be noted. First of all, the F values of the two local minima are 
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much more similar, taking values within less than 10% of each other. In consequence, as 

observed experimentally (Fig. 5), even when multiple initializations are used on a single 

voxel to extract both minima, it is still impossible to choose the “correct” minimum based on 

the values of F, or, in other words, on quality of fit. Second, within each pipe, the minimum 

can be substantially displaced from the ground truth by noise. For example, in Set A, the 

minimum along the correct pipe for SNR = 50 is displaced from the true combination (f = 

0.38; Da = 0.50; κ = 64) to (f = 0.76; Da = 2.01; κ = 3.3) for the particular noise realization 

illustrated here. The combination of these two features results in a nearly equal probability 

of outcomes for almost all parameter values within the biologically relevant range (see Fig. 

3A).

 Extended protocol—Figure 11 shows histograms of fit results from 2500 random 

initializations and noise realizations assuming ground truths Set A and Set B. With this 

extended protocol (b up to 10 ms/µm2, see the Methods section), in the infinite SNR case, 

the correct minimum is systematically found and the duality is levied. The spurious 

minimum nonetheless reappears in a realistic SNR = 50 case, albeit with a much reduced 

frequency compared with the true minimum.

 Summary of results

The existence of two distinct pipes (minima) in the parameter space, Figures 8 and 9, points 

to the intrinsic duality of solutions to the parameter estimation problem. This seems to be a 

distinctive feature of two-compartment models, as will be discussed below. This duality is 

the first source of bias in parameter estimation, which can be viewed as “discrete”, i.e. two 

physically very different sets of values are obtained – either with Da < De,‖ or with Da > De,‖. 

Due to the topology of the minimization landscape, it seems impossible to continuously 

travel from one minimum to another without overcoming a high barrier. Moreover, the 

objective function takes very similar values in the two minima such that, even if a global 

optimizer is used, the selection of the biologically relevant minimum is not guaranteed.

The narrow pipe-like shape of the landscape around each minimum is yet another source of 

bias, in this case a “continuous” one. Since the profile of F along the pipe is not symmetric 

(Fig. 10), noise would result in the preferential selection of a flatter part of the pipe relative 

to the true minimum. Additionally, sometimes another, false minimum appears along the 

pipe at finite SNR.

Finally, the flatness of the F profile along each pipe compared with the noise level is also a 

source of large uncertainty in parameter estimation, and of spurious correlations between 

parameters. Since noise shifts the location of the minimum along the direction of the pipe, 

the flatness of the F profile along the latter results in a high probability of large deviations 

from the ground truth. This explains why even an order-of-magnitude oversampling in q 

space does not seem to be enough for precise parameter estimation (cf. Fig. 3). The contrast 

in objective function values along the pipe is somewhat improved for higher SNR data with 

even more extensive q-space coverage, such as HCP datasets (Fig. 6).
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 DISCUSSION

In this work, we studied the feasibility of nonlinear parameter estimation of neuronal tissue 

in a representative two-compartment diffusion model, and revealed a highly unfavorable 

minimization landscape underlying strong bias and poor precision in fit outcomes. This 

landscape essentially precludes finding the true minimum: there are two distinct 

disconnected minima of the objective function, very similar in value, yet each corresponding 

to very different, but physically plausible, model parameter values. Additionally, each of 

these minima has a pipe-like ensemble of similar objective function values around it, which 

strongly amplifies the effect of the noise.

We underscore that, qualitatively, our results are general, since the duality of fit outcomes 

was highlighted in three different brain regions (Fig. 4) and on two very different datasets 

(Figs. 3 and 6). Moreover, the NODDIDA model is representative of the broad class of 

multi-compartment models of diffusion in neuronal tissue (20–27). From this standpoint, 

NODDIDA can be thought of as an example of a minimal model – a model complex enough 

to account for the main features of neural tissue, yet with a minimal number of parameters, 

in which the fundamental duality of solutions, as well as bias and poor precision of 

nonlinear fitting, already become manifest. It is characterized by the intra-neurite fraction f, 

the neurite axial diffusivity Da, the extra-neurite space axial and radial local diffusivities De,‖ 

and De,⊥, and the concentration parameter κ of the Watson ODF. Note that the duality of 

solutions is already present in a model assuming perfectly aligned sticks (41), but since 

dispersion is non-negligible even in structures such as the corpus callosum (42) it is an 

important parameter to include in the model. The chosen Watson ODF shape allows for a 

wide range of axially symmetric dispersions (from fully aligned to fully isotropic) and can 

thus describe both white and gray matter. We specifically considered a simple ODF shape to 

demonstrate that the problem is not tied to ODF complexity. Understanding the behavior and 

limitations of such a minimal model is therefore essential for making progress in unbiased 

and precise parameter estimation. Since the fundamental issues arise already at the level of 

two compartments, adding a third compartment, such as CSF, would only make matters 

worse. The problem is likely generalizable, with an n-compartment model yielding at least n 

solutions, as follows from recently derived general relations between diffusion signal 

moments and model parameters, where the duality of solutions emerges as the two branches 

of a square root in a quadratic equation relating parameters to moments for the two-

compartment case, and where the corresponding equation would be of a higher order for 

more than two compartments (30).

In what follows, we discuss the impact of noise and algorithm initialization on the fit output, 

the possibility of choosing between the two potential solutions based on biological insight, 

and the limitations of the current study. Finally, we discuss possibilities of using linear 

fitting approaches for extracting the model parameters.

 Impact of noise and initialization

Because of the topology of the minimization landscape, the results of nonlinear fitting are 

highly dependent on algorithm initialization and on noise. Indeed, we have shown that, given 

a clinical dataset, the direct application of NODDIDA to a white matter ROI such as the 
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PLIC yields a distribution of fit results that is essentially noninformative, as the histograms 

are extremely broad and span the entire range of physically acceptable parameter values. 

This reflects both falling into one of the two minima, and the role of the noise displacing 

each minimum along the pipe around it. A dataset such as provided by the HCP, with higher 

SNR in each diffusion-weighted image and higher number of total measurements compared 

with the clinical dataset, yields narrower, while still bimodal, parameter value distributions.

The repetition of the fitting procedure using 2500 different algorithm initializations on single 

voxels stemming from three different ROIs further yielded a bimodal distribution of fit 

results, reflecting the existence of two distinct minima at the voxel level, both in the range of 

physically plausible values. This result was further reproduced in simulations, where such 

bimodal distributions of fitting results were retrieved in both the absence and presence of 

noise. This bimodality is therefore not due to NODDIDA being potentially ill suited to the 

tissue ground truth, since it was observed even when the ground truth was itself based on the 

NODDIDA model.

 The choice between two distinct solutions

Depending on the initial guess, the algorithm falls into one or the other minimum. The two 

possible solutions are quite distinct. One is characterized by Da < De,‖ and limited 

orientation dispersion (high value of κ), and the other one by Da > De,‖ and larger orientation 

dispersion (lower value of κ). The bimodality seems to be a general feature of having two 

compartments. Indeed, this duality of solutions has already been highlighted in Reference 41 

and later in Reference 43 for a two-compartment model of perfectly aligned axons, where 

the parameter estimation procedure did not involve nonlinear fitting. Rather, the first two 

terms of the cumulant series [1] were estimated using linear matrix pseudoinversion and 

analytically related to the model parameters. Recently, this same duality was identified in a 

two-compartment model with a general ODF, defined by the decomposition into spherical 

harmonics up to an arbitrary order, using a similar approach (30).

We have also shown that, in a realistic SNR case, noise brings the values of the objective 

functions of the two minima very close to each other. The biologically relevant minimum 

therefore cannot be chosen based purely on quality of fit (Fig. 5). Simulations of an 

extended protocol with b values up to 10 ms/µm2 suggest that, for such data, the correct 

minimum can be found with much higher probability than the spurious one, which might be 

one way of testing experimentally what the biologically relevant minimum is. However, 

experimental data at b = 10 ms/µm2 with sufficient SNR is difficult to obtain in practice. It 

would therefore be extremely valuable to have a priori biological insight into which solution 

might be the true one, in order to choose the algorithm initialization accordingly.

Unfortunately, there is no consensus in the literature as to whether Da is higher than, lower 

than, or equal to De,‖ (1
,25,44,45). The current results support the hypothesis that, under the 

assumptions of two compartments and a Watson ODF, they are at least not similar to each 

other – the NODDIDA implementation would allow for this particular case scenario but it is 

almost never observed. In order to discard the possibility that this is an effect of over-

parameterization, we ran simulations where the ground truth was set to Da = De,‖ and 

assessed the distribution of NODDIDA outcomes (Supplementary Figure S2). In this 
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particular scenario, the histograms are broad but unimodal around the true values, with 30% 

of outcomes having both axial diffusivities within 10% of their common ground truth. This 

confirms that, were Da and De,‖ similar in reality, the histograms of NODDIDA fit outcomes 

on human brain data would be unimodal rather than bimodal.

As to the choice of which axial diffusivity is greater, Da or De,‖, the evidence is conflicting. 

On the one hand, several recent works are built on the assumption that Da < De,‖ (6
,43), or 

even claim that this solution is unique (46). This inequality is also supported by recent work 

showing that white matter tract integrity metrics correlate as expected with the concentration 

of (purely intra-axonal) N-acetyl-aspartate under the assumption Da
 < De,‖ rather than the 

opposite (Da
 > De,‖

) (47).

On the other hand, there is recent evidence based on isotropic diffusion weighting 

measurements suggesting that the other solution (Da > De,‖) is the correct one (48). An 

argument against this solution is that it seems to output, more often than not, combinations 

of parameters such that De,‖
 < De,⊥, which may seem counter-intuitive. However, several 

leads are possible to rationalize this result. First, it could be the result of a bias, due to model 

assumptions, such that the ground truth would be in fact closer to De,‖
 ≈ De,⊥, or even De,‖

 > 

De,⊥. We found that such a bias can for example be introduced by a small CSF fraction fiso 

(i.e. a third compartment). Assuming f = 0.77, Da = 2.23, De,‖ = 0.8, De,⊥ = 0.5, κ = 8, fiso = 

0.05 and Diso = 3, the NODDIDA noiseless fit gives estimates of f = 0.83, Da = 2.27, De,‖ = 

0.67, De,⊥ = 0.98 and κ = 6.9. In other words, mild (5%) CSF contamination increases De,⊥ 

while bringing the estimates of Da and De,‖ further away from each other, which leads to 

tortuosity appearing lower than unity. Second, further investigation is required in order to 

determine whether the ground truth De,‖
 < De,⊥ could not, in fact, make biological sense. 

Axonal structure and packing at this level is not well known in vivo, and Monte Carlo 

simulations of diffusion in 3D electron tomography reconstructions have not been performed 

to address this specific question. Glial cell bodies and other restrictions could reduce De,‖ 

considerably relative to the free water value that one pictures from the ideal parallel 

cylinders’ cartoon. Having realistic axonal structures in mind, it becomes less obvious in 

which direction the effect of hindrance is greater. For an equal amount of heterogeneity 

(disorder), hindrance is expected to be much easier to achieve in one dimension (axial 

direction) than in two dimensions (radial plane). This is well known in the physics of 

localization in quantum transport (49,50). Classical considerations also support this picture: 

mapping diffusivity to conductivity via Einstein’s relation, the conductivity of a linear 

circuit is limited by the part with highest resistance; i.e., every “bottleneck” leads to 

hindrance in one dimension (such bottlenecks can be due to, e.g., glial cells in the extra-

axonal space). In two dimensions, the effect of bottlenecks is much weaker than in one 

dimension (51,52). Whether the amount of disorder in the longitudinal direction is sufficient 

for making De,‖
 < De,⊥ is currently unknown. The De,‖

 < De,⊥ inequality would, nonetheless, 

be in contradiction with any local tortuosity model currently employed in white matter 

modeling (33,53–55), as well as with measurements of extracellular tortuosity of other 

molecules (e.g. fluorescein isothiocyanate–dextran in the spinal cord of mice (56)).
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Choosing between the two solutions based on the fraction value f is also debatable, since 

these fractions are likely weighted by the respective T2 values of the intra- and extra-neurite 

compartments, the values of which find no consensus across the community (57–60).

Moreover, diffusivities and fractions are expected to change significantly with development, 

aging and pathology, such that a reasonable guess in healthy adult controls might not hold 

for other population groups. Diffusivities are particular candidates for markers of tissue 

vitality. For instance, the diffusivity along the neurites drops in stroke, as inferred (61) from 

oscillating-gradient measurements (10), and as measured in the rat brain after eliminating 

the effect of extracellular water with added contrast (62). There is also evidence that, in 

white matter, the intra-axonal fraction increases dramatically during development due to 

myelination (6) and that it decreases as a result of demyelination and axonal loss (63,64).

The choice between the two minima based on the degree of fiber orientation dispersion is 

also uncertain at this point. There is indeed an increasing consensus that even the reputedly 

most coherent white matter tracts in the brain, such as the corpus callosum, present a 

significant amount of orientation dispersion and cannot be approximated as a collection of 

strictly parallel axons. Mean intra-voxel dispersion estimates for the corpus callosum were 

reported at 15–18° in humans (42,65) and up to 34° in rats (66), which, using the 

conventions in the current work, would correspond to c2 values of 0.90–0.93 and 0.69, 

respectively. However, such levels of dispersion are not sufficient to disregard “Set A”-type 

solutions of NODDIDA, because the c2 output value might simply be biased towards slightly 

higher values.

Constraining the fit using additional simplifying assumptions is tempting in order to 

overcome both the issue of duality of solutions and of very large fit uncertainty. However, 

given all the aforementioned arguments, it appears that, to date, all the assumptions typically 

used (e.g. Da = De,‖ = 1.7 µm2/ms (27); Da = 1.4 µm2/ms and De,‖
 = De,⊥

 (29)) lack 

biological validation and do not therefore give trustworthy solutions to the problem, 

particularly when studying pathology. As an example, we provide the outputs of NODDI 

assuming ground truths Set A and Set B, when D‖ = Da = De,‖ is fixed to a given value 

between 1.1 and 2.1 and De,⊥ = De,‖(1 − f) (Supplementary Figure S3). The errors on the 

estimated parameters can be as large as 300%. Moreover, because Set A and Set B are the 

two complementary possible solutions of NODDIDA, the estimates of NODDI for the two 

sets are nearly identical: NODDI is unable to distinguish between these two very different 

biological configurations (see the caption of Figure S2 for more details).

 Limitations

Although the impact of the acquisition protocol was not evaluated explicitly, the HCP 

dataset showed that an extensive and intelligent coverage of q space improves the precision 

of the fit along each pipe. Simulations using the extended protocol also suggested that going 

to higher b values could, perhaps, levy the duality of solutions. However, as expected, SNR 

issues still precluded finding the correct minimum systematically. Additionally, we believe it 

is of interest to present the performance of a model applied to clinically achievable data, 

such as “two shells, 30 directions per shell”. However, dedicated acquisitions on high-
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performance scanners with b values up to 10 ms/µm2 might provide some insight into which 

minimum is biologically relevant.

It should also be pointed out that the two solutions are associated with the underlying two-

compartment model. Should this model be inappropriate for describing brain dMRI data, 

e.g. because it does not account for orientation dispersion asymmetry or for a third 

compartment, the biological reality might differ substantially from both solutions exhibited 

here. Additionally, if a third compartment were present in the underlying tissue, accounting 

for it in the fitting procedure might also make the biologically relevant solution more likely 

than the spurious one (in terms of outcome frequency from a series of minimizations with 

random initializations).

For ease of presentation and understanding, landscapes and profiles of objective function 

values were plotted in 3D, with the remaining two parameters of the model, De,‖ and De,⊥, 

set to the values corresponding to the minimum of each pipe for SNR = ∞. Nonetheless, 

simulation results in Figure 7 provide an additional indication of how the minimum is 

displaced due to noise in the full 5D parameter space. Moreover, we stress that the three 

parameters chosen, f, Da and κ, were the ones revealing the most problematic features of the 

overall landscape (Figs. 8, 9 and S1).

 Outlook

This study uncovers a major problem with parameter estimation, which puts into question 

previous multi-compartmental parameter estimation results in neuronal tissue. While not 

resolving this problem here, we hope that formulating a concrete question (“which solution 

out of the distinct two?”) can help move the field forward by stimulating dedicated 

measurements.

The problem is technically formulated via showing that the nonlinear fitting landscape, even 

for a relatively simple tissue model, is highly unfavorable. The two-compartment model 

considered allows for two distinct minima representing two very different realities, neither 

of which can be discarded based on biological evidence from the literature. This appears to 

be a general fundamental property of two-compartment models (30). Moreover, the objective 

function values associated with the two minima in a finite SNR situation are very close to 

each other, which discourages the “best fit” approach for selecting the biologically relevant 

solution out of the two, and also undermines the efficacy of the initial grid search to 

determine a good starting point (20,67). In other words, our work confirms that solution 

selection is in general very difficult; one cannot circumvent developing a thorough physical 

understanding and a subsequent histological validation. Although various models have not 

been directly compared here, our results also suggest that it is generally unreliable to base 

model selection purely on goodness of fit; a similar observation using a simpler model was 

made previously (68).

In view of the high bias and uncertainty associated with nonlinear estimation, should one 

lean towards a purely linear estimation? This can be accomplished by estimating model-

independent parameters of the series [1] using linear pseudoinversion, which has a unique 

solution. The duality then re-emerges at the level of relating signal moments (or cumulants) 
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to the model parameters (30). Fundamentally this is of course expected, since the duality is a 

feature of the minimization landscape that cannot be cured by linearization. Practically, 

however, one may hope that making numerical estimation “easy” (i.e. in a linear way), while 

taking care of the “difficult” (i.e. nonlinear) step of relating moments to parameters 

analytically, would protect the overall parameter estimation from falling into a potentially 

growing number of local minima in a high-dimensional parameter space generally needed to 

adequately describe fiber ODF in voxels with complicated orientation pattern such as fiber 

crossings.

 CONCLUSIONS

Compared with empirical DTI/DKI metrics, brain white/gray matter models of diffusion 

come with the promise of improved specificity. In this work, we used a minimal two-

compartment model to highlight the essential problems of the fitting landscape in the 

parameter space defined by such a model, namely the existence of two physically plausible 

and distinct pipe-like minima of the objective function. We thus uncovered two distinct 

sources of bias – a “discrete” bias due to falling in the wrong minimum, and a “continuous” 

bias due to a nonsymmetric profile of the objective function near each minimum. We also 

explained the reason for spurious parameter correlations and poor precision as the effect of 

noise shifting the minimum by a large amount along the “pipe” of low objective function 

values. We underlined that fixing model parameters to a priori values with no biological 

validation is not a viable solution. Overall, due to the aforementioned problems, parameters 

obtained to date from multi-compartmental models in neuronal tissue should be considered 

merely as “indices” and new considerations should be incorporated in their interpretation, at 

least until more evidence is accumulated about which of the two solutions outlined in this 

work is biologically more meaningful. Further efforts to improve the precision of the 

estimates will then still be necessary.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations used

3D/5D three/five dimensional

CSF cerebrospinal fluid
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DKI diffusion kurtosis imaging

dMRI diffusion MRI

DTI diffusion tensor imaging

EPI echo planar imaging

FA fractional anisotropy

HCP Human Connectome Project

NODDI(DA)neurite orientation dispersion and density imaging (with diffusivity 

assessment)

ODF orientation distribution function

PLIC posterior limb of the internal capsule

ROI region of interest

SNR signal-to-noise ratio.
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Figure 1. 

Schematic diagram of the NODDIDA neuronal tissue model. Neurite sub-bundles have a 

given orientation distribution about the main bundle axis (vertical axis in the figure). The 

local diffusivities within each subbundle are denoted as Da, De,‖ and De,⊥. Apparent 

diffusivities D’e,‖ and D’e,⊥ for the extra-neurite space in the whole voxel can be calculated 

as D’e,‖ = De,‖·c2 + De,⊥(1−c2) and D’e,⊥ = (De,‖(1−c2) + De,⊥(1 + c2))/2.
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Figure 2. 

Clinical dataset: b = 0 image (left) and FA map (right, scaled 0 – 0.8). The PLIC ROI is 

shown in red. Note that the entire ROI covers several axial slices, of which only one is 

shown here.
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Figure 3. 

Empirical bias and precision issues in parameter estimation on a clinical datatset, illustrated 

by the results of nonlinear fitting of NODDIDA in the PLIC. (A) Histograms of fitted 

parameter values across the ROI. The histograms are exceedingly broad and essentially non-

informative. (B) Correlations between the estimated fraction f and all other model 

parameters: Da, De,‖, De,⊥ and c2. There are spurious correlations between parameters, in 

particular between f and Da.
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Figure 4. 

Histograms of fit results for a single voxel, using 2500 initializations, in the PLIC (A), 

splenium of corpus callosum (B) and thalamus (C). The axial slices on the right show the 

ROI at stake in red and the exact location of the voxel at the crosshairs. The fitting procedure 

is dependent on the initialization and mainly leads to two very distinct solutions (see Table 1 

for exact values in the PLIC). Note the logarithmic scale on the vertical axis.
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Figure 5. 

"Choice map": parametric map sketching the choice of a solution based on the best fit 

(minimal F) in each voxel. Voxels where the best fit yielded a solution such that Da < De,‖ 

are in gray, while those where the best fit yielded Da > De,‖ are in white. Non-brain voxels, 

as well as voxels where the algorithm systematically yielded unphysical results, are in black. 

The PLIC is outlined in red, the thalamus in green and the splenium in blue. The choice of 

solution based on the minimum F is inconsistent from one voxel to the next even within a 

given structural ROI, which would be expected to be homogeneous in that respect.
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Figure 6. 

Empirical bias and precision issues in parameter estimation on an HCP dataset, illustrated by 

the results of nonlinear fitting to NODDIDA in the PLIC. The histograms of fitted parameter 

values across the ROI (A) are narrower than in the clinical data case, but remain relatively 

broad (especially axial diffusivities). The bi-modality is immediately apparent even at the 

ROI level, and is confirmed by single voxel fits with 2500 different initializations (B).
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Figure 7. 

Inherent duality of solutions for a two-compartment model. Shown are histograms of fit 

results from 2500 random initializations and noise realizations assuming the ground truth to 

be Set A (top) or B (bottom). Note the logarithmic scale on the vertical axes. Red line: 

ground truth. Black histograms: SNR = ∞. For both sets, there is a second solution in 

addition to the true one found with high frequency (~40%). Blue and yellow histograms: 

SNR = 50. The blue or yellow color was attributed based on the value of the Da estimate 

relative to the true one, to visually separate two groups of solutions. (A) The two solutions 

for SNR = ∞ are: ground truth (Set A, Table 1: f = 0.38/Da = 0.50/De,‖ = 2.10/De,⊥ = 

0.74/c2 = 0.98) and spurious (f = 0.78/Da = 2.67/De,‖ = 0.32/De,⊥ = 0.85/c2 = 0.68). (B) The 

two solutions for SNR = ∞ are: ground truth (set B, Table 1: f = 0.77/Da = 2.23/De,‖ = 

0.16/De,⊥ = 1.48/c2 = 0.70) and spurious (f = 0.42/Da = 0.61/De,‖ = 1.94/De,⊥ = 0.87/c2 = 

0.98).
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Figure 8. 

Shallow pipe-like ensemble of low objective function values in a 3D sub-space of F, Set A. 

Shown are 3D isosurfaces of the objective function F(f, Da, κ) for Set A, Table 1, calculated 

for all combinations of f = 0.2:0.01:0.8; Da = 0.5:0.01:3.6; κ = [2:0.1:20 21:1:64]. (Aa) F 

calculated with (De,‖; De,⊥) = (2.10; 0.74) and SNR = ∞, thus containing the true global 

minimum. (Ab) F calculated with (De,‖; De,⊥) = (0.32; 0.85) and SNR = ∞, thus containing 

the second local minimum of the 5D minimization problem. (Ac) The same as Aa, but SNR 

= 50. (Ad) The same as Ab, but SNR = 50. The theoretical minimum of F along each pipe is 

identified by a black bullet.
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Figure 9. 

Shallow pipe-like ensemble of low objective function values in a 3D sub-space of F, Set B. 

Shown are 3D isosurfaces of the objective function F(f, Da, κ) for Set B, Table 1, calculated 

for all combinations of f = 0.2:0.01:0.8; Da = 0.5:0.01:3.6; κ = [2:0.1:20 21:1:64]. (Ba) F 

calculated with (De,‖; De,⊥) = (0.16; 1.94) and SNR = ∞, thus containing the true global 

minimum. (Bb) F calculated with (De,‖; De,⊥) = (1.48; 0.87) and SNR = ∞, thus containing 

the second local minimum of the 5D minimization problem. (Bc) The same as Ba, but SNR 

= 50. (Bd) The same as Bb, but SNR = 50. The theoretical minimum of F along each pipe is 

identified by a black bullet.
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Figure 10. 

Bias and precision issues in finding the minimum of F. Objective function values along the 

cores of the two pipes represented in Figure 8Aa and Ab (top row) and in Figure 9Ba and Bb 

(bottom row). The left column shows results for infinite and finite SNR (70/50/35). The right 

column shows blow-ups of the areas inside the black rectangles, showing the finite SNR 

curves in more detail. The minimum along each curve is identified by a bullet. In the 

noiseless case, the minima of the correct and the spurious pipes are very well marked. In the 

finite SNR cases, the F values of the two minima take values within less than 10% of each 
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other and the minima are also much less marked, i.e. F values for neighbors along the pipe 

are very similar; as a result, the “false” minimum can be selected, and further, the minimum 

along each pipe can be substantially displaced from the theoretical one by noise – see Set A, 

SNR = 50 in particular. This rationalizes the broad parameter histograms from Figure 3A.
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Figure 11. 

Evolution of solution duality with an extended protocol (one b = 0, four shells—b = 1/2/5/10 

ms/µm2 with 30 directions each). Shown are histograms of fit results from 2500 random 

initializations and noise realizations assuming the ground truth to be Set A (Aa and Ab) or B 

(Ba and Bb). Red line: ground truth. Aa and Ba: SNR = ∞. The correct minimum is 

systematically found and the duality is levied. Ab and Bb: SNR = 50. The spurious 

minimum reappears due to noise, although with a much lower frequency of outcomes than 

the correct one.
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Table 1

Two sets of possible solutions of the NODDIDA model applied to a voxel in the PLIC. The two sets have 

parameter values within a biologically acceptable range, while representing very different case scenarios. Set 

A is characterized by Da < De,‖, f < 0.5 and almost no orientation dispersion. Set B is characterized by Da > 

De,‖, f > 0.5 and some orientation dispersion. These results are further used as our two sets of ground truths in 

the simulations. Typical DTI/DKI tensor metrics stemming from each of these sets are provided. They are very 

similar to each other. M/A/RD, mean/axial/radial diffusivity; M/A/RK, mean/axial/radial kurtosis

Set A Set B

Input parameters f 0.38 0.77

Da 0.50 2.23

De,‖ 2.10 0.16

De,⊥ 0.74 1.48

κ [c2] 64 [0.98] 4 [0.70]

Equivalent tensor metrics FA 0.61 0.54

MD 0.79 0.78

AD 1.42 1.32

RD 0.47 0.51

MK 1.28 1.30

AK 0.72 0.63

RK 1.88 2.12
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