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Mittal D, Narayanan R. Degeneracy in the robust expression of

spectral selectivity, subthreshold oscillations, and intrinsic excitability

of entorhinal stellate cells. J Neurophysiol 120: 576–600, 2018. First

published May 2, 2018; doi:10.1152/jn.00136.2018.—Biological het-

erogeneities are ubiquitous and play critical roles in the emergence of

physiology at multiple scales. Although neurons in layer II (LII) of the

medial entorhinal cortex (MEC) express heterogeneities in channel

properties, the impact of such heterogeneities on the robustness of

their cellular-scale physiology has not been assessed. Here, we per-

formed a 55-parameter stochastic search spanning nine voltage- or

calcium-activated channels to assess the impact of channel heteroge-

neities on the concomitant emergence of 10 in vitro electrophysiolog-

ical characteristics of LII stellate cells (SCs). We generated 150,000

models and found a heterogeneous subpopulation of 449 valid models

to robustly match all electrophysiological signatures. We employed

this heterogeneous population to demonstrate the emergence of cel-

lular-scale degeneracy in SCs, whereby disparate parametric combi-

nations expressing weak pairwise correlations resulted in similar

models. We then assessed the impact of virtually knocking out each

channel from all valid models and demonstrate that the mapping

between channels and measurements was many-to-many, a critical

requirement for the expression of degeneracy. Finally, we quantita-

tively predict that the spike-triggered average of SCs should be

endowed with theta-frequency spectral selectivity and coincidence

detection capabilities in the fast gamma-band. We postulate this fast

gamma-band coincidence detection as an instance of cellular-scale-

efficient coding, whereby SC response characteristics match the dom-

inant oscillatory signals in LII MEC. The heterogeneous population of

valid SC models built here unveils the robust emergence of cellular-

scale physiology despite significant channel heterogeneities, and

forms an efficacious substrate for evaluating the impact of biological

heterogeneities on entorhinal network function.

NEW & NOTEWORTHY We assessed the impact of heterogene-

ities in channel properties on the robustness of cellular-scale physi-

ology of medial entorhinal cortical stellate neurons. We demonstrate

that neuronal models with disparate channel combinations were en-

dowed with similar physiological characteristics, as a consequence of

the many-to-many mapping between channel properties and the phys-

iological characteristics that they modulate. We predict that the

spike-triggered average of stellate cells should be endowed with

theta-frequency spectral selectivity and fast gamma-band coincidence

detection capabilities.

coincidence detection; gamma frequency; heterogeneity; membrane
potential oscillations; membrane resonance, spike-triggered average

INTRODUCTION

Networks in the nervous system are endowed with several
forms of heterogeneities, which are known to play vital roles in
the emergence of physiology and behavior. These ubiquitous
forms of heterogeneities have been shown to either aid or
hamper physiology in a manner that is reliant on several
variables, including the system under consideration, its specific
function, and the state of the system. Such state-dependent
impact of biological heterogeneities has necessitated system-
and state-dependent quantitative analyses in assessing the pre-
cise role of these heterogeneities in specific neuronal structures
and associated emergent functions (Angelo et al. 2012; Anirud-
han and Narayanan 2015; Cadwell et al. 2016; Chelaru and
Dragoi 2008; Das et al. 2017; Ecker et al. 2011; Fuzik et al.
2016; Gjorgjieva et al. 2016; Goaillard et al. 2009; Grashow et
al. 2010; Kohn et al. 2016; Marder 2011; Marder and Goaillard
2006; Marder et al. 2014; Marder and Taylor 2011; Mukunda
and Narayanan 2017; Nusser 2009; Padmanabhan and Urban
2010; Prinz et al. 2004; Rathour and Narayanan 2014; 2012;
Renart et al. 2003; Shamir and Sompolinsky 2006; Srikanth
and Narayanan 2015; Tikidji-Hamburyan et al. 2015; Tripathy
et al. 2013; Voliotis et al. 2014; Wang and Buzsáki 1996; Zhou
et al. 2013).

Neurons in layer II (LII) of the rodent medial entorhinal
cortex (MEC) have been implicated in spatial navigation,
especially since the cells in LII MEC are known to act as grid
cells that generate action potentials in a gridlike pattern as the
animal traverses an arena (Buzsáki and Moser 2013; Hafting et
al. 2005; Moser et al. 2008, 2014, 2015; Ray et al. 2014; Tang
et al. 2014). Ever since the discovery of grid cells, several
theoretical and computational models have been proposed for
their emergence, and have been tested from several different
perspectives with varying degrees of success (Burak and Fiete
2006, 2009; Burgess et al. 2007; Bush and Burgess 2014;
Couey et al. 2013; Domnisoru et al. 2013; Giocomo et al.
2011b; Jeewajee et al. 2008; Navratilova et al. 2012; O’Keefe
and Burgess 2005; Rowland et al. 2016; Schmidt-Hieber and
Häusser 2013; Schmidt-Hieber et al. 2017; Sreenivasan and
Fiete 2011; Welinder et al. 2008; Yoon et al. 2013). Although
these models and associated experiments have provided sig-
nificant insights into entorhinal function, a lacuna common to
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these models relates to the systematic assessment of the impact

of the different biological heterogeneities in the medial ento-

rhinal cortex. Specifically, a systematic evaluation of the role

of different forms of network heterogeneities, including those

in channels, structural, intrinsic and synaptic properties and in

afferent connectivity, with reference to entorhinal physiology

has been lacking.

A first and essential step in addressing these and other

related questions on the impact of biological heterogeneities

on entorhinal network function is to assess the robustness of

cellular physiology in the presence of well-established het-

erogeneities in channel properties. Specifically, measure-

ments of channel properties, including kinetics, voltage-

dependent gating, and conductance values, from entorhinal

neurons are known to exhibit significant variability across

neurons (Bruehl and Wadman 1999; Castelli and Magistretti

2006; Dickson et al. 2000; Dudman and Nolan 2009; Fran-

sén et al. 2004; Magistretti and Alonso 1999; Pastoll et al.

2012; Schmidt-Hieber and Häusser 2013). Despite this,

entorhinal neurons exhibit signature in vitro electrophysio-

logical characteristics that robustly fall into specific ranges

for each physiologically relevant measurement. How do

these neurons achieve such cellular-scale robustness in their
physiology despite widely variable conductances and chan-
nel properties? Is there a requirement for individual chan-
nels or pairs of channels to be maintained at specific levels
with specific properties for signature in vitro electrophysi-
ological properties to emerge? Is there a one-to-one map-
ping between individual channels and the physiological
properties that they regulate?

In this study, we build a conductance-based intrinsically
heterogeneous population of LII stellate cell (SC) models of
the medial entorhinal cortex that satisfied several of their
unique in vitro electrophysiological signatures. We employed
this heterogeneous population of LII SC models to demonstrate
the expression of cellular-scale degeneracy (Edelman and
Gally 2001) in the concomitant emergence of these measure-
ments. Specifically, we showed that LII SC with very similar
electrophysiological characteristics emerged from disparate chan-
nel and parametric combinations. We employed these models to
demonstrate the differential and variable dependencies of mea-
surements on underlying channels. Our observations also
showed that the mapping between channels and measure-
ments was many-to-many, whereby individual channels
contributed to several measurements and individual mea-
surements were dependent on several channels. Finally, we
employed this electrophysiologically validated model pop-
ulation to make quantitative testable predictions that the
spike-triggered average (STA) of LII SCs should be en-
dowed with theta-frequency spectral selectivity and coinci-
dence detection capabilities in the fast gamma-band. We
postulate this fast gamma-band coincidence detection to be
an instance of cellular-scale efficient coding (Narayanan and
Johnston 2012), whereby the response properties of the
neuron match the dominant oscillatory band in the superfi-
cial layers of MEC (Colgin 2016; Colgin et al. 2009; Colgin
and Moser 2010; Trimper et al. 2017). The heterogeneous
population of models built here also forms an efficacious
substrate for constructing network models of the entorhinal
cortex, toward assessing the impact of cellular and channel

properties and associated heterogeneities on emergent be-
havior such as grid cell formation.

METHODS

We employed a single-compartmental cylinder model of 70-�m
diameter and 75-�m length (Fig. 1A). The choice of a single-com-
partmental model was largely driven by the absence of direct and
detailed electrophysiological characterization of dendritic intrinsic
properties or of ion channels that express in LII SCs. As a conse-
quence, morphologically precise models with specific channel expres-
sion profiles and matched intrinsic properties were infeasible. On the
other hand, as the somatic channel properties and intrinsic physiolog-
ical measurements of LII SCs are well characterized, we employed a
single-compartmental model that would not have to make explicit or
implicit assumptions about dendritic physiology. Additionally, as a
goal of this study was to develop an intrinsic heterogeneous model
population of LII SCs toward their incorporation into network models,
it was essential to ensure that the computational complexity of single
neurons was minimal. A single-compartmental conductance-based
model population that was endowed with the different ion channels
and systematically reflects intrinsic heterogeneities in LII SCs served
as an efficacious means to achieve this goal as well.

Passive and Active Neuronal Properties

Passive properties were incorporated into the model as an RC
circuit that was defined through a specific membrane resistance, Rm,
and a specific membrane capacitance, Cm. We introduced nine differ-
ent active channel conductances into the model (Fig. 1A): fast sodium
(NaF), delayed rectifier potassium (KDR), hyperpolarization-acti-
vated cyclic-nucleotide gated (HCN) nonspecific cationic, persistent
sodium (NaP), A-type potassium (KA), low-voltage-activated calcium
(LVA), high-voltage-activated calcium (HVA), M-type potassium
(KM), and small-conductance calcium-gated potassium (SK) chan-
nels. The channel kinetics and voltage dependencies for NaF, KDR,
and KA were from Dudman and Nolan (2009); for HCN from
Dickson et al. (2000), Fransén et al. (2004), and Schmidt-Hieber and
Häusser (2013); for NaP from Dickson et al. (2000), Fransén et al.
(2004), and Magistretti and Alonso (1999); for HVA from Bruehl and
Wadman (1999) and Castelli and Magistretti (2006); for LVA from
Bruehl and Wadman (1999) and Pastoll et al. (2012); for SK from Sah
and Clements (1999) and Sah and Isaacson (1995); and for KM from
Shah et al. (2008).

All channel models were based on Hodgkin-Huxley formulation
(Hodgkin and Huxley 1952) except for the SK channel, which was
modeled using a six-state Markovian kinetics model (Fig. 1A). So-
dium, potassium, and HCN channel currents were modeled using the
Ohmic formulation and calcium channels followed the Goldman-
Hodgkin-Katz (GHK) formulation (Goldman 1943; Hodgkin and Katz
1949) for current computation. The reversal potentials for Na�, K�,
and HCN channel were 50, �90, and �20 mV, respectively. Calcium
current through voltage-gated calcium channels contributed to cyto-
solic calcium concentration ([Ca]c), and its decay was defined through
simple first-order kinetics (Carnevale and Hines 2006; Destexhe et al.
1993; Honnuraiah and Narayanan 2013; Narayanan and Johnston
2010; Poirazi et al. 2003):

d�Ca�c

dt
� �

10,000ICa

36 · dpt · F
�

�Ca��
� �Ca�c

�Ca

where F represented Faraday’s constant, �ca defined the calcium decay
time constant, dpt � 0.1 �m was the depth of the shell for cytosolic
calcium dynamics, and [Ca]� � 100 nM was the steady-state value of
the [Ca]c.

Channel models were directly adopted in cases where they were
explicitly based on direct measurements from LII SC channels. In

577CELLULAR-SCALE DEGENERACY IN ENTORHINAL STELLATES

J Neurophysiol • doi:10.1152/jn.00136.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (106.051.226.007) on August 9, 2022.



cases where such explicit models were not available, model formula-
tions were taken from other cell types and were explicitly adapted to
match direct in vitro electrophysiological measurements. As channel
models were either adopted from different studies or were adapted to
match experimental observation, in what follows, we provide details
of the models that we employed for gating and kinetics of each
channel. The parameters that define these channel models are de-
scribed in Table 1, along with the base values of the 55 passive and
active parameters that govern these models. The values of parameters
governing kinetics (e.g., activation time constants) and regulating

gating properties (e.g., half-maximal activation voltages) were not
changed from their respective default values (derived from corre-
sponding electrophysiological recordings) in hand tuning the base
model. The tuning process that resulted in the base model (Fig. 1,
Table 1) involved adjustment of conductances associated with each of
the different channels toward matching with signature electrophysio-
logical characteristics of SCs (listed in Table 2).

In channels that employed the Hodgkin-Huxley formulation, the
model evolved by modifications to one or two gating particles, with
each gating particle following first-order kinetics as follows:

Fig. 1. Base model and measurements. A: schematic representation of a single-compartment model for medial entorhinal cortex (MEC) layer II stellate cell
specifying inward (inward arrows) and outward (outward arrows) currents. Inset: 6-state kinetic model of SK channels. Parametric values were � � 10 �M/s,
	 � 0.5/s, 
 � 600/s, and � � 400/s. B–I: the 10 physiologically relevant measurements (highlighted in cyan) used to characterize stellate cells. B: resting
membrane potential (VRMP) and its standard deviation (SD) were computed by taking the mean and SD, respectively, of the membrane potential (Vm) between
5- and 6-s duration (window specified in the figure) when no current was injected. All the other measurements were performed after the model settled at its VRMP

at 6 s. C: Sag ratio (Sag) was measured as the ratio of the steady-state membrane potential deflection (VSS) to peak membrane potential deflection (Vpeak) in the
voltage response of the model to a hyperpolarizing step current of 200 pA for a duration of 1,000 ms. D and E: voltage response of the model to a step current
of 100 pA (D) or 400 pA (E) for a stimulus duration of 500 ms was used to measure the number of action potentials (N100 or N400) elicited for the respective
current injection. F: input resistance (Rin) computation. F, left: 1,000-ms-long step currents from �100 pA to 100 pA were injected into the cell in steps of 20
pA to record the steady-state voltage response (black circles at the end of each trace). F, right: steady-state voltage response vs. injected current (V–I) plot
obtained from the traces on the left panel. The slope of a linear fit to the V–I plot defined Rin. G: amplitude of action potential (VAP) was measured as the difference
between the peak voltage achieved during an action potential and VRMP. H: impedance-based measurements. H, top: Chirp current stimulus injected into the cell.
H, middle: voltage response of the model to chirp stimulus injection. The arrow depicts the location of the maximal response. H, bottom: impedance amplitude
profile showing the resonance frequency (fR) at which the model elicited peak response and resonance strength (QR), the ratio of impedance amplitude at fR to
impedance amplitude at 0.5 Hz. I: membrane potential oscillations (MPOs). Shown are representative voltage traces (3-s duration) for different depolarizing
current injections (Iinj). The emergence of subthreshold oscillations in the theta range may be observed in traces at intermediate values of Iinj, with the model
switching to action potential firing at higher Iinj. The frequency of subthreshold oscillations measured at a perithreshold voltage was defined as fosc, whereas the
frequency of membrane potential oscillations obtained with other Iinj was represented by fMPO.
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Table 1. Base value and range of parameters used in generating the model population

No. Parameter (Unit) Description Base Min Max

Fast sodium (NaF) channel

1 gNaF (mS/cm2) Maximal conductance of NaF 4.2 2.1 8.5
2 Vm

NaF (mV) Half-maximal voltage of activation of NaF �26.1 �31.1 �21.1

3 km
NaF (mV) Slope of activation of NaF 9.38 7.51 11.26

4 Fm
NaF Scaling factor for activation time constant of NaF 1 0.8 1.2

5 Vh
NaF (mV) Half-maximal voltage of inactivation of NaF �23.8 �28.8 �18.8

6 kh
NaF (mV) Slope of inactivation of NaF 6.1 4.9 7.3

7 Fh
NaF Scaling factor for inactivation time constant of NaF 1 0.8 1.2

Delayed rectifier potassium (KDR) channel

8 gKDR (mS/cm2) Maximal conductance of KDR 3.2 1.5 6.4
9 Vn

KDR (mV) Half-maximal voltage of activation of KDR �17.6 �22.6 �12.6

10 kn
KDR (mV) Slope of activation of KDR 19.6 15.7 23.6

11 Fn
KDR Scaling factor for activation time constant of KDR 1 0.8 1.2

Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channel

12 gHCN (�S/cm2) Maximal conductance of slow HCN 33.3 16 67
13 HCNms

mf Ratio of fast to slow HCN maximal conductance 1.85 1.5 2.2

14 Vmf
HCN (mV) Half-maximal voltage of activation of fast HCN 74.2 69.2 79.2

15 Vms
HCN (mV) Half-maximal voltage of activation of slow HCN 2.83 �2.17 7.83

16 kmf
HCN (mV) Slope of activation of fast HCN 9.78 7.8 11.7

17 kms
HCN (mV) Slope of activation of slow HCN 15.9 12.7 19.1

18 Fmf
HCN Scaling factor for activation time constant of fast HCN 1 0.8 1.2

19 Fms
HCN Scaling factor for activation time constant of slow HCN 1 0.8 1.2

Persistent sodium (NaP) channel

20 gNaP (�S/cm2) Maximal conductance of NaP 34 17 68
21 Vm

NaP (mV) Half-maximal voltage of activation of NaP 48.7 43.7 53.7

22 km
NaP (mV) Slope of activation of NaP 4.4 3.52 5.28

23 Fm
NaP Scaling factor for activation time constant of NaP 1 0.8 1.2

24 Vh
NaP (mV) Half-maximal voltage of inactivation of NaP 48.8 43.8 53.8

25 kh
NaP (mV) Slope of inactivation of NaP 9.9 7.9 11.9

26 Fh
NaP Scaling factor for inactivation time constant of NaP 1 0.8 1.2

A-type potassium (KA) channel

27 gKA (�S/cm2) Maximal conductance of KA 25 12.5 50
28 Vm

KA (mV) Half-maximal voltage of activation of KA �18.3 �23.3 �13.3

29 km
KA (mV) Slope of activation of KA 15 12 18

30 Fm
KA Scaling factor for activation time constant of KA 1 0.8 1.2

31 Vh
KA (mV) Half-maximal voltage of inactivation of KA �58 �63 �53

32 kh
KA (mV) Slope of inactivation of KA 8.2 6.6 9.8

33 Fh
KA Scaling factor for inactivation time constant of KA 1 0.8 1.2

High-voltage-activated (HVA) calcium channel

34 gHVA, (mS/cm2) Maximal conductance of HVA 0.18 0.09 0.36
35 Vm

HVA (mV) Half-maximal voltage of activation of HVA 11.1 6.1 16.1

36 km
HVA (mV) Slope of activation of HVA 8.4 6.7 10.0

37 Fm
HVA Scaling factor for activation time constant of HVA 1 0.8 1.2

38 Vh
HVA (mV) Half-maximal voltage of inactivation of HVA 37 32 42

39 kh
HVA (mV) Slope of inactivation of HVA 9 7.2 10.8

40 Fh
HVA Scaling factor for inactivation time constant of HVA 1 0.8 1.2

Low-voltage-activated (LVA) calcium channel

41 gLVA (�S/cm2) Maximal conductance of LVA 90 41.9 167.6
42 Vm

LVA (mV) Half-maximal voltage of activation of LVA �52.4 �57.4 �47.4

43 km
LVA (mV) Slope of activation of LVA 8.2 6.5 9.8

44 Fm
LVA Scaling factor for activation time constant LVA 1 0.8 1.2

45 Vh
LVA (mV) Half-maximal voltage of inactivation of LVA �88.2 �93.2 �83.2

46 kh
LVA (mV) Slope of inactivation of LVA 6.67 5.34 8.01

47 Fh
LVA Scaling factor for inactivation time constant of LVA 1 0.8 1.2

M-type potassium (KM) channel

48 gKM (mS/cm2) Maximal conductance of KM 0.12 0.06 0.25
49 Vm

KM (mV) Half-maximal voltage of activation of KM �40 �45 �35

50 km
KM (mV) Slope of activation of KM �10 �8 �12

51 Fm
KM Scaling factor for activation time constant of KM 1 0.8 1.2

Continued
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dm

dt
�

m� � m

�m

where m� and �m, respectively, defined the steady-state value and the
time constant of the state variable that governed the gating particle.
Channel gating and kinetics were appropriately adjusted for temper-
ature dependence from corresponding experimental measurements.

The fast sodium channel. The NaF model was adopted from
Dudman and Nolan (2009), and the current through this sodium
channel was:

INaF � gNaFm3h�V � ENa�.

The activation gating particle was defined by:

m�
NaF � �1 � exp�Vm

NaF � V

km
NaF �	�1

�m
NaF � Fm

NaF� 1

�m
NaF � 	m

NaF�
�m

NaF �
4��V � 33� ⁄ 9�


1 � exp���V � 33� ⁄ 9��

	m
NaF �

27.6��V � 58� ⁄ �12�

1 � exp��V � 58� ⁄ 12��

.

The inactivation gating particle was defined by:

h�
NaF � 1 � �1 � exp�Vh

NaF � V

kh
NaF �	�1

�h
NaF � Fh

NaF� 1

�h
NaF � 	h

NaF�

�h
NaF �

0.36��V � 48� ⁄ �12�

1 � exp��V � 48� ⁄ 12��

	h
NaF �

0.4��V � 11� ⁄ 6�

1 � exp���V � 11� ⁄ 6��

.

The delayed rectifier potassium channel. The KDR model was
adopted from Dudman and Nolan (2009), and the current through this
potassium channel was:

IKDR � gKDRn4�V � EK� .

The activation gating particle was governed by the following
equations:

n�
KDR � �1 � exp�Vn

KDR � V

kn
KDR �	�1

�n
KDR � Fn

KDR� 1

�n
KDR � 	n

KDR�
�n

KDR �
0.2��V � 38� ⁄ 10�


1 � exp���V � 38� ⁄ 10��

	n
KDR �

0.6294��V � 47� ⁄ �35�

1 � exp��V � 47� ⁄ 35��

.

The hyperpolarization-activated cyclic-nucleotide-gated channel.
The HCN channel model was adopted from Dickson et al. (2000),
Fransén et al. (2004), and Schmidt-Hieber and Häusser (2013) and the
current through this nonspecific cationic channel was:

Ih � gHCN�msHCN � HCNms
mfmfHCN��V � Eh�

where msHCN and mfHCN respectively defined the gating variables for
the slow and fast components of the current through HCN channels,

and HCNms
mf defined the ratio of the fast to slow HCN conductance

values. The activation gating particles for the slow and fast HCN
components were governed by the following equations:

mf�
HCN � �1 � exp�V � Vmf

HCN

kmf
HCN �	�1.36

ms�
HCN � �1 � exp�V � Vms

HCN

kms
HCN �	�58.5

�mf
HCN � Fmf

HCN� 0.51

exp��V � 1.7� ⁄ 10� � exp���V � 340� ⁄ 52�
�ms

HCN � Fms
HCN� 5.6

exp��V � 17� ⁄ 14� � exp���V � 260� ⁄ 43� .

Table 1. —Continued

No. Parameter (Unit) Description Base Min Max

Small-conductance calcium-activated potassium (SK) channel

52 gSK (�S/cm2) Maximal conductance of SK 52 26 104

Passive properties and cytosolic calcium handling

53 Rm (k� cm2) Specific membrane resistance 40 20 80
54 �Ca (ms) Time constant of cytosolic calcium decay 78 39 156
55 Cm (�F/cm2) Specific membrane capacitance 1 0.75 1.25

Whereas conductance values were scaled from 0.5 � to 2 � , scaling factors for time constants were set in the range 0.8 � to 1.2 � , the half-maximal voltages
were shifted by 5 mV on either side of their default values, and the slope of the sigmoidal activation/inactivation curves were scaled by 20% on either side of
the respective default values. For parameters other than conductance values, these ranges were chosen to match with respective experimental variability.

Table 2. Physiologically relevant range of LII stellate cell

measurements

No. Intrinsic Measurement (Unit) Valid Range

1 Resting membrane potential, VRMP (mV) �65 to �60
2 SD of membrane potential (resting), SD (mV) �0.01
3 Sag ratio 0.35–0.65
4 Input resistance, Rin (M�) 35–65
5 Resonance strength, QR �3.5
6 Resonance frequency, fR (Hz) 3–12
7 Perithreshold MPO frequency, fosc (Hz) 3–12
8 No. of APs for a 100-pA step current for 500 ms, N100 0
9 No. of APs for a 400-pA step current for 500 ms, N400 7–16

10 AP amplitude, VAP, (mV) 	75

Experimental bounds on each intrinsic measurement involved in the vali-
dation process of stochastically generated models. Although the constraint on
the SD of resting membrane potential ensures that there are no membrane
potential oscillations at rest, the rest of the bounds were derived from previous
electrophysiological measurements (Boehlen et al. 2013; Pastoll et al. 2012).

580 CELLULAR-SCALE DEGENERACY IN ENTORHINAL STELLATES

J Neurophysiol • doi:10.1152/jn.00136.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (106.051.226.007) on August 9, 2022.



The persistent sodium channel. The NaP model was adopted from
Dickson et al. (2000), Fransén et al. (2004), and Magistretti and
Alonso (1999), and the current through this sodium channel was:

INaP � gNaPmh�V � ENa� .

The activation gating particle was defined by:

m�
NaP � �1 � exp���V � Vm

NaP�
km

NaP 	�1

�m
NaP � Fm

NaP�� 91�V � 38�
1 � exp���V � 38� ⁄ 5�

� � �62�V � 38�
1 � exp��V � 38� ⁄ 5��

�1

.

The inactivation gating particle was defined by:

h�
NaP � �1 � exp� �V � Vh

NaP�
kh

NaP 	�1

�h
NaP � Fh

NaP�� �0.00288�V � 17.049�
1 � exp��V � 49.1� ⁄ 4.63�

� � 0.00694�V � 64.409�
1 � exp���V � 447� ⁄ 2.63��

�1

.

The transient A-type potassium channel. The KA model was
adopted from Dudman and Nolan (2009), and the current through this
potassium channel was:

IKA � gKAmh�V � EK� .

The activation gating particle was governed by the following
equations:

m�
KA � �1 � exp�Vm

KA � V

km
KA �	�1

�m
KA � Fm

KA� 1

�m
KA � 	m

KA�
�m

KA �
0.15��V � 18.3� ⁄ 15�


1 � exp���V � 18.3� ⁄ 15��

	m
KA �

0.15��V � 18.3� ⁄ �15�

1 � exp��V � 18.3� ⁄ 15��

.

The inactivation gating particle was governed by the following
equations:

h�
KA � 1 � �1 � exp�Vh

KA � V

kh
KA �	�1

�h
KA � Fh

KA� 1

�h
KA � 	h

KA�
�h

KA �
0.082��V � 58� ⁄ �8.2�


1 � exp��V � 58� ⁄ 8.2��

	m
KA �

0.082��V � 58� ⁄ 8.2�

1 � exp���V � 8.2� ⁄ 8.2��

.

The high-voltage-activated calcium channel. The HVA calcium
channel model was fitted with corresponding electrophysiological
data from Bruehl and Wadman (1999) and Castelli and Magistretti
(2006). The current through this channel followed GHK conventions,

with the default extracellular and cytosolic calcium concentrations set
at 2 mM and 100 nM, respectively. The conductance evolution of this
channel was modeled as follows:

g�t� � gHVAm3h .

The activation and inactivation gating particles were governed by
the following equations:

m�
HVA � �1 � exp���Vm

HVA � V�
km

HVA 	�1

�m
HVA � 0.92Fm

HVA

h�
HVA � �1 � exp� �Vh

HVA � V�
kh

HVA 	�1

�h
HVA � 250Fh

HVA.

The low-voltage-activated calcium channel. The LVA calcium
channel model was fitted with corresponding electrophysiological
data from Bruehl and Wadman (1999) and Pastoll et al. (2012). The
current through this channel followed GHK conventions, with the
default extracellular and cytosolic calcium concentrations set at 2 mM
and 100 nM, respectively. The conductance evolution of this channel
was modeled as follows:

g�t� � gLVAm2hs��Ca�c�
where m and h, respectively, represented the voltage-dependent acti-
vation and inactivation gating particles, and s([Ca]c) governed calci-
um-dependent inactivation with [Ca]c (specified in mM). Their evo-
lution was dictated by the following equations:

m�
LVA � �1 � exp� �Vm

LVA � V�
km

LVA 	�1

�m
LVA � Fm

LVA� �0.8967�V � 7.88�
exp���V � 7.88� ⁄ 10� � 1

� 0.046 exp� �V

22.73
��1

h�
LVA � 1 � �1 � exp� �Vh

LVA � V�
kh

LVA 	�1

�h
LVA � 1.2Fh

LVA�1.6 � 10�4 exp��
V � 79.5

20
�

�
1

1 � exp���V � 5� ⁄ 10�
�1

s��Ca�c� �
0.001

0.001 � �Ca�c

.

The M-type potassium channel. The KM model was adopted from
Shah et al. (2008), and the current through this potassium channel
was:

IKM � gKMm�V � EK� .

The activation gating particle was governed by the following
equations:

m�
KM � �1 � exp�V � Vm

KM

km
KM �	�1

�m
KM � Fm

KM�60 � � exp�0.10584� � 42��
0.009
1 � exp�0.2646� � 42����	 .

Intrinsic Measurements

We measured the resting membrane potential of the model neuron
by allowing the model to settle at a steady-state potential when no
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current was injected for a period of 5 s. This was essential because
there were several slow subthreshold conductances (especially HCN
and the calcium-activated potassium channel) that contribute to rest-
ing membrane potential. We set the passive membrane potential, in
the absence of any active subthreshold conductance, to be at �77 mV
(Boehlen et al. 2013) and allowed the interactions among the several
subthreshold conductances to set the steady-state resting membrane
potential (VRMP). After this initial 5-s period of the simulation, VRMP

was computed as the mean of the membrane potential over a 1-s
interval (5th to 6th second; Fig. 1B). We also calculated the standard
deviation (SD) of membrane potential over the same 1-s period and
set a validation criterion on this SD (�0.01 mV). This validation
constraint ensured that the RMP was measured after attainment of
steady state (which is slow, especially owing to the slow kinetics of
HCN and SK channels), and that there were no membrane potential
oscillations (which indicates the absence of a stable resting state)
when no current was injected into the model. All intrinsic measure-
ments reported below were always performed after this 6-s period (5 s
for the transients to settle to steady state and 1 s for RMP measure-
ment). Traces depicting these intrinsic measurements (e.g., Fig. 1,
C–I) also represent the period after this initial 6-s duration.

To estimate Sag ratio in the model, we injected a hyperpolarizing
step current of 200-pA amplitude for 1s and recorded the voltage
response. Sag ratio (Sag) was computed as the membrane potential
deflection achieved at steady state (VSS) during the current injection
period divided by the peak deflection of the membrane potential
(Vpeak) within the period of current injection (Fig. 1C). In assessing
suprathreshold excitability of the model neuron, we measured the
number of action potentials (AP) elicited by the neuron in response to
different depolarizing step current injections spanning 500 ms. We
defined the number of APs fired for 100- and 400-pA current injec-
tions as N100 (Fig. 1D) and N400 (Fig. 1E), respectively.

Input resistance (Rin) was calculated from the steady-state voltage
response (after 1 s of current injection) of the model neuron to
subthreshold current pulses of amplitudes spanning �100 pA to 100
pA in steps of 20 pA. The steady-state voltage response was plotted
against the corresponding amplitude of injected current, and the slope
of a linear fit to this plot was assigned as the input resistance of the
model (Fig. 1F). Spike amplitude (VAP) was computed from the first
AP elicited during a 400-pA step current injection, and was defined as
the difference between VRMP and the peak membrane potential
achieved during the AP (Fig. 1G).

As entorhinal stellates reside within an oscillatory network, it was
essential that excitability measures be computed in a frequency-
dependent manner. To do this, we computed well-established imped-
ance-based measurements from its amplitude and phase profiles (Er-
chova et al. 2004; Giocomo et al. 2007; Haas and White 2002; Hu et
al. 2009; Hu et al. 2002; Hutcheon et al. 1996ab; Hutcheon and Yarom
2000; Narayanan and Johnston 2008; 2007). These profiles were
computed by measuring the voltage response of the model to a chirp
stimulus, a sinusoidal current stimulus with constant amplitude (40 pA
peak-to-peak amplitude) with frequency linearly spanning from 0 to
15 Hz in 15 s (Fig. 1H). Frequency-dependent impedance, Z(f), was
computed as the ratio between the Fourier transform of this voltage
response and the Fourier transform of the chirp stimulus. The mag-
nitude of the complex quantity defined the impedance amplitude
profile (Fig. 1H):

�Z� f�� � �
Re�Z� f���2 � 
Im�Z� f���2

where Re[Z(f)] and Im[Z(f)] were the real and imaginary parts of the

impedance Z(f), respectively. The frequency at which |Z�f�| reached its
maximum value was considered as the resonance frequency, fR, and
resonance strength (QR) was defined as the ratio of |Z(fR)| to |Z(0.5)|
(Fig. 1H). The impedance phase profile �(f) was computed as:

�� f� � tan�1
Im�Z� f��
Re�Z� f��

.

The total inductive area, 
L, defined as the area under the inductive
part of �(f), was calculated based on the impedance phase profile
(Narayanan and Johnston 2008):

�L � �
�� f��0

�� f�df .

Sub- and perithreshold membrane potential oscillations (MPO)
were assessed in voltage responses of the model to depolarizing pulse
current injections spanning 100–300 pA in steps of 10 pA, each
lasting for 5 s (Fig. 1I). The last 3-s period of this 5-s period was
transformed to frequency domain through the Fourier transform, and
the frequency at which this spectral signal had maximum magnitude
was defined as the MPO frequency (fMPO). We defined the per-
threshold oscillation frequency (fosc) as the fMPO of the subthreshold
voltage response proximal to the spiking threshold of the model.

Multiparametric Multiobjective Stochastic Search Algorithm

To generate an intrinsically heterogeneous population of LII SCs
and to assess if the concomitant functional expression of all 10
intrinsic measurements manifested degeneracy in terms of the specific
ion channel combinations that can elicit them, we employed a mul-
tiparametric, multiobjective stochastic search (MPMOSS) algorithm
(Anirudhan and Narayanan 2015; Foster et al. 1993; Goldman et al.
2001; Marder and Taylor 2011; Mukunda and Narayanan 2017; Prinz
et al. 2003; Rathour and Narayanan 2014; 2012; Srikanth and Naray-
anan 2015). This stochastic search was performed over 55 parameters
(Table 1) and jointly validated against 10 sub- and suprathreshold
measurements (Fig. 1; VRMP, SD, Sag ratio, Rin, fR, QR, fosc, N100,
N400, VAP) toward matching in vitro electrophysiological recordings
from LII SCs (Table 2). In executing the MPMOSS algorithm, we
constructed a model neuron from specific values for each of the 55
parameters, each of which was independently and randomly picked
from a uniform distribution whose bounds reflected the electrophys-
iological variability in that parameter (Table 1). For each such
randomly chosen model, which ensured that we are not biasing our
parametric ranges with any constraints, all 10 intrinsic measurements
were computed and were compared against their respective electro-
physiological bounds (Table 2). A model that satisfied all the 10
criteria for validation was declared valid. We repeated this procedure
for 50,000 randomized picks of the 55 parameters, and validated these
models against the 10 measurements. As each of these 50,000 picks
was independent and randomized (within their respective bounds in
Table 1), each model instance was endowed with independently
unique values for each of the 55 parameters. This randomization
process ensured that there was no discretization of individual param-
eters where they are constrained to assume only specific values and
that there was no cross-parametric search constraint involving rela-
tionships between different parameters.

To further corroborate the conclusions that we draw from one set of
valid models derived from these 50,000 randomized picks of 55
parameters, we generated three independent sets, each with 50,000
model variants. We performed the validation procedure (involving all
measurements in Table 2) on each of these three populations to obtain
three independent sets of valid model populations. We statistically
compared (Kruskal-Wallis test on the 3 sets, followed by pairwise
Mann-Whitney tests) each intrinsic property of valid model popula-
tions across the three independent sets to ask if the valid model
populations were similar across the three distinct independent sets.

Assessment of Intrinsic and Parametric Heterogeneity in the Valid
Model Population

Heterogeneities in intrinsic properties of the population of valid LII
SC models and their parametric combinations were assessed using
multiple metrics. In assessing intrinsic heterogeneities, the range of
each intrinsic property was computed from the valid model population
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and compared with the electrophysiologically determined validation

ranges (Table 2). In addition, pairwise correlations between the

different intrinsic measurements were computed between intrinsic

properties to assess relationships between different intrinsic properties

across the valid model population.

To assess parametric heterogeneities and to measure the distance

between models on the 55-dimensional parametric space, we em-

ployed different distance metrics on the valid model population from

each of the three independent sets mentioned above. First, we em-

ployed Pearson’s correlation coefficient to compute pairwise correla-

tions between the 55 parameters from the different valid models.

Second, to measure the distances between models, we employed

metrics that accounted for the widely variable ranges of the different

model parameters (Table 1). The first distance metric we employed in

computing the distances between models was the Euclidean distance

[dE(x,y)] computed between normalized parametric vectors x �

(x1,x2,...x55)T and y � (y1,y2,...y55)T of two models:

dE�x, y� ���
i�1

55

�xi � yi�2

where normalization was performed for each parameter individually

by rescaling its respective Min–Max range (Table 1) to 0–1. Thus,

0 � dE�x,y� � �55.

The second distance metric that we employed to compute distances

between models was the Mahalanobis distance, that inherently in-

volves the covariance matrix of the underlying parametric distribu-

tion, thereby accounting for the variance differences across the dif-

ferent model parameters (De Maesschalck et al. 2000; Mahalanobis

1936). The Mahalanobis distance [dM(x,y)] between parametric vec-

tors x and y of two models was defined as:

dM�x, y� � ��x � y�T��1 �x � y�

where x and y were the unnormalized vectors containing parametric
values for the two models and � is the covariance matrix across
parameters spanning the entire distribution. While the minimum value
for dM(x,y) would be 0, the maximum value would depend on the
specific covariance matrix. To compute the maximum dM(x,y) for
each independent set, we constructed two synthetic model parametric
vectors xmax and xmin, with each parametric value of these models
respectively set to their respective maximum and minimum possible
values (Table 1). We then computed maximum value of dM between
xmax and xmin for each independent set, employing the covariance
matrix computed for that specific independent set. We noted that the
maximum Mahalanobis distance was very similar across the three
independent sets.

Virtual Knockout Models

To assess the impact of individual channels on each of the 10
intrinsic measurements within the valid model population, we em-
ployed the virtual knockout model (VKM) approach (Anirudhan and
Narayanan 2015; Mukunda and Narayanan 2017; Rathour and Naray-
anan 2014). In doing this, we first set the conductance value of each
of the 9 active ion channels independently to zero for each of the valid
models. We then computed all the 10 intrinsic measurements for each
model, and assessed the sensitivity of each measurement to the
different channels from the statistics of postknockout change in the
measurements across all valid models. When some of the channels
were knocked out, certain valid models elicited spontaneous spiking
or showed depolarization-induced block (when depolarizing currents
were injected). These VKMs were not included into the analysis for
assessing the sensitivities, because this precluded computation of all
10 measurements from such models.

Spike-Triggered Average and Associated Measurements

For estimation of STA, a zero-mean Gaussian white noise (GWN)
with a standard deviation �noise was injected into the neuron for
1,000 s. �noise was adjusted such that overall action potential firing
rate was ~1 Hz in the model under consideration. This ensured that the
spikes were isolated and aperiodic, thereby establishing statistical
independence of the current samples used in arriving at the STA
(Agüera y Arcas and Fairhall 2003; Das and Narayanan 2015; 2014;
2017). The STA was computed from the injected current for a period
of 300 ms preceding the spike and averaged over all spikes across the
time period of simulation, translating to �1,000 spikes for each STA
computation. STA kernels were smoothed using a median filter
spanning a 1-ms window for representation purposes and for comput-
ing quantitative measurements that were derived from the STA.

Quantitative metrics for spectral selectivity in the STA, for coin-
cidence detection windows and intrinsic excitability, were derived
from the STA and its Fourier transform (Das and Narayanan 2015;
2014; 2017). Specifically, the frequency at which the magnitude of the
Fourier transform of the STA peaked was defined as the STA
characteristic frequency (fSTA). STA selectivity strength (QSTA) was
defined as the ratio of |STA(fSTA)| to |STA(0.5)|. The peak positive

current in the STA kernel was defined as ISTA
peak, which constitutes a

measure of excitability. To quantify the window for integration/
coincidence detection, we defined the spike-proximal positive lobe
(SPPL) as the temporal domain that was adjacent to the spike where
the STA was positive (Das and Narayanan 2015; 2017). The total
coincidence detection window, CDW (TTCDW), was computed as the
temporal distance from the spike location (t � 0 ms) to the first zero
crossing in the STA. TTCDW constitutes the entire temporal expanse
over which the inputs were positively weighted and hence covered the
entire temporal spread of SPPL. To account for the specific shape of
the STA in defining the coincidence detection window, we defined an
effective CDW (TECDW), which was a STA-weighted measure of
SPPL (Das and Narayanan 2015; 2017):

TECDW ���
�TTCDW

0
t2STA�t�dt

�
�TTCDW

0
STA2�t�dt

Computational Details

All simulations were performed using the NEURON programming
environment (Carnevale and Hines 2006) at 34°C, with a simulation
step size of 25 �s. All data analyses and plotting were executed using
custom-written software within the IGOR pro (Wavemetrics) and
MATLAB (Mathworks) environments. All statistical analyses were
performed using the R statistical package (R Core Team 2013).

RESULTS

The principal goal of this study was to assess the impact of
heterogeneities in channel properties on cellular-scale physio-
logical signatures of LII stellate cells of the medial entorhinal
cortex. We approached this by building an unbiased stochastic
search-based conductance-based population of LII SCs that
satisfied several of their unique in vitro electrophysiological
signatures. Apart from providing an efficacious substrate for
understanding the roles of channel parameters, intrinsic mea-
surements and associated heterogeneities in entorhinal func-
tion, our goal in building these models was threefold. First, a
heterogeneous population of LII SC models that satisfied
several in vitro electrophysiological constraints would provide
us the means to assess if there was significant degeneracy in the
emergence of these measurements, or if there was a require-
ment on unique mappings between channel properties and
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physiological measurements. Second, such a heterogeneous

population would allow us to establish the specific roles of

different channels in mediating or regulating different physio-

logical properties, and assess variability in such regulatory

roles. Third, and importantly, as these models match with LII
SC models in several ways, they provide an ideal foundation
for making quantitative predictions about stellate cell physiol-
ogy, which can be electrophysiologically tested.

Toward this, we first hand-tuned a conductance-based, bio-
physically and physiologically relevant base model that was
characterized as a single-compartmental cylindrical model with
different passive and active properties (see METHODS). The
model was endowed with 9 different active ion channels
(besides leak channels), and matched with 10 distinct in vitro
electrophysiological measurements obtained from LII SCs
(Fig. 1, Table 2). These electrophysiological measurements
included the significant sag observed in response to pulse
current injections (Fig. 1C), theta-frequency membrane poten-
tial resonance that exhibited strong spectral selectivity (Fig.
1H), and importantly the robust subthreshold membrane po-
tential oscillations in the theta-frequency range at different
depolarized potentials (Fig. 1I). The 55 active and passive
parameters that governed LII SC models, and their respective
values in the base model, are listed in Table 1.

Diverse Depolarization-Dependent Evolution of Membrane
Potential Oscillations in Stochastically Generated Stellate
Cell Models

We employed the base model parameters (Table 1) as the
substrate for a multiparametric stochastic search algorithm for
models that would meet multiple objectives in terms of match-
ing with the in vitro electrophysiological properties of LII SCs.
The range of individual parameters over which this multipara-
metric (55 parameters), multiobjective (10 measurements) sto-
chastic search (MPMOSS) algorithm was executed is provided
in Table 1. We generated a test population of 50,000 model
cells by sampling these model parameters, and subjected these
model cells to validation based on the physiologically observed
range of sub- and suprathreshold measurements (Table 2).
First, we found a subpopulation of these models where all
measurements, except for the ability to express theta-frequency
membrane potential oscillations, were within the specified
bounds. We depolarized this subpopulation of models and
asked if these models expressed robust subthreshold oscilla-
tions in their membrane potentials.

We found that the depolarization-dependent evolution of
sub- and suprathreshold (regular spiking behavior) oscillations
exhibited significant diversity across different models within
this subpopulation (Fig. 2). In most models within this sub-
population, consistent with corresponding experimental obser-
vations (Alonso and Llinás 1989), we observed the emergence
of robust theta-range subthreshold MPOs with membrane po-
tential approaching near spiking threshold, with further depo-
larization resulting in spiking activity (Fig. 2A) or spike dou-
blets (Fig. 2B) or bursts (Fig. 2C) riding over subthreshold
MPOs (Alonso and Klink 1993). Among these, there were
some models that exhibited theta skipping (Alonso and Klink
1993), where spikes or bursts were regular, but were not
observed on every cycle of the subthreshold MPO (Fig. 2C). In
other models, incrementally higher depolarization resulted in

the cell switching from rest to subthreshold MPOs to a state

that was bereft of MPOs (Fig. 2, D and E). Whereas in certain

models, further depolarization would result in regular spiking

(Fig. 2D), in other models the absence of MPOs persisted with

the model not entering spiking behavior until 300 pA of current

injection (Fig. 2E). In rare cases where the model displayed

spiking behavior without transitioning through subthreshold

oscillations (Fig. 2F), the model was not included as a valid

model because such models did not meet the in vitro electro-

physiological constraint on theta-frequency perithreshold os-

cillations. Finally, a small subset of valid models manifested

robust subthreshold oscillations, but switched back and forth

between subthreshold oscillations and regular spiking with

increasing current injections (Fig. 2G).

The Stochastic Search Strategy Yielded an Intrinsically

Heterogeneous Population of Models that Matched Several

In Vitro Electrophysiological Signatures of Stellate Cells

Of 50,000 models that were generated as part of the stochas-

tic search strategy, only 155 models (Nvalid � 155) were valid

when we constrained them against all the 10 in vitro electro-

physiological measurements (Table 2), including their ability

to manifest robust perithreshold theta-frequency oscillations.

We plotted all the 10 electrophysiological measurements in this

model population to assess if they were clustered around their

respective base model values (Fig. 1) or if they were distrib-

uted to span the range of valid model measurements (Table 2).

Whereas a clustered set of measurements would have implied
a near-homogeneous population of models, a distributed pat-
tern that spanned the range of respective in vitro electrophys-
iological counterparts would provide us with a heterogeneous
model population that reflects experimental variability in the
respective measurements. We found all measurements to
spread over a large span, with most of them covering the entire
min-max range of their respective bounds (Fig. 3A; note that
N100 has not been plotted because it was required to be zero for
model validity). We observed the emergence of sub- and
suprathreshold membrane potential oscillations in these models
when the average membrane voltage was between –59 mV and
–45 mV (Fig. 3B). To distinguish between sub- and suprath-
reshold oscillations, we plotted the frequency of these mem-
brane potential oscillations against their peak-to-peak ampli-
tude (Fig. 3C). Two clearly separable clusters were observed,
with all subthreshold oscillations clustered at the low-ampli-
tude range (�25 mV), while the action potentials formed a
cluster with amplitudes greater than ~60 mV. Importantly,
these observations also demonstrate that the characteristics of
membrane potential oscillations exhibited significant heteroge-
neity, thus matching the in vitro electrophysiological variabil-
ity observed in LII SCs.

Although we had spanned a large population of 50,000
independent stochastic models with nonunique parameters and
their combination, it was possible that our conclusions were
specific to the subpopulation of these stochastic samples.
Would the intrinsic heterogeneities in the population be differ-
ent if a different set of 50,000 samples were chosen in arriving
at the valid models? Would the intrinsic properties that we
obtain with valid model populations from such an independent
set be different from those obtained with the current set of
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samples? To address these questions, we generated three inde-

pendent sets, each with 50,000 model variants, and performed

the validation procedure (involving all measurements in Table

2) on each of these three populations (Fig. 4). We found that

the valid model populations obtained across the three indepen-

dent runs of the MPMOSS algorithm were not significantly

distinct, thereby confirming the absence of a strong sampling

bias in our model generation procedures. Together, the bio-

physically and physiologically constrained MPMOSS algo-

rithm yielded a population of LII SC models that manifested
considerable intrinsic heterogeneities (Figs. 3 and 4) matching

the ranges observed in corresponding in vitro electrophysio-
logical measurements (Table 2).

The Valid Model Population Manifested Cellular-Scale
Degeneracy

What were the specific constraints on the 55 different
parameters in yielding the valid model population that
concomitantly matched several in vitro electrophysiological
signatures of stellate cells? Were these parameters clustered
around specific values, thereby placing significant con-
straints on the different channels, their properties, and their

Fig. 2. A multiparametric stochastic search algorithm yielded stellate cell models with distinct types of robust sub- and suprathreshold oscillations spanning
different voltage levels. A–E (top) and F, G (left): voltage traces of model cells showing sub- and suprathreshold membrane potential oscillations (MPOs), when
injected with different levels of depolarizing currents (the value of injected current used, Iinj, for each voltage trace is provided in blue text). A–E (bottom) and
F–G (right): frequency of MPOs plotted as a function of average membrane potential, Vavg (bottom axis) and MPO amplitude, VMPO (top axis). Plots in A–G

constitute data from different model cells, and depict representative features from distinct subpopulations of models. A: robust subthreshold MPOs emerge before
the neuron switches to regular spiking activity that manifests when the subthreshold MPOs cross threshold. B: robust subthreshold MPOs emerge before the
neuron abruptly switches to firing spike doublets when the subthreshold MPOs cross threshold. C: neuron switches to robust MPOs at perithreshold voltages,
with intermittent burst spiking activity. The frequency of burst occurrence increases with increasing current injections. Such models are reminiscent of neurons
exhibiting theta skipping, where spikes occur at regular intervals but not on every theta cycle. D: model exhibits robust theta range subthreshold oscillations,
but does not directly switch to spiking behavior from MPOs with increased current injection. A range of intermittent current injections results in responses that
are bereft of any MPOs. These models eventually switch to regular firing at higher current injections. E: same as D but these models do not switch to firing action
potentials after exhibiting theta-range MPOs even at higher depolarization or current injections (until 300-pA depolarizing current). F: these models abruptly
switch from firing no action potentials to regular spiking, without any intermediate phase of exhibiting subthreshold oscillations. G: model manifests robust
subthreshold oscillations, but switches between subthreshold oscillations and regular spiking with increasing current injections. All these analyses were for
current injections ranging from 100 to 300 pA for a total duration of 5 s, of which the last 3-s period is depicted and was used for further analyses.
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expression profiles? Would individual channels have to be
maintained at specific expression levels for models to match
all 10 in vitro electrophysiological signatures? To address
these questions, we first randomly picked 5 of the 155 valid
models that exhibited similar measurements (Fig. 5, A–H),
and asked if the set of parameters governing these models
was also similar. We normalized each of the 55 parameters
from these five models with reference to their respective
min-max values, and found none of these models to follow
any specific trend in their parametric values with most
parameters spreading across the entire range that they were
allowed to span (Fig. 5I). These observations provided the
first line of evidence for the expression of degeneracy in
stellate cell models, whereby models with very similar
functional characteristics emerged from disparate paramet-
ric combinations. To confirm this across all valid models,
we assessed the distributions of each parameter for all the

155 valid models, and found their spread to span the entire
testing range for all parameters (Fig. 5I; shaded region).

Although the distributions of individual parameters span
their respective ranges, was it essential that there are strong
pairwise constraints on different parameters toward obtain-
ing valid models? To address this question and to test if
parametric combinations resulting in the heterogeneous
valid population were independent of each other, we com-
puted the pairwise Pearson’s correlation coefficient for each
pairwise combination across all 55 parameters for all the
155 valid models (Fig. 6A), and found very weak correla-
tions across different parameters (Fig. 6A). This was true for
the two other valid model populations generated for Fig. 4
(Fig. 6A), thereby confirming the absence of selection bias
in our model-generation procedures. To further assess the
possibility of parametric clustering, whereby models cluster
in the 55-dimensional parametric space, we assessed para-

Fig. 3. Heterogeneous distribution of physiologically relevant measurements in valid medial entorhinal cortex (MEC) layer II stellate cell models obtained after
a multiparametric, multiobjective stochastic search. A: bee-swarm plots depicting the distribution of 9 measurements in the 155 valid models. The red rectangle
adjacent to each plot depicts the respective median value. The electrophysiologically derived validation bounds for each of these measurements (Table 2) are
provided above each plot, depicting that these measurements are indeed within the valid range and that they manifest heterogeneity encompassing a large span
within the validity bounds. B: frequency of MPOs for the 155 valid models plotted as a function of average membrane potential of the oscillation, Vavg. C:
frequency of MPOs for the 155 valid models plotted as a function of MPO amplitude, VMPO. The two distinct clusters here demarcate sub- and suprathreshold
oscillations, with suprathreshold oscillations corresponding to regular action potential firing. For B and C, 21 data points represent each valid model, with each
data point obtained with different depolarizing current injections (e.g., Fig. 2). The clusters around 0 Hz in B and C correspond to voltage traces, obtained in
response to some values of current injection in a given valid model, that did not manifest sub-/suprathreshold oscillations but elicited transient fluctuations (e.g.,
the bottom-most voltage trace in Fig. 2A). Each model is depicted with a unique marker.
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metric distances between these valid models. To avoid the

deleterious impact of highly variable ranges of parameters

(Table 1) on distance measurements, we employed two

distance metrics that explicitly accounted for this variabil-

ity: the normalized Euclidean distance (Fig. 6B) and the

Mahalanobis distance (Fig. 6C). With either distance mea-
sure and with all three valid model populations we found
that the valid models were distal with reference to each
other in the 55-dimensional parametric space. This ensured
that there was no clustering of models in the parametric
space, and that these were heterogeneous model populations
from the perspective of parametric distances.

Together, these results demonstrated that the ability of a
heterogeneous model population to concomitantly match sev-
eral in vitro electrophysiological signatures of LII SCs was
attainable even when individual ion channels were expressed
with disparate densities and properties and when channels did
not express strong pairwise correlations. These provided strong
lines of evidence for the expression of cellular-scale degener-
acy in LII SCs, whereby disparate combinations of channels
with distinct parameters were robustly capable of eliciting
similar functional characteristics.

Virtual Knockout Models: A Many-To-Many Mapping

Between Individual Channels and Physiological

Characteristics Enabled the Expression of Degeneracy

A crucial requirement for the expression of such cellular-

scale degeneracy is the ability of several channels to regu-

late different physiological characteristics (Drion et al.

2015; Rathour et al. 2016). In the absence of such capabil-

ities, the system in essence will comprise several one-to-one

mappings between channels and physiological characteris-

tics, thereby requiring the maintenance of individual chan-

nels at specific expression levels. In asking if there was a

many-to-many mapping between channels and physiological

properties, we employed virtual knockouts of individual

channels on all 449 models (pooled from all 3 independent
sets in Fig. 4) within the heterogeneous valid model popu-
lation to assess the impact of their acute removal on phys-
iology. We employed these virtual knockout models
(VKMs) to assess the impact of individual channels on all
the 10 physiological measurements by calculating the
change observed in each measurement after setting individ-
ual conductance values to zero (Anirudhan and Narayanan

Fig. 4. Distribution of physiologically relevant measurements in valid medial entorhinal cortex (MEC) layer II stellate cell models obtained from 3 independent
sets were not significantly different. Bee-swarm plots depicting the distribution of 9 measurements in valid model populations obtained from 3 independent
MPMOSS procedures. The rectangle adjacent to each plot depicts the respective median value. Each MPMOSS procedure involved 50,000 randomized picks
of the 55 model parameters (Table 1), followed by a validation procedure involving the 10 intrinsic measurements (Table 2). The numbers of valid models
obtained from each of the three MPMOSS procedures were 155, 139, and 155. None of the 9 intrinsic measurements depicted here were significantly different
across the 3 independent sets (Kruskal-Wallis test, P 	 0.05). Pairwise statistical comparisons of these intrinsic measurements across independent sets showed
significant difference only between valid model set 1 and valid model set 3 for spike amplitude (VAP; *P � 0.028, Mann-Whitney test). All other measurements
across all pairwise comparisons yielded P 	 0.05, Mann-Whitney test.
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2015; Mukunda and Narayanan 2017; Rathour and Naray-
anan 2014).

As expected, VRMP (Fig. 7A) was largely unaffected by the
knockout of suprathreshold conductances (KDR, NaF, and
HVA) with all subthreshold channels showing differential and
heterogeneous regulation of VRMP. Specifically, consistent with
prior in vitro electrophysiological recordings (Dickson et al.
2000), HCN VKMs showed large and variable hyperpolarizing
shifts in VRMP with reference to their respective base valid
models. In addition, knockout of KM or SK channels resulted
in variable depolarizing shifts to VRMP, but VKMs of NaP, KA,
and LVA channels did not significantly alter VRMP. Although
Sag ratio was expectedly (Dickson et al. 2000) reliant on HCN
channels (Fig. 7B), there were other channels, including NaP,

LVA, SK, and KM channels, which also significantly contrib-
uted to the specific value of Sag ratio. Input resistance (Fig.
7C) was critically altered by HCN channel knockouts (Dickson
et al. 2000), with other subthreshold channels including KM
and SK also showing large impacts on Rin.

Resonance strength (Fig. 7D) and resonance frequency (Fig.
7E) were dramatically reduced in HCN knockouts (Boehlen et
al. 2013; Erchova et al. 2004), with NaP, KM, and SK channel
knockouts also showing significant changes in both measure-
ments. Of all the assessed measurements, we found the fre-
quency of perithreshold membrane potential oscillations to be
the most sensitive measurement to channel knockouts, with
most channels having a significant, yet variable, effect on fosc

(Fig. 7F). We observed the most reliable and least variable

Fig. 5. Disparate combinations of model parameters resulted in similar physiological measurements in 5 randomly chosen valid stellate cell models. A–H: voltage
traces and 10 physiologically relevant measurements for 5 randomly chosen valid models obtained after MPMOSS. A: resting membrane potential (VRMP) and
its standard deviation (SD). B: Sag ratio. C: input resistance (Rin). D: resonance frequency (fR) and resonance strength (QR). E: number of action potentials for
a step current injection of 100 pA for 500 ms (N100). F: amplitude of action potential (VAP). G: number of action potentials for a step current injection of 400
pA for 500 ms (N400). H: perithreshold membrane potential oscillation frequency (fosc). I: normalized values of each of the 55 parameters that were employed
in the generation of stellate cell models, shown for the 5 randomly chosen models depicted in A–H. Each parameter was normalized by the respective minimum
and maximum values that bound the stochastic search for that parameter (Table 1). Parameters associated with corresponding model traces in A–H are depicted
with identically color-coded markers in I. The shaded region between two black lines represents the measured min-max span for each of the 55 parameters across
all valid models (not just the 5 chosen models depicted here). It may be noted that all parameters covered almost the entire stretch of their respective bounds
(Table 1). The firing patterns observed in G are qualitatively similar to those observed in LII stellate cells (Alonso and Klink 1993; Dickson et al. 2000; Fernandez
and White 2008; Khawaja et al. 2007; van der Linden and Lopes da Silva 1998) and quantitatively match the firing rates in these neurons for a 400-pA current
injection (Table 2).
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effect on fosc with the removal of NaP, which consistently
resulted in the loss of perithreshold oscillations across all
models (Fig. 7F). This is consistent with several studies that
have demonstrated the importance of persistent sodium chan-
nels in the emergence of perithreshold MPOs in LII SCs
(Alonso and Llinás 1989; Boehlen et al. 2013; Dickson et al.
2000; Klink and Alonso 1993). Although NaP was the domi-
nant channel that acted as the amplifying conductance (Hutch-
eon and Yarom 2000) in the emergence of perithreshold
MPOs, we found heterogeneity across models in the specific
resonating conductance that enabled these MPOs. Specifically,
whereas in some models, the removal of HCN channels re-
sulted in complete loss of MPOs, in other models the same
result was achieved by the removal of KM channels. These
observations suggested that the two conductances, HCN and
KM, synergistically contributed as resonating conductances
toward the emergence of perithreshold MPOs in stellate cells
(Boehlen et al. 2013; Nolan et al. 2007). Although most of the
other channels showed regulatory capabilities in terms of
regulating perithreshold fosc, unlike NaP, HCN, and KM chan-
nels, their removal did not result in complete elimination of
MPOs in most models. The critical dependence of fosc on KDR

removal was just a reflection of high excitability of KDR
VKMs, where the cells either spontaneously fired or abruptly
switched to regular spiking with small current injections re-
sulting in the complete absence of perithreshold oscillations.

N100 was significantly higher with the deletion of KM or SK
channels, with little or no effect with deletion of other channels
(Fig. 7G). As spiking activity is critically reliant on KDR and
NaF channels, their removal significantly reduced N400 (Fig.
7H). In addition, whereas the removal of the subthreshold
regenerative conductance NaP reduced N400, knocking out the
subthreshold restorative conductances, KM, SK, and KA, re-
sulted in enhanced action potential firing that increased N400 to
variable degrees (Fig. 7H). Although the two calcium channels
mediate inward currents, their removal resulted in an increase
(rather than a decrease) in N400 because of the presence of SK
channels. Specifically, when either the HVA or the LVA
channels was removed, the inward calcium current and cyto-
solic calcium concentration were lower, thereby resulting in
lesser activation of SK channels and consequently leading to
higher excitability (Fig. 7, G and H). Finally, AP amplitude
(Fig. 7I) was expectedly reliant on the presence of NaF chan-
nels, while KDR and HCN also had a regulatory role in setting

Fig. 6. Expression of cellular-scale degeneracy in heterogeneous populations of valid stellate cell models with weak pairwise correlation among parameters. A:
heat map of the pairwise Pearson’s correlation coefficient values between 55 parameters (Table 1) for each of the 3 valid model populations (obtained with 3
independent MPMOSS procedures). Insets: respective distribution of the 1,485 unique pairwise correlation coefficient values obtained across the 55 parameters.
B and C: heat map of the pairwise distances between model parameters for each of the 3 valid model sets. The lower triangular part of the distance matrix is
depicted, with matrix size dependent on the valid model set (set 1: 155 � 155; set 2: 139 � 139; set 3: 155 � 155). Insets: respective distribution of the unique
pairwise distance values obtained across the respective valid model population. Plots in B and C, respectively, depict the pairwise normalized Euclidean and the
pairwise Mahalanobis distances between model parameters.
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the value of VAP. It should be noted that VAP is significantly
dependent on VRMP, as VRMP determines the fraction of sodium
channels that are inactivated and are thereby unavailable for
channel conduction. As the fraction of available sodium chan-
nels is higher with a hyperpolarized VRMP, VAP is higher when
VRMP is hyperpolarized. As VRMP was significantly hyperpo-
larized when HCN channels were knocked out (Fig. 7A), this
implied that VAP in HCN channel knockouts should be ex-
pected to be higher (Fig. 7I).

Together, analyses of all physiological measurements across
valid models using VKMs of each of the nine active ion channels
demonstrated the clear lack of one-to-one mappings between
channels and physiological characteristics. Although there was
dominance of certain channels in their ability to alter specific
measurements, there were several channels that were capable of
regulating each measurement and each channel regulated several
measurements. Additionally, the effect of virtually knocking out
individual channels on all measurements was differential for
different channels and measurements, and was variable for even a
given channel-measurement combination. The electrophysiologi-

cal support from LII SCs for several of our conclusions, including

the regulatory role of specific channels and the differential and

variable dependencies of measurements on channels, with refer-

ence to blockade of individual channels is strong (Alonso and

Llinás 1989; Boehlen et al. 2013; Dickson et al. 2000; Erchova et
al. 2004; Garden et al. 2008; Klink and Alonso 1993; Nolan et al.
2007; Pastoll et al. 2012). These observations together point to a
many-to-many configuration of the mapping between channel
properties and cellular-scale physiological characteristics, a criti-
cal substrate for neurons to exhibit cellular-scale degeneracy
(Figs. 3–6).

Quantitative Predictions: Spike Initiation Dynamics of
Stellate Cells Manifest Theta-Frequency Spectral Selectivity
and Gamma-Band Coincidence Detection Capabilities

As we now had a population of models that matched with
LII SC physiology, we employed these models to make spe-
cific quantitative predictions about critical physiological char-
acteristics of LII SC. Although spectral selectivity for sub-

Fig. 7. Single-channel virtual knockout models (VKMs) unveiled differential and variable dependence of measurements on individual channels. A–I: change in
different measurement values after virtual knockout of each channel from valid models obtained from the MPMOSS algorithm. Shown are percentage changes
in resting membrane potential VRMP (A), sag ratio (B), input resistance Rin (C), resonance strength QR (D), resonance frequency fR (E), and perithreshold
oscillation frequency fosc (F). Change in number of action potential elicited for 100-pA current injection (N100) is represented as a count (G) as N100 for all valid
models was constrained to be zero, whereas changes in the number of action potentials elicited for 400-pA current injection N400 (H) and in action potential
amplitude VAP (I) are depicted as percentages. Note that VKMs that spontaneously fired or entered depolarization-induced block were removed from analyses
owing to the inability to obtain subthreshold measurements. Consequently, for KDR knockouts NVKM � 103, for KM knockouts NVKM � 349, for SK knockouts
NVKM � 412 and all the other channel knockouts NVKM � 449. For A–I, *P � 0.01, **P � 0.001, Wilcoxon rank sum test, assessing if the observed percentage
changes were significantly different from a “no change” scenario.
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threshold inputs (Boehlen et al. 2013; Erchova et al. 2004;

Garden et al. 2008; Giocomo and Hasselmo 2009; 2008;

Giocomo et al. 2007; Haas and White 2002) and its relation-

ship to spike train patterns (Engel et al. 2008) have been

assessed in LII stellate cells, it is not known if such subthresh-
old frequency selectivity translates to the spike initiation dy-
namics as well (Das and Narayanan 2015; 2014; 2017; Das et
al. 2017). To assess this, we employed zero-mean Gaussian
white noise (GWN) with standard deviation adjusted such that
the overall firing rate was ~1 Hz (Fig. 8A). We computed the
spike-triggered average (STA) as the mean of all the current
stimuli (part of the GWN current, over a 300-ms period
preceding each spike) that elicited a spike response in the
model under consideration. We derived five distinct measure-
ments of excitability, spectral selectivity, and coincidence
detection from the STA (Das and Narayanan 2015; 2014; 2017;
Das et al. 2017), and repeated this for all the 449 valid models
(pooled from all 3 independent sets in Fig. 4) obtained from
MPMOSS (Fig. 4).

The STA computed from the five models shown in Fig. 5
showed characteristic class II/III excitability (Fig. 8B), marked
by the distinct presence of negative lobes in these STA (Das
and Narayanan 2015; 2014; 2017; Das et al. 2017; Ermentrout
et al. 2007; Haas et al. 2007; Haas and White 2002; Ratté et al.
2013). Employing quantitative metrics from the STA (Fig. 8, B
and C) for all the 449 valid models, we confirmed that these
neurons were endowed with class II/III characteristics. Specif-
ically, our analyses with the valid model population of LII SCs
predict that the STA of these cells show theta-frequency
spectral selectivity (Fig. 8D, fSTA) with strong selectivity
strength (Fig. 8D, QSTA). As class II/III excitability translates
to coincidence detection capabilities in these neurons (Das and
Narayanan 2015; 2014; 2017; Das et al. 2017; Ratté et al.
2013), we computed two distinct measures of coincidence
detection window (CDW) from the STA. Whereas the total
CDW (TTCDW) considers the temporal span of the spike-
proximal positive lobe of the STA, the effective CDW (TECDW)
also accounts for the specific shape of the STA in arriving at
the CDW (Das and Narayanan 2015; 2014; 2017). We com-
puted these CDW measures for all the 449 models, and quan-
titatively predict that the LII SCs are endowed with gamma-
range (25–150 Hz translating to 6.6–40 ms) coincidence de-
tection capabilities (inferred from the values of TECDW; Fig.
8D). Finally, although it is known that the impedance phase of
LII SCs manifests a low-frequency inductive lead (Erchova et
al. 2004), this inductive phase lead has not been systematically
quantified. To do this, we computed the total inductive phase
metric (
L; Fig. 8E) developed in Narayanan and Johnston
(2008) for each of the 449 valid models, and quantitatively
predict a prominent inductive phase lead in LII SCs (Fig. 8F)
with specific values for 
L.

Pairwise Correlations Among Measurements

Finally, as our analyses (Fig. 7) demonstrated a many-to-
many mapping between biophysical parameters and physiolog-
ical measurements, we asked if there were significant correla-
tions among the distinct measurements. Strong correlations
across these measurements (which are reflective of distinct
physiological characteristics) would imply that they could be
mapped to a smaller set of “core” measurements with the other

measurements relegated to redundant and correlated reflections
of these core measurements. In addition, strong correlations
across measurements would also imply that there are measure-
ments that are strongly reliant on the expression and properties
of one specific channel (especially given the lack of significant
correlations across channels conductances, Fig. 6A). To assess
correlations across measurements, we plotted the pairwise
scatterplots (Fig. 9A) spanning all 14 measurements (8 mea-
surements from Fig. 1: VRMP, Sag, Rin, QR, fR, fosc, N400, VAP;

and 6 predicted measurements from Fig. 8: ISTA
peak, TECDW,

TTCDW, fSTA, QSTA, 
L) computed on the 449 valid models
(pooled from all 3 independent sets in Fig. 4). We computed
the Pearson’s correlation coefficient for each scatterplot and
analyzed the correlation coefficients across measurements (Fig.
9, A and B). Although there were strong correlations across
some measurements, a majority of these pairwise correlations
were weak (Fig. 9B). Measurements that showed strong pair-
wise correlations were those that were known to be critically
reliant on specific ion channels. For instance, Sag ratio showed
strong negative correlation with 
L, QSTA, and QR, whereas fR
manifested strong negative correlation with Rin and TTCDW,
where all these measurements are known to have a strong
dependence on HCN channels (Fig. 7). However, even within
this subset of measurements that were strongly dependent on
one channel, we noted that only a subset of the pairwise
correlations was high. For instance, with reference to the
specific examples discussed above, fR and QR, both critically
dependent on HCN channels and both derived from the im-
pedance amplitude profile, do not show strong pairwise corre-
lation (Fig. 9A).

Among measurements that defined spectral selectivity (fSTA,
fR, QSTA, QR) and subthreshold oscillations (fosc), there were
relatively strong correlations only between fosc-fR and QSTA-QR

pairs. The relatively weak correlation between sub- (fR) and
suprathreshold (fSTA) spectral selectivity measurements is con-
sistent with similar conclusions involving hippocampal pyra-
midal neurons, where these selectivity measurements have
been shown to have differential parametric dependencies (Das
and Narayanan 2015; 2014; 2017; Das et al. 2017). In addition
to extending such dissociation between fSTA and fR to LII SCs,
our analyses revealed weak correlation between spectral selec-
tivity in the STA (fSTA) and the perithreshold oscillatory
frequency (fosc), while conforming with experimental findings
(Giocomo et al. 2007; Hutcheon and Yarom 2000) on strong
correlations between fosc and fR (Fig. 9A).

In summary, although there was a small percentage of
measurements that showed strong pairwise correlations, a ma-
jority of their pairwise correlations were weak, further empha-
sizing the absence of one-to-one relationships between chan-
nels and measurements (Fig. 7).

DISCUSSION

The prime conclusion of this study is that LII stellate cells of
the medial entorhinal cortex express cellular-scale degeneracy
in the concomitant expression of several unique physiological
characteristics of these neurons. We arrived at this conclusion
through an unbiased stochastic search algorithm that spanned
55 parameters associated with biophysically constrained mod-
els of active and passive stellate cell components. We validated
the outcomes of these stochastically generated models against
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10 different physiological characteristics of stellate cells. This
validation process provided us with a heterogeneous popula-
tion of stellate cells that exhibited cellular-scale degeneracy
with weak pairwise correlations across parameters that gov-
erned these models. We employed these models to demonstrate

the differential and variable dependencies of measurements on
underlying channels, and also showed that the mapping be-
tween channels and measurements was many-to-many. Finally,
we employed this electrophysiologically validated model pop-
ulation to make specific quantitative predictions that point to

Fig. 8. Measurements from the valid model population predict theta-frequency selectivity and gamma-range coincidence detection window in the spike-triggered
average of LII stellate cells. A: voltage response of an example valid model (top) to a zero-mean Gaussian white noise (GWN) current (bottom) of 10-s duration.
�noise � 1.83 nA. B: spike-triggered average (STA) of the 5 valid stellate cell models shown in Fig. 5. Measurements derived from the temporal domain

representation of STA were the peak STA current ISTA
peak, the total coincidence detection window (CDW) TTCDW, and the effective CDW TECDW. C: the magnitude

of the Fourier transform of STA shown in B. Measurements derived from the spectral domain representation of STA were for the STA characteristic frequency
fSTA, and the strength of selectivity QSTA. D: bee-swarm plots representing the distribution of the 5 quantitative measures of the STA for all 449 valid models
(pooled from all 3 independent sets in Fig. 4). E: impedance phase profiles, and with values of total inductive phase, 
L, defined as the area under the curve
for the leading impedance phase (shaded portion) for 5 selected models. Models in this figure are matched with those in Fig. 5. F: distribution of 
L for all 449
valid stellate cell models.
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theta-frequency spectral selectivity and gamma-range coinci-
dence detection capabilities in class II/III spike-triggered av-
erage of LII SCs.

Correlations Between Electrophysiological Signatures of
Distal Dendrites in CA1 Pyramidal Neurons and LII MEC
Stellate Cells: Instances of Cellular-Scale Efficient
Encoding?

A cursory glance at the in vitro electrophysiological prop-
erties of distal dendrites of CA1 pyramidal neurons and LII
MEC stellate cells presents significant correlations between
some physiological characteristics of these two structures.
Although superficial layers of the MEC project to the distal
dendrites of CA1 pyramidal neurons, it is LIII, and not LII,
principal neurons of the MEC that project to CA1 pyramidal
neurons (Andersen et al. 2006). Despite this, there are several
electrophysiological characteristics of LII MEC stellates that
match with the distal dendrites of CA1 pyramidal neurons.
Several of these similarities are strongly related to the heavy
expression profile of HCN channels in both these structures.
Whereas the gradient in HCN channel density in CA1 pyra-
midal neurons implies a significantly sharp increase in HCN
channels in the distal dendrites of CA1 pyramidal neurons
(Lörincz et al. 2002; Magee 1998), the heavy expression of
HCN channels in the cell body of LII MEC stellates is also well

established (Boehlen et al. 2013; Dickson et al. 2000; Erchova

et al. 2004; Garden et al. 2008; Giocomo and Hasselmo 2009;

2008; Giocomo et al. 2011a; Giocomo et al. 2007; Klink and

Alonso 1993; Nolan et al. 2007).

As a consequence of this, these two structures are endowed

with significant sag, similar input resistances, and comparable

theta-band suthreshold resonance frequencies (Erchova et al.

2004; Narayanan and Johnston 2007; Pastoll et al. 2012). In

addition to these, our study predicts that the STA of LII SCs

should be endowed with theta-frequency spectral selectivity

and gamma-band coincidence detection windows. Although it

is known that the STA of LII SCs manifest class II/III excit-

ability with coincidence detection characteristics (Haas et al.

2007; Haas and White 2002), quantification of spectral selectivity

in the STA or a systematic assessment of the specific frequency

band of coincidence detection capabilities has not been assessed.

Our study specifically predicts the coincidence detection window
(Fig. 8D; TECDW) associated with the STA of LII SCs to be in the
fast-gamma frequency (60–120 Hz) range, with a high theta-
range spectral selectivity in the STA (Fig. 8D; fSTA). Interestingly,
quantitative predictions for these measurements for the distal
dendritic region of CA1 pyramidal neurons also fall within the
same spectral bands (Das and Narayanan 2015).

This confluence of STA measurements of distal dendrites in
CA1 pyramidal neurons and of LII SC soma, especially that of

Fig. 9. Pairwise correlations across physio-
logical measurements from all valid stellate
cell models were variable. A: matrix depicts
the pairwise scatterplots (spanning all 449
valid models) between the 14 measurements
(8 physiologically relevant measurements,
namely VRMP, Sag ratio, Rin, QR, fR, fosc,
N400, VAP, in Fig. 1 and the 6 predicted

measurements, namely ISTA
peak, TECDW, TTCDW,

fSTA, QSTA, 
L, in Fig. 8). Histograms in the
bottom row depict the span of the corre-
sponding measurement with reference to
their respective min-max ranges. Individual
scatterplots are overlaid on a heat map that
depicts the pairwise correlation coefficient
computed for that scatterplot. B: distribution
of the 91 unique correlation coefficient val-
ues from scatterplots in A.
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the coincidence detection window falling within the fast gamma-
frequency band, is striking from the perspective of gamma-
band multiplexing that has been reported in the CA1 subregion
(Colgin et al. 2009; Colgin and Moser 2010; Fernández-Ruiz et
al. 2017). Specifically, gamma oscillations in the CA1 subre-
gion have been shown to manifest stratification into distinct
fast- and slow-frequency components, impinging, respectively,
on distal and proximal dendritic regions. This spatially strati-
fied frequency-division multiplexing allows for differential
coupling of CA1 pyramidal neurons to afferent inputs from the
MEC and CA3 through different gamma bands. Juxtaposed
against this, and within the efficient coding framework (Barlow
1961; Bell and Sejnowski 1997; Lewicki 2002; Simoncelli
2003; Simoncelli and Olshausen 2001) where the response
filters in a single neuron should match the natural statistics of
afferent network activity (Narayanan and Johnston 2012), it
may be argued that different dendritic locations should be
equipped with filters (STA kernels) that are matched to the
afferent inputs (different gamma frequencies) that are received
by that specific location. As a specific instance of such loca-
tion-dependent efficient encoding of afferent network statistics
in hippocampal pyramidal neurons, it has been quantitatively
postulated that the distal dendrites of CA1 pyramidal neurons
are endowed with coincidence-detection windows specific to
fast-gamma frequencies, whereas those of the proximal den-
drites matched with slow-gamma frequencies (Das and Naray-
anan 2015).

In this context and given the several lines of evidence for the
dominance of fast gamma oscillations in the superficial layers
of MEC (Colgin 2016; Colgin et al. 2009; Trimper et al. 2017),
our predictions that the CDW for stellate neurons should be in
the fast-gamma band point to a similar form of efficient
encoding schema in the MEC. Specifically, if the fast gamma
oscillations are statistically the most prevalent in the superficial
layers of MEC, it is imperative that neurons there are equipped
with the machinery that is capable of detecting and processing
afferent synchronous inputs that might be coincident within
this frequency range. For instance, if gamma-frequency cell
assemblies were to project onto these neurons (Buzsáki 2010),
the detection of coincident arrival of these inputs would be
infeasible if the neuron were a class I integrator endowed with
an integration time constant of tens of milliseconds, but would
require a class II/III coincidence detector capable of detecting
gamma-frequency coincident inputs (Das and Narayanan 2015;
2017; Das et al. 2017; Ratté et al. 2013; Softky 1994). Addi-
tionally, from the efficient coding perspective, as neurons tune
their response properties to efficiently represent the statistics of
afferent inputs (Bell and Sejnowski 1997; de Villers-Sidani et
al. 2007; deCharms et al. 1998; Hirsch and Spinelli 1970;
Kilgard and Merzenich 1998; Kilgard et al. 2001; Lewicki
2002; Sharma et al. 2000; Simoncelli 2003; Simoncelli and
Olshausen 2001; Stemmler and Koch 1999; Wiesel and Hubel
1963a,b), it is essential that the response properties of LII MEC
neurons are tuned to the fast gamma frequency range. Thus our
prediction on a fast gamma-band CDW in the STA of LII EC
cells suggests the possibility of efficient encoding spanning the
hippocampal formation, whereby the neuronal properties in
terms of their class of excitability and specific band of fre-
quency where their coincidence detection windows lie match
with the type of gamma-frequency band that is most prevalent
in that subregion (or strata in case of the CA1). A direct test of

this experimental prediction would be to measure the CDW of

pyramidal neurons in the CA3, of different dendritic subre-

gions of the CA1 and of LII MEC stellates and ask if these

CDW match with the respective gamma-band inputs that are

prevalent in these subregions. The presence of such sharp

coincidence-detection windows could also have important con-

sequences for the precision of theta-phase locking in these

neurons in terms of reducing variability of the phase of spikes

with reference to an extracellular theta oscillation, thereby

enhancing spike phase coherence in LII SCs (Sinha and Naray-

anan 2015).

Finally, encoding schema are state-dependent processes that are

critically reliant on behavioral state and consequent changes in

afferent activity, neuromodulatory tones, and activity-dependent

plasticity (Bargmann and Marder 2013; Das et al. 2017; Denève

et al. 2017; Gallistel 2017; Marder 2012; Narayanan and Johnston

2012; Ratté et al. 2013; Srikanth and Narayanan 2015). Therefore,

it is important that postulates on efficient codes and relationships

between neuronal activity and afferent statistics are assessed in a

manner that accounts for adaptability of coding within the neuron

and across the network. Such activity-dependent plasticity and

neuromodulation of intrinsic properties, especially of signature

characteristics such as the membrane potential oscillations,

could be systematically assessed in entorhinal stellates. Spe-

cifically, as activity-dependent plasticity of several ion chan-

nels is well established across different brain regions (Johnston

and Narayanan 2008; Magee and Johnston 2005; Narayanan et
al. 2010; Narayanan and Johnston 2012; 2008; 2007; Shah et
al. 2010; Sjöström et al. 2008), it would be important to ask if
membrane potential oscillations, spectral selectivity character-
istics (fR, QR, fSTA, QSTA, 
L), and coincidence-detection
windows are amenable to such activity-dependent plasticity
that target different ion channels (Fig. 7).

Implications of Cellular-Scale Degeneracy in LII Stellate
Cell Physiology

Degeneracy, the ability of disparate structural components to
elicit similar function, is a ubiquitous biological phenomenon
with strong links to robust physiology and evolution (Edelman
and Gally 2001; Leonardo 2005; Price and Friston 2002;
Whitacre and Bender 2010; Whitacre 2010). Several studies
spanning different systems have now demonstrated the expres-
sion of degeneracy, at different scales of analysis in neural
systems as well (Drion et al. 2015; Marder 2011; Marder and
Goaillard 2006; Marder and Prinz 2002; Marder and Taylor
2011; O’Leary and Marder 2014; O’Leary et al. 2014; Prinz et
al. 2004; Vogelstein et al. 2014). Within the hippocampal
formation, recent studies have demonstrated the expression of
degeneracy in single-neuron electrophysiology (Mishra and
Narayanan 2017; Rathour and Narayanan 2012; Srikanth and
Narayanan 2015), intraneuronal functional maps (Rathour et al.
2016; Rathour and Narayanan 2014), synaptic localization
required for sharp-tuning of hippocampal place fields (Basak
and Narayanan 2018), short- (Mukunda and Narayanan 2017)
and long-term (Anirudhan and Narayanan 2015) synaptic plas-
ticity profiles, and network-scale response decorrelation
(Mishra and Narayanan 2017). In this study, we have demon-
strated the expression of cellular-scale degeneracy in LII SCs,
which are endowed with unique in vitro electrophysiological
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signatures including the prominent theta-frequency subthresh-

old membrane potential oscillations.

The implications for the expression of such cellular-scale

degeneracy are several. First, the many-to-many mapping be-

tween channels and physiological characteristics (Fig. 7) and
the consequent degeneracy in concomitantly achieving all
signature electrophysiological characteristics implies that there
is no explicit necessity for maintaining individual channels at
specific levels or for maintaining paired expression between
channel combinations (Figs. 5 and 6). This provides several
significant degrees of freedom to the protein localization and
targeting machinery in achieving specific functions or in main-
taining homeostasis in these functional characteristics. Second,
this also implies that adaptability to external stimuli, in terms
of achieving efficient codes of afferent stimuli or in encoding
features of a novel stimulus structure, could be achieved
through disparate combinations of plasticity in several constit-
uent components. For instance, our results predict that the
ability to achieve fast gamma-band coincidence-detection ca-
pabilities could be achieved through distinct combinations of
channel parameters (Figs. 5, 6, and 8). Experimental analyses
of such degeneracy in achieving efficient matching of neuronal
response characteristics with the statistics of oscillatory pat-
terns, through the use of distinct pharmacological agents that
target different channels, would demonstrate the ability of
different channels to regulate such efficient encoding (Das et
al. 2017). Finally, degeneracy in the expression of excitability
properties also implies that similar long-term plasticity profiles
in these neurons could be achieved with disparate combina-
tions of parameters. Specifically, several forms of neuronal
plasticity are critically reliant on the amplitude and kinetics of
cytosolic calcium entry, which in turn are dependent on neu-
ronal excitability properties. As similar excitability profiles
could be achieved with distinct combinations of constituent
components, it stands to reason that similar plasticity profiles
could be achieved through disparate parameter combinations
(Anirudhan and Narayanan 2015; Ashhad and Narayanan
2013; Narayanan and Johnston 2010).

Limitations of the Analyses and Future Directions

A critical future direction for the study presented here is the
incorporation of biological heterogeneities into entorhinal net-
work models that assess grid cell formation. Most models for
grid cell formation are simple rate-based models that are made
of homogeneous repeating units, and even models that incor-
porate conductance-based neurons for grid cell modeling do
not account for the several biological heterogeneities that are
expressed in the entorhinal network. This lacuna is especially
striking because such analysis is critical for the elucidation of
the mechanistic bases for grid cell formation (in terms of the
channels and receptors involved) and for the quantitative un-
derstanding of the ability of the entorhinal network to elicit
robust grid cell behavior in the presence of several network
heterogeneities. For instance, are the several forms of network
heterogeneities (i.e., intrinsic, local synaptic, and afferent con-
nectivity) and interactions among them aiding or hampering
the robustness of grid cell emergence? Are the different models
for grid cell emergence robust to significant variability in
channels, synapses, and afferent connectivity? How are the
different signature electrophysiological characteristics of the

entorhinal neurons critical in the formation of grid cells? Does
class II/III excitability of LII stellate cells play a critical role in
entorhinal function and in grid cell formation?

At the cellular scale, although our study incorporates several
electrophysiologically characterized channels into the model, an
important limitation is that the analyses is not complete in terms
of all the channels that are known to be expressed in LII MEC
stellates. Specifically, future models could incorporate resurgent
sodium channels (Hargus et al. 2011), other calcium-activated
potassium channels (Khawaja et al. 2007), and the character-
istic calcium-sensitive cation-nonspecific current (Magistretti
et al. 2004; Shalinsky et al. 2002). We postulate that the
incorporation of these channels would augment the cellular-
scale degeneracy that is reported in this present study.

A further limitation in our analysis is that the ion channel
models incorporated into our neuronal models match only the
ensemble dynamics of their biological counterparts. Models
involving ensemble dynamics of ion channel physiology have
been very helpful in assessing and understanding neuronal
physiology (including oscillatory behavior) and cellular-scale
degeneracy (Anirudhan and Narayanan 2015; Foster et al.
1993; Goaillard et al. 2009; Goldman et al. 2001; Golowasch
et al. 2002; Hodgkin and Huxley 1952; Marder and Goaillard
2006; Marder and Taylor 2011; Mishra and Narayanan 2017;
Mukunda and Narayanan 2017; Prinz et al. 2004; Rathour and
Narayanan 2014; 2012; Srikanth and Narayanan 2015; Taylor
et al. 2009), and we have demonstrated here that models with
robust signature in vitro electrophysiological characteristics
(especially robust mixed-mode membrane potential oscilla-
tions spanning different voltage depolarizations) are attainable
with these deterministic model formulations.

However, if the impact of stochastic channel gating and
associated channel noise were to be assessed with reference to
the emergence of physiological characteristics, including that
of perithreshold oscillations, it is of utmost importance to
construct neuronal models that account for stochastic pertur-
bations (Dorval and White 2005; Dudman and Nolan 2009;
Rotstein et al. 2006; White et al. 1998). Future models could
assess cellular-scale degeneracy in neuronal models endowed
with stochastic channels, especially addressing questions about
the emergence of perithreshold oscillations and the role of
stochastic fluctuations within such a framework of degeneracy.
Specifically, whereas noise is not considered as an essential
component in the emergence of the bifurcations that result in
mixed-mode oscillations (Fransén et al. 2004; Rotstein 2017;
Rotstein et al. 2006; Rotstein et al. 2008), the presence of
channel noise or synaptic noise could enhance the robustness
of the perithreshold oscillations or make the oscillations to be
noisy sinusoids (Fransén et al. 2004; Rotstein et al. 2006;
White et al. 1998), outcomes that are consistent with the
stochastic bifurcation structures (Bashkirtseva and Ryashko
2011; Berglund and Landon 2012; Gong and Xu 2001; Hase-
gawa 2004; Kanamaru et al. 2001; Kember et al. 2001; Krupa
and Touboul 2016; Lindner and Schimansky-Geier 1999;
Scholl et al. 2005; Tanabe and Pakdaman 2001; Tuckwell
2008; Tuckwell and Rodriguez 1998; Tuckwell et al. 2003).

A potential direction for the future would be to assess the
impact of ion channel degeneracy on introduction of channel
noise (introduced either as stochastic perturbations to channel
kinetics or with stochastic channel models that precisely model
the gating kinetics of each channel) or synaptic noise (intro-
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duced as high-conductance states or as additive noise with a
specific color) into entorhinal stellate models showing mixed-
mode oscillations. Although the introduction of stochastic
perturbations are expected to render perithreshold oscillations
to be noisy sinusoids, the specific impact of channel degener-
acy on stochastic bifurcations that are resultant from paramet-
ric (of specific channels with different kinetics) and external
(synaptic, through high-conductance states for instance) per-
turbation could shed light on gradients and heterogeneities of
stellate physiology. Additionally, introduction of high-conduc-
tance states into in vitro models will allow for the replication
of electrophysiological properties observed in vivo, especially
in terms of reduced excitability and alterations to perithreshold
oscillatory behavior that emerge as consequences of interac-
tions of high-conductance states with individual channels
(Destexhe et al. 2003; Mishra and Narayanan 2015; Schmidt-
Hieber and Häusser 2013).

Future studies could build heterogeneous models to account
for the signature continuum of intrinsic physiological charac-
teristics along the dorsoventral axis of the MEC, also account-
ing for specific differences in morphology and channel expres-
sion that are known to change along this axis (Garden et al.
2008; Giocomo and Hasselmo 2009; 2008; Giocomo et al.
2007; Yoshida et al. 2011). Such studies will provide quanti-
tative bases for exploring the expression of degeneracy in
maintaining the dorsoventral gradients, and could be incorpo-
rated into network models for grid formation in assessing the
relationship between grid-cell characteristic and neuronal in-
trinsic properties.

The heterogeneous model population built in this study
comprises a simple single-compartmental structure that did not
account for dendritic arborization or morphological heteroge-
neity of LII SCs. Incorporation of these into neuronal models
is important owing to the critical roles that dendritic morphol-
ogy and active dendritic conductances therein have been shown
to play across several neuronal subtypes, including LII SCs
(Cannon et al. 2010; Dhupia et al. 2015; Garden et al. 2008;
Jiang et al. 2008; Mainen and Sejnowski 1996; Narayanan and
Chattarji 2010; Narayanan and Johnston 2012; Pastoll et al.
2012; Schaefer et al. 2003; Schmidt-Hieber et al. 2017;
Sjöström et al. 2008; Stuart and Spruston 2015; Vetter et al.
2001). Electrophysiologically, the absence of systematic cell-
attached recordings of specific channels and their properties in
the stellate cells has been a significant impediment in building
morphologically realistic models. While future experimental
studies could focus on recording channels and channel prop-
erties along the nonplanar dendritic arbor of stellate cells,
future computational studies could incorporate these channels
into morphologically realistic models to assess the specific
roles of dendritic channels and morphological heterogeneity in
grid cell formation (Schmidt-Hieber et al. 2017).

Our study provides specific quantitative predictions about
the STA of LII SCs and also presents an array of cross-
dependencies of measurements on different channel types.
Future electrophysiological studies could systematically test
these predictions, and assess efficient encoding in these struc-
tures apart from adding further evidence for the many-to-many
mapping between channels and physiological characteristics.
For instance, an important prediction from VKMs is on the
critical role of SK channels in regulating several intrinsic
measurements including membrane potential oscillations (Fig.

7). Although the expression of calcium-dependent potassium
channels is established in stellate cells (Khawaja et al. 2007;
Pastoll et al. 2012), the specific role of these channels in
regulating resonance, impedance phase, intrinsic excitability,
and membrane potential oscillations could be tested electro-
physiologically using pharmacological blockers of SK chan-
nels.
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