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DEGENERATE CAHN-HILLIARD EQUATION: FROM NONLOCAL TO LOCAL

CHARLES ELBAR AND JAKUB SKRZECZKOWSKI

Abstract. There has been recently an important interest in deriving rigorously the Cahn-Hilliard

equation from the nonlocal equation, also called aggregation equation. So far, only non-degenerate

mobilities were treated. Since we are motivated by models for the biomechanics of living tissues, it

is useful to include degenerate motilities. In this framework, we present a new method to show the

convergence of the nonlocal to the local degenerate Cahn-Hilliard equation. The method includes

the use of nonlocal Poincaré and compactness inequalities.

Conflict of interest statement: The authors have no conflicts of interest to declare that are

relevant to the content of this article.

Data availability statement: Data availability is not applicable to this article as no new data

were created or analyzed in this study.

1. Introduction

Several recent papers [8–10,28] have addressed the problem of deriving rigorously the Cahn-Hilliard

equation from the nonlocal equation, also called aggregation equation [5]. In these works, only the

case of non-degenerate mobilities is treated, which avoids the delicate question of defining the limit

of low-order products that one encounters for nonlocal degenerate mobility that we present now.

The degenerate model is written

∂tu = div(u∇µ), in (0,+∞)× T
d,

µ = B[u] + F ′(u), in (0,+∞)× T
d,
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equipped with an initial datum u0 ≥ 0. Here, T
d is the d-dimensional flat torus, B is the nonlocal

operator B = Bε defined with

Bε[u](x) =
1

ε2
(u(x)− ωε ∗ u(x)) =

1

ε2

∫

Td

ωε(y)(u(x)− u(x− y)) dy (1.1)

for ε small enough and ωε is the usual radial mollification kernel ωε(x) =
1
εd
ω(xε ) with ω compactly

supported in the unit ball of R
d satisfying

∫

Rd

ω(y) dy = 1,

∫

Rd

y ω(y) dy = 0,

∫

Rd

yiyjω dy = δi,j
2D

d
,

∫

Rd

ω(y)|y|3 dy < ∞, (1.2)

for some constant D > 0. Our target is to prove that as ε → 0, the constructed solutions of

∂tu = div(u∇µ), in (0,+∞)× T
d, (1.3)

µ = Bε[u] + F ′(u), in (0,+∞)× T
d, (1.4)

tend to the weak solution of the degenerate Cahn-Hilliard equation

∂tu = div(u∇µ), in (0,+∞)× T
d, (1.5)

µ = −D∆u+ F ′(u), in (0,+∞)× T
d. (1.6)

The product u∇µ in the limiting system is not a priori well defined since we cannot control third-

order derivatives. Passing to the limit is thus the challenge we overcome here.

Our motivation for this work is fourfold.

• Firstly, the interest for the nonlocal Cahn-Hilliard equation is an old problem that can be

traced back to Giacomin and Lebowitz [21,22]. These seminal works establish the derivation

of the degenerate nonlocal Cahn-Hilliard equation departing from stochastic systems of

particles. However, they left open the question of deriving the local degenerate Cahn-Hilliard

equation from the nonlocal one. This is the challenge we overcome here.

• Secondly, a revival of interest for this problem appeared in the last years with several

papers [8–10, 28] deriving the local from the nonlocal Cahn-Hilliard equation in the non-

degenerate case.

• Third, the nonlocal Cahn-Hilliard equation can be seen as a porous medium equation with

a smooth advection term that is well understood, conversely to the local degenerate Cahn-

Hilliard equation.

• Finally, the nonlocal Cahn-Hilliard equation (1.3)–(1.4) is in fact an aggregation-diffusion

equation with a nonlocal term corresponding to the aggregation effect [5]. Thus, in this
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paper, we show that if the nonlocal effect is appropriately scaled, one approaches Cahn-

Hilliard equation. This limit was formally stated for instance in [2, 12, 17] and our work

provides a rigorous mathematical argument for this approximation.

1.1. Main result. We make the following assumptions on the potential F .

Assumption 1.1 (potential F ). For the interaction potential we assume that there exists k ≥ 2

and a decomposition F = F1 + F2 such that

(A) F1, F2 are of class C2,

(B) F1 = 0 or F1 is a convex function which has k-growth in the sense that for some nonnegative

constants C1, ..., C8 we have

C1|u|k − C2 ≤ F1(u) ≤ C3|u|k + C4.

C5|u|(k−2) − C6 ≤ F ′′
1 (u) ≤ C7|u|(k−2) + C8,

(C) F2 has bounded second derivative i.e. ‖F ′′
2 ‖∞ < ∞ and F2(u) ≥ −C9 −C10 u

2 where C10 is

sufficiently small: more precisely 4C10 < Cp with Cp being the constant in Lemma C.1.

Example 1.2. The following potentials satisfy Assumption 1.1.

(1) power-type potential F (u) = |u|γ , γ > 2 used in the context of tumour growth models

[7, 13, 15, 31],

(2) double-well potential F (u) = u2 (u − 1)2 which is an approximation of logarithmic double-

well potential often used in Cahn-Hilliard equation, see [30, Chapter 1],

(3) any F ∈ C2 such that for some interval I ⊂ R we have F ′′(u) > a > 0 for u ∈ R \ I and

C |u|k − C ≤ F (u) ≤ C |u|k + C for all u ∈ R \ I,

C |u|k−2 − C ≤ F ′′(u) ≤ C |u|k−2 + C for all u ∈ R \ I,

see Lemma A.3 for details.

Note that (3) is a more general version of (2).

Notation 1.3 (exponents s and k). In what follows we write

k =




2 if F1 = 0,

k if F1 6= 0.

We also define s = 2k
k−1 and s′ its conjugate exponent.
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Now, we define weak solutions of the nonlocal and local degenerate Cahn-Hilliard equation.

Definition 1.4. We say that uε is a weak solution of (1.3)-(1.4) if

uε ∈ L∞(0, T ;Lk(Td)), ∂tuε ∈ L2(0, T ;W−1,s′(Td))

∇uε ∈ L2((0, T )× T
d),

√
F ′′
1 (uε)∇uε ∈ L2((0, T )× T

d),

u(0, x) = u0(x) a.e. in T
d and for all ϕ ∈ L2(0, T ;W 1,∞(Td))

∫ T

0

〈∂tuε, ϕ〉(W−1,s′ (Td),W 1,s(Td)) = −
∫ T

0

∫

Td

uε∇Bε[uε] · ∇ϕ−
∫ T

0

∫

Td

uεF
′′(uε)∇uε · ∇ϕ. (1.7)

Definition 1.5. We say that u is a weak solution of (1.5)-(1.6) if

u ∈ L∞(0, T ;Lk(Td)) ∩ L2(0, T ;H2(Td)), ∂tu ∈ L2(0, T ;W−1,s′(Td)),
√
F ′′
1 (u)∇u ∈ L2((0, T )× T

d),

u(0, x) = u0(x) a.e. in T
d and if for all ϕ ∈ L2(0, T ;W 2,∞(Td)) we have

∫ T

0

〈∂tu, ϕ〉(W−1,s′ (Td),W 1,s(Td)) = −D

∫ T

0

∫

Td

∆u∇u · ∇ϕ−D

∫ T

0

∫

Td

u∆u∆ϕ

−
∫ T

0

∫

Td

uF ′′(u)∇u · ∇ϕ.

Remark 1.6 (initial condition). In Definitions 1.4 and 1.5 we can evaluate pointwise value u(0, x)

because by [34, Lemma 7.1], we know that u ∈ C(0, T ;W−1,s′(Td)).

With these assumptions we can construct solutions to (1.3)-(1.4).

Theorem 1.7 (Existence of solutions for the nonlocal system). Let ε0 be given by

ε0 := min

(
εA0 , ε

B
0 ,

1√
2 ‖F ′′

2 ‖∞

)
(1.8)

where εA0 and εB0 are given in Lemma C.1 and C.3 respectively. Let ε < ε0. Let u0 ≥ 0 be an initial

datum with finite energy and entropy Eε(u
0),Φ(u0) < ∞ defined in (1.9)-(1.10). There exists a global

weak solution uε of (1.3)-(1.4) in the sense defined by Definition 1.4. It satisfies the dissipation of

energy and entropy (1.11)-(1.12) with u = uε, µ = µε. Moreover, uε ≥ 0.

Our main result reads as follows.
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Theorem 1.8 (Convergence of nonlocal to local Cahn-Hilliard equation on the torus). Let u0 ≥ 0

be an initial datum with finite energy and entropy E(u0),Φ(u0) < ∞ defined in (1.13) and (1.10).

Let {uε} be a sequence of solutions of the degenerate nonlocal Cahn-Hilliard equation (1.3)-(1.4)

from Theorem 1.7. Then, up to a subsequence,

uε → u in L2(0, T ;H1(Td))

where u is a weak solution of the degenerate Cahn-Hilliard equation (1.5)-(1.6) as in Definition 1.5.

Remark 1.9. Note that by Lemma C.2 condition E(u0) < ∞ implies that Eε(u
0) < ∞.

1.2. Important components of the proof. There are three main ingredients of the proof.

• Compactness for the system 1.3–1.4 is obtained from the energy Eε and entropy Φ

Eε[u] :=

∫

Td

F (u) dx+
1

4ε2

∫

Td

∫

Td

ωε(y)|u(x)− u(x− y)|2 dxdy, (1.9)

Φ[u] :=

∫

Td

u(log(u)− 1) + 1 dx (1.10)

Their dissipation is formally controlled by the identities

Eε[u](t) +

∫ t

0

∫

Td

u |∇µε|2 ≤ Eε[u
0], (1.11)

Φ[u](t) +
1

2ε2

∫ t

0

∫

Td

∫

Td

ωε(y) |∇u(x)−∇u(x− y)|2 +
∫

Td

F ′′(u)|∇u|2 ≤ Φ[u0]. (1.12)

According to the result of Bourgain-Brézis-Mironescu [3] which was improved later by

Ponce [32], uniform bounds from (1.11), (1.12) together with Lions-Aubin lemma, yields

strong convergence of {uε} and {∇uε} to u,∇u in L2((0, T )×T
d). We note that in the limit

ε → 0, the energy Eε[uε] satisfy (see [3, Theorem 4] and [32, Theorem 1.2])

E[u] =

∫

Td

F (u) dx+
C(d)

2

∫

Td

|∇u(x)|2 dx ≤ lim inf
ε→0

Eε[uε] (1.13)

for some constant C(d) depending only on the dimension d. Similarly, for the nonlocal term

in the dissipation of the entropy we have

C(d)

d∑

i,j=1

∫ t

0

∫

Td

|∂xi∂xju|2 ≤ lim inf
ε→0

1

2ε2

∫ t

0

∫

Td

∫

Td

ωε(y) |∇uε(x) −∇uε(x− y)|2

so in the limit ε → 0 we gain one more derivative. We also point out that one can prove

rigorously that (1.5)–(1.6) is a gradient flow of (1.13) [26,27].
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• In passing to the limit, we exploit the appropriate definition of weak solutions to (1.5)–(1.6).

Indeed, first we prove convergence to the formulation
∫ T

0

〈∂tu, ϕ〉(W−1,s′ (Td),W 1,s(Td)) = D

∫ T

0

∫

Td

(∇u⊗∇u) : D2ϕ+

+
D

2

∫ T

0

∫

Td

|∇u|2∆ϕ+D

∫ T

0

∫

Td

u∇u · ∇∆ϕ−
∫ T

0

∫

Td

uF ′′(u)∇u · ∇ϕ.

Formally, it is obtained by integrating by parts twice using the formula

∇u∆u = div(∇u⊗∇u)− 1

2
∇|∇u|2. (1.14)

Its main advantage is that it exploits at most first-order derivatives so that we do not need

any estimates on the second-order derivatives. This is important as they are not available for

nonlocal degenerate Cahn-Hilliard. More precisely, the main difficulty is non-degeneracy of

(1.3)–(1.4), that is we loose estimates on ∇µε whenever uε is approaching the zone {uε = 0}.
For the non-degenerate equation studied in [8–10,28],

∂tuε = div∇µε, in (0,+∞)× T
d, (1.15)

µε = Bε[uε] + F ′(uε), in (0,+∞)× T
d, (1.16)

one obtains immediately an estimate on ∇µε (by multiplying by µε) and then one can

identify its limit. Nevertheless, we point out that in [8–10, 28] the difficulty is rather the

regularity of the potential and the kernel which we do not address in our work, assuming

that F and ω are sufficiently smooth.

• For the nonlocal Laplacian operator given by Bε defined in (1.1), we find an operator Sε given

in (3.4) which resembles gradient operator. It satisfies the integration by parts formula (S3)

in Lemma 3.4 as well as the product rule (S2) in Lemma 3.4 with an error that vanishes

when ε → 0. This is necessary to perform usual calculus operations before sending ε → 0,

that is when we do not have Laplace operator in the equation.

1.3. Literature review and relevancy of the system.

The Cahn Hilliard equation. The equation represents a mathematical model which is widely used

to describe phase transitions in fluids and living tissues. In biology, the equation can model the

morphological evolution of a growing solid tumor. There are many factors that come into play when

approaching a tumor growth model, e.g. cell-cell and cell-matrix adhesion, as well as cell motility

and mechanical stress. Nevertheless, the mathematical study and implementation of a model may

provide very interesting information on tumor progression. Let us consider a bounded, open tissue
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domain, in which a tumor is evolving. One possible approach is to describe the tumoral and healthy

tissues with volume fractions. By remarking that internal adhesive forces tend to bind the tumor

cells together, we should take into account that phase separation may occur between healthy and

tumoral tissue domains. As a result a boundary layer of finite thickness
√
D, where D is defined

below, may form between them.

Being of fourth-order, the (local) Cahn-Hilliard equation is often rewritten in a system of two second-

order equations, i.e.

∂tu = div (m(u)∇ (F ′(u)−D∆u)) →




∂tu = div (m(u)∇µ) ,

µ = −D∆u+ F ′(u),

(1.17)

where u is the concentration of a phase and µ is called the chemical potential in material sciences but

is often used as an effective pressure for living tissues [11, 15]. Also, the interaction potential F (u)

contained in this effective pressure term comprises the effects of attraction and repulsion between

cells. The physically relevant form of this potential is a double-well logarithmic potential and is

often approximated by a smooth polynomial function. However, recent studies show that for the

modeling of living tissues and for the particular application where only one of the components of

the mixture experiences attractive and repulsive forces, a single-well logarithmic potential is more

relevant [4].

The existence and uniqueness of solutions for the Cahn-Hilliard system (1.17) strictly depends on

the properties of the mobility term m(u) and the potential F (u), as well as the conditions assigned

on the boundary. More specifically, the presence of degeneration on the mobility, i.e. the possibility

for it to vanish, can turn the analysis of solutions into a rather complex problem.

From nonlocal to local Cahn-Hilliard. The nonlocal Cahn-Hilliard equation was first obtained by

Giacomin and Lebowitz [21, 22] by starting from a microscopic description. The model is a d-

dimensional lattice gas evolving via Kawasaki exchange dynamics, which is a Poisson nearest neigh-

bor exchange process. In the hydrodynamic limit, they find that the empirical average of the

occupation numbers over a small macroscopic volume element tends to a solution of a nonlocal

Cahn-Hilliard equation. This latter equation is an approximation of the local Cahn-Hilliard equa-

tion, as shown in Theorem 1.8. Let us also remark that there are possibly different variants of

non-local Cahn-Hilliard equation, see for instance [14] where a version of nonlocal Cahn-Hilliard

equation is derived starting from a kinetic description inspired by [37].



8 CHARLES ELBAR AND JAKUB SKRZECZKOWSKI

The literature concerning the nonlocal Cahn-Hilliard equation is quite well developed and we refer

for instance to [1, 6, 19, 20, 23, 33] and [18] for the cases of non-degenerate and degenerate mobilities

respectively. On the other hand, for the passage to the limit of the nonlocal Cahn-Hilliard equation

to the local Cahn-Hilliard equation, the existing results [8–10,28,29] cover only the case of constant

mobility. In [28] the authors prove the convergence on the torus. In [8] a wide class of potentials

is considered and the study is made on the torus. In [10] the convergence is obtained in the case

of a bounded domain with Neumann boundary conditions and a viscosity term. Finally, in [9], the

limit is achieved with a W 1,1 kernel and a wide class of singular potentials, with Neumann boundary

conditions.

1.4. Open problem concerning bounded domains. One can ask if the same results hold when

T
d is replaced with some general bounded domain Ω. More precisely, we focus on the system

∂tuε = div(uε∇µε), in (0,+∞)× Ω, (1.18)

µε = Bε[uε] + F ′(uε), in (0,+∞)× Ω. (1.19)

Defining ~n the outward normal vector to ∂Ω we impose the Neumann boundary condition

uε
∂µε

∂~n
= 0 on ∂Ω. (1.20)

The operator Bε satisfies

Bε[uε](x) =
1

ε2

(∫

Ω

ωε(x− y) dy uε(x) − ωε ∗ uε(x)

)
=

1

ε2

∫

Ω

ωε(x− y)(uε(x) − uε(y)) dy. (1.21)

Notice that in the case Ω = T
d, this definition is the same than (1.1) up to a change of variable in the

integral. However, since uε is not a priori defined outside Ω we need to put the argument (x−y) on ωε.

In the limit, we expect to obtain solutions to

∂tu = div(u∇µ), in (0,+∞)× Ω, (1.22)

µ = −D∆u+ F ′(u), in (0,+∞)× Ω (1.23)

∂u

∂~n
= u

∂µ

∂~n
= 0, on ∂Ω. (1.24)

However, there are two difficult problems related to the equation posed on a bounded domain.

• Lack of the entropy estimate. In the case of bounded domain, we cannot use entropy

estimate as in (1.12). This is because the nonlocal operator is defined as (1.21) rather than
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(1.1). As a consequence, we cannot symmetrize the expression with gradients and obtain

the term 1
2ε2

∫ t

0

∫
Td

∫
Td ωε(y) |∇u(x)−∇u(x− y)|2 in the dissipation of the entropy.

• Recovery of the Neumann boundary conditions. The question is whether we can

prove that in the limit ∂u
∂~n = 0 on ∂Ω. This is possible for the equation with constant

mobility. More precisely, in [9], Authors were discussing the problem of nonlocal to local

convergence for the Cahn-Hilliard equation with constant mobility. The constant mobility

allows to obtain uniform bound on ‖Bε(uε)‖2 which allows to conclude that ∂u
∂~n = 0 on ∂Ω.

This is an extremely interesting phenomenon as this new boundary condition appears only

in the limit. In our case, the estimate ‖Bε(uε)‖2 seems unavailable.

A possible approach to overcome this problem is to apply Serfaty-Sandier approach on the conver-

gence of gradient flows [35, 36].

2. Existence of weak solutions to the nonlocal problem

The existence of weak solutions for the local Cahn-Hilliard equation with degenerate mobility usually

follows the method from [16]. The idea is to apply a Galerkin scheme with a non-degenerate reg-

ularized mobility, i.e. , calling m(n) the mobility, then one considers an approximation mε(n) ≥ ε.

Finally, using standard compactness methods one can prove the existence of weak solutions for the

initial system. The uniqueness of the weak solutions is still an open question.

In the case of the nonlocal Cahn-Hilliard equation, we have to rely on a fixed point method. We first

consider a nondegenerate mobility, and the fixed point argument is put on the nonlocality. Then,

we pass to the limit to obtain the nonlocal Cahn-Hilliard equation with degenerate mobility.

2.1. Approximating solutions. Following the scheme above, we first consider a nondegenerate

mobility and prove the existence of the following system

∂tuδ = div(Tδ(uδ)∇µδ) (0,+∞)× T
d, (2.1)

µδ = Bε[uδ] + F ′(uδ) (0,+∞)× T
d, (2.2)
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where δ > 0 is a small parameter such that 2δ < 1
δ − 1, δ < 1

4 and

Tδ(u) =





δ for u ≤ δ,

smooth monotone interpolation for u ∈ [δ, 2δ],

u for u ∈ [2δ, 1δ − 1],

smooth monotone interpolation for u ∈ [ 1δ − 1, 1δ ],

1
δ for u ≥ 1

δ .

(2.3)

The estimates for the sequence {uδ} will be obtained from the dissipation of energy and entropy.

The definition of energy Eε remains the same as in (1.11). However, the definition of entropy has

to be adapted to take into account the fact that we don’t know if the solution remains nonnegative.

To this end, we define a function φδ by an explicit formula

φδ(x) =

∫ x

1

∫ y

1

1

Tδ(z)
dz dy. (2.4)

Lemma 2.1. Let φδ be defined with (2.4) and φ(x) = x(log(x) − 1) + 1. Then,

(P1) φ′′
δ (x) =

1
Tδ(x)

and φδ(1) = φ′
δ(1) = 0,

(P2) φδ(x) → φ(x) for x ≥ 0 as δ → 0,

(P3) φδ(x) ≥ 0 for all x ∈ R,

(P4) φδ(x) ≤ φ(x) + δ
2(δ−1)x

2 + 3 for x ≥ 0,

(P5) φδ(x) → ∞ when δ → 0 for all x < 0.

The proof is presented in Appendix A.4.

Theorem 2.2. Let δ > 0, ε0 be as in (1.8) and F ∈ C4. For ε < ε0 there exists classical solution

(2.1)–(2.2). Moreover, they satisfy the mass, energy, and entropy conservation: for all t > 0

∫

Td

uδ(t, ·) dx =

∫

Td

u0 dx, (2.5)

Eε[uδ](t) +

∫ t

0

∫

Td

Tδ(uδ) |∇µδ|2 = Eε[u
0], (2.6)

Φδ[uδ](t) +
1

2ε2

∫ t

0

∫

Td

∫

Td

ωε(y) |∇uδ(x)−∇uδ(x− y)|2 +
∫ t

0

∫

Td

F ′′(uδ)|∇uδ|2 = Φδ[u
0]. (2.7)

Theorem 2.3. Let ε0 be as in (1.8). Let F satisfy Assumption 1.1 with an additional constraint

2C10 < Cp. Then, the following sequences are bounded uniformly in δ ∈ (0, 1) and ε ∈ (0, ε0)

(A1) {uδ}δ in L∞(0, T ;Lk(Td)),
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(A2) {uδ}δ in Lk(0, T ;Lk d
d−2 (Td)),

(A3) {
√
Tδ(u)∇µδ}δ in L2((0, T )× T

d),

(A4) {∇uδ}δ in L2((0, T )× T
d),

(A5) {∂tuδ}δ in L2(0, T ;W−1,s′(Td)),

(A6) {∂t∇uδ}δ in L2(0, T ;W−2,s′(Td)),

(A7) {
√
F ′′
1 (uδ)∇uδ}δ in L2((0, T )× T

d),

(A8) Φδ[uδ] in L∞(0, T ),

where k and s have been defined in Notation 1.3.

To prove Theorem 2.2, we need to assume that F ∈ C4 which allows us to use known results about

classical solutions to uniformly parabolic equations.

Proof of Theorem 2.2. As δ > 0 is fixed in this result, we write u instead of uδ. Given w we consider

an auxiliary equation

∂tu = div

(
Tδ(u)∇u

(
1

ε2
+ F ′′(u)

))
− div

(
Tδ(u)

w ∗ ∇ωε

ε2

)
. (2.8)

Let α, σ,M, κ be parameters to be specified later. We want to apply Schauder fixed point theorem

to the map

P : X → X

P : w 7→ u solution of (2.8),

where X is defined as the set

X = {w ∈ Cα,α/2([0, T ]× T
d), ‖w‖∞,σ ≤ M}

with the norm

‖w‖X := ‖w‖∞,σ + κ‖w‖α,α/2

and the norm ‖·‖α,α/2 is the usual Hölder seminorm in space-time. We also define

‖w‖∞,σ := sup
[0,T ]×Td

|u(t, x)|e−σt. (2.9)

Note that the new norm is equivalent to the usual supremum norm so all topological properties do not

change. We need to prove that P is continuous, P maps in fact X to X , and that P (X) is relatively

compact in X . First, we prove that P (w) = u is the unique classical solution of equation (2.8) so

that P is well defined and find Hölder estimates which will be useful to prove the continuity of the

operator as well as its relative compactness.
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Step 1: P is well defined and Hölder estimates . Equation (2.8) is equivalent to saying that u solves

parabolic equation

∂tu = divA(t, x, u,∇u) +B(t, x, u,∇u), (u)Td = (u0)Td

with

A(t, x, z, p) = Tδ(z) p

(
1

ε2
+ F ′′(z)

)
, B(t, x, z, p) = −T ′

δ(z) p ·
w ∗ ∇ωε

ε2
− Tδ(z)

w ∗∆ωε

ε2
,

and we recall that w ∈ X is Hölder continuous. The function A satisfies the strong parabolicity

condition for sufficiently small ε > 0, i.e.

A(t, x, z, p) · p ≥ δ p2
1

2 ε20

for all ε < ε0 (this uses Assumptions (B), (C) and (1.8)). Since the derivatives Ap, Az, At, Ax and

function B are Hölder continuous as functions of (t, x, z, p), [25, Theorems 12.10, 12.14] asserts that

there exists a unique classical solution to (2.8) such that

‖u‖C1+α,1+α/2 ≤ C(δ, ε0, ‖w‖Cα,α/2).

With this estimate, (2.8) can be considered as a linear equation so that the linear theory for parabolic

equations [25, Theorem 5.14] implies

‖u‖C2+α,1+α/2 ≤ C(δ, ε0, ‖w‖Cα,α/2). (2.10)

Therefore u is a classical solution of (2.8) and it admits the Hölder bound (2.10).

Step 2: The operator P is continuous.. We consider a sequence {wn}n in X such that ‖wn−w‖X →
0. Then un = P (wn) is compact in C2,1 from estimate (2.10) and Arzela-Ascoli. We choose

subsequence such that unk
→ u in C2,1. These functions satisfy

∂tunk
= div

(
Tδ(unk

)∇unk

(
1

ε2
+ F ′′(unk

)

))
− div

(
Tδ(unk

)
wnk

∗ ∇ωε

ε2

)
. (2.11)

Passing to the limit in (2.11) and using uniqueness of solutions to (2.8) from [25], we obtain that

for every subsequence of {un}n we can extract a subsequence which converges to a unique limit

u = P (w). By a standard subsequence argument, this means that the whole sequence {un}n
converges to u = P (w). Therefore P is continuous.
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Step 3: P maps X to X. We write the equation (2.8) in the form

∂tu = T ′
δ(u)|∇u|2

(
1

ε2
+ F ′′(u)

)
+ Tδ(u)∆u

(
1

ε2
+ F ′′(u)

)
+ Tδ(u)|∇u|2F (3)(u)

− T ′
δ(u)∇u · w ∗ ∇ωε

ε2
− Tδ(u)

w ∗∆ωε

ε2
.

We substitute u = v eσt and we compute PDE satisfied by v:

∂tv e
σt + v σ eσt = T ′

δ(u)|∇v|2
(

1

ε2
+ F ′′(u)

)
e2σt + Tδ(u)∆v

(
1

ε2
+ F ′′(u)

)
eσt

+ Tδ(u)|∇v|2F (3)(u)e2σt − T ′
δ(u)∇v · w ∗ ∇ωε

ε2
eσt − Tδ(u)

w ∗∆ωε

ε2
.

Now, we multiply by v and evaluate the equation at the point (t∗, x∗) where v2 attains its maximum.

Therefore, all the terms with ∇v and |∇v|2 vanish (as |∇v|2v = ∇v · ∇v2/2).

1

2
∂tv

2eσt∗ + v2σeσt∗ = Tδ(u) v∆v

(
1

ε2
+ F ′′(u)

)
eσt∗ − v Tδ(u)

w ∗∆ωε

ε2
.

Using v∆v = −|∇v|2 +∆v2 ≤ 0 and ∂tv
2 ≥ 0 we obtain

v2 σ eσt∗ ≤ −v Tδ(u)
w ∗∆ωε

ε2
,

so that

v2(t∗, x∗)σ eσt∗ ≤ |v(t∗, x∗)|
‖∆ωε‖1‖w(t∗, ·)‖∞

δε2
.

where we used the definition of Tδ. As v2 attains maximum at (t∗, x∗), |v(t∗, x∗)| also attains

maximum at (t∗, x∗). Therefore, taking into account the initial condition

‖v‖∞ ≤ max

(‖∆ωε‖1‖w(t∗, ·)‖∞
δε2σ

e−σt∗ , ‖u0‖∞
)

≤ max

(‖∆ωε‖1‖we−σt‖∞
δε2σ

, ‖u0‖∞
)
.

Choosing σ = 2‖∆ωε‖1/(δε2), we obtain estimate

‖v‖∞ ≤ max

(
1

2
‖we−σt‖∞, ‖u0‖∞

)
.

By definition of the norm

‖Pw‖∞,σ ≤ max

(
1

2
‖w‖∞,σ, ‖u0‖∞

)
. (2.12)

Moreover, the parabolic version of de Giorgi-Nash-Moser theory, see [24, Chap. V, Theorem 1.1],

implies that there exists α = α(‖w‖∞,σ) such that the solution of (2.8) satisfy

‖u‖Cα,α/2 ≤ f(‖w‖∞,σ).

Without loss of generality we may assume that f(‖w‖∞,σ) does not decrease and α(‖w‖∞,σ) does

not increase when ‖w‖∞,σ increases.
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We proceed to choosing values of parameters M , α, κ and concluding the proof. We choose

M = 3‖u0‖L∞, α = α(M), κ =
‖u0‖L∞

2f(M)
.

Since w is in X and f is nondecreasing we obtain

‖Pw‖X ≤ 1

2
‖w‖∞,σ + ‖u0‖∞ + κf(‖w‖∞,σ) ≤

M

2
+ ‖u0‖∞ + κf(M) ≤ 3‖u0‖L∞ = M.

This means that P maps X to X .

Step 4: P (X) is relatively compact in X . The relative compactness of P (X) follows from (2.10).

The proof is concluded. �

Proof of Theorem 2.3. To prove (A1) and (A3) we want to apply (2.6) and Assumption 1.1 on the

potential. The energy identity reads:

∫

Td

F (uδ) dx+
1

4ε2

∫

Td

∫

Td

ωε(y)|uδ(x)− uδ(x− y)|2 dxdy +

∫ t

0

∫

Td

Tδ(uδ) |∇µδ|2 = Eε[u
0],

Applying Lemma C.1, we deduce

∫

Td

F (uδ) dx+ Cp

∫

Td

|u− (u)Td |2 +
∫ t

0

∫

Td

Tδ(uδ) |∇µδ|2 ≤ Eε[u
0]

Splitting F = F1 + F2 and applying Assumption 1.1 we obtain

∫

Td

F1(uδ) dx+ Cp

∫

Td

|uδ − (uδ)Td |2 +
∫ t

0

∫

Td

Tδ(uδ) |∇µδ|2 ≤ Eε[u
0] + C9 + C10

∫

Td

|uδ|2

Note that by conservation of mass, (uδ)Td = (u0)Td . Therefore, applying the simple inequality

|a+ b|2 ≤ 2|a|2 + 2|b|2 and Cp > 2C10, we obtain an L∞(0, T ;L2(Td)) estimate on {uδ} which can

be improved to L∞(0, T ;Lk(Td)) if F1 6= 0 cf. (B) in Assumption 1.1. Then, (A1) and so, (A3) is

easily implied by the energy as all possibly negative terms are bounded.

Now, to prove (A4) we want to use the entropy equality (2.7):

Φδ[uδ](t) +
1

2ε2

∫ t

0

∫

Td

∫

Td

ωε(y) |∇uδ(x) −∇uδ(x− y)|2 +
∫ t

0

∫

Td

F ′′(uδ)|∇uδ|2 = Φδ[u
0].

To exploit it, for γ to be chosen later, ε ∈ (0, ε̃0(γ)) we have by Lemma C.3

Φδ[uδ](t) +
1

γ

∫ t

0

∫

Td

|∇uδ|2 +
∫ t

0

∫

Td

F ′′
1 (uδ)|∇uδ|2 ≤

≤ Φδ[u
0] + C(γ)

∫ t

0

∫

Td

‖uδ‖2L2(Td) + ‖F ′′
2 ‖∞

∫ t

0

∫

Td

|∇uδ|2.
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We choose γ = 1
1+‖F ′′

2 ‖∞

which yields estimates (A4), (A7) and (A8) (here, we also exploit (P4) in

Lemma 2.1 to control Φδ[u
0]). Now, to see (A5) we take a smooth test function ϕ and write thanks

to the Hölder inequality
∣∣∣∣∣

∫ T

0

∫

Td

∂tuδ ϕdxdt

∣∣∣∣∣ =
∣∣∣∣∣

∫ T

0

∫

Td

Tδ(uδ)
1/2Tδ(uδ)

1/2∇µδ · ∇ϕdxdt

∣∣∣∣∣

≤ ‖Tδ(uδ)
1/2‖L∞(0,T ;L2k(Td))‖Tδ(uδ)

1/2∇µδ‖L2((0,T )×Td)‖∇ϕ‖L2(0,T ;Ls(Td))

≤ C‖∇ϕ‖L2(0,T ;Ls(Td)).

In the last line we used estimates (A1), (A3) and the definition of Tδ. This concludes the proof for

estimates (A5) and then (A6) easily follows.

Finally, we prove (A2). We note from (A7) that {∇u
k/2
δ } is bounded in L2(0, T ;L2(Td)) and from

(A1) that {uk/2
δ } is bounded in L∞(0, T ;L2(Td)). Therefore, by Sobolev embedding, we obtain that

{uk/2
δ } is bounded in L2(0, T ;L

2d
d−2 (Td)) so that {uδ} is bounded in Lk(0, T ;Lk d

d−2 (Td)). �

2.2. Proof of Theorem 1.7.

Proof of Theorem 1.7. Step 1: Approximation of the potential.

For F as in Assumption 1.1, we consider its mollification Fδ = F ∗ηδ where {ηδ} is the usual mollifier.

We note that Fδ is C4 and that F , Fδ satisfy Assumption 1.1 with comparable constants C1, ..., C10,

see Lemma A.2. The most important is constant C10 because there is a constraint on it in terms of

Cp. More precisely, F satisfies Assumption 1.1 with C10 < Cp/4 so that from Lemma A.2 we have

that Fδ satisfies it with 2C10 < Cp/2. This allows to apply Theorem 2.3 to otain uniform estimates.

Moreover Fδ = Fδ,1 + Fδ,2 with F
(p)
δ,(1,2)

pointwise−−−−−−→
δ→0

F
(p)
(1,2) where p = 0, 1, 2 is the order of derivative.

Step 2: Compactness. Using Theorem 2.2, we can obtain uδ such that for all ϕ ∈ L2(0, T ;W 1,∞(Td))

∫ T

0

〈∂tuδ, ϕ〉(W 1,s(Td))′,W 1,s(Td)+

+

∫ T

0

∫

Td

Tδ(uδ)∇Bε[uδ] · ∇ϕ+

∫ T

0

∫

Td

uδF
′′
δ (uδ)∇uδ · ∇ϕ = 0.

(2.13)

The plan is to send δ → 0 in (2.13). By Theorem 2.3 and standard compactness results we can

extract a subsequence (not relabelled) such that

(B1) uδ → u a.e. and in L2((0, T )× T
d) ∩ Lk((0, T )× T

d),

(B2) ∇uδ ⇀ ∇u in L2((0, T )× T
d),
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(B3) ∂tuδ ⇀ ∂tu in L2(0, T ;W−1,s′(Td)),

(B4)
√
F ′′
1,δ(uδ)∇uδ ⇀ ξ in L2((0, T )× T

d) for some ξ ∈ L2((0, T )× T
d).

Only (B1) needs some justification. From (A1), (A4), (A5) and Aubin-Lions lemma, we obtain

the strong convergence uδ → u a.e. and in L2((0, T ) × T
d). To see the second strong con-

vergence, we interpolate between L∞(0, T ;Lk(Td)) and Lk(0, T ;Lk d
d−2 (Td)) to prove that {uδ} is

bounded in Lk+κ(0, T ;Lk+κ(Td)) for some κ > 0 because k d
d−2 > k. Now, interpolating between

Lk+κ(0, T ;Lk+κ(Td)) and L2((0, T )× T
d) we obtain strong convergence in Lk((0, T )× T

d).

Step 3: Nonnegativity of u. The plan is to obtain a contradiction with the uniform estimate of the

entropy. For α > 0, we define the sets

Vα,δ = {(t, x) ∈ (0, T )× T
d : uδ(t, x) ≤ −α},

Vα,0 = {(t, x) ∈ (0, T )× T
d : u(t, x) ≤ −α}.

By nonnegativity of φδ (see (2.4) as well as the properties below) and (A8) in Theorem 2.3, there is

a constant C(T ) such that

∫

Vα,δ

φδ(uδ) dxdt ≤
∫

(0,T )×Td

φδ(uδ) dxdt ≤ C(T ).

For uδ ≤ −α, we have 0 ≤ φδ(−α) ≤ φδ(uδ) because φ′
δ(x) ≤ 0 for x ≤ 0, see (2.4). Therefore,

0 ≤ φδ(−α)

∫

Vα,δ

1 dxdt =

∫

Vα,δ

φδ(x) dxdt ≤ C(T ).

Sending δ → 0, exploiting (P5) in Lemma 2.1 and using the strong convergence of uδ → u we

discover
∫

Vα,0

1 dxdt = lim
δ→0

∫

Vα,δ

1 dxdt = 0

(we use here the fact from measure theory asserting that on the measure space (X,µ) if fn, f : X → R

and fn → f in L1(X,µ) then for α ∈ R we have
∫
fn<α

dµ →
∫
f<α

dµ as n → ∞). This means that

Vα,0 is a null set for each α > 0, concluding the proof of the nonnegativity.

Step 4: Identification ξ =
√
F ′′
1 (u)∇u. We want to use (B4) so we have to identify ξ. For that

purpose, we use the convergence a.e. of uδ in (B1) and the pointwise convergence F ′′
δ,1 → F ′′

1 to

deduce that Fδ,1(uδ) → F1(u) a.e. Next, using Assumption (B) for Fδ,1 and estimate (A1)

∣∣∣
√
F ′′
δ,1(uδ)

∣∣∣
2

≤ C3|uδ|k−2 + C4.
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As (RHS) is uniformly integrable by strong convergence (B1), we deduce that
∣∣∣
√
F ′′
δ,1(uδ)

∣∣∣
2

is uni-

formly integrable so that the Vitali convergence theorem implies

√
F ′′
δ,1(uδ) →

√
F ′′
1 (u) in L2((0, T )× T

d)

Using weak convergence of gradient (B2), we finally obtain ξ =
√
F ′′
1 (u)∇u.

Step 5: Passing to the limit in the first two terms of (2.13). Using (B3) it is easy to pass to the

limit in the first term of (2.13). Now we focus on the second term. Note that

∇Bε[uδ](x) =
1

ε2
(∇uδ − ωε ∗ ∇uδ).

The two terms of ∇Bε are treated in the same way. We focus only on the harder term ∇uδ which

does not have regularizing properties of the convolution. For this term it is sufficient to prove that

Tδ(uδ)∇uδ ⇀ u∇u weakly in L2(0, T ;L1(Td)). We first note that by definition of Tδ, the strong

convergence (B1) and the nonnegativity of u, we obtain Tδ(uδ) → u strongly in L2((0, T ) × T
d).

Hence, the result follows from weak convergence of the gradient (B2).

Step 6: Passing to the limit in the third term of (2.13). For the third term we write F ′′
δ = F ′′

δ,1+F ′′
δ,2

as discussed in Step 1. Then we decompose

∫ T

0

∫

Td

Tδ(uδ)F
′′
δ (uδ)∇uδ · ∇ϕ =

∫ T

0

∫

Td

Tδ(uδ)F
′′
δ,1(uδ)∇uδ · ∇ϕ+

∫ T

0

∫

Td

Tδ(uδ)F
′′
δ,2(uδ)∇uδ · ∇ϕ

= I1 + I2.

For I1 we write

I1 =

∫ T

0

∫

Td

Tδ(uδ)
√
F ′′
δ,1(uδ)

√
F ′′
δ,1(uδ)∇uδ · ∇ϕ.

It remains to prove that Tδ(uδ)
√

F ′′
δ,1(uδ) converges strongly in L2((0, T ) × T

d). Note that since

uδ → u ≥ 0 we have Tδ(uδ)
√

F ′′
δ,1(uδ) → u

√
F ′′
1 (u) a.e. Moreover,

(
Tδ(uδ)

√
F ′′
δ,1(uδ)

)2
≤ C3 |uδ|k + C4

As the (RHS) is uniformly integrable by strong convergence, we deduce that (LHS) is uniformly

integrable. Hence, the Vitali convergence theorem implies Assumption (B) and Estimate (A1) show

that

Tδ(uδ)
√
F ′′
δ,1(uδ) → u

√
F ′′
1 (u) in L2((0, T )× T

d)

so that I1 →
∫ T

0

∫
Td uF

′′
1 (u)∇u · ∇ϕ. For I2, as ∇uδ ⇀ ∇u weakly in L2((0, T )× T

d), it is sufficient

to prove the strong convergence of Tδ(uδ)F
′′
δ,2(uδ) in L2((0, T )×T

d). Thanks to Assumption (C) on
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F ′′
δ,2, this term is uniformly bounded so that trivially |Tδ(uδ)F

′′
δ,2(uδ)| ≤ ‖F ′′

2 ‖∞|Tδ(uδ)|. Therefore,

Vitali convergence theorem implies Tδ(uδ)F
′′
δ,2(uδ) in L2((0, T )× T

d) and so

I2 →
∫ T

0

∫

Td

uF ′′
2 (u)∇u · ∇ϕ.

Step 7: Energy and entropy estimates . We pass to the limit δ → 0 in (2.6)-(2.7). With the above

convergences and properties of the weak limit, we obtain the result. This ends the proof of Theo-

rem 1.7. �

Now that weak solutions of the nonlocal Cahn-Hilliard equation have been constructed for a given

initial datum, it remains to prove the convergence of the nonlocal system to the local one. This is

the purpose of the next section.

3. Limit ε → 0

Weak solutions of the local Cahn-Hilliard equation are understood in the sense of Definition 1.5. In

order to prove the convergence of the nonlocal system to these solutions, we first collect the necessary

estimates uniform in ε. Then we pass to the limit ε → 0 to conclude the proof of Theorem 1.8.

3.1. Uniform estimates in ε. We recall that in the previous section we had obtained the energy

and entropy inequalities as well as estimates uniform in ε.

Lemma 3.1 (Mass, energy, entropy). The following identities hold true
∫

Td

uε(t, ·) dx =

∫

Td

u0 dx, (3.1)

d

dt
E[uε] +

∫

Td

uε |∇µε|2 ≤ 0, (3.2)

d

dt
Φ[uε] +

1

2ε2

∫

Td

∫

Td

ωε(y) |∇uε(x) −∇uε(x− y)|2 dxdy +

∫

Td

F ′′(uε)|∇uε|2 dx ≤ 0. (3.3)

Lemma 3.2 (Uniform estimates). The following sequences are bounded:

(A) {uε}ε in L∞(0, T ;Lk(Td)),

(B) {uε}ε in Lk(0, T ;Lk d
d−2 (Td)),

(C) {∇uε}ε in L2((0, T )× T
d),

(D) {√uε ∇µε}ε in L2((0, T )× T
d),

(E) {∂tuε}ε in L2(0, T ;W−1,s′(Td)),

(F) {∂t∇uε}ε in L2(0, T ;W−2,s′(Td)),

(G) {
√
F ′′
1 (uε)∇uε}ε in L2((0, T )× T

d).
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Our last ingredient for the proof of Theorem 1.8 is about the compactness of uε and its gradient.

Lemma 3.3 (Compactness). Sequences {uε}ε and {∇uε}ε are strongly compact in L2((0, T )×T
d).

Proof. The compactness of {uε} follows from the Lions-Aubin lemma applied to estimates (A),(C)

and (E). Then, for the compactness of {∇uε}, the detailed proof is presented in Appendix D. Roughly

speaking, from (F) we know that the sequence is compact in time. Compactness in space follows

from Theorem B.1 together with the estimate provided by the entropy on the quantity:

1

4ε2

∫ T

0

∫

Td

∫

Td

ωε(y) |∇uε(x) −∇uε(x− y)|2 dxdy dt ≤ C.

An application of the Fréchet-Kolmogorov theorem yields the result. �

Now we are ready to prove our main theorem.

3.2. Proof of Theorem 1.8: convergence ε → 0. We want to pass to the limit ε → 0 in

Equations (1.5)-(1.6) and obtain weak solutions of the local Cahn-Hilliard equation. We have at

most bounds on the gradient of uε and the limit equation has four derivatives. That means we need

to mimic at the epsilon level integration by parts for nonlocal operators. For that purpose, we define

the operator

Sε[ϕ](x, y) :=

√
ωε(y)√
2ε

(ϕ(x − y)− ϕ(x)) (3.4)

which has the following properties:

Lemma 3.4. The operator Sε satisfies:

(S1) Sε is a linear operator that commutes with derivatives with respect to x,

(S2) for all functions f, g : T
d → R we have

Sε[fg](x, y)− Sε[f ](x, y)g(x)− Sε[g](x, y)f(x) =

=

√
ωε(y)√
2ε

[(f(x− y)− f(x))(g(x − y)− g(x))].

(S3) for all u, ϕ ∈ L2(Td)

〈Bε[u](·), ϕ(·)〉L2(Td) = 〈Sε[u](·, ·), Sε[ϕ](·, ·)〉L2(Td×Td).

(S4) if {uε} is strongly compact in L2(0, T ;H1(Td)) and ϕ ∈ L∞((0, T )× T
d) we have

∫ T

0

∫

Td

∫

Td

(Sε[uε])
2 ϕ(t, x) → D

∫ T

0

∫

Td

|∇u(t, x)|2 ϕ(t, x)

where D = 1
2

∫
B1

ω(y)|y|2 dy.
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Proof. The first one is trivial. For the second one, we just observe

(f(x− y)− f(x))(g(x − y)− g(x)) =

= −(f(x− y)− f(x)) g(x)− g(x− y) f(x) + f(x− y) g(x− y) =

= −(f(x− y)− f(x)) g(x)− (g(x− y)− g(x)) f(x) + (f(x− y) g(x− y)− f(x)g(x)).

For the third one, we compute

〈Bε[u](·), ϕ(·)〉L2(Td) =

∫

Td

∫

Td

ωε(y)

ε2
(u(x)− u(x− y))ϕ(x) dy dx.

Changing variables x′ = x− y, y′ = −y and using symmetry of the kernel

〈Bε[u](·), ϕ(·)〉L2(Td) =

∫

Td

∫

Td

ωε(y)

ε2
(u(x′ − y′)− u(x′))ϕ(x′ − y′) dy′ dx′.

Therefore,

2 〈Bε[u](·), ϕ(·)〉L2(Td) =

∫

Td

∫

Td

ωε(y)

ε2
(u(x)− u(x− y)) (ϕ(x) − ϕ(x − y)) dy dx

=

∫

Td

∫

Td

√
ωε(y)

ε
(u(x)− u(x− y))

√
ωε(y)

ε
(ϕ(x) − ϕ(x− y)) dy dx.

Finally, to prove (S4) we use the definition of ωε and change variables with respect to y:

∫ T

0

∫

Td

∫

Td

(Sε[uε])
2 ϕ(t, x) =

∫

B1

ω(y)

∫ T

0

∫

Td

ϕ(t, x)
|uε(t, x)− uε(t, x− εy)|2

2ε2
dxdt dy

For fixed y,

∫ T

0

∫

Td

ϕ(t, x)
|uε(t, x)− uε(t, x− εy)|2

ε2
dxdt →

∫ T

0

∫

Td

ϕ(t, x)|∇u(x)|2|y|2 dxdt,

∣∣∣∣∣

∫ T

0

∫

Td

ϕ(t, x)
|uε(t, x) − uε(t, x− εy)|2

ε2
dxdt

∣∣∣∣∣ ≤ ‖ϕ‖∞ sup
ε

‖Duε‖22 |y|2

due to Lemma A.1. As the majorant is integrable, the dominated convergence theorem concludes

the proof. �

Since Bε has a similar behavior as the Laplace operator, one can expect that Sε acts like a gradient

(in L2(Td)). Nevertheless, note that Sε[ϕ](x, y) is a scalar. From now on, we write ∇Sε for the

gradient of Sε with respect to the variable x i.e.

∇Sε[ϕ](x, y) :=

√
ωε(y)√
2ε

(∇ϕ(x − y)−∇ϕ(x)).
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Proof of Theorem 1.8. We only have to pass to the limit in the term
∫ T

0

∫
Td div(uε∇µε)ϕdxdt where

ϕ ∈ C3([0, T ]× T
d). Integrating by parts, we obtain

∫ T

0

∫

Td

div(uε∇µε)ϕdxdt = −
∫ T

0

∫

Td

uε∇µε · ∇ϕdxdt =

∫ T

0

∫

Td

Bε[uε]∇uε · ∇ϕdxdt

+

∫ T

0

∫

Td

Bε[uε]uε∆ϕdxdt −
∫ T

0

∫

Td

uεF
′′(uε)∇uε · ∇ϕdxdt

=: I1 + I2 + I3.

(3.5)

Step 1: Compactness . Using Lemma 3.2 and Lemma 3.3 we can choose a subsequence of {uε}ε such

that

(D1) ∂tuε ⇀ ∂tu weakly in L2(0, T ;W−1,s′(Td)),

(D2) uε → u strongly in L2((0, T )× T
d),

(D3) ∇uε → ∇u strongly in L2((0, T )× T
d),

(D4)
√
F ′′
1 (uε)∇uε ⇀ ξ weakly in L2((0, T )× T

d).

Step 1: Convergence of I1. Using (S3) in Lemma 3.4 we write

I1 =

∫ T

0

∫

Td

∫

Td

Sε[uε]Sε(∇uε · ∇ϕ) dxdy dt

=

∫ T

0

∫

Td

∫

Td

Sε[uε]Sε(∇uε) · ∇ϕdxdy dt+

∫ T

0

∫

Td

∫

Td

Sε[uε]∇uε · Sε[∇ϕ] dxdy dt+Rε

= J
(1)
1 + J

(1)
2 +R(1)

ε ,

where R
(1)
ε is defined as

R(1)
ε =

∫ T

0

∫

Td

∫

Td

Sε[uε] (Sε(∇uε · ∇ϕ)− Sε(∇uε) · ∇ϕ−∇uε · Sε[∇ϕ]) dxdy dt.

For J
(1)
1 we use identity

Sε[uε]Sε(∇uε) = Sε[uε]∇Sε(uε) =
1

2
∇ |Sε[uε]|2

so after integration by parts we obtain

J
(1)
1 = −1

2

∫ T

0

∫

Td

∫

Td

(Sε[uε])
2∆ϕdxdy dt → −D

2

∫ T

0

∫

Td

|∇u|2∆ϕdxdt (3.6)
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due to (S4) in Lemma 3.4. For J
(1)
2 we change variables to have

J
(1)
2 =

1

2

∫ T

0

∫

Td

∫

Td

ωε(y)
uε(x− y)− uε(x)

ε
∇uε(x) ·

∇ϕ(x − y)−∇ϕ(x)

ε
dxdy dt =

=
1

2

∫

Td

ω(y)

∫ T

0

∫

Td

uε(x− εy)− uε(x)

ε
∇uε(x) ·

∇ϕ(x− εy)−∇ϕ(x)

ε
dxdt dy.

We are first concerned with the inner integral. With Lemma A.1 we have that for fixed y ∈ T
d

uε(x − εy)− uε(x)

ε
→ −∇u(x) · y in L2((0, T )× T

d).

Moreover, a Taylor expansion implies that

∇ϕ(x − εy)−∇ϕ(x)

ε
→ −D2ϕ(x)y in L∞((0, T )× T

d;Rd).

Combining this with a strong convergence ∇uε → ∇u in L2((0, T )× T
d), we deduce

∫ T

0

∫

Td

uε(x− εy)− uε(x)

ε
∇uε(x) ·

∇ϕ(x − εy)−∇ϕ(x)

ε
dxdt →

→
∫ T

0

∫

Td

∇u(x) · y∇u(x) · (D2ϕ(x)y) dxdt.

Finally, we apply the dominated convergence theorem to the integral with respect to y with the

dominating function ‖D2ϕ‖∞ supε‖∇uε‖22|y|2. We obtain

J
(1)
2 → 1

2

∫

Td

ω(y)|y|2 dy
∫ T

0

∫

Td

∇u(x) ·D2ϕ(x)∇u(x) dxdt =

= D

∫ T

0

∫

Td

(∇u(x) ⊗∇u(x)) : D2ϕ(x) dxdt,

(3.7)

where we also used the symmetry of D2ϕ and properties of ω defined in (1.2). It remains to deal

with the error term. Using (S2) in Lemma 3.4 we can write

R(1)
ε =

∫ T

0

∫

Td

∫

Td

Sε[uε]

√
ωε(y)√
2ε

[(∇uε(x− y)−∇uε(x)) · (∇ϕ(x − y)−∇ϕ(x))] dxdy dt.

We want to prove that R
(1)
ε converges to 0. By Cauchy-Schwarz inequality (in time and space) as

well as bounds on Sε[uε] it remains to prove that

∫ T

0

∫

Td

∫

Td

ωε(y)

ε2
|∇uε(x− y)−∇uε(x)|2|∇ϕ(x − y)−∇ϕ(x)|2 dy dxdt → 0. (3.8)

Using Taylor’s expansion we can estimate this integral with

ε‖D2ϕ‖L∞

(∫ T

0

∫

Td

∫

Td

ωε(y)

ε2
|∇uε(x − y)−∇uε(x)|2 dy dxdt

)
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which converges to zero by the bound from the entropy (3.3) so that (3.8) follows. We conclude that

I1 → −D

2

∫ T

0

∫

Td

|∇u|2∆ϕdxdt+D

∫ T

0

∫

Td

(∇u ⊗∇u) : D2ϕdxdt.

Step 2: Convergence of I2. We observe that the only differences between I1 and I2 are uε and ∆ϕ

in place of ∇uε and ∇ϕ respectively. As we have the same (in fact, better) estimates for these

quantities, the proof is the same and we conclude

I2 → D

∫ T

0

∫

Td

|∇u|2∆ϕdxdt +D

∫ T

0

∫

Td

u∇u · ∇∆ϕ.

Step 3: Convergence of I3. For I3 the proof is similar to the reasoning in Steps 1, 3 and 6 of the

proof of Theorem 1.7because we have to use the same estimates. Roughly speaking, one proves that

uε → u strongly in Lk((0, T )× T
d) by interpolation so that one can identify ξ =

√
F ′′
1 (u)∇u. Next,

convergence in Lk((0, T )× T
d) allows also to prove strong convergence uε

√
F ′′
1 (uε) → u

√
F ′′
1 (u) in

L2((0, T )× T
d) thanks to growth condition (B) while the convergence uε

√
F ′′
2 (uε) → u

√
F ′′
2 (u) in

L2((0, T )× T
d) is trivial because F ′′

2 ∈ L∞. This shows that

I3 → −
∫ T

0

∫

Td

uF ′′(u)∇u · ∇ϕdxdt.

Conclusion of Steps 1-3. In the limit ε → 0 we obtain

∫ T

0

〈∂tu, ϕ〉(W−1,s′ (Td),W 1,s(Td)) = D

∫ T

0

∫

Td

(∇u⊗∇u) : D2ϕ+

+
D

2

∫ T

0

∫

Td

|∇u|2∆ϕ+D

∫ T

0

∫

Td

u∇u · ∇∆ϕ−
∫ T

0

∫

Td

uF ′′(u)∇u · ∇ϕ.

Step 4: Regularity of u and better weak formulation Now we prove the regularity of the limit func-

tion u. This allows us to perform integration by parts on the different terms using the formula (1.14)

and recover the Definition 1.5. In fact, in the limit ε → 0, from the entropy we obtain (see [3, The-

orem 4] and [32, Theorem 1.2])

d∑

i,j=1

∫ t

0

∫

Td

|∂xi∂xju|2 ≤ lim inf
ε→0

1

4ε2

∫ t

0

∫

Td

∫

Td

ωε(y) |∇uε(x) −∇uε(x− y)|2

so in the limit ε → 0 we gain one more derivative. Then, since

D

∫ T

0

∫

Td

u∇u · ∇∆ϕ = −D

∫ T

0

∫

Td

∆ϕ |∇u|2 −D

∫ T

0

∫

Td

u∆u∆ϕ
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and using formula (1.14), we compute

I1 + I2 = D

∫ T

0

∫

Td

(∇u ⊗∇u) : D2ϕ − D

2

∫ T

0

∫

Td

|∇u|2∆ϕ−D

∫ T

0

∫

Td

u∆u∆ϕ

= −D

∫ T

0

∫

Td

∆u∇u · ∇ϕ−D

∫ T

0

∫

Td

u∆u∆ϕ.

This ends the proof of Theorem 1.8. �

Appendix A. Results from classical analysis

A.1. Difference quotients.

Lemma A.1. Let {uε} be a sequence strongly compact in L2(0, T ;H1(Td)). Then, for fixed y ∈ T
d,

uε(t, x− εy)− uε(t, x)

ε
→ −∇u(t, x) · y strongly in L2((0, T )× T

d).

Proof. We write

uε(t, x− εy)− uε(t, x)

ε
= −y ·

∫ 1

0

∇uε(t, x− εθy) dθ

= −y ·
∫ 1

0

(∇uε(t, x− εθy)−∇uε(t, x)) dθ − y · ∇uε(t, x).

By assumption y · ∇uε → y · ∇u strongly in L2((0, T )× T
d) so we only have to prove that the first

term on the (RHS) converges to 0. By Fubini’s theorem and Cauchy-Schwarz inequality

∫ T

0

∫

Td

∣∣∣
∫ 1

0

(∇uε(t, x− εθy)−∇uε(t, x)) dθ
∣∣∣
2

dxdt

≤ C

∫ 1

0

∫ T

0

∫

Td

|∇uε(t, x− εθy)−∇uε(t, x)|2 dxdt dθ = C

∫ 1

0

‖τεθy∇uε −∇uε‖2L2((0,T )×Td) dθ,

where τ is the translation operator. The last term converges to 0 when ε → 0 by the Fréchet

Kolmogorov theorem. �

A.2. Growth estimates on mollified nonlinearity.

Lemma A.2. Let F satisfies Assumption 1.1 with constants C1, ..., C10. Then, Fδ = F ∗ ηδ with

0 ≤ δ ≤ 1 satisfies Assumption 1.1 with constants

C̃1 = 21−kC1, C̃2 = C1 + C2, C̃3 = 2k−1 C3, C̃4 = C̃3 + C4,

C̃5 = min(23−k, 1)C5, C̃6 = C5 + C6, C̃7 = max(2k−3, 1)C7, C̃8 = C̃7 + C8.

C̃9 = C9 + 2C10, C̃10 = 2C10.
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Proof. We decompose Fδ,1 = F1 ∗ ηδ and Fδ,2 = F2 ∗ ηδ. Suppose that F1(u) ≤ C3|u|k + C4. Then,

Fδ,1(u) =

∫

R

F1(u− s) ηδ(s) ds ≤ C3

∫

R

|u− s|kηδ(s) ds+ C4 ≤ 2k−1C3|u|k + 2k−1C3 + C4

where we used inequality valid for p ≥ 0

|u− s|p ≤ max(1, 2p−1) (|u|p + |s|p). (A.1)

It follows that C̃3 = 2k−1C3 and C̃4 = 2k−1C3 + C4. In a similar way, we compute constants C̃7,

C̃8. For C̃1, C̃2, C̃5, C̃6 the reasoning is the same but we have to use a lower bound of the form

|u− s|p ≥ min(1, 21−p) |u|p − |s|p.

so that, for example, if F1 ≥ C1|u|k − C2 we have

Fδ,1(u) =

∫

R

F1(u − s) ηδ(s) ds ≥ C1

∫

R

|u− s|kηδ(s) ds− C2 ≥ 21−k C1 |u|p − C1 − C2.

For the constants C̃9, C̃10 we argue using (A.1) once again

Fδ,2(u) ≥ −C9 − C10

∫

R

|u− s|2ηδ(s) ds ≥ −C9 − 2C10 − 2C10 |u|2.

�

A.3. Potentials satisfying Assumption 1.1.

Lemma A.3. Let F be as in (3) in Example 1.2. Then, F satisfies Assumption 1.1.

Proof. On R \ I we define F1(u) = F (u). By [38, Theorem 3.2], there exists a C2 extension of F1 to

R denoted by F1 which preserves convexity, i.e. F ′′
1 (u) > b > 0 for some b > 0. Moreover, F1 has

k-growth on R (in fact, by continuity, the behaviour of F1 on I can be included in constants C2, C4,

C6, C8 in Assumption 1.1). We finally define

F2 =




F (u)− F1(u) on I,

0 on R \ I.

Function F2 is C2 because at the endpoints of interval I we have F ′′ = F ′′
1 as F1 is C2 extension of

F . Finally, F2 satisfies condition (C) in Assumption 1.1 with F2(u) ≥ −‖F2‖∞. �
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A.4. Proof of Lemma 2.1.

Proof. First, we note the formula which will be useful

φ(x) =

∫ x

1

∫ y

1

1

z
dz dy.

Now, we proceed to the proof. First, (1) follows from the definition. Next, (2) follows from writing

φδ(x) =

∫

R

∫

R

1

Tδ(z)
sgn(y − 1) sgn(x− 1)1y∈[1,x] 1z∈[1,y] dz dy, (A.2)

and dominated convergence (for fixed x > 0). Then, (3) follows from Tδ ≥ 0 and the observation

that x ≥ 1, x < 1 implies y ≥ 1, y < 1 respectively.

To see (4), we distinguish three cases.

• When x ≥ 1
δ − 1, we split the integrals and use the estimate Tδ(x) ≥ 1

δ − 1 so that

φδ(x) ≤
∫ 1

δ−1

1

∫ y

1

1

z
dz dy +

∫ x

1
δ−1

∫ y

1

1
1
δ − 1

dz dy ≤

≤ φ

(
1

δ
− 1

)
+

δ

2(δ − 1)
x2 ≤ φ(x) +

δ

δ − 1
(x− 1)2,

because φ(x) is non-decreasing for x ≥ 1.

• When, x ∈
(
2δ, 1δ − 1

)
we have φδ = φ because on this set Tδ(z) = z.

• When x ∈ [0, 2δ] we have a lower bound Tδ(x) ≥ δ so that

φδ(x) ≤
∫ 2δ

x

∫ 1

y

1

δ
+

∫ 1

2δ

∫ 1

y

1

z
dz ≤ 2 + φ(2δ) ≤ 3

as φ(2δ) ≤ φ(0) = 1 because φ(x) is decreasing for x ∈ (0, 1).

Finally, to see (5), let x < 0. Then,

φδ(x) ≥
∫ 0

x

∫ 0

y

1

δ
dz dy =

1

δ

∫ 0

x

−y dy =
x2

2δ
.

�

Appendix B. Bourgain-Brézis-Mironescu and Ponce compactness result

We upgrade here the result of [32, Proposition 4.2] and [3, Theorem 4] to the time-space setting.

We consider sequence of radial functions {ρε} such that ρε ≥ 0,
∫
Rd ρε = 1 and

lim
ε→0

∫

|x|>δ

ρε(x) dx = 0 for all δ > 0.
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For the formulation of the compactness result, we use another sequence {ϕδ}δ∈(0,1) ⊂ C∞
c (Rd) of

standard mollifiers with mass 1 such that ϕδ(x) =
1
δdϕ(

x
δ ) with ϕ of mass 1 and compactly supported.

Theorem B.1. Let d ≥ 2. Let {fε} be a sequence bounded in Lp((0, T ) × T
d). Suppose that there

exists a sequence {ρε} as above such that

∫ T

0

∫

Td

∫

Td

|fε(t, x) − fε(t, y)|p
|x− y|p ρε(|x− y|) dxdy dt ≤ C (B.1)

for some constant C. Then, {fε} is compact in space in Lp((0, T )× T
d), i.e.

lim
δ→0

lim sup
ε→0

∫ T

0

∫

Td

|fε ∗ ϕδ(t, x)− fε(t, x)|p dxdt = 0. (B.2)

Remark B.2. Let ω : R
d → R be a smooth function, supported in the unit ball such that

∫
Rd ω(x) dx = 1. Consider ωε =

1
εd
ω
(
x
ε

)
. Suppose that

∫ T

0

∫

Td

∫

Td

|fε(x)− fε(y)|p
εp

ωε(|x− y|) dxdy dt ≤ C̃.

Then, (B.1) is satisfied. Indeed, we consider

ρε(x) =
ωε(|x|) |x|p

εp
∫
Rd ω(y)|y|p dy

(B.3)

so that (B.1) holds true with C̃∫
Rd ω(y)|y|p dy

.

Proof of Theorem B.1. The result for sequences that do not depend on time has been obtained

in [3,32]. To demonstrate that it is sufficient to integrate in time the reasoning mentioned above, we

make an additional assumption that for every ε, ρε is a nonincreasing function as in in [3, Theorem

4]. For the general case, one has to proceed as in [32, Theorem 1.2].

We define

Fε(s) :=

∫ T

0

∫

|y|=1

∫

Td

|fε(t, x+ sy)− fε(t, x)|p dxdy dt

=
1

sd−1

∫ T

0

∫

|y|=s

∫

Td

|fε(t, x+ y)− fε(t, x)|p dxdy dt.

By virtue of the computation above, we can express the assumption B.1 using function Fε as follows
∫ δ

0

sd−1Fε(s) ρε(s)

sp
ds ≤ C. (B.4)

Using the triangle inequality

|fε(t, x+ 2sy)− fε(t, x)| ≤ |fε(t, x+ 2sy)− fε(t, x+ sy)|+ |fε(t, x+ sy)− fε(t, x)|
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and change of variables we obtain

Fε(2s) ≤ 2pFε(s),
Fε(2s)

(2s)p
≤ Fε(s)

sp
. (B.5)

We estimate by Jensen’s inequality
∫ T

0

∫

Td

|fε ∗ ϕδ − fε|p dxdt ≤
C

δd

∫ T

0

∫

Td

∫

|x−y|≤δ

|fε(x) − fε(y)|p dy dxdt

=
C

δd

∫ T

0

∫

Td

∫

|h|≤δ

|fε(x+ h)− fε(x)|p dh dxdt

=
C

δd

∫ T

0

∫

Td

∫ δ

0

sd−1

∫

|h|=s

|fε(x+ h)− fε(x)|p dh ds dxdt =
C

δd

∫ δ

0

sd−1Fε(s) ds.

(B.6)

Now, we use functional inequality (which requires doubling condition (B.5), cf. [3, Eq. (24)])

δ−d

∫ δ

0

sd−1Fε(s)

sp
ds ≤ C(d)

∫ δ

0
sd−1 Fε(s) ρε(s)

sp ds∫
|x|<δ ρε(x) dx

(B.7)

For each δ > 0, there exists ε(δ) such that for all ε < ε(δ) we have
∫
|x|<δ

ρε(x) dx = 1. In particular,

for ε < ε(δ) we have by (B.7) and (B.4)

δ−d

∫ δ

0

sd−1Fε(s)

sp
ds ≤ C(d) δp.

In view of (B.6), the proof is concluded.

�

Appendix C. nonlocal Poincaré inequalities

Let ω : R
d → R be a smooth function, supported in the unit ball such that

∫
Rd ω(x) dx = 1. Consider

ωε =
1
εd
ω
(
x
ε

)
.

Lemma C.1. There exists Cp and εA0 such that
∫

Td

|f − (f)Td |2 ≤ 1

4Cp

∫

Td

∫

Td

|f(t, x)− f(t, y)|2
ε2

ωε(|x− y|) dxdy

for every f ∈ L2(Td) and ε ≤ εA0 .

For the proof, we refer to Ponce [32, Theorem 1.1] with kernel given by (B.3). We also have an

opposite inequality from [3, Theorem 1]:

Lemma C.2. For all f ∈ H1(Td)
∫

Td

∫

Td

|f(x)− f(y)|2
ε2

ωε(x − y) dxdy ≤ C(Td) ‖f‖2H1(Td).
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Finally, we formulate a variant of Lemma C.1 which does not require an average on the left-hand

side.

Lemma C.3. For each γ ∈ (0, 1) there exists εB0 and constant C(γ) such that for all ε ∈ (0, εB0 )

and all f ∈ H1(Td) we have

‖f‖2H1(Td) ≤ γ

∫

Td

∫

Td

|∇f(x)−∇f(y)|2
ε2

ωε(|x− y|) dxdy + C(γ)‖f‖2L2(Td).

Proof. Aiming at a contradiction, suppose that there exists γ with the following property: there

exists sequence {εn} with 0 < εn < 1
n and sequence {fn} such that

‖fn‖2H1(Td) > γ

∫

Td

∫

Td

|∇fn(x) −∇fn(y)|2
ε2n

ωεn(|x− y|) dxdy + n ‖fn‖2L2(Td).

As ‖fn‖H1(Td) > 0, we may define gn := fn
‖fn‖H1(Td)

. Note that ‖gn‖H1(Td) = 1 and

1 > γ

∫

Td

∫

Td

|∇gn(x) −∇gn(y)|2
ε2n

ωεn(|x − y|) dxdy + n ‖gn‖2L2(Td).

The first term gives compactness of the gradients (because {gn} is bounded in H1(Td) so that,

together with Rellich-Kondrachov, there exists function g such that gn → g in H1(Td) (after passing

to a subsequence). But then g = 0 because n ‖gn‖L2(Td) < 1. This is however contradiction with

‖g‖H1(Td) = limn→∞ ‖gn‖H1(Td) = 1. �

Appendix D. Compactness in time/space with the Fréchet-Kolmogorov theorem

Lemma D.1. Suppose that {fε} is a sequence bounded in L2((0, T )× T
d) such that

• ∂tfε = ∇k(Jε), where ∇k is any linear differential operator of order k ∈ N and {Jε} uni-

formly bounded in L1((0, T )× T
d),

• {fε} is compact in space in L2((0, T )× T
d), i.e.

lim
δ→0

lim sup
ε→0

∫ T

0

∫

Td

|fε ∗ ϕδ(t, x) − fε(t, x)|2 dxdt = 0. (D.1)

uniformly for all ε.

Then, {fε} is compact in time in L2((0, T )× T
d), i.e.

lim
h→0

lim sup
ε→0

∫ T−h

0

∫

Td

|fε(t+ h, x)− fε(t, x)|2 dxdt → 0 as h → 0 (D.2)

and so, it is compact in L2((0, T )× T
d).
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We recall that

‖∇kϕδ‖Lp(Td) ≤
C

δk+d−d/p
,

and for any function g ∈ Lp(Td),

‖g ∗ ϕδ‖Lp(Td) ≤ ‖ϕδ‖Lp(Td)‖g‖L1(Td).

Proof. Using the mollifiers with δ = δ(h) depending on h to be specified later in the way that

δ(h) → 0 as h → 0, we first split

∫ T−h

0

∫

Td

|fε(t+ h, x)− fε(t, x)|2 dxdt ≤ 4

∫ T−h

0

∫

Td

|fε(t, x)− fε(t, ·) ∗ ϕδ(x)|2 dxdt

+ 4

∫ T−h

0

∫

Td

|fε(t+ h, x)− fε(t+ h, ·) ∗ ϕδ(x)|2 dxdt

+ 4

∫ T−h

0

∫

Td

|fε(t+ h, ·) ∗ ϕδ(x)− fε(t, ·) ∗ ϕδ(x)|2 dxdt.

When we apply limit limh→0 lim supε→0, the first and second term vanish due to (D.1). It remains

to study the third term which reads

∫ T−h

0

∫

Td

|fε(t+ h, ·) ∗ ϕδ(x) − fε(t, ·) ∗ ϕδ(x)|2 dxdt =

=

∫ T−h

0

∫

Td

∣∣∣∣∣

∫ t+h

t

∂tfε(s, ·) ∗ ϕδ(x) ds

∣∣∣∣∣

2

dxdt =

∫ T−h

0

∫

Td

∣∣∣∣∣

∫ t+h

t

J ∗ ∇kϕδ(s, x) ds

∣∣∣∣∣

2

dxdt

≤ Ch

∫ T−h

0

∫

Td

∫ t+h

t

∣∣J ∗ ∇kϕδ(s, x)
∣∣2 ds dxdt,

where we used Jensen’s inequality. We perform the change of variables s 7→ v = s−t
h , use Fubini’s

theorem, and obtain

h

∫ T−h

0

∫

Td

∫ t+h

t

∣∣J ∗ ∇kϕδ(s, x)
∣∣2 ds dxdt = h2

∫ 1

0

∫

Td

∫ T−h

0

∣∣J ∗ ∇kϕδ(vh+ t, x)
∣∣2 dt dxdv.

Then we use the change of variables t 7→ τ = v h+ t and obtain

h2

∫ 1

0

∫

Td

∫ T−h

0

∣∣J ∗ ∇kϕδ(vh+ t, x)
∣∣2 dt dxdv =

= h2

∫ 1

0

∫

Td

∫ T+h(v−1)

vh

∣∣Ji ∗ ∇kϕδ(τ, x)
∣∣2 dτ dxdv ≤ h2

δ2k+d
‖Jε‖2L1

t,x
.

Using the L1((0, T )× T
d) bound on {Jε} and choosing δ such that δ2k+d = h we conclude that

lim
h→0

lim sup
ε→0

∫ T−h

0

∫

Td

|fε(t+ h, x)− fε(t, x)|2 dxdt ≤ θ(h).
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Combined with the compactness in space (D.2) and the Fréchet-Kolmogorov theorem we obtain the

compactness of {fε} in L2((0, T )× T
d). �

Remark D.2. Compared with the usual version of the Fréchet-Kolmogorov theorem, one would

expect that the condition for compactness in space should read

lim
y→0

lim sup
ε→0

∫ T

0

∫

Td

|fε(t, x+ y)− fε(t, x)|2 dxdt = 0. (D.3)

However, by a careful inspection of the proof, (D.1) is sufficient and in fact, in the proof one deduces

(D.1) from (D.3).
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