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Abstract— There has been significant recent interest within the
networking research community to characterize the impact of
mobility on the capacity and delay in mobile ad hoc networks.
In this paper, the fundamental trade-off between the capacity
and delay for a mobile ad hoc network under the Brownian
motion model is studied. It is shown that the 2-hop relaying
scheme proposed by Grossglauser and Tse (2001), while capable
of achieving a per-node throughput of ©(1), incurs an expected
packet delay of Q(logn/c?2), where o2 is the variance parameter
of the Brownian motion model. It is then shown that an attempt
to reduce the delay beyond this value results in the throughput
dropping to its value under static settings. In particular, it
is shown that under a large class of scheduling and relaying
schemes, if the mean packet delay is O(n"‘/a,%), for any a < 0,
then the per-node throughput must be O(1/+/n). This result is in
sharp contrast to other results that have recently been reported
in the literature.

I. INTRODUCTION

Since the seminal work of Gupta and Kumar [1], there has
been a lot of interest in characterizing the capacity region of ad
hoc networks. A major contribution in this direction was made
in [2], where the authors showed that mobility can significantly
increase the traffic carrying capacity of an ad hoc network. In
particular, the authors proposed a 2-hop relaying scheme, and
showed that it can achieve a per-node throughput of ©(1)%.
However, delay related issues were not addressed in [2]. In
fact, it was pointed out in [2] that their 2-hop relaying scheme
could potentially incur an unbounded delay.

There has been substantial recent work on the joint charac-
terization of delay and capacity in mobile ad hoc networks [3]-
[8]. The type of node mobility studied in the literature includes
the so-called i.i.d mobility [4], [7], [8], random way-point
mobility [5], [6], Brownian motion [3], [6], and Markovian
mobility [4]. The results in these works are of a similar flavor.
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IWe use the following notation throughout:

fm) = o(gm)) o tim 1 g
% g(n)
f(n) = O(g(n)) u;gs;p%@o,
fn) =w(g(n) ©  g(n) = o(f(n),
f(n) = (g(n)) & g(n) = O(f(n)),
() = ©g(n) ©  f(n) = O(g(n)) and g(n) = O(f(n)).

It is first shown that one can achieve a per-node throughput of
©(1) with a bounded average delay, using scheduling schemes
that are variants of Grossglauser-Tse 2-hop relaying scheme.
These works then report trade-offs between the capacity and
delay; i.e., the delay can be reduced if one is willing to accept
a lower per-node throughput, and vice versa. The capacity-
delay trade-offs are achieved either by means of introducing
some redundancy in the 2-hop relaying scheme [4]-[6], or
by adjusting the cell size [3], or both [7], [8]. All previous
works in the literature have reported a “smooth” capacity-delay
trade-off under their respective settings. For instance, under the
random way-point mobility model, the authors of [5] report
a scheme that can achieve ©(n®~1) per-node throughput at
O(n*) delay, for any « € [1/2,1]. Hence, by reducing a to
a—e, € > 0, one can reduce the delay by a factor of ©(n°), at
the cost of reducing the capacity by the same factor. Similar
type of smooth trade-offs have been reported under the i.i.d.
mobility model as well [4], [7], [8].

In this paper, we study the trade-off between the capacity
and delay under the Brownian motion model [3], [6]. We
show that there is virtually no trade-off between the capacity
and delay under the Brownian motion model (see Fig. 1). In
particular, we show that under a large class of scheduling and
relaying schemes, in order to achieve a delay of ©(n®/o?2)
for any @ < 0, where o2 is the variance parameter of
Brownian motion, the per-node throughput must be O(1/4/n).
Further, we show that the 2-hop relaying scheme proposed by
Grossglauser and Tse [2], while capable of achieving a per-
node throughput of ©(1), incurs an expected packet delay of
Q(logn/o2). Note that a per-node throughput of ©(1/y/n)
can be achieved in case of static wireless networks, using
multi-hop scheduling scheme [9], [10]. Thus, in order to
achieve any capacity gains by exploiting node motion, one
must be ready to tolerate huge delays, roughly on the order of
O(1/02), which is close to the delay at a per-node throughput
of ©(1). Interestingly, earlier studies of the delay-capacity
trade-off under the Brownian motion model were incorrect in
that they reported the existence of a smooth trade-off [3], [6].

We note that the results of this paper also apply to other
related mobility models such as the Markovian mobility model
of [4]. This is because the Brownian motion model can be
viewed as a limiting case of these other mobility models. Thus,
one would expect the delay-capacity trade-off to be degenerate
under these models as well.

We summarize the main contributions of this paper below:

o We rigorously show that for a large class of schedul-

ing and relaying schemes, the achievable capacity-delay
trade-off under the Brownian motion model is degenerate.
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Fig. 1. The degenerate delay-capacity trade-off under the Brownian motion
model (the solid line) compared with the “smooth” delay-capacity trade-off
under the random way-point mobility model (the dashed line) reported in [5].
We have chosen ¢2 = 1/n and ignored all logarithmic terms in the figure.

More precisely, an attempt to achieve a higher per-node
throughput than that of static ad hoc networks, results in
delays becoming excessively large, roughly on the order
of O(1/02).

« We consider the class of generalized 2-hop relay-
ing schemes and show that they incur a delay of
Q(log (1/an)/02), where a, is related to the concept
of capture neighborhood and forwarding neighborhood
(see Section V). Most scheduling schemes studied in
the literature fall into this class with a,, = O(n®), for
some a < 0. Hence, the delay they incur is no less than
Qlogn/c?). A special case is the 2-hop relaying scheme
of [2] which achieves a per-node throughput of ©(1), and
incurs an expected packet delay of Q(logn/a2).

It is interesting to compare our results for the Brownian
motion model with the results in [5] for the random way-point
mobility model. Note that both these models are continuous
mobility models (i.e., the motion of the nodes is continuous),
and both preserve the uniform distribution of nodes at all
times, i.e., an initial uniform distribution of nodes implies that
the nodes remain uniformly distributed at all times. However,
the capacity-delay relationship under these two models is
significantly different. In particular, there exists a smooth
trade-off between the delay and capacity under the random
way-point mobility model, whereas there is virtually no trade-
off under the Brownian motion model. We believe that this
difference is a revelation of the fundamental difference in the
mobility pattern under these two models. In the random way-
point mobility model, nodes move “purposefully,” i.e., during
each trip, a node has some target position in mind (chosen
uniformly on the sphere) and it moves along a straight-line
path, with no “wandering” at all. Thus, the nodes can cover
large distances in relatively short time under the random way-
point mobility model. This is in contrast to the Brownian
motion model, where the nodes always wander around like
“drunkards,” staying in a local neighborhood for large duration

of time. It is therefore intuitive to believe that reducing the
mobility delay under the Brownian motion model would be
more difficult.

The rest of the paper is organized as follows. In the next
section, we describe our network model and the Brownian
motion model, followed by some basic properties of the
Brownian motion model in Section Ill. We then derive our
main result in Section IV, showing that there is virtually no
trade-off under the Brownian motion model. In Section V, we
analyze the delay performance of generalized 2-hop relaying
schemes. We end this paper with some concluding remarks in
Section VII.

Il. SYSTEM MODEL

We consider an ad hoc network, consisting of n mobile
nodes. For ease of exposition, we consider two different
network shapes: a unit sphere and a unit square in R2. The
choice between the two will be made based on technical
convenience. Note that the scaling laws for capacity and delay
are the same for both the above network shapes. In fact, they
are the same for any connected, closed, and convex network
shape of unit area in R2. The initial distribution of the nodes is
assumed to be uniform. Under the Brownian motion model that
we consider, an initial uniform distribution of nodes implies
that the nodes remain uniformly distributed at all times.

For simplicity, we assume that each node, say node i,
communicates with a single destination node, say node d(i),
and that the mapping ¢ — d(i) is bijective. We assume
a uniform traffic pattern, i.e., each source generates traffic
at the same rate of X\ bits per second for its destination
node. We further assume that the packet arrival processes
at each node is independent of the node mobility process.
The communication between any source-destination pair can
possibly be via multiple other nodes acting as relays. That is,
the source node could, if possible, send a packet directly to
the destination node; or it could forward the packet to one or
more relay nodes; the relay nodes could themselves forward
the packet to other relay nodes; and finally a relay node or the
source node itself could deliver the message to the destination
node.

To model the effect of interference, we use the Protocol
Model of [1]. Let W be the bandwidth of the system in bits
per second. Let X; denote the position of the node i, for
i = l...n, at time ¢. Node ¢ can communicate directly with
another node j at the rate of W bits per second at time ¢, if
and only if the following interference constraint is satisfied:
[1]:

d(XF,X]) > (1+ A)d(X], X]) @)

for every other node k # 4,7 that is simultaneously transmit-
ting. Here, A is some positive number, and d(z,y) denotes
the Euclidean distance between points 2,y € R®. Note that
when the unit of information transmitted is a packet, the
above interference constraint must be satisfied over the entire
duration of the packet transmission from node 4 to node j.
Let S denote the surface of the unit sphere, centered at
the origin. We assume that nodes move independently on S
according to a Brownian motion model as in [6]. (A similar



Brownian motion model on a 2-d torus is also considered in
[3].) It is easier to describe the motion of each node using the
spherical coordinates. Let §; and ¢, denote the colatitude and
longitude, respectively, of the position of a particular node at
timet (0 < 0; <mand 0 < ¢ < 2w). When a node moves
according to the Brownian motion model on the unit sphere
S, the (Itd) stochastic differential equations for the process
(0:, ¢¢) are given by [11]:
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where B, and Bj; are independent standard one-dimensional
Brownian motions (i.e., with variance 1). We call o2 the
variance of Brownian motion described in (2) and (3). We
note that o2 is related to the average time required by a node
to move to different parts of the network. A large value of o2
implies that the node will take a short amount of time to move
to different parts of the network, and vice versa (see Lemma
1). For analysis, it is useful to project each node’s position
on the z-axis. Substituting Y; = cos 8 in (2), and using Itd’s
Lemma, we obtain

dY; = —02Y;dt — 0\/1 — Y2dB,. 4)

Note that Y; is a diffusion process with drift coefficient —o2Y;
and diffusion coefficient o2 (1 — Y;2).

I1l1. BASIC PROPERTIES OF SPHERICAL BROWNIAN
MOTION

In this section, we summarize some basic properties of
spherical Brownian motion, to be used later in the analysis.
We note that all of the following results can also be derived
for a Brownian motion on a 2-d torus (square with a wrap
around), but the derivations are much more tedious.

Let us consider the motion of a single node. Let X,
denote its position at time ¢, which can be represented using
the spherical coordinates (6;,¢;). Let Y; = cosf; be the
projection of the node’s position on the z-axis, and recall that
Y; is governed by (4).

In what follows, we will need the following result from [11]
concerning the expected travel time of Y;:

Lemma 1: Let —1 < a < z < 1. Then, in traveling from z
to a, Y; takes an expected time V,(z) given by:

2 1+z
Va(x)=0—210g<1+a).

A. The First Hitting Time

The first concept we study is the first hitting time. Let 4
be an arbitrary region on the sphere. We have the following
definition:

Definition 1: The first hitting time of A, denoted by T4, is
the first time instant at which X enters 4; i.e., T4 = inf{t >
0:X; € A}

Let IT denote the uniform distribution on the unit sphere S,
and denote by Fr the expectation conditioned on X, being

distributed according to II. Let A = {z € S : ds(z,y) < an},
where y is an arbitrary point on S, dg denotes the shortest
geodesic distance on the sphere, and a,, > 0. For a,, } 0, as
n — oo, we have the following result:

Lemma 2: Ep[Ta] = O(log (1/ay)/02).

Proof: In view of the symmetry of S, taking y to be the
south pole (i.e., the bottom most point of S that corresponds
to 8 = 7) entails no loss of generality. Now, for z € A, we
have E[T4|Xo, = x] = 0. For z£ A, Iet z, denote its z co-
ordinate. Note that the radius of S is 5—~. The first time that
X; enters A is also the first time that Yt travels from z, to
— cos(2a,+/m). Using Lemma 1, we obtain

2 lo . S

o2 &\ 1= cos (2any/m) )"
Integrating over all possible positions of the point z on S, and
using the fact that 2 is uniformly distributed on .S, we obtain

E[T4|Xo = z] =

[
1+ gos

4 sin 6
Bzl = [ 1g<1—cos<2anf>>d9’

and the result follows after straightforward calculations. =

Remark 1: If a, = n®, a < 0, then by Lemma 2, the first
hitting time is always ©(logn/o?2), regardless of the value of
a. Even if we take a,, = /7/4, which means that the set A
covers about half of S, the first hitting time is still ©(1/02).
Hence, the first hitting time changes very little when the size
of the set A is increased. This result reveals the fundamental
difference between the mobility pattern under the Brownian
motion model and that under other mobility models (such as
the i.i.d mobility model [8] and the random way-point mobility
model [5]). In these other models, the first hitting time for a
set A decreases substantially when the size of the set A is
increased. On the other hand, Lemma 2 is not completely
surprising given the fact that, under the Brownian motion
model, the node always wanders around like a “drunkard.”
Therefore, it is very difficult for the node to move towards
any given destination.

B. The First Exit Time

The second concept that we study is the first exit time.

Definition 2: Let A = {z € S : ds(z,y) < a,}. The first
exit time for the region A, denoted by 74, is the first instant
of time at which the Brownian motion started at y (the center
of A) exits A, i.e.,

Ta=1inf{t >0: Xo =y, Xy £ A}
Assuming a,, — 0 as n — oo, we have the following result:
Lemma 3: E[r4] = ©(a?/c?2).

Proof: In view of the symmetry of S, we can set y to
be the north pole of S (i.e., the top most point of S that
corresponds to # = 0). It then follows that E[r4] is the
expected travel time of ¥; from 1 to cos(2a,+/m). Using
Lemma 1 and performing some straightforward calculations,
the result follows. ]

Remark 2: From the above discussion it is clear that under
the Brownian motion model a node requires ©(aZ/o2) time
to move a radial distance of a,,. Thus, the time a Brownian



motion process spends in a region is proportional to the area
of the region. This also points to the well known result that the
Brownian motion paths are nowhere differentiable [12, p380].
Hence, it is inappropriate to define the “velocity” of a node
that is moving in accordance with the Brownian motion model.

IV. THE DEGENERATE CAPACITY-DELAY TRADE-OFF

In this section, we show that there is virtually no trade-off
between the delay and capacity under the Brownian motion
model. Specifically, we will show that whenever the delay
constraint is O(n®/o2) for any a < 0, the per-node capacity
is O(1/+/n). For ease of exposition, we will be using a
planar Brownian motion model in this section. Nonetheless,
as we will argue later, the results also hold under the spherical
Brownian motion model.

Consider n nodes on a unit square centered at the origin,
executing independent two-dimensional Brownian motions
within the square. As will become clear shortly, our results
do not depend on how the boundary condition is handled: the
Brownian mation could either be reflected at the boundary, or
wrap around the boundary (like the 2-d torus model in [3]).

In order to prove the main result of this section, namely the
delay-capacity trade-off under the Brownian motion model is
degenerate, we need some supporting results (Lemma 4 and
Lemma 5 below). The main idea is as follows: If the delay is
O(n®/a2) for a < 0, then we can show that the contribution
of node mobility in the packet delivery is likely very small.
Hence, in order for the packet to be delivered to its destination
node, relaying over order ©(1) distance is required; in which
case, the achievable per-node throughput can be shown to be
0(1/V/n).

We start by showing that, if the delay is O(n®/o2) for a <
0, then the contribution of node mobility in the packet delivery
is likely very small. Let SQ(c,) be the square centered at
the origin with length ¢, (see Fig. 2). Suppose there are
kn, < n nodes, starting at the origin at time 0. Each node
then moves according to a two-dimensional Brownian motion
with variance o2, which can be viewed as the composition of
two mdependent one-dimensional Brownian motion along the
x-axis and the y-axis, respectively, each having a variance of
o2 /2. Let pg, (cn, t,) denote the probability of the event that
one or more of the k,, nodes ever exit the square SQ(c,,) within

time ¢,,. We have the following result concerning py,, (¢p, tr):
Lemma 4: If there exists Ny < oo such that
2
t—” > 802 logn, for n > No, (5)
n
then
lim pg, (cn,tn) = 0.
n—oo

The following Corollary is an immediate consequence of
Lemma 4.
Corollary 1: If

liminf ¢, logn =¢ >0
n—oo

2
. ot

limsup 2" = ¢’ < 400, for some a < 0,
n—00 n*

origin

Fig. 2.
walks.

kn nodes starting the origin and executing independent Brownian

then
lim pyg, (cn,tn) = 0.
n—o0
Remark 3: Corollary 1 shows that, within O(n®/o2) time
(@ < 0), none of the k, nodes can possibly travel a
©(1/logn) distance in any direction.
Proof: [Proof of Lemma 4] Consider an arbitrary node
in the network. Let X; be its position at time ¢. Let B}
and B} denote its x-coordinate and y-coordinate, respectively.
Then, Bf and B} are independent one-dimensional Brownian
motions with variance o2 /2. Let p(c,,t,) be the probability
that this particular node ever exits the square SQ(c,,) within
time ¢,,. Let

inf{t > 0: Bf =c,/2},
inf{t > 0: Bf = —cp/2},
and let 7,5, 7.~ be similarly defined with B} in place of Bf.

Using the union bound, and appealing to the symmetry of
two-dimensional Brownian motion, we obtain

o

> ll>

T

n) SP{r} <tnorr; <t,orrf <t,orr <t}
<AP{7y <tn}.

Further, using the Reflection Principle for one-dimensional
Brownian motion [12, p394], we have

P{r} <t,} =2P{B} >c,/2}.

Since the distribution of Bf is Gaussian with zero mean and
variance o2t, /2, we have,

(o] 1 u2
P{rf <t :2/ ——ex (——) du.
{ = n} \/E;"”m o p B)

Using the inequality,

/jv%_ﬁexp(f)dw_/ Lo (-5

we have,

p(cm

P{r} <t,} <2




Using (5), we have

1 1
P{rf <t,} < —— -21 = —.
{r <ta} < \/27r10gneXp( ogn) n2/2nlogn
Hence,
(c t ) < #
Pien,tn) = n2\/2nlogn’

Finally, since there are &, nodes, each of them moves accord-
ing to a two-dimensional Brownian Motion, we have

4k,
n;tn <kn n;tn < —
P (enstn) < knblen, tn) < S5
Noting that k,, < n, the result follows. [ |

By Corollary 1, if the delay is O(n*/o2) for a < 0, then
the contribution of node mobility in the packet delivery is
likely very small (O(1/logn)). Hence, in order for the packet
to be delivered to its destination node, relaying over order
©(1) distance is required. We now show that if packets are,
on an average, relayed over ©(1) distance, then the per-node
throughput must be O(1/4/n).

Consider a large enough time interval 7. The total num-
ber of packets communicated end-to-end between all source-
destination pairs during the interval is then ¢, AnT, where 1 /¢,
is the number of bits per packet. Let h, be the number of
times the packet p is relayed, and let l,’;, for h = 1,..., hp,
denote the transmission range for the h-th relaying. We have
the following result:

Lemma 5: Suppose that there exists a constant ¢ > 0 such
that, on an average, packets are relayed over a total distance
no less than ¢, i.e.,

>c, (6)

then
A <O(1/v/n).

Proof: We use d(z,y) to denote the Euclidean distance
between positions  and y within the unit square. Let X?
denote the position of node 4, for i = 1, ...,n. Consider nodes
i, j transmitting directly to nodes k and [, respectively, at
time ¢. Then, under the Protocol Model, in order for the
transmissions to be successful, the following inequalities must
hold at the time of transmission:

d(X7,X*) > (1 + A)d(X?, XF)
d(X* X' > 1+ A)d(x7, XH).

Hence,
> Ad(Xt XF).
Similarly,
d(Xt X9 > Ad(X7, XY.
Therefore,

d(X*, X7) >

2 (X, X*) 4 (X7, X)),

That is, disks of radius % times the transmission range cen-
tered at the transmitter are disjoint from each other2. We can
therefore measure the radio resources that each transmission
consumes by the areas of these disjoint disks. Note that the
total area of the square is 1; for each of these disks, at least
1/4 of it must lie inside the unit square; and each relaying of
a packet lasts ﬁax amount of time. Thus,

1 cpAnT hp A 2
1 o > [Elg] < ,WT. @
p=1 h=1
By Cauchy-Schwarz Inequality,
2

cpAnT hy cpAnT hy cpAnT hy
PO IS DI WU N DB L) NG
p=1 h=1 p=1 h=1 p=1 h=1

Further, since there are at most n simultaneous transmissions
at any given time in the network, we have

cpAnT
> by <,WTh. 9)
p=1
Therefore,
cpAnT h
].GC WT ¢ L h\2
Y
p=1 h=1

lc,, AnT hy

(using (7))

2

st

h=1 .

> et ] (using (8))

5]
p=1

(epAnTc)?

2 pWTn

p=1

(using (6) and (9)).

Hence,

ro [0 1
=V rA2e2\/n
[ |
We are now ready to prove the main result of this section.
We first define a general class of scheduling polices that we
plan to study. Note that at each time instant and for each packet
p that has not been delivered to its destination node yet, a
scheduling policy essentially needs to make the following two
types of decisions:

« Replication: The scheduler needs to decide whether to
replicate the packet p to other relay nodes that do not
have the packet yet. If yes, the scheduler needs to decide
how to schedule radio transmissions to forward the packet
p to these new relay nodes. Note that by replication we
mean packet duplication; i.e., creating redundant copies
of the packet. This is different from capture (to be defined
next) where the number of copies of the packet does not
increase.

« Capture: The scheduler needs to decide whether to de-
liver the packet p to the destination node immediately,

2A similar observation is used in [1] except that they take a receiver point
of view.



possibly using multi-hop transmission. If yes, the sched-
uler needs to choose one relay node (possibly the source)
that has a copy of packet p and schedule radio transmis-
sions to forward the packet to the destination node. When
this happens successfully, we say that the chosen relay
node has successfully captured the destination node of
packet p, or a successful capture has occurred for the
packet p.

Remark 4: Although our model does allow for other less in-
tuitive alternatives, in a typical scheduling scheme a successful
capture usually occurs when a relay node holding the packet
moves within a small neighborhood around the destination
node, so that fewer resources are needed to forward the packet
to the destination node. For example, a relay node could enter
a disk of a certain radius around the destination node, or a
relay node could enter the same cell as the destination node.
We call such an area the capture neighborhood. The purpose
of replication is to reduce the time before a successful capture
occurs. With more nodes holding the packet p, the likelihood
of one of them capturing the destination node sooner is higher.

In this paper, we restrict our study to the class of scheduling
schemes that satisfy the following assumption:

Assumption A:

« Only the source of a packet is allowed to replicate the
packet. That is, relay nodes holding a packet are not
allowed to replicate it further.

Remark 5: Note that almost all scheduling schemes that
have been proposed in the literature satisfy Assumption A [2]-
[8].

It is worthwhile to elaborate on Assumption A, since it may
seem restrictive at first sight. First, observe that the notions of
replication and relaying are different, even though both involve
forwarding packets to other relay nodes. For example, when
node i decides to replicate the packet p to node j, node ¢
can either transmit the packet directly to node j, or use multi-
hop relaying; i.e., node ¢ can forward the packet to another
node &, and let node & forward the packet to node j. (Node
k may also keep a copy of the packet p, in which case, both
nodes k£ and j are considered to receive the packet due to
same replication decision initiated by node 4.) In this example,
although both nodes ¢ and k£ forward the packet p to other
nodes, their roles are different. Node 4 is the one who initiates
the replication, while node k is just passively following the
instruction of node 4 to relay the packet to node 5. Thus, we see
that Assumption A only prohibits relay nodes from initiating
a replication. In particular, multi-hop relaying is still allowed
under Assumption A. (Multi-hop relaying is also allowed for
the relay-to-destination communication, i.e., capture.)

If we attempt to develop distributed scheduling schemes,
where nodes make replication decisions and capture decisions
without any knowledge of the decisions at other nodes, then
restricting the replication decisions to the source node is a
natural way to control the number of copies of a packet in
the system. Note that excessive redundancy can reduce the
system throughput substantially. The source node of a packet
p is in the best position to control both the total number of
replications for the packet and the number of relay nodes

getting the packet in each replication. If the relay nodes were
allowed to replicate, then additional cooperation among the
relay nodes would likely be required (see, for example, the
scheme in [13], where the relay nodes know the location of
the static destination node, and also have some knowledge
of the future direction of other nodes’ movement, based on
which they can cooperate to make selective and more efficient
replication toward the destination node) in order to limit the
number of replicas of a packet.

We can prove the following main result:

Proposition 1: Let D denote the expected delay averaged
over all packets and all source-destination pairs, and let A
denote the throughput of each source-destination pair. For any
scheduling scheme that satisfies Assumption A, if

D <0(n*/ol),a <0,
then

A <O0(1/vn).

Proof: Consider squares A and B of length 1/4, centered
at (—1/4,1/4) and (1/4,—1/4), respectively (see Fig. 3).
Since the packet arrivals are independent of the positions of
mobile nodes, there will be a constant fraction f, of packets
that have their source nodes in square A and destination nodes
in square B, at the time of arrival. (If the stationary distribution
of nodes positions is uniform, then fo = (1)* = 1/256.
Otherwise, fo is still a positive constant independent of n.)
Let &5 denote this set of packets. In order to ensure that
D < 0O(n*/o2), the delay for packets in ® 45 has to be
O(n%/c2). Precisely, since D < O(n*/o2), there exists some
Np > 0 and ¢; > 0, such that

D < ¢in®/o?, when n > Ny. (10)

Therefore, the delay of at least half of the packets in ® 45
must be no greater than

_ 2¢1n”
fo 0%’

(Otherwise, the delay of the other half of the packets in ® 45
must be greater than ¢,,. Because this other half contributes to
at least fo/2 fraction of all packets, the condition (10) will be
violated.) Let <I>?4]3 denote the set of packets in ® 45 whose
delay is no greater than t,. Consider an arbitrary packet p
which is in ®% . Let S, and D, denote its source node and
destination node, respectively. Fig. 4 shows a typical packet
delivery. The source nodes S, moves from position Sy to Uy,
and replicates the packet p to a relay node, say =1, at position
V1, possibly using multi-hop transmission. The node r; then
moves independently of S,. The source node moves on to
position U, where it replicates the packet p to one more relay
node, say r, positioned at V2, and so on. It is also possible
to replicate the packet to more than one relay node at the
same time (for example, we can take U; = Us if the source
node replicates the packet to r; and r» at the same time).
At time t < t,, a successful capture occurs, as one of the
relay nodes holding the packet p (node r, in the case shown
in Fig. 4) decides to forward the packet to its destination
node D,, which has moved from its initial position Dg to
the position D, at time ¢. Let k,, denote the total number of

tn
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Fig. 3. There exists a constant fraction of packets that originate from nodes
in A and are destined to nodes in B.

———  source or destination node
relay node
replication / capture

Fig. 4. How a typical packet p is delivered.

relay nodes that hold packet p in this process, and let r, for
k =1,2,...,k,, denote the k-th relay node. Let U, and Vj
denote the position of the source node .S, and the position of
the relay node ry, respectively, at time of replication. Let Wy
denote the position of the relay node r;, at the time of capture
(see Fig. 5). Since the direct straight-line path is always the
shortest path connecting any two points, we have, for any &,

d(So, Ux) + d(Uk, Vi) + d(Vi,, Wi) + d(Wy, D) + d(Do, D)
> d(So, Do).

Hence,

d(Ug, V&) + d(W4, D)

> d(So, Do) — d(Dqg, D) — d(So, U) — d(Vie, W). (11)

Since Sp and Dy are in the squares A and B, respectively,

d(So, Do) > ?

Further, each of the terms d(Dg,D), d(Sy,Ux), and
d(Vy,, Wy,), corresponds to the movement of a different node.
There are at most n nodes involved in this process. By setting
¢n, = 1/logn in Corollary 1, we can see that, with probability
approaching 1 as n — oo, all of the last three terms in (11)
are no greater than v/2/logn, for all k. Therefore,

V2 V2
d d D)>— —
(Uk7Vk)+ (Wka )_ 4 310gn

for large enough n. Finally, let Wy denote the position of the

> 1/4

Do

source or destination node
relay node
replication / capture

Fig. 5. The relay node 7.

source node at time ¢. Then using a similar argument,
d(WOaD) Z d(SOaDO) - d(DaDO) - d(SOa WO) 2 1/4

This shows that for each packet p in Y 5, the total distance
that the packet p has to be relayed is at least 1/4. Since
@9, ;; contributes to at least fo/2 fraction of all packets, on an
average each packet must be relayed over a distance no less
than fo/8 > 0. Hence, by Lemma 5, the per-node throughput
A must be no larger than O(1/+/n). [ |

Remark 6: For the ease of exposition, we have shown the
above results for Brownian motion on a plane. However, it is
not difficult to see that the argument in Proposition 1 applies
to Brownian motion on a unit sphere as well. In particular, in
Lemma 4, if we choose ¢, = ¢/ logn, the size of the square
SQ(e¢p,) diminishes to zero as n — oc. Hence, the difference
between such a square on a plane and that on a unit sphere
vanishes. Therefore, both Corollary 1 and Proposition 1 hold
for Brownian motion on a unit sphere as well.

The Degenerate Tradeoff: Proposition 1 shows that the
capacity-delay trade-off under the Brownian motion model
is degenerate: For delay less than O(n%/o2),a < 0, the
per-node throughput is at most O(1/4/n). Since a per-node
throughput of ©(1/4/n) can be achieved under the static
settings, using multi-hop relaying [1], our result shows that
whenever the delay is constrained to be less than O(n®/o2)
for some a < 1, Brownian mobility does not result in any
improvement of the throughput. Further, since the packet
transmissions are usually carried out at a much faster time-
scale than the node mobility, one could view the delay under
the multi-hop scheduling (see [1]) as being almost zero. Earlier
studies have shown that it is possible to achieve ©(1) per-node
throughput at roughly ©(1/02) delay under the Brownian
motion model. Obviously, ©(1) is an upper bound on the per-
node capacity (under our network model). Hence, if we ignore
the logarithmic terms, the capacity-delay trade-off under the
Brownian motion model degenerates into two points: one can
either achieve a per-node throughput of ©(1/+/n) at almost no
delay, or a per-node throughput of ©(1) at roughly ©(1/02)
delay, but nothing in between! Finally, although Proposition 1
is shown under the Brownian motion model, it is not difficult
to see that the result also applies to the Markovian mobility
model in [4]. This is because as n — oo, the difference
between these mobility models vanishes.

The result of Proposition 1 is in sharp contrast to the
results reported in existing works [3], [6], where it is claimed
that certain schemes can provide a smooth trade-off between



the capacity and delay. Since the schemes in [3], [6] satisfy
Assumption A, it is clear that they cannot provide a smooth
delay-capacity trade-off.

V. DELAY UNDER GENERALIZED TWO-HOP RELAYING
SCHEMES

In Section 1V, we have established the fundamental delay-
capacity trade-off under the Brownian motion model for a
wide class of scheduling schemes. We have shown that in
case of a scheduling scheme that satisfies Assumption A, in
order for the per-node throughput to be Q(1/+/n), the delay
must be Q(n®/o2) for all @ < 0. . In this section, we study
the delay performance of a more restricted set of scheduling
schemes. Our interest in this class of schemes stems from
the fact that they have been used in the earlier studies
for achieving Q(1/+/n) per-node throughput, under various
mobility models. We now investigate their delay performance
under the Brownian motion model.

These schemes are generalizations of the 2-hop relaying
scheme of Grossglauser and Tse [2]. Hence, we refer to
them as generalized 2-hop relaying schemes. Compared with
the more general class of schemes that we considered in
Section 1V, these schemes have one additional restriction: For
each packet p, the source node is only allowed to replicate the
packet p to one relay node (denoted by R(p)). Other than this
restriction, the generalized 2-hop relaying schemes still have
substantial flexibility in scheduling packet transmissions. For
example, in the replication phase, the scheduler still decides
when to replicate the packet, and how (e.g., which relay node
to replicate the packet p to, and how to schedule the packet
transmissions from the source node to the chosen relay node
R(p), possibly using multi-hop transmissions). Similarly, in
the capture phase, the scheduler decides when and how to
relay the packet p to the destination node, from either the
source node or the chosen relay node R(p), possibly using
multi-hop transmissions.

To ensure that fewer radio resources are consumed, the
replication phase (correspondingly, capture phase) typically
occurs when the chosen relay node is within a small neigh-
borhood around the source node (correspondingly, destination
node). For example, a relay node could either enter a disk
of a certain radius around the source node (or destination
node), or a relay node could enter the same cell as the source
node (or destination node) in case the network is divided
into cells. We call such an area around the source node or
the destination node as the replication neighborhood or the
capture neighborhood, respectively. We further assume that
the replication neighborhood and the capture neighborhood
are both contained in disks of radius a,, centered at the source
node and the destination node, respectively. Again, to ensure
that fewer radio resources are consumed, a,, would typically
be o(1).

Remark 7: Note that Scheme 2 and Scheme 3(b) in [3] are
both special cases of the generalized 2-hop relaying schemes
that we consider in this section.

We now give a lower bound on the average packet delay
under the generalized 2-hop relaying schemes.

Proposition 2: If the replication neighborhood and the cap-
ture neighborhood under a generalized 2-hop relaying scheme
can be contained inside a disk of radius a,, around the source
node and destination node, respectively, and a,, = o(1), then
the average packet delay under the given scheduling scheme
must be Q(log (1/a,)/d?).

Proof: When a,, = o(1), most packets will have to be
delivered through a relay node. Consider such a random packet
that arrives at the source node. Its delay must be no less
than the time that it takes for the relay node to move from
somewhere within distance a,, around the source node, to
somewhere within distance a,, around the destination node.
Since the packet arrival processes are independent of the node
mobility processes, the source node and destination node will
be distributed uniformly inside the network, at the time of
packet arrival. Therefore, the delay for the packet will be no
less than the time that it takes for two nodes placed uniformly
inside the network, to come within a distance of 2a, from
each other. Therefore, in view of Lemma 2, the result follows.

[ |

Remark 8: Note that Proposition 2 holds even if the repli-
cation neighborhood and capture neighborhood are different
in shape or size. Further, if a,, = O(n®) for some a < 0,
then the delay under the generalized 2-hop relaying scheme is

Q(logn/a2). (12)

The above result provides a lower bound on the average

packet delay under any generalized 2-hop relaying scheme.

We have not provided the analysis for the upper bound

on delay. Using the methodology in [3] and making some

technical assumptions, it can be shown that the delay is in
fact ©(logn/a2).

V1. DIScUSSION OF RELATED WORKS

In this paper, we have investigated the capacity-delay trade-
off for mobile ad hoc networks under the Brownian motion
model. We showed that the capacity-delay trade-off under the
Brownian motion model is degenerate. For delays smaller than
O(n®/a2) for some a < 0, the per-node throughput is at
most O(1/+/n), while a per-node throughput of ©(1) can be
obtained while incuring a delay of ©(logn/a2).

We would like to point out that the results of this paper are
asymptotic in nature, and having virtually no tradeoff between
the delay and capacity, does not rule out the possibility of
some limited trade-off between the delay and capacity. In case
of finite systems, even the constants before the order results
can be significant. Moreover, our results do not rule out the
possibility of having an average packet delay of ©(n/k,),
where k, = o(n®) for all & > 0, and a capacity of w(1/y/n).

Earlier work on delay-capacity trade-off under the Brow-
nian motion model can be found in [3], [6]. Although, both
these works consider the Brownian motion model, the delay-
capacity trade-offs reported in these works differ substantially
from ours. In particular, we showed that the achievable delay-
capacity trade-off under the Brownian motion model is degen-
erate, while both [3] and [6] report smooth trade-offs. We now
briefly point out the reasons for this discrepancy.



We first look at the results in [3]. The errors in [3] follow
from an incorrect embedding of the Brownian motion model
to a random walk model. More precisely, the authors divide

the unit torus into —4A— x —A— cells of equal size, where
Vva(n) \/a(n)_ q
1/n < a(n) < 1. They then consider a random walk model

on this grid with a jump time of ©(y/a(n/v(n)), where
v(n) is defined in [3] as the speed of nodes. However, from
Remark 2, it follows that if the underlying mobility model
is a Brownian motion model on a torus then the jump times
should be proportional to the area a(n) of the cells, rather
than y/a(n). Furthermore, there is also incorrect, by a factor
of logn, estimation of the delay in [3]. A detailed discussion
of these issues can be found in our technical report [14].

This paper also corrects the previously reported results in
[6]. In [6], a smooth delay-capacity trade-off is reported as the
number of relay nodes per packet is varied. The derivation in
[6] assumes that the paths of all mobile relays are independent
of each other. This assumption, however, does not hold since
all relay nodes receive the packet from the same source
node, and hence the starting points of their paths are highly
correlated to each other. Indeed, by Lemma 4, even if the
source node replicates the packet to ©(n) relay nodes, the
delay is not reduced much, i.e., it is still close to ©(1/02).
This is in contrast to the random way-point mobility model
(which is also studied in [6]), where the correlation between
the paths of various relay nodes holding the packet dies out
in a very short time, allowing a smooth trade-off between the
delay and capacity [5].

VI1lI. CONCLUDING REMARKS

In this paper, we studied the fundamental trade-off between
the delay and capacity under the Brownian motion model.
We have shown that the capacity-delay trade-off under the
Brownian motion model is degenerate: one can achieve a per-
node throughput of ©(1) with Q(logn/c2) delay (using 2-
hop relaying), but even when the delay is constrained to be
O(n®/a2) for some a < 0, one can only achieve a per-node
throughput of ©(1/+/r), which is the same as the achievable
throughput under the static setting.

This paper, along with the related results reported in the
past [3]-[8], provides a much better understanding of the
relationship between the delay and capacity in mobile ad hoc
networks. Interestingly, it turns out the delay-capacity trade-
off critically depends on the underlying mobility model. As
we have shown in this paper, the trade-off is degenerate under
the Brownian motion model. On the other hand, under the
i.i.d. mobility model, we have shown in [8] that the trade-off
between the per-node throughput A and delay D satisfies:

A<0 (13/ D logn>
n

for ©(1) < D < ©O(n), and the above upper bound is
achievable up to a logarithmic factor, which indicates that
the bound is tight. (Note that under the i.i.d. mobility model,
each node randomly picks its position at each time slot,
independently of either the other nodes’ positions or its own
position in the past.) Finally, under the random way-point
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Fig. 6. The delay-capacity trade-offs under the Brownian motion model (the
solid line), the random way-point mobility model (the dashed line), and the
i.i.d. mobility model (the dash-dotted line). We have chosen v, = o, =
1/+/m and ignored all logarithmic terms in the figure.

mobility model, we have shown in [5], [6] that the following
delay-capacity trade-off can be achieved:

A= © (D_v)
vn

for O(1/v,) < D < ©(y/n/vy,), where v, is the speed of the
nodes. (Note that under the random way-point mobility model,
each node picks a random destination and moves toward it
with speed v,,. Once the node reaches that destination, it then
picks another destination randomly and moves toward it, and
the process continues.) In Fig. 6, we illustrate the difference
in the three delay-capacity trade-offs we have obtained. In this
figure, we have chosen v, = o,, = 1/4/n. The reason for such
choice of v,, and o, is to ensure that the contact time (i.e.,
the time for two nodes to remain neighbors of each other) is
©(1) under all three mobility models. As we can see, a smooth
trade-off exists for any value of delay for the i.i.d. mobility
model, while a smooth trade-off only exists for delay between
©(y/n) and ©(n) under the random way-point mobility model,
and the trade-off degenerates to only two points under the
Brownian motion model.

Looking at these results, it is natural to ask: What will the
delay-capacity trade-off be for a real mobile wireless network?
Will the trade-off in real networks be one of these three
types? Or will it be a combination of these three? A closely
related question is whether these trade-offs (along with their
respective mobility models) represent three distinct cases, or
they are part of a continuous range of delay-capacity trade-
offs. These and other issues are addressed elsewhere [15].
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