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Abstract
An outstanding problem in Earth science is understanding the method of
transport of magma in the Earth’s mantle. Two proposed methods for this
transport are percolation through porous rock and flow up conduits. Under
reasonable assumptions and simplifications, both means of transport can be
described by a class of degenerate nonlinear dispersive partial differential
equations of the form:

φt + (φn)z − (φn(φ−mφt )z)z = 0,

where φ(z, 0) > 0 and φ(z, t) → 1 as z → ±∞.
Although we treat arbitrary n and m, the exponents are physically expected

to be between 2 and 5 and 0 and 1, respectively.
In the case of percolation, the magma moves via the buoyant ascent of a

less dense phase, treated as a fluid, through a denser, porous phase, treated as
a matrix. In contrast to classical porous media problems where the matrix is
fixed and the fluid is compressible, here the matrix is deformable, with a viscous
constitutive relation, and the fluid is incompressible. Moreover, the matrix is
modelled as a second, immiscible, compressible fluid to mimic the process of
dilation of the pores. Flow via a conduit is modelled as a viscously deformable
pipe of magma, fed from below.

Analogue and numerical experiments suggest that these equations behave
akin to KdV and BBM; initial conditions evolve into a collection of solitary
waves and dispersive radiation. As φ → 0, the equations become degenerate.
A general local well-posedness existence theory is given for a physical class of
data (roughly H 1) via fixed point methods. The strategy requires positive lower
bounds on φ(z, t). The key to global existence is the persistence of these bounds
for all time. Furthermore, we construct a Lyapunov energy functional, which
is locally convex about the uniform porosity state, φ ≡ 1, and prove (global

0951-7715/07/010021+29$30.00 © 2007 IOP Publishing Ltd and London Mathematical Society Printed in the UK 21

http://dx.doi.org/10.1088/0951-7715/20/1/003
mailto: grs2103@columbia.edu
mailto: mspieg@ldeo.columbia.edu
mailto: miw2103@columbia.edu
http://stacks.iop.org/no/20/21


22 G Simpson et al

in time) nonlinear dynamic stability of the uniform state for any m and n. For
data which are large perturbations of the uniform state, we prove global in time
well-posedness for restricted ranges of m and n. This includes, for example,
the case n = 4, m = 0, where an appropriate uniform in time lower global on
φ can be proved using the conservation laws. We compare the dynamics with
that of other problems and discuss open questions concerning a larger range of
exponents, for which we conjecture global existence.

Mathematics Subject Classification: 74J30, 35A05

(Some figures in this article are in colour only in the electronic version)

1. Introduction and overview

An outstanding problem in Earth science is understanding the method of transport of magma
in the Earth’s mantle. One proposed method is buoyant ascent of the melt through a viscously
deformable porous medium. Such a model may be visualized in figure 1(a), where the
magma flows through tubules along the grain boundaries of the solid rock. Equations for
this process were derived independently in [McK84, SS84, SS86]. In both derivations, the
system is modelled using a volume averaged two phase flow, one for the melt and one for the
matrix, at an extremely low Reynolds number. This amounts to having two conservation of
mass equations coupled to two force balance equations,

∂t (ρfφ) + ∇ · (ρfφ�vf) = 0,

∂t (ρs(1 − φ)) + ∇ · (ρs(1 − φ)�vs) = 0,

∇ · (φσf) = ρfφ �g + �I ,

∇ · ((1 − φ)σs) = ρs(1 − φ)�g − �I .

The variables are defined in table 1. The fluid rheology is that of an incompressible inviscid
fluid while the solid rheology is treated as viscously compressible fluid. We refer the
reader to [McK84,SS84,SS86,BR86,NM92]] for expositions on these relationships and their
simplifications.

When reduced to 1D, as in [SS84, SS86, BR86, BL89, Spi93a, Spi93b], this transport can
be described by a class of degenerate nonlinear dispersive partial differential equations of the
form:

(φm − ∂zφ
n∂z)[φ

−mφt ] = −(φn)z. (1.1)

This can be rewritten as the coupled system,

φt = φmu, (1.2)

(φm − ∂zφ
n∂z)u = −(φn)z. (1.3)

The exponent n corresponds to the power in the permeability–porosity relationship

K ∝ φn,

while the exponent m corresponds to the power in the bulk viscosity–porosity relationship

η ∝ 1

φm
.

In [SS84, SS86], the authors conclude that the parameter space for these exponents is
2 � n � 5 and 0 � m � 1. In [McK84], the bulk viscosity is taken to be constant,
corresponding to m = 0 and 2 � n � 3. Several papers [BR86, BL89, Spi93b] have focused
on the case n = 3 and m = 0.
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(a) (b)

Figure 1. (a) A single Olivine crystal and the channels along which molten rock flows, from [ZH03].
(b) Fluid flow up a viscously deformable pipe.

Table 1. Viscously deformable media variables.

Parameter Symbol

Porosity φ

Fluid density ρf

Solid density ρs

Fluid velocity �vf

Solid velocity �vs

Fluid stress σf

Solid stress σs

Gravitational vector �g
Interphase force �I

A second important mechanism for magma migration is that of flow through a viscously
deformable pipe embedded in a viscous matrix, as takes place in the thermal plumes of the
convecting mantle. This is pictured in figure 1(b). The primitive equations [OC86]

∂tA = −∂zQ,

Q = A2

8πηL
(�ρg + ηM∂z(A

−1∂zQ)),

whose variables are defined in table 2, give rise to an equation of the form (1.1), with n = 2
and m = 1, replacing φ with A. Analogue laboratory models for this mechanism were studied
in [OC86,WH88], verifying the theory by demonstrating the appearance and interaction solitary
waves, with measurements consistent with the equations. Throughout this paper, we will use
φ as the dependent variable.

Upon inspection, it is not clear what the behaviour of (1.1) is. It has both a nonlinear
forcing term and a nonlinear dispersive term, in addition to being degenerate and nonlocal.
The degeneracy is evident in (1.3), where the invertibility and ellipticity of the operator break
down as φ → 0. This mathematical challenge is at the heart of modelling the underlying
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Table 2. Conduit flow variables.

Parameter Symbol

Areal region of pipe A

Flux up pipe Q

Fluid viscosity ηL

Matrix viscosity ηM

Fluid-matrix density difference �ρ

Gravitational constant g

physical system; can the medium dry out in the case of porous flow or can the conduits split
in the case of pipe flow? Are there upper and lower bounds for physical variables such as
porosity?

Previous studies [BR86, BL89, TSS90, TS88, NM91, NM94, NM95, NM99] of the
equations did not successfully address the issue of well-posedness and the related issue of
a lower bound on φ, the (scaled) melt fraction, although [TSS90] did point out several reasons
why solutions for which φ went to zero would be non-physical.

Degenerate nonlinear parabolic partial differential equations are an important class of
equations arising in porous media flow (with a fixed matrix) [Aro86] and in geometric flows,
e.g. motion of a surface by its local curvature [GH86]. However, the study of degenerate
nonlinear dispersive equations appears to be wide open. Our equations bear some resemblance
to those considered in [RH93], known to admit compactly supported solitary waves. We can
see the dispersive character of the equation by linearizing about some background porosity φ0.
The linearized equation

φt − nφn−1
0 − φn−m

0 φzzt = 0

has the dispersion relation

ω(k) = nφn−1
0 k

1 + φn−m
0 k2

with group velocity

ω′(k) = n
φn−1

0 − φ2n−m−1
0 k2

(1 + φn−m
0 k2)2

.

When φ0 = 1, which will be the background value of φ in our analysis, we see the similarity
between this equation and the regularized long wave (RLW) equation, also known as the
Benjamin–Bona–Mahoney (BBM) equation

∂tu + ∂xu + u∂xu − ∂2
x ∂tu = 0,

which has a linearized (about zero) dispersion relation

ω(k) = k

1 + k2

with group velocity

ω′(k) = 1 − k2

(1 + k2)2
.

The BBM equation [Per66,BBM72] was proposed as an alternative to the Korteweg–de Vries
(KdV) equation and is asymptotically equivalent to KdV in the regime of small amplitude
long waves. Like KdV, BBM admits stable solitary waves, although it is not completely
integrable. The magma equations also have solitary waves, which play a central role in the
general dynamics; see, for example [SS84, SSJ86, SS86, BR86, BL89, Spi93a, Spi93b, OC86,
TSS90, TS88, NM91]. In this paper we focus on well-posedness questions and stability of
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Figure 2. The trapezoid shows the permeability–viscosity pairs of exponents, (n, m), for which
we have global existence for data of arbitrarily large H 1 norm. The line n + 3m = 4 bounds the
region for which we can ensure a lower bound, while the line n + 3m = 6 bounds the region for
which we can ensure an upper bound. The line n + m = 3 is a technical constraint. For all other
(n, m) pairs, we have global existence for data near the uniform state of 1. Points (3,0) and (2,1)
were identified in [McK84] and [SSJ86], respectively.

the uniform state. In a forthcoming paper, we shall treat the question of stability of small
amplitude solitary waves [SSW].

The main results of this paper are the following.

(1) A local well-posedness theory is established for arbitrary initial conditions, φ(z, 0), in
a physically natural set of functions, X , of finite ‘energy’, E . The time-interval of
existence, and therefore global well-posedness, is shown to be controlled by ‖φ − 1‖H 1

and minz∈R φ(z, t). See theorem 2.12.
(2) We obtain ranges of material exponents, (m, n), for which global well-posedness for

arbitrary data in X holds. See corollaries 4.6 and 5.7, along with figure 2. This range
of parameters includes a set of obviously degenerate cases (such as m = 0 and n = 4),
as noted in corollary 5.8 and discussed in section 6. The important case of McKenzie’s
equation, m = 0 and n = 3, remains open. We conjecture global well-posedness.

(3) For any values of m and n, we prove that the uniform porosity state, φ(z, t) ≡ 1,
is shown to be nonlinearly stable in corollary 4.7. The key step is to show that an
appropriately constructed functional, defined on X , is locally convex about the uniform
state. This strategy has been used in many Hamiltonian and nonlinear wave problems,
see [Arn65, Ben72, HMRW85, Wei86].

We proceed as follows. In section 2 we exhibit local well-posedness in Hk(R) spaces
for k = 1, 2, . . .. In section 3 we discuss certain conserved quantities associated with the
equations. Section 3 addresses certain properties of a conserved functional and the nonlinear
stability of the uniform background state. In section 4 we prove global well-posedness for
data near the uniform background state, and in section 5 we show global well-posedness for
large data for a certain subset of the equations. In section 6 we make comparisons with other
equations and highlight some of the open questions.

Throughout this paper, we shall use the following notation.

(i) Hk denotes the Sobolev space Wk,2(R) of functions with L2 weak derivatives up to order
k. k will always denote an integer, k � 1.

(ii) Ck,α denotes the space functions with derivatives up to order k that are Hölder continuous
with exponent α.
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(iii) All integrals are taken over R in the spatial variable or on some finite interval [0, t] in the
temporal variable.

(iv) Generic constants are denoted by C, C ′, C ′′ . . . or D, D′, . . .
(v) The dependence of a solution φ of equation (1.1) on its data may be explicitly expressed as

φ(z, t; φ0),

where φ0 is the initial condition.

2. Local in time well-posedness in Hk, k � 1

In this section we consider the well-posedness of the initial value problem for (1.1), existence,
uniqueness and continuous dependence with respect to the data. Formally, solving (1.3) for u,
we substitute this solution into (1.2) and integrate with respect to t . Applying an appropriate
initial condition for φ(z, t), we obtain


[φ] = φ0 +
∫ t

0
φmL−1

φ [−(φn)z] ds, (2.1)

Lφu = −(φnuz)z + φmu. (2.2)

The mapping 
 is highly nonlinear, in no small part due to the dependence of the nonlocal
operator, Lφ , on φ. Our strategy is to construct solutions of the initial value problem for
(1.2)–(1.3) by seeking a fixed point of the mapping φ 
→ 
[φ] in an appropriate metric
space of functions. In particular, we shall apply the contraction mapping principle [Rud76]
to 
, restricted to an appropriately chosen closed subset of functions, X k

R,ε,T , for which
φ(z, t)− 1 ∈ H 1. The set X k

R,ε,T is constructed so that iteration of 
 on it preserves ellipticity
and invertibility properties of Lφ .

Definition 2.1.

(i) Given 1 � ε > 0, R, T > 0, k � 1, we define

X k
R,ε,T =

{
φ : φ − 1 ∈ C1([0, T ], Hk(R)) :

sup
t<T

‖φ(·, t) − 1‖Hk � R, sup
t<T

‖φ(·, t)−1‖∞ � ε−1
}

(2.3)

The sets X k
R,ε,T obviously include the constant solution, φ = 1, so they are nonempty and

closed sets.
(a) A metric on X k

R,ε,T is defined by

[φ − ψ]k(T ) = sup
t<T

‖φ(·, t) − ψ(·, t)‖Hk . (2.4)

We note that X is a metric space, not a function space; it is centered about the constant
solution 1.

Definition 2.2. We call φ a local solution of (1.1) with data φ0 on the time interval [0, T ], if
φ > 0, φ − 1 ∈ Hk and φ = 
[φ].

Theorem 2.3 (Local well-posedness). Let 1 � ε > 0, R > 0 and k � 1 . Then, for T > 0
sufficiently small, 
 is a contraction on X k

R,ε,T with respect to the metric (2.4) and hence
admits a unique fixed point. Thus, the initial value problem for (1.2)–(1.3) has a unique local
solution. Moreover, the solution depends continuously on the initial data.
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Remarks on notation. Generic constants, C, may depend on R, ε, T and k, along with the two
parameters in the equation n and m. While the dependence on n and m will be suppressed in
our proofs, the reader should be aware of it and the change in the behaviour of C as ε ↘ 0 and
R ↗ ∞ as n and m vary. In the cases of geophysical interest, where n > 2 and 0 < m < 1,
constants may behave like

C → ∞, as ε ↘ 0 and R ↗ ∞.

Thus, ensuring that φ stays away from zero is critical to our problem as it evolves in time. In
the following, unless otherwise specified, k � 1, R > 0 and 1 � ε > 0 are arbitrary. We now
embark on setting up the proof of theorem 2.3, which requires several technical steps.

Proposition 2.4. Let R, ε, T > 0 and k � 1. For all φ ∈ X k
R,ε,T

(a) φ ∈ Ck−1,1/2(R),
(b) φ � ε,
(c) there exist Mj < ∞ such that ‖∂j

z φ‖∞ � Mj for j � k − 1. The Mj depend on R, ε

and k.

Proof. This follows from Sobolev inequalities [Eva02] and the definition of X k
R,ε,T . �

Also of use is that the Sobolev spaces Hk(R) form an algebra and admit the following
inequality, see [AF03].

Lemma 2.5. Assume k > 1/2. If f, g ∈ Hk(R), then

‖fg‖Hk � Ck‖f ‖Hk‖g‖Hk . (2.5)

The nonlinearity in the magma equations appears as a power of the dependent variable. It will
be useful to note the following property of these functions.

Proposition 2.6. Let 1 � ε > 0, R, T > 0 and k � 1. For all p ∈ R there exists a Lipschitz
constant C = C(R, ε, k, p), such that for φ, ψ ∈ X k

R,ε,T ,

‖φ(·, t1)p − ψ(·, t2)p‖Hk � C‖φ(·, t1) − ψ(·, t2)‖Hk

for t1, t2 � T .

Proof. This follows from the bounds of proposition 2.4, lemma 2.5 and the property that
x 
→ xp is C∞ for x bounded away from zero. �

Proposition 2.7.

(i) Let R, ε, T > 0 and k � 1. Let φ ∈ X k
R,ε,T and f ∈ L2. Then, Lφ(·,t)u = f has a unique

solution u ∈ H 1(R) for t ∈ [0, T ]. Moreover, there exists a constant C = C(R, ε), such
that

‖u(·, t)‖H 1 � C‖f ‖L2 . (2.6)

(ii) Furthermore, if φ ∈ X k+2
R,ε,T and f ∈ Hk , then u(·, t)Hk+2 ∈, then there exists a constant

C = C(R, ε, k) such that

‖u‖Hk+2 � C‖f ‖Hk . (2.7)
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Proof. See [Eva02, Joh82] for details. We outline the arguments.

(i) Since φ ∈ X k
R,ε,T , Lφ is self-adjoint and positive definite. The bilinear form 〈U, V 〉φ =∫

φnUV dz +
∫

φm∂zU∂zV dz defines inner product on H 1. By the Riesz representation
theorem there exists a unique H 1 solution, u(·, t), which satisfies 〈V, u(·, t)〉φ = ∫

Vf dz

for all V ∈ H 1 . Clearly, (2.6) holds.
(ii) Higher regularity may be deduced by first proving it for the case k = 0 and then applying

induction. The k = 0 case is proved by noting that the regularity of φ implies the
coefficients will be Ck+1 and studying the limit of difference quotients to estimate higher
derivatives. Alternatively, since the problem is in one spatial dimension, we could compute
and estimate derivatives of u explicitly using variation of parameters representation of
the L−1

φ . �

Proposition 2.8. Let 1 � ε > 0, R, T > 0 and k � 1 � 1. There exists a constant
C = C(R, ε, k) such that for all φ ∈ X k

R,ε,T , if u solves Lφu = −(φn)z, then

‖u‖Hk � C.

Proof. The result follows by applying proposition 2.7 to f = −(φn)z ∈ Hk−1. �

Proposition 2.9.

(i) Let 1 � ε > 0, R > 0 and k � 1. Assume ‖φ0 − 1‖Hk < R and φ0 � 2ε. Then there
exists T1 = T1(R, ε, k, φ0) > 0, such that for T < T1 ,

φ ∈ X k
R,ε,T −→ 
[φ] ∈ X k

R,ε,T . (2.8)

(ii) Moreover, there exists 0 < T2 � T1, T2 = T2(R, ε, k, φ0) > 0 such that for T < T2 


is a contraction on X k
R,ε,T , i.e. there exists an α = α(R, ε, k, φ0) < 1 such that for all

φ, ψ ∈ X k
R,ε,T ,

[
[φ] − 
[ψ]]k(T ) � α[φ − ψ]k(T ). (2.9)

We first prove proposition 2.9 (i). We must thus find a T1 such that choosing T < T1, for
all t � T ,

‖
[φ](·, t) − 1‖Hk � R, (2.10)∥∥∥∥ 1


[φ](·, t)
∥∥∥∥

∞
� 1

ε
(2.11)

and


[φ](·, t) − 1 ∈ C1([0, T1); Hk). (2.12)

To establish (2.10), let u = L−1
φ [−(φn)z]. Then

‖
[φ] − 1‖Hk � ‖φ0 − 1‖Hk +
∫ t

0
‖φm(·, s)u(·, s)‖Hk ds.

Applying lemma 2.5, proposition 2.6 and proposition 2.7 to the integrand we get

‖φmu‖Hk � C‖φm − 1‖Hk‖u‖Hk + ‖u‖Hk � C ′′(CC ′‖φ − 1‖H 1 + 1) � C̃. (2.13)

Hence,

‖
[φ] − 1‖H 1 � ‖φ0 − 1‖H 1 + C̃T .
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Choosing ‖φ0 − 1‖Hk < R, T may be chosen sufficiently small such that ‖
[φ] − 1‖Hk � R.
This shall be our first candidate for T1, which we denote as t1.

To prove (2.11), consider the difference between φ0 and 
[φ],

‖
[φ(·, t)] − φ0‖∞ � ‖
φ(·, t) − φ0‖H 1 �
∫ t

0
‖φm(·, s)u(·, s)‖H 1 ds � CT,

and

|
[φ]| � |φ0| − |
[φ] − φ0| � |φ0| − ‖
[φ] − φ0‖∞ � 2ε − CT .

Taking T sufficiently small, this will be bounded below by ε. Hence,


[φ] � ε or

∥∥∥∥ 1


[φ]

∥∥∥∥
∞

� 1

ε
.

Equation (2.12) is more difficult to establish, requiring the following two Lipschitz-type
estimates, which will also be needed in the proof of proposition 2.9 (ii). This additional work
is necessary because of the appearance of nonlinearity in the operator itself in contrast to more
common nonlinear nonlocal dispersive equations. We thus require bounds on the ‘closeness’
of the operators Lφ for different φs, which we establish in the following propositions.

Proposition 2.10. Assume 1 � ε > 0, T , R > 0 and k � 1. Let φ, ψ be in X k
R,ε,T .

Then for any two values t1, t2 < T at which φ and ψ are evaluated, there exists a constant
C = C(R, ε, k) such that

‖L−1
φ [−(φn)z](·, t1) − L−1

ψ [−(ψn)z](·, t2)‖Hk � C‖φ(·, t1) − ψ(·, t2)‖Hk .

Proof. Let u and v satisfy Lφ(·,t1)u = −(φ(·, t1)n)z and Lψ(·,t2)v = −(ψ(·, t2)n)z. Then

Lφ[u] − Lψ [v] = −(φnuz)z + (ψnvz)z + φmu − ψmv = (ψn − φn)z.

Let γ be in H 1(R). Multiplying by γ and integrating by parts,∫
(φnuz − ψnvz)γz + (φmu − ψmv)γ =

∫
(ψn − φn)γ.

After adding and subtracting and rearranging terms,∫
φn(u − v)zγz + φm(u − v)γ =

∫
(ψn − φn)γ + (ψn − φn)vzγz

+ (ψm − φm)vγ. (2.14)

For k = 1, if we substitute u − v for γ , we get the estimate∫
φn((u − v)z)

2 + φm(u − v)2 � ‖ψn − φn‖L2‖u − v‖L2

+ ‖ψn − φn‖L∞‖vz‖L2‖(u − v)z‖L2

+ ‖ψn − φn‖L∞‖v‖L2‖u − v‖L2 ,

which, after some further manipulation, becomes

‖u − v‖H 1 � C‖φ − ψ‖H 1 .

For greater regularity, with k � 2, we return to (2.14) and integrate by parts∫
φn(u − v)zγz + φm(u − v)γ =

∫
(−((ψn − φn)vz)z + ψn − φn(ψm − φm)v)γ.

This expresses w = u − v as a solution to the elliptic problem Lφw = f with

f = −((ψn − φn)vz)z + ψn − φn(ψm − φm)v.
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Indeed, for k � 2, we know w is at least a weak solution, as f ∈ L2, and the coefficients in
the operator are bounded. We may thus apply proposition 2.7 to get

‖u − v‖Hk � C‖f ‖Hk−2 � C‖φ − ψ‖Hk . �
We also need to be able to consider normed differences of φmL−1

φ [−(φn)z] for which we
make the following estimate,

Proposition 2.11. Assume 1 � ε > 0, T , R > 0 and k � 1. Given φ ψ in X 1
R,ε,T , there exists

a constant C = C(R, ε, k) such that for any t1, t2 < T

‖φ(·, t1)mL−1
φ(·,t1)[−(φ(·, t1)n)z] − ψ(·, t2)mL−1

ψ(·,t2)[−(ψ(·, t2)n)z]‖Hk

� C‖φ(·, t2) − ψ(·, t2)‖Hk .

Proof. Let u and v satisfy Lφu = −(φn)z and Lψv = −(ψn)z evaluated at t1 and t2,
respectively. Then, using propositions 2.6, 2.8 and 2.10

‖φmu − ψmv‖Hk � ‖φmu − φmv‖Hk + ‖φmv − ψmv‖Hk

� (C‖φm − 1‖Hk + 1)‖u − v‖Hk + C ′‖v‖Hk‖φm − ψm‖Hk

� C ′′‖φ − ψ‖Hk . �
We are now able to prove (2.12). First we will establish differentiability, and then

continuity, of 
[φ]. Let h �= 0. Using proposition 2.11,∥∥∥∥
[φ](·, t + h) − 
[φ](·, t)
h

− φm(·, t)u(·, t)
∥∥∥∥

Hk

=
∥∥∥∥∥
∫ t+h

t
φm(·, s)u(·, s) − φm(·, t)u(·, t) ds

h

∥∥∥∥∥
Hk

� 1

|h|
∣∣∣∣
∫ t+h

t

‖φm(·, s)u(·, s) − φm(·, t)u(·, t)‖Hk ds

∣∣∣∣
� C

|h|
∣∣∣∣
∫ t+h

t

‖φ(·, s) − φ(·, t)‖Hk ds

∣∣∣∣ .
Using C1 continuity of φ in time, there exists η such that

‖φ(·, s) − φ(·, t)‖Hk � η|s − t |,
thus,∥∥∥∥
[φ](·, t + h) − 
[φ](·, t)

h
− φm(·, t)u(·, t)

∥∥∥∥
Hk

� Cη

|h|
∣∣∣∣
∫ t+h

t

|s − t |ds

∣∣∣∣ = Cη
|h|
2

.

So as h → 0, ∥∥∥∥
[φ](·, t + h) − 
[φ](·, t)
h

− φm(·, t)u(·, t)
∥∥∥∥

Hk

→ 0.

Thus, it is differentiable, hence continuous, and

∂t
[φ](·, t) = φ(·, t)mL−1
φ(·,t)[−(φ(·, t)n)z]. (2.15)

Now, let t1, t2 < T1. Using proposition 2.11 and (2.15),

‖∂t
φ(·, t2) − ∂t
φ(·, t1)‖Hk = ‖φm(·, t2)u(·, t2) − φm(·, t1)u(·, t1)‖H 1

� C‖φ(·, t2) − φ(·, t1)‖Hk .

Since φ is continuous in t , we are done.
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We have thus established that for T � T1, (2.12) and hence proposition 2.9 (i) holds,
where T1 is determined from the values necessary for (2.10) and (2.11) to hold.

Now we will establish that 
 is a contraction. Let t � T1. Applying proposition 2.11,

‖
φ(·, t) − 
ψ(·, t)‖Hk �
∫ t

0
‖φmL−1

φ [−(φn)z] − ψmL−1
ψ [−(ψn)z]‖H 1 ds

�
∫ t

0
C‖φ − ψ‖Hk ds � Ct[φ − ψ]k(t).

If we now choose t such that Ct < 1, say T2, then we have established

[
φ − 
ψ]k � α[φ − ψ]k, (2.16)

with

α = CT2 < 1.

We have thus established that for data φ0, satisfying conditions

‖φ0 − 1‖Hk < R (2.17)

and ∥∥∥∥ 1

φ0

∥∥∥∥
∞

� 1

2ε
(2.18)

for some R > 0, 1 � ε > 0 and k � 1. There will exist a T2 > 0 such that the map

 will be a contraction on the space X k

R,ε,T2
proving proposition 2.9 (ii). By the contraction

mapping theorem, there exists a unique fixed point in X k
R,ε,T2

, proving existence and uniqueness
in theorem 2.3. Reformulated as a local existence theorem for (1.1), we have the following
theorem.

Theorem 2.12. Let φ0 satisfy

‖φ0 − 1‖Hk < R,∥∥∥∥ 1

φ0

∥∥∥∥
∞

� 1

2ε

for R > 0, 1 � ε > 0 and k � 1.
There exists a T > 0 dependent on R, ε and R − ‖φ0 − 1‖Hk and a φ − 1 ∈ C1([0, T ) :

Hk(R)) such that

φ(·, t) = φ0 +
∫ t

0
φ(·, s)mu(·, s) ds

− (φ(·, t)nu(·, t)z)z + φ(·, t)mu(·, t) = −(φ(·, t)n)z.
This is a local solution to (1.1) such that φ(·, t) � ε and ‖φ(·, t) − 1‖Hk � R for t < T .

Moreover, there is a maximal time of existence, Tmax > 0, such that if Tmax < ∞, then

lim
t→Tmax

‖φ(·, t) − 1‖Hk +

∥∥∥∥ 1

φ(·, t)
∥∥∥∥

∞
= ∞. (2.19)

Proof. The first part of this theorem has already been proved. Let us address the notion of the
maximal time of existence. Following [Paz92], assume Tmax < ∞ and

lim
t→Tmax

‖φ(·, t) − 1‖Hk +

∥∥∥∥ 1

φ(·, t)
∥∥∥∥

∞
�= ∞.
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Then there exists a constant K > 0 and a sequence {tn}, tn → Tmax such that

‖φ(·, tn) − 1‖Hk +

∥∥∥∥ 1

φ(·, tn)
∥∥∥∥

∞
� K.

For each n, ‖φ(·, tn)−1‖Hk � K and φ(·, tn) � K−1. Hence, we may apply our local existence
theory with R = K + 1 and 2ε = K−1 to get a time of size δ = δ(K, k) over which we know
we may propagate forward data satisfying these constraints. There exists a tn � Tmax − δ/2,
so if we take as a new initial condition φ1(z) = φ(z, tn), we know it will continue up till at
least time Tmax + δ/2. This contradicts the maximality of Tmax, proving (2.19). �

The next result establishes that the solution to the initial value problem of (1.1) depends
continuously on the data φ0.

Theorem 2.13. Let φ0 and ψ0 both satisfy

‖φ0 − 1‖Hk < R,∥∥∥∥ 1

φ0

∥∥∥∥
∞

� 1

2ε

for some 1 � ε > 0, R > 0 and k � 1, and let φ and ψ be their respective solutions in
X k

R,ε,T for some T > 0 that both solutions are known to satisfy. Then there exists a constant
C = C(R, ε, k) such that

‖φ(·, t) − ψ(·, t)‖Hk � ‖φ0 − ψ0‖Hk eCt

for t < T .

Proof. Let t < T .

‖φ(·, t) − ψ(·, t)‖Hk �
∥∥∥∥φ0(·) +

∫ t

0
φt(·, s) ds − ψ0(·) −

∫ t

0
ψt(·, s) ds

∥∥∥∥
Hk

� ‖φ0 − ψ0‖Hk +
∫ t

0
‖φt(·, s) − ψt(·, s)‖Hk ds.

Applying (2.15) and proposition 2.11(with t = t1 = t2),

‖φ(·, t) − ψ(·, t)‖Hk � ‖φ0 − ψ0‖Hk + C

∫ t

0
‖φ(·, s) − ψ(·, s)‖Hk .

Gronwall’s inequality then gives

‖φ(·, t) − ψ(·, t)‖Hk � ‖φ0 − ψ0‖Hk eCt � ‖φ0 − ψ0‖Hk eCT .

�
We have thus shown that the problem is locally well-posed in time for appropriate data,

completing the proof of theorem 2.3.

3. Conservation Laws

In this section we discuss conservation laws of (1.1). We derive a particularly useful ‘energy’,
which we denote by E and then prove the continuity of the mapping φ 
→ E[φ] on a subset
of H 1. Finally, we show that E is locally convex about the uniform state, φ ≡ 1. These
observations play a central role in the discussion of global well-posedness and stability in
sections 4 and 5.

A systematic search for conservation laws of (1.1) was carried out in [Har96]. For general
pairs, (n, m), two conserved quantities were found. The first, corresponding to conservation
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of mass,

T1 =
∫

(φ − 1)dz (3.1)

is conserved. The second quantity, T2, depends on the particular (n, m) pair, forming the
following three families

T2 =




∫ (
1

2
φ−2mφ2

z + φ log φ − φ + 1

)
dz for n + m = 1∫ (

1

2
φ−2mφ2

z − log φ

)
dz for n + m = 2,

∫ (
1

2
φ−2mφ2

z +
φ2−n−m − 1

(n + m − 1)(n + m − 2)

)
dz for n + m �= 1, 2.

(3.2)

Let τ2 be the integrand of T2. Although τ2 is the same within each of these three families, the
corresponding flux, z2, satisfying ∂tτ2 + ∂zz2 = 0 differs depending on whether or not m = 1.
See [Har96] for the full taxonomy.

It is interesting to note that neither T1 nor T2 are well defined on the spaces in the space,
where local well-posedness is proved! In particular, φ − 1 ∈ Hk does not imply T1[φ] < ∞.
Nevertheless, we have found that an appropriate linear combination of T1 and T2 is well defined
and can be used in the study of global well-posedness.

This observation is linked with the question of stability of the uniform state, φ ≡ 1. To
facilitate our study of the stability of the uniform state, we seek a linear combination of T1 and
T2, such that

(a) E[φ] = α1T1[φ] + α2T2[φ], is a continuous functional of φ and well defined on local
solutions,

(b) φ ≡ 1 is a critical point of E[φ],
(c) E[φ] is locally convex at φ ≡ 1.

We find that these criteria, (a)–(c), can be satisfied if we choose α1 and α2 as follows:

α1 =




0 for n + m = 1,

1 for n + m = 2,

1

n + m − 1
for n + m �= 1, 2,

(3.3)

α2 = 1. (3.4)

Our functional then has the form3

E[φ] =
∫

1

2
φ−2mφ2

z + Vn,m(φ) = α1T1 + α2T2, (3.5)

where the potential Vn,m function depends on the particular pair of exponents, and is given as

Vn,m(x) =




x log x − x + 1 for n + m = 1,

− log x + x − 1 for n + m = 2,

x2−n−m − 1 + (n + m − 2)(x − 1)

(n + m − 1)(n + m − 2)
n + m �= 1, 2.

(3.6)

3 In the case n = 3, m = 0, E plays a role in the study of the instability of solitary waves in higher dimensions with
respect to transverse perturbations [BL89].
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Let us make a few remarks on Vn,m.

(i) Vn,m is nonnegative and C∞([ε, M]), with ε > 0 and M < ∞.
(ii) Vn,m(1) = V ′

n,m(1) = 0, hence for p � 2

Vn,m(x)

(x − 1)p

is also in C∞([ε, M]).
(iii) Vn,m is continuous as a function of n and m. Indeed, if ε = n + m − 2, then

lim
ε→0

Vn,m(x) = lim
ε→0

x−ε − 1 + ε(x − 1)

(ε + 1)ε
= lim

ε→0

x−ε − 1

ε
+ x − 1 = − log x + x − 1.

Similarly, if ε = n + m − 1,

lim
ε→0

Vn,m(x) = lim
ε→0

x1−ε − 1 + (ε − 1)(x − 1)

ε(ε − 1)

= lim
ε→0

x1−ε − x

ε
− (x − 1) = x log x − x + 1.

Hence, there is really a single expression not only for the potential but also for the
functional, and the boundary cases n + m = 1 and n + m = 2 can be derived from it
by taking limits.

Proposition 3.1. The functional E is Lipschitz continuous on the set

{φ − 1 ∈ H 1(R) : ‖φ − 1‖H 1 � R, φ � ε}
under the H 1 norm, with Lipschitz C = C(R, ε, n, m), i.e.

|E[φ] − E[ψ]| � C‖φ − ψ‖H 1 .

Proof. Let φ and ψ be two elements of this space. Let M = 1 + R, which bounds ‖φ‖L∞

by a Sobolev inequality. Since it will be of use, let � denote the Lipschitz constant for
Vn,m(x)/(x − 1)2 on the set [ε, M] and let N denote this quotient’s L∞ norm on this set.
Then,

|E[φ] − E[ψ]| � 1

2

∫ ∣∣∣∣ φ2
z

φ2m
− ψ2

z

ψ2m

∣∣∣∣ +
∫

|Vn,m(φ) − Vn,m(ψ)|

� 1

2

∫ ∣∣∣∣φ2
z − ψ2

z

φ2m

∣∣∣∣ +

∣∣∣∣ψ2
z

(
1

φ2m
− 1

ψ2m

)∣∣∣∣
+

∫ ∣∣∣∣ Vn,m(φ)

(φ − 1)2
(φ − 1)2 − Vn,m(ψ)

(ψ − 1)2
(ψ − 1)2

∣∣∣∣
� 1

2

(∥∥∥∥ 1

φ2m

∥∥∥∥
∞

∫
|φz − ψz||φz + ψz| +

∥∥∥∥φ2m − ψ2m

φ2mψ2m

∥∥∥∥
∞

∫
ψ2

z

)

+
∫ ∣∣∣∣ Vn,m(φ)

(φ − 1)2

∣∣∣∣ |(φ − 1)2 − (ψ − 1)2| +
∫

|(ψ − 1)2||Vn,m(φ) − Vn,m(ψ)|

� C‖φz − ψz‖L2 + C ′‖φz − ψz‖H 1 + C ′′‖φ − ψ‖L2 + C ′′′‖φ − ψ‖L2

� C̃‖φ − ψ‖H 1 . �
The following result shows that φ∗ ≡ 1 is a critical point of E and for any (n, m), E is

locally convex near φ∗.
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Theorem 3.2. Let p ∈ H 1(R). Then

E[1 + p] = 1
2‖p‖2

H 1 + O(‖p‖3
H 1)

as ‖p‖H 1 → 0.

Proof. Each of the cases of (3.6) must be examined separately; however, the scheme is
universal. We present the proof for n + m > 2. Given p, let f = 1 + p. The first variation of
E[φ] is

〈δE[1 + p], p〉 =
∫ (

1

n + m − 1
− 1

n + m − 1

1

f n+m−1
− m

f 2
z

f 1+2m

)
p +

fz

f 2m
p′

=
∫ (

1

n + m − 1
− 1

n + m − 1

1

f n+m−1
+ m

f 2
z

f 1+2m
− fzz

f 2m

)
p.

And the second variation is

〈δ2E[1 + p]p, p〉 =
∫ (

1

f n+m
− m(1 + 2m)

f 2
z

f 2+2m
+ 2m

fzz

f 1+2m

)
p2 +

(
1

f 2m

)
p′2.

Thus, taking a Taylor expansion about p = 0,

E[1 + p] = E[1] + 〈δE[1], p〉 + 1
2 〈δ2E[1]p, p〉 + O(‖p‖3

H 1) = 1
2‖p‖2

H 1 + O(‖p‖3
H 1). �

In section 4 we shall prove conservation of E ; see propositions 4.1 and 4.5.

4. Data near the uniform state: global existence and Lyapunov stability

We now prove global well-posedness for data sufficiently close to the uniform state, φ ≡ 1.
Furthermore, we show Lyapunov stability of the uniform state. An outline of our strategy is
as follows.

(i) Establish conservation of E[φ] for solutions of H 2 spatial regularity.

(ii) Construct H 1 a priori estimates using conservation of E[φ] and theorem 3.2 when φ is of
H 2 spatial regularity.

(iii) Construct H 2 a priori estimates by deriving a growth estimate on ‖φzz‖L2 for H 2 solutions
to (1.1).

(iv) Use these bounds to get H 2 global existence.

(v) Exhibit stability in the H 1 norm for H 2 solutions with ‖φ0 − 1‖H 1 sufficiently small.

(vi) Establish that E is also conserved for H 1 solutions by approximating H 1 data by H 2 data
and taking appropriate limits.

(viii) Prove H 1 global existence by using the H 2 argument, with the H 2 norm replaced with
H 1 now that we have E[φ] = E[φ0].

Proposition 4.1. Assume φ − 1 ∈ C1([0, T ) : H 2(R)) is a solution to (1.1), then E[φ] is
conserved.
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Proof. Since φ is of H 2 spatial regularity, we may expand (1.1) to

φt + (φn + mφn−m−1φtφz − φn−mφtz)z = 0.

Multiplying by

1

n + m − 1
(1 − φ1−m−n)

for n + m �= 1 and log φ for n + m = 1, one will find, after integrating by parts, the expression
may be rearranged into

∂te + ∂zf = 0,

where, for n + m �= 1, 2,

e = 1

2

φ2
z

φ2m
+

φ2−m−n − 1 + (n + m − 2)(φ − 1)

(n + m − 1)(n + m − 2)
,

f = 1

n + m − 1

(
φn + mφn−m−1φtφz − φn−mφtz − n

1 − m
φ1−m − mφ2mφzφt + φ1−2mφzt

)

and
∫

e = E . Analogous expressions hold in the other cases. Note that the factor by which
we multiply is continuous in the limit of n + m = 1. �

Proposition 4.2. Assume φ − 1 ∈ C1([0, T ) : H 2(R)) is a solution to (1.1), and there exist
constants R, ε, such that

‖φ(·, t) − 1‖ � R,∥∥∥∥ 1

φ(·, t)
∥∥∥∥

∞
� 1

ε

for t < T . Then there exist constants c0 = c0(R, ε, n, m) and c1 = c1(R, ε, n, m) such that

d

dt
‖φzz(·, t)‖2 � c0 + c1‖φzz(·, t)‖2.

Proof. Expanding out equation 1.1,

φt + nφn−1φz + m(n − m − 1)φn−m−1φ2
z φt − (n − 2m)φn−m−1φzφzt + mφn−m−1φtφzz

−φn−mφtφzzt = 0,

which we rewrite as

φzzt = φt

φn−m
+ n

φz

φ1−m
+ m(n − m − 1)

φ2
z φt

φ2
− (n − 2m)

φzφzt

φ
+ m

φtφzz

φ
.

Letting u satisfy Lφu = −(φn)z, φt = φmu and

φzzt = u

φn−2m
+ n

φz

φ1−m
+ m(n − m − 1)

φ2
z u

φ2−m
− m(n − 2m)

φ2
z u

φ2−m

−(n − 2m)
φzuz

φ1−m
+ m

uφzz

φ1−m
.
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Now, let us study the evolution of the ‖φzz‖ in time.

d

dt

1

2
‖φzz‖2

2 =
∫

φzzφzzt

=
∫

φzz

{
u

φn−2m
+ n

φz

φ1−m
+ m(m − 1)

φ2
z u

φ2−m
− (n − 2m)

φzuz

φ1−m
+ m

uφzz

φ1−m

}

�
∥∥∥∥ 1

φn−2m

∥∥∥∥
∞

‖φzz‖2‖u‖2 + |n|
∥∥∥∥ 1

φ1−m

∥∥∥∥
∞

‖φzz‖2‖φz‖2

+ |m(1 − m)|
∥∥∥∥ 1

φ2−m

∥∥∥∥
∞

‖φzz‖2‖φ2
z u‖2 + |n − 2m|

∥∥∥∥ 1

φ1−m

∥∥∥∥
∞

‖φzz‖2‖φzuz‖2

+ |m|
∥∥∥∥ u

φ1−m

∥∥∥∥
∞

‖φzz‖2
2

� C‖u‖2‖φzz‖2 + C ′‖φzz‖2 + C ′′‖φz‖∞‖u‖∞‖φzz‖2

+ C ′′′‖φz‖∞‖uz‖2‖φzz‖2 + C ′′′′‖u‖∞‖φzz‖2
2.

Recall proposition 2.8 that there exists a constant depending on R, ε and k = 1 such that

‖u‖H 1 � C̃.

Also, an application of Sobolev’s inequality gives the bound

‖φz‖∞ � C‖φz‖2‖φzz‖2 � CR‖φzz‖2.

Using these bounds,

d

dt

1

2
‖φzz‖2

2 � c0‖φzz‖L2 + c1‖φzz‖2
L2 .

Therefore,

d

dt
‖φzz‖2 � c0 + c1‖φzz‖2. �

Corollary 4.3. Under the assumptions of lemma 4.2,

‖∂2
z φ(·, t)‖2 � c0te

c1t + ‖∂2
z φ0‖2ec1t .

Proof. Apply Gronwall’s inequality. �
We note that no assumption on the size of the data was used in proving propositions 4.1

and 4.2; they will also be used in the case of ‘large’ data in section 5.

Theorem 4.4 (Global existence in H 2 and stability near the uniform state in H 1). There
exists ηc = ηc(n, m) > 0 such that for any η < ηc there exists δ = δ(η, n, m) such that
for any φ0 satisfying

‖φ0 − 1‖H 2 < ∞, (4.1)

‖φ0 − 1‖H 1 � δ, (4.2)

there exists a unique φ, φ−1 ∈ C1([0, ∞) : H 2(R)) such that it solves (1.1) with φ(·, 0) = φ0.
Moreover,

‖φ(·, t) − 1‖H 1 � η

for all time.
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Figure 3. The two curves provide bounds on E[φ] for ‖φ − 1‖H 1 � 1/2. In this picture we have
assumed that the peak of the lower bound is less than

√
2/4; hence, ηc is the peak. Taking η < ηc ,

we are then able to constrain the energy by choosing ‖φ0 − 1‖H 1 � δ to E[φ(·, t)] � E. This
assures us that ‖φ(·, t) − 1‖H 1 � η.

Proof. First, let us construct ηc. Proposition 4.1 ensures that E is conserved for such a solution.
From theorem 3.2, there exist constants C and D such that for ‖φ − 1‖H 1 � 1/2,

1
2‖φ − 1‖2

H 1 − C‖φ − 1‖3
H 1 � E[φ] � 1

2‖φ − 1‖2
H 1 + D‖φ − 1‖3

H 1 . (4.3)

The peak of 1/2x2 − Cx3 occurs at x = 1/(3C), and we set ηc = min{1/(3C), 1/2}. Let
Ec = 1/2η2

c − Cη3
c . Given η < ηc, let E = 1/2η2 − Cη3 and let δ solve E = 1/2δ2 + Dδ3.

As indicated in figure 3, this construction forces

δ < η < ηc � 1/2

and for ‖φ − 1‖H 1 � δ

E[φ] � E < Ec.

Now assume that ‖φ0 − 1‖H 1 � δ in addition to having ‖φ0 − 1‖H 2 < ∞. From
theorem 2.12, we know there exists T > 0 such that φ − 1 ∈ C1([0, T ) : H 2(R)) that solves
(1.1) with φ0 as the initial condition.

Suppose for some time T̄ , φ − 1 ceases to be in C1([0, T̄ ) : H 2(R)). Furthermore, let T̄

be the minimal such value. If T̄ = ∞, then we are done, so we may take T̄ < ∞.
For t < T̄ , φ − 1 ∈ C1([0, t] : H 2(R)); hence, it is a strong solution to (1.1) and E[φ] is

conserved. This implies

‖φ(·, t) − 1‖H 1 � η

for t < T̄ .
Suppose not. Then there exists t < T̄ for which the reverse holds, and by the continuity

of φ, there exists a minimal time t1 such that η < ‖φ(·, t1) − 1‖H 1 < ηc. However,

‖φ(·, t1) − 1‖H 1 < εc � 1/2.

So (4.3) holds with the same constants C and D, but this implies

E[φ(·, t1)] � 1
2‖φ(·, t1) − 1‖2

H 1 − C‖φ(·, t1) − 1‖3
H 1 > 1

2η2 − Cη3 = E � E[φ0]

contradicting conservation of E .
By construction η < ηc � 1/2, so φ � 1

2 . Applying proposition 4.2, with R = ηc and
ε = 1

2 , we have that for t < T̄ ,

‖φ(·, t) − 1‖H 2 � η + c0te
c1t + ‖φ(·, 0)zz‖ec1t

�
√

2

4
+ c0T̄ ec1T̄ + ‖φ(·, 0)zz‖ec1T̄ = R, (4.4)
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φ

∥∥∥∥
∞

� 2. (4.5)

Hence, for all t < T̄ ,

‖φ(·, t) − 1‖H 2 +

∥∥∥∥ 1

φ(·, t)
∥∥∥∥

∞
� R + 2 < ∞,

and this sum does not go to infinity, as required by (2.19), for the solution to have a finite time
of existence. Therefore, the solution persists for all time. Additionally, we have

‖φ(·, t) − 1‖H 1 � η. �

Proposition 4.5. Let φ0 satisfy (4.2) and let φ(z, t; φ0) − 1 ∈ C1([0, T ) : H 1(R)) be the
solution of the initial value problem of (1.1) with this data. Then E[φ(·, t; φ0)] is conserved
on the interval [0, T ).

Note that T > 0 by the assumptions on the data and theorem 2.12.

Proof. Let {φ0,n} be a sequence satisfying

‖φ0,n − 1‖H 2 < ∞,

‖φ0,n − 1‖H 1 � δ,

in addition to assuming that

lim
n→∞ ‖φ0 − φ0,n‖H 1 = 0. (4.6)

Here, we have used the density of H 2 within H 1 to find such functions.
Since φ0,n have global solutions by theorem 4.4, we can use theorem 2.13 on the space

X 1
ε, 1

4 ,∞, to get

‖φ(·, t; φ0,m) − φ(·, t; φ0,n)‖H 1 � ‖φ0,m − φ0,n‖H 1 eCt .

Letting m → ∞, for t < ∞,

‖φ(·, t; φ0) − φ(·, t; φ0,n)‖H 1 � ‖φ0 − φ0,n‖H 1 eCT . (4.7)

Now, consider the change in the functional E , over time,

|E[φ(·, t; φ0)] − E[φ0]| � |E[φ(·, t; φ0)] − E[φ(·, t; φ0,n)]|
+ |E[φ(·, t; φ0,n)] − E[φ0,n]| + |E[φ0,n] − E[φ0]|.

Since φ(z, t; φ0,n) are global strong solutions, E[φ(z, t; φ0,n)] is conserved. Applying
proposition 3.1 with the set

{φ − 1 ∈ H 1(R) : ‖φ − 1‖H 1 � ε, φ � 1
2 },

we get

|E[φ(·, t; φ0)] − E[φ0]| � C(‖φ(·, t; φ0) − φ(·, t; φ0,n)‖H 1 + ‖φ0 − φ0,n‖H 1).

Now, using (4.7),

|E[φ(·, t; φ0)] − E[φ0]| � C ′‖φ0 − φ0,n‖H 1 .

Letting n → ∞, we have for t < T ,

E[φ(·, t; φ0)] = E[φ0]. �
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Corollary 4.6. Theorem 4.4 holds for H 1.

While we have not proved global existence in C1([0, T ) : Hk(R)) for k > 2, the results
of this section still yield a stability result in these smoother spaces. We know we have a local
solution in these spaces from theorem 2.12. Propositions 4.1 and 4.5 establish conservation of
E for solutions in C1([0, T ) : Hk(R)), with k � 1. Following the same argument as used in
theorem 4.4, we thus have the following corollary.

Corollary 4.7 (Nonlinear stability of the uniform state). There exists εc > 0 such that for
any ε < εc there exists δ such that if ‖φ0 − 1‖H 1 � δ, then the solution to (1.1),
φ ∈ C1([0, T ) : Hk(R)), k � 1, T > 0, with this initial condition satisfies

‖φ(·, t) − 1‖H 1 � ε

for t < T .

5. Global well-posedness for (almost) arbitrary data

We now turn our attention to the case of data that may not be close to the uniform state in
the H 1 norm. While the data must still be bounded away from zero, we are able to show
global well-posedness for data of arbitrarily large size in the H 1 norm, provided we satisfy the
following three conditions on (n, m).

n + m � 3, (5.1a)

n + 3m � 4, (5.1b)

n + 3m < 6. (5.1c)

This is the shaded region in figure 2. The requirement that m > 0 for smaller values of n is
consistent with our suspicion that having a variable bulk viscosity regularizes the problem, as
this requires progressively more work to be done to expel fluid from the pores as the porosity
becomes smaller. For the remainder of this section, we assume these conditions to hold.

We must derive certain conserved quantities in this special case. Recalling (3.5), we write

gr(x) = rxr+1 − (r + 1)xr + 1. (5.2)

With r = n + m − 2, we may write

E[φ] =
∫

1

2

φ2
z

φ2m
+

1

r(r + 1)

gr(φ)

φr
.

Lemma 5.1. For r � 1, x � 0,

gr(x) � (x − 1)2.

Proposition 5.2. Assuming E[φ] < ∞ and φ > 0, there exists M = M(E[φ], n, m) < ∞,
such that

‖φ‖∞ � M.

Proof.
1

2
(φ(z) − 1)2 =

∫ z

−∞
(φ(z) − 1)φz(z) dz �

∫ ∞

−∞
|φ(z) − 1||φz| dz

=
∫ |φz|

φm

|φ − 1|
φ(n+m−2)/2

φm+(n+m−2)/2

� ‖φ‖(n+3m−2)/2
∞

∥∥∥∥ φz

φm

∥∥∥∥
2

∥∥∥∥ φ − 1

φ(n+m−2)/2

∥∥∥∥
2

.
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We are able to move the exponent outside the L∞ norm since n + 3m − 2 > 0 by (5.1b). Then
employing (5.1a) to use lemma 5.1,

1

2
(φ(z) − 1)2 � ‖φ‖(n+3m−2)/2

∞
√

2E[φ]

∥∥∥∥∥
√

gr(φ)

φr

∥∥∥∥∥
2

� ‖φ‖(n+3m−2)/2
∞

√
2r(r + 1)E[φ].

Hence,

‖φ‖∞ − 1 � ‖φ − 1‖∞ �
√

2‖φ‖(n+3m−2)/4
∞ (2r(r + 1))1/4

√
E[φ]

or

‖φ‖1−(n+3m−2)/4
∞ �

√
2(2r(r + 1))1/4

√
E[φ] + 1,

which ensures an upper bound so long as 1 − (n + 3m − 2)/4 > 0, which is
precisely (5.1c). �

This will ensure φ is pointwise bounded from above in terms of the data through
conservation of E . Let us define the upper bound functional that corresponds to this
maximum as

U[φ] = 1−(n+3m−2)/4

√√
2(2r(r + 1))1/4

√
E[φ] + 1. (5.3)

Proposition 5.3. Assuming E[φ] < ∞ and φ > 0, there exists ε = ε(E[φ], n, m) > 0 such
that ∥∥∥∥ 1

φ

∥∥∥∥
∞

� 1

ε
.

Proof.

log
1

φ(z)
= −

∫ z

−∞

φz

φ
dz = −

∫ z

−∞

φz

φm+r/2

φm+r/2

φ
dz

= −
∫ z

−∞

(
φz

φ

1 − φ

φr/2
+

φz

φm+r/2−1

)
φm+r/2−1 dz

� ‖φm+r/2−1‖∞

∥∥∥∥ φz

φm

∥∥∥∥
2

∥∥∥∥1 − φ

φr/2

∥∥∥∥
2

−
∫ z

−∞
φz dz

� ‖φm+r/2−1‖∞
√

2r(r + 1)E[φ] + 1

� U[φ](n+3m−4)/2
√

2r(r + 1)E[φ] + 1 = log
1

ε
,

where we have explicitly used (5.1b) to move the exponent outside the L∞ norm, and we
have implicitly used the other two conditions along with this one, in order to make use of the
conserved upper bound, U . �

We denote the corresponding functional for ε as L, given as

L[φ] = exp{−U[φ](n+3m−4)/2
√

2r(r + 1)E[φ] − 1}. (5.4)

This will ensure a conserved lower bound exists by conservation of E .

Proposition 5.4. Assuming E[φ] < ∞ and φ > 0, there exists R = R(E[φ], n, m) < ∞ such
that

‖φ − 1‖H 1 � R.
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Proof. We divide our proof into two cases (i) : m � 0 and (ii) : m < 0. For m � 0,

E[φ] �
∫

1

2U[φ]2m
φ2

z +
1

U[φ]n+m−2r(r + 1)
(φ − 1)2 dz

� min

{
1

2U[φ]2m
,

1

U[φ]n+m−2r(r + 1)

}
‖φ − 1‖2

H 1

and we have the constant R.
For m < 0,

E[φ] �
∫ L[φ]−2m

2
φ2

z +
1

U[φ]n+m−2r(r + 1)
(φ − 1)2 dz

� min

{
L[φ]−2m

2
,

1

U[φ]n+m−2r(r + 1)

}
‖φ − 1‖2

H 1 . �

Again, let us define a corresponding functional that provides a conserved bound on the
H 1 norm.

R[φ] =




√
E[φ] min

{
1

2U[φ]2m
,

1

U[φ]n+m−2r(r + 1)

}−1

for m � 0,

√
E[φ] min

{
L[φ]−2m

2
,

1

U[φ]n+m−2r(r + 1)

}−1

for m < 0.

(5.5)

Now that we have a priori bounds on φ pointwise from above and below, together with a
bound on the H 1 norm, we may prove global existence. Thus we have the following theorem.

Theorem 5.5. Let φ0 satisfy

‖φ0 − 1‖H 2 < ∞, (5.6)∥∥∥∥ 1

φ0

∥∥∥∥
∞

< ∞. (5.7)

Then there exists a unique φ, φ − 1 ∈ C1([0, ∞) : H 2(R)) such that solves (1.1) with
φ(·, 0) = φ0. Moreover, ‖1/φ‖∞ < ∞ for all time.

Proof. This proof is much the same as in the small data case, with the pointwise lower and
upper pointwise bounds coming from the functionals L[φ] and U[φ], together with the norm
bound R[φ], and an application of proposition 4.2.

We may prove global existence in H 1 as in the small data case by first showing that E is
conserved for H 1 solutions by taking a limit of H 2 solutions.

Proposition 5.6. Let φ0 satisfy

‖φ0 − 1‖H 1 < ∞, (5.8)∥∥∥∥ 1

φ0

∥∥∥∥
∞

< ∞ (5.9)

and let φ(z, t; φ0)− 1 ∈ C1([0, T ) : H 1(R)) be the solution with data φ0. Then E[φ(·, t; φ0)]
is conserved on the interval [0, T ).
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Proof. This proof is very similar to the small data case. Let ε be the conserved lower bound,
given by L[φ0] and let R = R[φ0] be the conserved upper bound. Requiring our strongly
convergent sequence {φ0,n} to satisfy

‖φ0,n − 1‖H 2 < ∞,∥∥∥∥ 1

φ0,n

∥∥∥∥
∞

< ∞,

R[φ0,n] � R,

L[φ0,n] � ε,

we proceed as in the small data case almost verbatim. �
Corollary 5.7. Theorem 5.5 holds for H 1.

Corollary 5.8. For data satisfying (5.8) and (5.9), global solutions exist in C1([0, ∞) :
H 1(R)) even when m = 0 provided 4 � n < 6.

We have thus established global well-posedness for data that may not be close to the
uniform state in the H 1 norm, provided we satisfy (5.1a)–(5.1c).

6. Discussion

Our definition of solutions of (1.1) and our proofs of existence, both locally and globally in
time, depend upon ensuring φ > 0. It is this condition, and the use of Sobolev type inequalities
to adhere to it, that limits our global existence proofs to the (n, m) pairs in the set defined by
(5.1a)–(5.1c). However, numerical experiments indicate that we should expect a global lower
bound on φ to exist at least for the values of [2, 5] × [0, 1]. On the other hand, solutions have
been proposed in [TS88,NM91,NM94,RRG02] which are zero on sets of measure zero. This
leaves us with three questions.

• Why do solutions that are initially uniformly bounded below away from zero remain above
zero?

• How might a global existence proof be achieved for other choices of exponents n and m?
• What is to be made of these functions that go to zero on sets of measure zero?

We offer partial answers to these questions and suggest directions for future work in this final
section.

6.1. Importance of nonlinear dispersion for positivity

The appearance of a degenerate nonlinearity in the dispersive term appears to be key to the
positivity of the solution. We saw this in section 5, where the appearance of terms ∝φ2−n−m

in the invariants prevented φ from going to zero. These terms only appear in the conserved
integrals because of their presence in the underlying equation. There are physical reasons
to suspect the benefit of a variable bulk viscosity in this model, consistent with (5.1b); by
increasing m above zero, we gain global existence for a continuum of values of n, for which
we could not otherwise succeed. But while having nonzero m may permit global existence for
certain n, it is by no means required, as noted in corollary 5.8.

Rather than continue to look at the invariants, let us examine the evolution itself.
Comparing

φt + (φ4)z − (φ4φzt )z = 0, (6.1)
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Figure 4. The magma and generalized BBM equations, (6.1) and (6.2), respectively, evolved from
the data (6.3) initially bounded away from zero. While magma remains bounded away from zero,
BBM not only reaches zero but also becomes negative on a set of positive measure.

the magma equation with n = 4 and m = 0, shown to be globally well posed for arbitrary data
in section 5, with a generalized BBM (gBBM) equation,

ut + (u4)x − uxxt = 0, (6.2)

we see a distinct and subtle difference in the dynamics; gBBM can become negative. With
appropriate initial conditions, an asymmetrical global minimum,

u0 = φ0 = 1 − 0.9 exp

(
− (x − 75)2

100(1 − 0.999 tanh(x − 75))

)
, (6.3)

(6.2) will cross the axis, while (6.1) will prop itself up above zero, as pictured in figure 4.
Away from the minimum in the figures, the solutions are quite similar. We suspect that it is
this nonlinear dispersion that makes (1.1) self-regularizing.
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Figure 5. The evolution of data (6.4) for (6.1). Note that the solution fails to become significantly
larger pointwise from its initial maximum.

6.2. A comment on invariant bounds

Better understanding of the nonlinear dispersive term will likely be necessary to expand the
existence result, as we believe the energy estimate approach, on its own, has been exhausted.
Indeed, our estimates, such as (5.3) and (5.4), appear quite crude when evaluated numerically
and compared with the maximum and minimum values a particular system will actually attain.

If we start with initial data of the form

φ0(z) = 1 + (1.5 − 1) exp − (z − 100)2

2 · 25
, (6.4)

a Gaussian floating on a background of 1 with a peak at 1.5, (6.1) evolves into a solitary wave
train, as in figure 5. The leading solitary wave has an amplitude on the same order as the data,
about 1.6. If we were to use (5.3) to predict the maximum porosity, we would compute that
U[φ0] ∼ 10.6, an order of magnitude higher.

Similarly, (5.4) predicts that the porosity will never go below a value many orders of
magnitude smaller than the minimum value the profile eventually evolves into. For data for
the form

φ0(z) = 1 − (1 − 0.5) exp − (z − 50)2

2 · 25
(6.5)

corresponding to a negative Gaussian on a background of 1, with a minimum amplitude of
0.5, it never goes below 0.5. For the data in figure 6, L[φ0] ∼ 8.1 × 10−5, not to mention that
U[φ0] ∼ 26, again in excess of the prediction.

6.3. Solutions that reach zero

A question that remains is, can we start with smooth data bounded away from zero and
reach zero? While no solution which starts above zero and subsequently reaches zero is
known, several functions which are zero on sets of measure zero have been constructed.
So-called compressive solitary waves, with φ � 1 and decay to 1 as ζ → ∞, are presented



46 G Simpson et al

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

φ

φ
0

φ(t=20)

Figure 6. The evolution of data (6.5) for (6.1). Note that the solution fails to become smaller than
its initial minimum of 0.5.

in [NM91,NM94]. Some of these are smooth and have a finite number of even roots. These are
certainly classical solutions of (1.1), although the conserved integrals of section 3 are not finite
for them.

One function in [NM91], along with some of those in [TS88, RRG02], goes to zero at
cusps, behaving like

φ(z, t) = φ(z − ct) ∝
√

|ζ |
near ζ = 0. Such a function will not have a square integrable derivative, and consequently, as
pointed out in [TSS90] for the case n = 3, m = 0, the conserved integrals will also diverge.
Thus, these are not solutions in the sense of definition 2.2.

However, they are solutions of the PDE in a weaker sense. We define a weak solution to
(1.1) as a function φ(z, t) such that∫ ∞

0

∫ ∞

−∞

(
−∂tψ(z, t)φ(z, t) − ∂zψ(z, t)φ(z, t)n + ∂zψ(z, t)φ(z, t)n∂z

(
∂tφ(z, t)

φ(z, t)m

))
×dz dt = 0 (6.6)

for all ψ(z, t) ∈ C∞
0 (R × R

+) and such that both

φ(z, t),

φ(z, t)n∂z

(
∂tφ(z, t)

φ(z, t)m

)

are in L1
loc(R) in the z coordinate. Note that the solutions constructed in section 2 will satisfy

these conditions.
Consider the case n = 3 and m = 0, with c > 3 and define F as follows:

F(ζ ) =




Curve A of figure 7(a) for ζ < 0,

0 forζ = 0,

Curve B of figure 7(a) for ζ > 0.

(6.7)
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Figure 7. (a) shows the phase portrait for the travelling wave ODE (6.8) of (1.1) with c = 4.
(b) and (c) are weak solutions constructing using parts of the phase portrait.

Such a function is plotted in figure 7(b). For ζ �= 0, F solves the second order ODE obtained
by making the travelling wave ansatz for (1.1) and integrating up once with the boundary
condition that F → 1 at ±∞.

− cF + F 3 + cF 3F ′′ = 1 − c. (6.8)

F is also continuous at ζ = 0. Expanding about ζ = 0,

F(ζ ) ∼
√

2(1 − 1/c)1/4
√

|ζ |
and

lim
|ζ |→0,ζ �=0

cF (ζ )3F ′′(ζ ) = 1 − c.

If we define (cF 3F ′′)(0) = 1 − c, then (6.7) satisfies (6.8) as written, but not

F ′′ = 1 − c

cF 3
− 1

c
+

1

F 2
.
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Since F satisfies (6.8) everywhere,

φ(z, t)3φ(z, t)zt = −cF (z − ct)3F ′′(z − ct)

= 1 − c − cF (z − ct) + F(z − ct)3,

reducing the left-hand side of (6.6) to∫ ∞

0

∫ ∞

−∞
(−∂tψ(z, t) − c∂zψ(z, t))F (z − ct) dz dt.

This is just the weak form of the transport PDE

∂tu + c∂zu = 0, (6.9)

which is solved by any function of the form u(z, t) = u(z − ct). Hence, it is a weak solution
in the the sense of (6.6). It is bounded, continuous and in L1

loc(R).
Unfortunately, there is a uniqueness problem. Let

G(ζ) =




Curve A of figure 7(a) for ζ < 0,

0 for ζ = 0,

Curve C of figure 7(a) for 0 < ζ < z�,

0 for ζ = z�,

Curve B of figure 7(a) for ζ > z�.

(6.10)

This function is pictured in figure 7(c). Except at 0 and z�, G satisfies (6.8) pointwise. In
addition, we claim that, as before, at the two cusps,

lim
|ζ |→0,z�,ζ �=0,z�

cG(ζ )3G′′(ζ ) = 1 − c,

so that G in fact satisfies the ODE pointwise, everywhere. Using the same manipulation as
above, we get ∫ ∞

0

∫ ∞

−∞
(−∂tψ(z, t) − c∂zψ(z, t))G(z − ct) dz dt.

Once again, we have reached the weak form of (6.9) and G is a weak solution to this, hence to
the magma equation. Moreover, we could add any number of bumps of finite length of type C

between the two curves A and B which go to 1 at ±∞.
A selection criterion is needed to distinguish between these functions in the same way an

entropy condition is used to distinguish between physical and non-physical solutions to systems
of conservation laws. Although even with such a selection criterion, we recall the physical
argument from [TSS90] that there will be stress singularities at a cusp, suggesting none of
these are physically realizable. Furthermore, we conjecture that if a cusp were perturbed so as
to be strictly positive and smooth, it would evolve as in figure 6; hence the cusped solutions
are unstable.
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