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Abstract: In this paper, we introduce an extended Sprott E system by a general quadratic control scheme with

3 arbitrary parameters for the new system. The resulting system can exhibit codimension-one Hopf bifurcations as

parameters vary. The control strategy used can be applied to create degenerate Hopf bifurcations at desired locations

with preferred stability. A complex chaotic attractor with only one stable equilibrium is derived in the sense of having

a positive largest Lyapunov exponent. The chaotic attractor with only one stable equilibrium can be generated via a

period-doubling bifurcation. To further suppress chaos in the extended Sprott E system coexisting with only one stable

equilibrium, adaptive control laws are designed to stabilize the extended Sprott E system based on adaptive control

theory and Lyapunov stability theory. Numerical simulations are shown to validate and demonstrate the effectiveness of

the proposed adaptive control.
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1. Introduction

Since chaotic attractors were found by Lorenz in 1963 [10], many chaotic systems have been constructed, such

as the Rössler [16], the Chen [4], and the Lü [11] systems. Because of potential applications in engineering, the

study of chaotic systems has attracted the interest of more and more researchers.

By exhaustive computer searching, Sprott [21–23] found about 20 simple chaotic systems with no more

than 3 equilibria. These systems have either 5 terms and 2 nonlinearities or 6 terms and 1 nonlinearity.

Later, many 3-dimensional (3-D) Lorenz-like or Lorenz-based chaotic systems were proposed and investigated

[1,3,5,9,12,13,14,24,25,27,29,32]. Methods for generating multiscroll attractors have commonly used analytical

criteria for generating and proving chaos in autonomous systems, based on the fundamental work of Sil’nikov

[17,18] and its subsequent embellishment and extension [19]. Chaos in the Sil’nikov type of 3-D autonomous

quadratic dynamical systems may be classified into 4 subclasses [34]: (1) chaos of homoclinic-orbit type; (2)

chaos of heteroclinic-orbit type; (3) chaos of the hybrid type with both homoclinic and heteroclinic orbits; (4)

chaos of other types. Therefore, Sil’nikov’s criteria are sufficient but certainly not necessary for the emergence

of chaos. Creating a chaotic system with a more complicated topological structure such as chaotic attractors

with only stable equilibria, therefore, becomes a desirable task and sometimes a key issue for many engineering

applications.
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2010 AMS Mathematics Subject Classification: 34C23, 34C28.

672



WEI et al./Turk J Math

To further the investigation of chaos theory and its applications, it is very important to generate new

chaotic systems or to enhance the complex dynamics and topological structure based on the existing chaotic

attractors. In this endeavor, Yang et al. [33] studied an unusual 3-D autonomous quadratic Lorenz-like chaotic

system with only 2 stable node-foci. Moreover, a new 3-D chaotic system with 6 terms including only 1 nonlinear

term in the form of an exponential function was proposed and studied in [30]. This system has double-scroll

chaotic attractors in a very wide region of parameter space with only 2 stable equilibria. Wei and Yang [31]

analyzed the generalized Sprott C system with only 2 stable equilibria. They computed some basic dynamical

properties: Lyapunov exponent spectra, fractal dimensions, bifurcations, and routes to chaos. Wang and Chen

[25] obtained chaotic attractors with only one stable node-focus by adding a simple constant control parameter

to Sprott’s E system. Recently, a chaotic system with no equilibria was proposed by Wei [28], which showed

a period-doubling sequence of bifurcations leading to a Feigenbaum-like strange attractor. In 2011, these

attractors with no equilibria or only stable equilibria were called it hidden attractors by Leonov et al. [8].

All these findings are indeed surprising from a classical chaos theory point of view, as the systems will be

topologically nonequivalent to the original Lorenz and all Lorenz-like systems. Although the fundamental chaos

theory for autonomous dynamical systems has reached its maturity today, the aforementioned findings reveal

some new features of chaos. On the other hand, the control of chaotic systems is to design state feedback control

laws that stabilize the chaotic systems around the unstable equilibrium points. Active control technique is used

when the system parameters are known and adaptive control technique is used when the system parameters

are unknown [15,26]. Therefore, the design of adaptive control of the extended Sprott E system with only one

stable equilibrium will also be studied.

The current paper further extends the reported result of Wang and Chen [25], utilizing a general

quadratic function to create chaotic attractors with one stable equilibrium. We analyze the stability criteria

for codimension 1 and 2 Hopf bifurcations by calculating the first and second Lyapunov coefficients, following

the approach of Kuznetsov [7]. We verify that the new 3-D system with only one stable equilibrium can also

evolve into periodic and chaotic behaviors as parameters vary. We then applied adaptive control theory for the

stabilization of extended Sprott E system with unknown system parameters. Numerical simulations are shown

to demonstrate the effectiveness of the proposed adaptive stabilization.

2. The extended Sprott E system

2.1. Chaotic attractor

Based on the Sprott E system, we introduce a new chaotic system







ẋ = yz + h(x)
ẏ = x2 − y
ż = 1− 4x,

(2.1)

where h(x) = ex2 + fx+ g and e, f, g are real parameters.

System (2.1) possesses only one equilibrium state, E: (x, y, z) = (1/4, 1/16,−e−4f −16g) , but has many

interesting complex dynamical behaviors. When parameters (f, g, e) = (0, 0, 0), system (2.1) is the Sprott

E system. When parameters (f, g, e) = (−0.1, 0.02, 0.2), it displays a chaotic attractor, as shown in Figures

1a and 1b. This chaotic attractor differs from that of the Lorenz system or any existing systems, because

the only equilibrium state E is stable for these parameter values; the eigenvalues of the linearised system are

λ1 = −0.9506, λ2,3 = −0.0247 ± 0.5122i . Therefore, system (2.1) has no homoclinic orbits joining E . Its

673



WEI et al./Turk J Math

Lyapunov exponents are L1 = 0.0450, L2 = 0, L3 = −1.0451, and the Lyapunov dimension is LD = 2.0431 for

initial conditions (–0.6, 0.9, –1.7). Figure 2a shows the Poincaré section on the plane z = 2, while Figure 2b

shows the time series of z(t) for system (2.1).
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Figure 1. Parameter values when parameter values (f, g, e) = (−0.1, 0.02, 0.2) of system (2.1) with initial value

(−0.6, 0.9,−1.7): a) chaotic attractor in 3-D space; b) chaotic attractor projected in y-z plane.
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Figure 2. Parameter values (f, g, e) = (−0.1, 0.02, 0.2) of system (2.1) with initial value (−0.6, 0.9,−1.7): a) Poincaré

mapping on z = 2 section; b) time series of state variable z(t) .

2.2. Nonchaotic behaviour

It is straightforward to show that knowledge of fixed points and their properties is insufficient to determine the

structure of chaotic attractors. We show here that there are some nonchaotic parameter regions. The following

theorem will help to reduce the amount of work spent searching for parameter values for chaos.

Theorem 2.1 If e = 0 , 5f + 4g = 0 , and f > 1 , then system (2.1) is not chaotic.

Proof From the third equation of (2.1), we obtain

z′′ = −4x′ = −4(yz + h(x)) (2.2)
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and

z′′′ = −4yz′ − 4zy′ − 4h′(x)

= −4yz′ − 4z(x2 − y)− 4h′(x). (2.3)

Multiplying both sides of the equation (2.3) by z gives

zz′′′ = −4yzz′ − 4z2(x2 − y)− 4h′(x)z.

Since yz = x′ − h(x) and x =
1− z′

4
,

zz′′′ = −4z′(x′ − h(x))− 4zh′(x)− 4z2x2

+4z(x′ − h(x))

= −4(2ex+ f)z − 4x2z2

−4(
z′′

4
+ ex2 + fx+ g)(z − z′). (2.4)

Integrating this equation with respect to t gives

zz′′ − z′2

2
+ zz′ =

∫ t

0

[−(5f + 4g +
9

4
e)z − z2

4
+

e

4
z′3

−(f − 1 +
e

2
)z′2 − e

4
zz′2 − 1

4
(zz′)2]dt+ C, (2.5)

where C is a constant and t ≥ 0. When e = 0, 5f + 4g = 0, and f > 1, the left hand side of (2.5) simplifies

to (1− 4x)z− (1− 4x)2/2− 4yz2 − 4hz , a monotonic function of t . It has a limit L ∈ R̄ as t tends to infinity.

If L is finite, then any attractor for the equation lies on the surface (1− 4x)z − (1− 4x)2/2− 4yz2 − 4hz and

is not chaotic by virtue of the Poincareé–Bendixson theorem. If L = ±∞ , then at least 1 of the 3 variables is

unbounded and cannot be chaotic. ✷

2.3. Some basic properties of the new system (2.1)

The Jacobian matrix of linearization about the equilibrium E of system (2.1) is given by

A =





e
2 + f −e− 4f − 16g 1

16
1
2 −1 0
−4 0 0



 (2.6)

with the characteristic equation

λ3 +
(

1− f − e

2

)

λ2 +

(

1

4
+ f + 8g

)

λ+
1

4
= 0. (2.7)

According to the Routh–Hurwitz stability criterion, the real parts of all the roots λ are negative if and only if

∆1 = 1− f − e

2
> 0, ∆2 =

1

4
+ f + 8g > 0,

∆3 =
(

1− f − e

2

)

(

1

4
+ f + 8g

)

− 1

4
> 0.
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These inequalities give

e < 2(1− f), g > −e+ 4ef + 2f(−3 + 4f)

32(−2 + e+ 2f)
, (2.8)

and E is asymptotically stable.

3. Bifurcation analysis in system (2.1)

3.1. Review of the method of Lyapunov coefficients

We first review the projection method described in Chapters 3 and 5 of Kuznetsov [7], but following the

analysis of [12,13,20], for the calculation of the first Lyapunov coefficient l1 , associated with the stability of a

Hopf bifurcation.

Consider the differential equation

ẋ = f(x, µ), (3.1)

where x ∈ R
3 and µ ∈ R

3 are respectively the phase variables and control parameters, and f is a smooth

function in R
3 × R

3 . Suppose that (3.9) has an equilibrium point x = x0 at µ = µ0 . We write X = x − x0

and

F (X) = f(X, µ0). (3.2)

F (X) is also a smooth function and admits a Taylor series expansion in terms of symmetric multilinear vector

functions of its variables:

F (X) = AX+
1

2
B(X,X) +

1

6
C(X,X,X)

+
1

24
D(X,X,X,X) +

1

120
E(X,X,X,X,X)

+O(∥ X ∥6), (3.3)

where A = fx(0, µ0) is the Jacobian matrix, evaluated at the translated equilibrium state, and, for i = 1, 2, 3,

B(X,Y) =

3
∑

j, k=1

∂2Fi(ξ)

∂ξj∂ξk
|ξ=0XjYk,

C(X,Y,Z) =
3

∑

j, k, l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl
|ξ=0XjYkZl.

Suppose that A has a pair of pure imaginary eigenvalues λ2, 3 = ±iω0 (ω0 > 0) at the equilibrium state

(x0, µ0) , with no other eigenvalues on the imaginary axis. Let T c be the generalized eigenspace of A , the

largest invariant subspace spanned by eigenvectors corresponding to λ2, 3 . In Lemma 3.3 of [7], Kuznetsov

introduced eigenvectors p, q ∈ C
3 such that

Aq = iω0q, AT p = −iω0p, (3.4)
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where we have the normalisation condition

⟨p, q⟩ =
3

∑

j

pjqj = 1.

Here AT is the transpose of A , p is the complex conjugate of q with ⟨., .⟩ being the standard scalar product

over C
3 , and the overbar denotes complex comjugation. Any vector y ∈ T c can be represented as y = wq+ w̄q̄ ,

where w = ⟨p, y⟩ ∈ C .

The 2-dimensional center manifold associated with the eigenvalues λ2, 3 = ±iω0 can be parameterized

by w and w̄ , by an immersion of the form X = H(w, w̄) . H : C2 → R
3 is expanded in a Taylor series:

H(w, w̄) = wq + w̄q̄ +
∑

2≤j+k≤5

1

j!k!
hjkw

jw̄k +O(|w|6), (3.5)

where hjk ∈ C
3 and hjk = h̄kj . Differentiating H(w, w̄) with respect to t and substituting into (3.2) gives

Hww
′ +Hww̄

′ = F (H(w, w̄)), (3.6)

where F is given by (3.2) and (3.11). The complex coefficients hij are obtained by solving the system of linear

equations defined by the coefficients of (3.2), so that on the center manifold, w evolves according to

ẇ = iω0w +
1

2
G21w|w|2 +

1

12
G32w|w|4 +O(|w|6), (3.7)

where G21 ∈ C .

Substituting (3.7) into (3.6) and using (3.11), we obtain expressions for the hij . At quadratic order we

have [18]:

h11 = −A−1B(q, q̄), h20 = (2iω0I3 −A)−1B(q, q),

where I3 is the 3× 3 identity matrix, while at cubic order the coefficient of w3 is

h30 = (3iω0I3 −A)−1(3B(q, h20) + C(q, q, q)).

G21 is determined from the condition that the equation for h21 , the cubic order w2w̄ coefficient, has a solution.

This condition can be written as

G21 = ⟨p, C(q, q, q̄) +B(q̄, h20) + 2B(q, h11)⟩,

where we have used the normalisation condition on p and q . The first Lyapunov coefficient is then defined as

l1 =
1

2
ReG21, (3.8)

and determines the nonlinear stability of a nondegenerate codimension one Hopf bifurcation. If l1 = 0 for some

parameter choices, the Hopf bifurcation becomes degenerate and the higher order quintic term G32 is required

to determine the stability and direction of branching of the bifurcating limit cycles.
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Defining H32 as

H32 = 6B(h11, h21) +B(h̄20, h30) + 3B(h̄21, h20)

+3B(q, h22) + 2B(q̄, h31) + 6C(q, h11, h11)

+3C(q, h̄20, h20) + 3C(q, q, h̄21) + 6C(q, q̄, h21)

+6C(q̄, h20, h11) + C(q̄, q̄, h30) +D(q, q, q, h̄20)

+6D(q, q, q̄, h̄11) + 3−D(q, q̄, q̄, h20)+

E(q, q, q, q̄, q̄)− 6G21h21 − 3Ḡ21h21,

G32 is determined from the scalar product G32 = ⟨p,H32⟩ and defines the second Lyapunov coefficient l2 as

l2 =
1

12
ReG32. (3.9)

If both l1 and l2 vanish simultaneously, we require the coefficient G43 of the seventh order terms w4w̄3

to give the third Lyapunov coefficient

l3 =
1

144
ReG43, (3.10)

where G43 = ⟨p,H43⟩ . The expression for H43 is too large to be put in print and can be found in [11,12,18].

3.2. Application to system (2.1) for f = 0

We now apply the above Hopf bifurcation theory to system (2.1) in the simplified situation where h(x) is an

even function so that the parameter f = 0.

Substituting λ = iω into (2.7), system (2.1) undergoes a Hopf bifurcation along the curve, given by

equality in the second term of (2.8): gh = e
32(2−e) . The frequency ω satisfies ω0

2 = 1
4−2e = 8g + 1/4 > 0, so

we require e < 2. The third eigenvalue is λ1 = −(1 − e/2). Therefore λ1 < 0. The transversality condition,

evaluated at gh

λ′(gh) = − 8(2− e)2

2 + (2− e)3
< 0, (3.11)

is satisfied and the equilibrium state E undergoes a Hopf bifurcation, whose stability depends upon the first

Lyapunov coefficient l1 . This leads to the following Theorem.

Theorem 3.1 For system (2.1) with e < 2 , f = 0 and gh = e
32(2−e) , the first Lyapunov coefficient at E is

given by

l1 =
G(u)

2u(1 + u)(1024 + 80u3 + u6)
, (3.12)

where u = 4 − 2e > 0 and G(u) = 512 + 1344u + 960u2 + 300u3 − 84u4 − 19u5 + 3u6 . Since u > 0 (e < 2),

the denominator of (3.12) is positive so that the sign and roots of l1 are determined by G(u) . Denoting by
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ei(i = 1, 2) the only 2 roots of G(u) for which u > 0 , we find that e1 ≈ −1.65331 and e2 ≈ −0.65080 .

Moreover, the following results are also obtained:

(i) When g = gh , e1 < e < e2 , system (2.1) undergoes a transversal Hopf bifurcation at a stable weak

focus E for the flow restricted to the center manifold. Moreover, for each g < gh(e1) , but close to gh(e1) , there

exists a stable limit cycle near the unstable equilibrium point E .

(ii) When g = gh , e < e1 or e2 < e < 2 , system (2.1) undergoes a transversal Hopf bifurcation at an

unstable weak focus E for the flow restricted to the center manifold. Moreover, for each g > gh(e2) , but close

to gh(e2) , there exists a unstable limit cycle near the stable equilibrium point E .

Proof Since e < 2 and f = 0, from (3.11), the transversality condition holds at the Hopf point gh and we

can calculate the first Lyapunov coefficient, determining the stability of the bifurcating limit cycle.

Writing

λ1 = −u

4
, λ2,3 = ± 1√

u
i,

the eigenvectors p, q , satisfying (3.12), are

p =

(

8
√
u+ 8iu

4i− u3/2
,−4i(−4− 3u+ u2)

−4i+ u3/2
,
(−i+

√
u)u

2(−4i+ u3/2)

)

, (3.13)

q =

(

− i

4
√
u
,− i

8(i+
√
u)

, 1

)

. (3.14)

From (3.10) and (3.11), we have

B(X,Y) = (2eX1Y1 +X2Y3 +X3Y2, 2X1Y1, 0) ,

C(X,Y,Z) = (0, 0, 0),

so that

B(q, q) =

(

−4− u

16u
− 1 + i

√
u

4(1 + u)
,−4− u

16u
, 0

)

,

B(q, q̄) =

(

−4− u

16u
− 1

4(1 + u)
,
1

8u
, 0

)

,

h11 =

(

0,
1

8u
,
4 + 3u+ 3u2

u2 + u3

)

,

h20 = (h201, h202, h203) ,

where u = 4− 2e and

h201 = −−4 + 12i
√
u+ 9u+ 5iu3/2 + 2u2

6(i+
√
u)u(8i+ u3/2)

,

h202 =
−16i− 16

√
u+ iu− 7u3/2

24(i+
√
u)
√
u(8i+ u3/2)

,
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h203 =
4i+ 12

√
u− 9iu+ 5u3/2 − 2iu2

3(−8
√
u+ 8iu+ iu2 + u5/2)

.

Since C(q, q, q̄) = 0, G21 reduces to

G21 = ⟨p,B(q̄, h20) + 2B(q, h11)⟩,

so that (3.16) gives

l1 =
G(u)

2u(1 + u)(1024 + 80u3 + u6)
, (3.15)

where

G(u) = 512 + 1344u+ 960u2 + 300u3 − 84u4 − 19u5 + 3u6.

✷

Using Mathematica, we find that there are only 2 roots of l1 = 0 for which u > 0: e1 ≈ −1.65331 (so

that gh(e1) ≈ −0.01414) and e2 ≈ −0.65080 (so that gh(e2) ≈ −0.00767). It is easy to show that l1 > 0

whenever e < e1 or e2 < e < 2, but l1 < 0 when e1 < e < e2 . Since gh increases monotonically with e , we

obtain the direction of bifurcation. Therefore, Theorem 3.1 is proved.

In order to justify the above theoretical analysis of the first Lyapunov coefficient for the Hopf bifurcation

of system (2.1), we chose one set of parameters with f = 0, e = −1.2, and g = −0.0142 < gh(e1) . According to

Theorem 3.1, a stable periodic solution should be found near the unstable equilibrium point E . This is indeed

the case, as shown in Figures 3a and 3b.
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Figure 3. Parameter values (f, g, e) = (0,−0.016,−2.1) of system (2.1) with initial value (0.28, 0.032, 1): a) stable

periodic solution in 3-D space; b) times series of state variable x(t) .

For g > gh(e2) , the equilibrium point E is asymptotically stable. Note that for these parameter values,

we have the bifurcation value g = gh(e2) ≈ −0.00767. Therefore, system (2.1) undergoes a Hopf bifurcation

when the parameter g crosses the critical value gh(e2) , and an unstable periodic orbit emerges from E with

g > gh(e2) . Choosing f = 0, e = −0.4, and g = 0 > gh(e2) , we take initial values (0.28, 0.032, 0.1) near

the equilibrium E , the solution of system (2.1) eventually close to 0 (Figure 4a). However, if we take initial

values (−0.6, 0.9,−1.7) ‘outside’ the unstable periodic orbit (it does exist from the Hopf bifurcation), a chaotic
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attractor exists near the unstable equilibrium E (Figure 4b). Therefore, it seems that when the parameter g

moves away from the critical value g = gh(e2) , a chaotic attractor is generated occurring from the unstable

limit cycle that arose in the Hopf bifurcation.
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Figure 4. Attractors of system (2.1) with parameter values f = 0, e = −0.5, and g = 0 > gh(e2) : a) asymptotically

stable equilibrium point E for starting initial values (0.28, 0.032, 0.1) ; b) chaotic attractor for starting initial values

(−0.6, 0.9,−1.7).

Since the sign of the first Lyapunov coefficient, l1 , is determined by the sign of G(u) in (3.23), l1 vanishes

at the roots of G(u) , namely for

(e1, u1, gh(e1)) ≈ (−1.65331, 7.70662,−0.01414), (3.16)

and

(e2, u2, gh(e2)) ≈ (−65080, 5.3016,−007667). (3.17)

In the next theorem, Theorem 3.2, we determine the sign of the second Lyapunov coefficient when

l1 = 0. Because of the complexity of the calculations, we report our results using numerical values for the

various quantities evaluated in (3.24) and (3.25).

Theorem 3.2 Consider system (2.1). If the parameters

(e, f, g) ∈ Qi =

{

(e, f, g)|e = ei, f = 0, gi =
ei

32(2− ei)

}

(i = 1, 2) , then when l1 = 0 , the second Lyapunov coefficient l2 at the equilibrium state E is given by

l2|e=e1 = −0.00119, l2|e=e2 = 0.00869. (3.18)

Therefore, system (2.1) has a transversal Hopf bifurcation point at the equilibrium state E , which is a stable

weak focus for (e, f, g) ∈ Q1 and an unstable weak focus for (e, f, g) ∈ Q2 .
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Proof The algebraic expressions to calculate the second Lyapunov coefficient are too long to be written

out in detail. Instead we present numerical values for the various terms required to determine G32 (see

above) for (e, gh) = (e1, gh(e1)) ≈ (−1.65331,−0.01414). A similar analysis yields the corresponding G32

for (e, gh) = (e2, gh(e2)) ≈ (−65080,−007667). We merely give the final result here.

For (3.23), when the first Lyapunov coefficient l1 = 0, we obtain:

p = (−0.475974− 3.05599i, 1.08223− 5.34361i,

0.516286− 0.080412i),

q = (−0.09249i,−0.01505− 0.04068i, 1),

h11 = (0, 0.01711, 0.41961),

h20 = (−0.07908 + 0.00616i,−0.03514 + 0.02908i,

−0.03331− 0.42754i),

G21 = −0.01441i,

h21 = (0.00362 + 0.00769i,−0.00247− 0.01009i,

−0.04422 + 0.03922i),

h30 = (0.02474 + 0.09458i, 0.05242 + 0.03300i,

−0.34087 + 0.08917i),

h31 = (0.02913 + 0.00044i,−0.01364 + 0.00206i,

0.00616− 0.00048i),

h22 = (0, 0.00689, 0.09363),

G32 = −0.01432− 0.00910i.

Therefore, the second Lyapunov coefficient l2 for (22) when l1 = 0 is

l2 =
1

12
ReG32 = −0.00119.

Moreover, Mathematica gives

G32 = 0.104257− 0.049206i,

so that

l2 =
1

12
ReG32 = 0.00869.

The proof of Theorem 3.2 is therefore complete. ✷

4. Dynamical structure of the extended Sprott E system

We now report on our numerical integrations of the extended Sprott E system, summarizing our results in plots

of the Lyapunov exponent spectra and bifurcation transition diagrams as e varies. Although the Theorems in

Section 3 were applied to the simplified case of f = 0, here we also include results for the more general form of

the quadratic controller.
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4.1. e increasing when f = 0, g = e
32(2−e)

We first fix f = 0, g = e
32(2−e) and vary e ∈ [−0.1, 0.3] . According to Theorem 3.1, the equilibrium state E is a

nonhyperbolic and unstable weak focus for f = 0, g = e
32(2−e) , and e ∈ [−0.1, 0.3] . The bifurcation transition

diagram for xmax as e varies is shown in Figure 5a. Moreover, the corresponding Lyapunov exponent spectrum

is shown in Figure 5b. Period-doubling Feigenbaum-type bifurcation is evident in system (2.1), integrated from

initial values of (x0, y0, z0) = (0.28, 0.032, 1).

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

1

1.5

2

2.5

3

3.5

4

4.5

5

e

x
 m

a
x

(a)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.4

−0.2

0

0.2

0.4

e
L

y
a

p
u

n
o

v
 e

x
p

o
n

e
n

ts

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−1.2

−1

−0.8

−0.6

−0.4

(b) e

L
1

L
2

L
3

Figure 5. Parameter values (f, g) = (0, e

32(2−e)
) of system (2.1) with initial value (0.28, 0.032, 1): a) bifurcation

diagram of the variable z with e ∈ [−0.1, 0.3] ; b) Lyapunov exponent spectrum with e ∈ [−0.1, 0.3] .

As e is decreased, a stable periodic limit cycle undergoes a period-doubling bifurcation when e = 0.178.

Decreasing e further, a second period-doubling bifurcation to a period-4 attractor occurs for e = 0.100.

Subsequent period-doubling cascades follow and merge together to produce behavior indicative of the onset

of chaos. Also present are windows of odd periodic and corresponding period-doubling cascade, for example the

period-5 window at e ≈ 0.05.

4.2. e increasing when f = −0.1, g = 0.02

Figure 6a shows the Lyapunov exponent spectra, starting from the initial value (x0, y0, z0) = (−0.6, 0.9,−1.7)

for f = −0.1 and g = 0.02 as e varies in e ∈ [−0.4, 0.5]. Figure 6b shows the corresponding bifurcation

diagram of the state variable z(t) . From condition (2.8) in Section 2.3, E is asymptotically stable in this range

for e . The maximum Lyapunov exponent is negative for e ∈ [−0.4,−0.303), implying that (2.1) evolves to a

stable sink. For e > −0.303, the system undergoes a cascade of period doubling bifurcations, with windows of

periodic orbits, interspersing chaotic regimes, before a cascade of period halving bifurcations heralds the reverse

bifurcation sequence in the region [0.267, 0.5]. From Figure 6b, it is clear that −0.015 ≤ e < 0.08 is a periodic

window. For −0.015 ≤ e < 0.029 we have a stable period-2 orbit region, while for 0.029 < e < 0.048, it is a

stable period-4 orbit region. As e increases in 0.048 < e < 0.08, system (2.1) is chaotic. The periodic windows

play an important role in the evolution of dynamical behaviors of system (2.1). It is illustrated in the case of a

period-doubling sequence of bifurcations leading to a Feigenbaum-like strange attractor. Although system (2.1)

in the parameter region has stable equilibria, the existence of a universal ratio characterizes the transition to

chaos via period-doubling bifurcations. Moreover, there is a reestablishing of simple periodic states for e > 0.3.
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Figure 6. Parameter values (f, g) = (−0.1, 0.02) of system (2.1) with initial value (−0.6, 0.9,−1.7): a) bifurcation

diagram of the variable z with e ∈ [−0.4, 0.5] ; b) Lyapunov exponent spectrum with e ∈ [−0.4, 0.5] .

5. Adaptive control of the extended Sprott E system

5.1. Theoretical results

In this section, we design an adaptive control law for globally stabilizing the extended Sprott E system (2.1)

when the parameter value is unknown. Thus, we consider the controlled extended Sprott E system described

by







ẋ1 = x2x3 + h(x) + u1

ẋ2 = x2
1 − x2 + u2

ẋ3 = 1− 4x1 + u3,
(5.1)

where u1, u2 , and u3 are feedback controllers to be designed using the states and estimates of the unknown

parameter of the system. In order to ensure that the controlled system (5.1) globally converges to the origin

asymptotically, we consider the following adaptive control functions:







u1 = −x2x3 − êx2
1 − f̂x1 − ĝ − k1x1

u2 = −x2
1 + x2 − k2x2

u3 = −1 + 4x1 − k3x3,
(5.2)

where ê, f̂ , and ĝ are the estimate of the parameters e, f and g , respectively, and ki(i = 1, 2, 3) are positive

constants. If we define the parameter estimation error as







ee = e− ê

ef = f − f̂
eg = g − ĝ,

(5.3)

for the derivation of the update law for adjusting the parameter estimates, the Lyapunov approach is used.

Consider the quadratic Lyapunov function

V =
1

2
(x2

1 + x2
2 + x2

3 + e2e + e2f + e2g), (5.4)
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which is a positive definite function on R6 . Differentiating V along the trajectories of system (5.1), we obtain

V̇ = −k1x
2
1 − k2x

2
2 − k3x

2
3 + ee(x

3
1 − ˙̂e)

+ef (x
2
1 −

˙̂
f) + eg(x1 − ˙̂g). (5.5)

Therefore, the estimated parameters are updated by the following law:











˙̂e = x3
1 + k4ee

˙̂
f = x2

1 + k5ef
˙̂g = x1 + k6eg,

(5.6)

where k4, k5, k6 are positive constants. Then

V̇ = −k1x
2
1 − k2x

2
2 − k3x

2
3 − k4e

2
e − k5e

2
f − k6e

2
g. (5.7)

which is a negative definite function. Thus, by Lyapunov stability theory [2,6], we obtain the following result.

Theorem 5.1 The extended Sprott E system with unknown parameters (5.1) is globally and exponentially

stabilized for all initial conditions (x1(0), x2(0), x3(0)) ∈ R3 by the adaptive control law (5.2), where the update

law for the parameter is given by (5.6) and ki(i = 1, 2, 3, 4, 5, 6) are positive constants.

5.2. Numerical results

Compared to Figure 1 in Section 2, the parameters of the extended Sprott E system (2.1) are selected as

(e, f, g) = (0.2,−0.1, 0.02). For the adaptive and update laws, we take ki = 2, (i = 1, 2, 3, 4, 5, 6). Suppose that

the initial value of the parameter estimates are taken as ê(0) = 1, f̂(0) = 4, ĝ(0) = −4. The initial values of the

system (5.1) are taken as x1(0) = −0.6, x2(0) = 0.9, x3(0) = −1.7.

When the adaptive control law (5.2) and the parameter update law (5.6) are used, the controlled

extended Sprott E system (5.1) converges to the equilibrium (0,0,0) exponentially as shown in Figure 7.

Figure 8 shows that the parameter estimates ê, f̂ , ĝ converge to the actual values of the system parameters

(e, f, g) = (0.2,−0.1, 0.02).
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Figure 7. Time responses of the controlled extended

Sprott E system (5.27) when parameters values (e, f, g) =

(0.2,−0.1, 0.02) and initial value (−0.6, 0.9,−1.7) .

Figure 8. Parameter estimates ê(t) , f̂(t) , and ĝ(t) when

parameters values (f, g, e) = (−0.1, 0.02, 0.2).
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6. Conclusion

In this paper, the extended Sprott E system with a nonlinear term h(x) in the form of a quadratic polynomial

x has been investigated. Through this analysis we obtained the surfaces for which the system undergoes Hopf

bifurcations from the equilibrium state E . Then we extended the analysis to degenerate cases, where the first

Lyapunov coefficient vanishes. Calculation of the second Lyapunov coefficient enables the Lyapunov stability to

be determined. Basic properties of the system have been analyzed by means of Lyapunov exponent spectrum,

bifurcation diagram, and associated Poincaré map. Adaptive control laws are effective to stabilize the extended

Sprott E system based on the adaptive control theory and Lyapunov stability theory. Strange chaotic attractors

with stable equilibria deserve further investigation and are very desirable for engineering applications such as

secure communications in the near future.
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2775–2789.

686

http://dx.doi.org/10.1007/s11071-010-9686-6
http://dx.doi.org/10.1007/s11071-011-0102-7
http://dx.doi.org/10.1007/s11071-011-0102-7
http://dx.doi.org/10.1142/S0218127499001024
http://dx.doi.org/10.1016/j.nonrwa.2009.12.010
http://dx.doi.org/10.1016/j.nonrwa.2009.12.010
http://dx.doi.org/10.1007/978-3-642-50085-5
http://dx.doi.org/10.1007/978-1-4757-3978-7
http://dx.doi.org/10.1016/j.cam.2009.12.008
http://dx.doi.org/10.1016/j.cam.2009.12.008
http://dx.doi.org/10.1175/1520-0469(1963)020&lt;0130:DNF&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.physleta.2009.01.049
http://dx.doi.org/10.1016/j.chaos.2007.11.008
http://dx.doi.org/10.1016/j.chaos.2007.11.008
http://dx.doi.org/10.1016/j.cam.2010.11.029
http://dx.doi.org/10.1016/j.cam.2010.11.029


WEI et al./Turk J Math

[15] Park JH, Lee SM, Kwon OM. Adaptive synchronization of Genesio-Tesi chaotic system via a novel feedback control.

Phys Lett A 2007; 371: 263–270.

[16] Rössler OE. An equation for continuious chaos. Phys Lett A 1976; 57: 397–398.

[17] Sil’nikov LP. A case of the existence of a countable number of periodic motions. Sov Math Docklady 1965; 6:

163–166.

[18] Sil’nikov LP. A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state

of saddle-focus type. Math USSR-Shornik 1970; 10: 91–102.

[19] Silva CP. Sil’nikov theorem-a tutorial. IEEE Trans Circuits Syst I 1993; 40: 657–682.

[20] Sotomayor J, Mello LF. Braga DC. Bifurcation analysis of the Watt governor system. Comp Appl Maths 2007; 26:

19–44.

[21] Sprott JC. Some simple chaotic flows. Phys Rev E 1994; 50: 647–650.

[22] Sprott JC. Simplest dissipative chaotic flow. Phys Lett A 1997; 228: 271–274.

[23] Sprott JC. A new class of chaotic circuit. Phys Lett A 2000; 266: 19–23.

[24] Van der Schrier G, Maas LRM. The diffusionless Lorenz equations: Sil’nikov bifurcations and reduction to an

explicit map. Physica D 2000; 141: 19–36.

[25] Wang X, Chen GR. A chaotic system with only one stable equilibrium. Commun Nonlinear Sci Numer Simulat

2012; 17: 1264–1272.

[26] Wang X, Tian L, Yu L. Adaptive control and slow manifold analysis of a new chaotic system. Internat J Nonlinear

Science 2006; 21: 43–49.

[27] Wang Z. Existence of attractor and control of a 3-D differential system. Nonlinear Dyn 2009; 60: 369–373.

[28] Wei ZC. Dynamical behaviors of a chaotic system with no equilibria, Phys Lett A 2011; 376: 248–253.

[29] Wei ZC, Yang QG. Controlling the diffusionless Lorenz equations with periodic parametric perturbation. Comput

Math Appl 2009; 58: 1979–1987.

[30] Wei ZC, Yang QG. Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria.

Nonlinear Analysis RWA 2011; 12: 106–118.

[31] Wei ZC, Yang QG. Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear

Dyn 2012; 66: 543–554.

[32] Yang QG, Chen GR. A chaotic system with one saddle and two stable node-foci. Internat J Bifur Chaos 2008; 18:

1393–1414.

[33] Yang QG, Wei ZC, Chen GR. An unusual 3-D autonomous quadratic chaotic system with two stable node-foci.

Internat J Bifur Chaos 2010; 20: 1061–1083.

[34] Zhou TS, Chen GR. Classification of chaos in 3-D autonomous quadratic systems-I: basic framework and methods.

Internat J Bifur Chaos 2006; 16: 2459–2479.

687

http://dx.doi.org/10.1016/j.physleta.2007.06.020
http://dx.doi.org/10.1016/j.physleta.2007.06.020
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1070/SM1970v010n01ABEH001588
http://dx.doi.org/10.1070/SM1970v010n01ABEH001588
http://dx.doi.org/10.1109/81.246142
http://dx.doi.org/10.1103/PhysRevE.50.R647
http://dx.doi.org/10.1016/S0375-9601(97)00088-1
http://dx.doi.org/10.1016/S0375-9601(00)00026-8
http://dx.doi.org/10.1016/j.cnsns.2011.07.017
http://dx.doi.org/10.1016/j.cnsns.2011.07.017
http://dx.doi.org/10.1007/s11071-009-9601-1
http://dx.doi.org/10.1016/j.physleta.2011.10.040
http://dx.doi.org/10.1016/j.camwa.2009.07.058
http://dx.doi.org/10.1016/j.camwa.2009.07.058
http://dx.doi.org/10.1016/j.nonrwa.2010.05.038
http://dx.doi.org/10.1016/j.nonrwa.2010.05.038
http://dx.doi.org/10.1142/S0218127408021063
http://dx.doi.org/10.1142/S0218127408021063
http://dx.doi.org/10.1142/S0218127410026320
http://dx.doi.org/10.1142/S0218127410026320
http://dx.doi.org/10.1142/S0218127406016203
http://dx.doi.org/10.1142/S0218127406016203



