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Degenerate parametric amplifiers (DPAs) exhibit the unique property of phase-sensitive gain and
can be used to noiselessly amplify small signals or squeeze field fluctuations beneath the vacuum
level. In the microwave domain, these amplifiers have been utilized to measure qubits in elementary
quantum processors, search for dark matter, facilitate high-sensitivity spin resonance spectroscopy
and have even been proposed as the building blocks for a measurement based quantum computer.
Until now, microwave DPAs have almost exclusively been made from nonlinear Josephson junctions,
which exhibit high-order nonlinearities that limit their dynamic range and squeezing potential. In
this work we investigate a new microwave DPA that exploits a nonlinearity engineered from kinetic
inductance. The device has a simple design and displays a dynamic range that is four orders of
magnitude greater than state-of-the-art Josephson DPAs. We measure phase sensitive gains up
to 50 dB and demonstrate a near-quantum-limited noise performance. Additionally, we show that
the higher-order nonlinearities that limit other microwave DPAs are almost non-existent for this
amplifier, which allows us to demonstrate its exceptional squeezing potential by measuring the
deamplification of coherent states by as much as 26 dB.

I. INTRODUCTION

High performance cryogenic microwave amplifiers have
become crucial components for an increasing number of
contemporary experiments in condensed matter physics
and quantum engineering. Microwave amplifiers that are
based on parametric photon conversion are particularly
promising since they can operate at the quantum-noise-
limit, where only the minimal amount of noise required
by quantum mechanics is added to the amplified signal.
These amplifiers have facilitated the high-fidelity readout
of quantum bits in elementary quantum processors [1],
enabled spin resonance spectroscopy of femtolitre-volume
samples [2] and are even aiding the search for axions [3,
4].

Parametric amplifiers largely fall into one of two
classes: phase insensitive or phase sensitive. In quantum
mechanics, an electromagnetic field X = X1 cos(ωt) +
X2 sin(ωt) (with angular frequency ω) can be described

by dimensionless quadrature field operators X̂1 = (â† +

â)/2 and X̂2 = i(â† − â)/2, where â† and â are the bo-
son annihilation and creation operators. A phase insensi-
tive amplifier applies gain G equally to both quadratures
〈Ŷ1〉 = G〈X̂1〉 and 〈Ŷ2〉 = G〈X̂2〉 (where Ŷ1 and Ŷ2 repre-
sent the field at the output of the amplifier), unavoidably
adding at least 1/4 photon of noise to each quadrature in
the process. Conversely for a phase-sensitive amplifier,
one field quadrature is amplified 〈Ŷ1〉 = G〈X̂1〉, whilst

the other is deamplified 〈Ŷ2〉 = 〈X̂2〉/G. This allows for
amplification of a single quadrature without any added
noise [5]. The noiseless nature of a phase-sensitive am-
plifier makes it distinctly useful for detecting small mi-
crowave signals, particularly those at the single photon
level [6].

In addition to its superior noise performance, a phase-

sensitive amplifier can be used to reduce the fluctua-
tions of an electromagnetic field. A mode of electro-
magnetic radiation cooled to its ground state will ex-
hibit a quantum mechanical noise referred to as ‘vac-
uum fluctuations’. These fluctuations obey the uncer-

tainty relation δX̂2
1δX̂

2
2 ≥ 1/16, where δX̂2

1 and δX̂2
2

represent the variances of the field quadratures (in di-
mensionless units of photons), and establish the ultimate
limit to noise for measurements of an electromagnetic
field. When a field in its quantum ground state enters
a phase-sensitive amplifier, the vacuum fluctuations are
deamplified or ‘squeezed’ along one quadrature at the ex-
pense of increasing them along the other. Squeezed noise
can be used to enhance the signal-to-noise ratio (SNR)
in measurements and has been successfully deployed, for
example, in gravitational wave detection [7].

Squeezed vacuum states are also a valuable resource in
quantum computing [8]. Measurement-based computa-
tion using highly-entangled cluster states encoded in the
modes of an electromagnetic field is one credible path-
way to achieving large-scale quantum computation [9].
Critically, it has been shown that fault-tolerance in this
scheme can be attained using vacuum states squeezed by
at least 15−17 dB [10]. Circuit-based microwave squeez-
ers are a particularly attractive platform in this context,
as they combine circuit manufacturability with another
key requirement in cluster-state computing; the ability
to engineer non-Gaussian states of light [11–13].

In the microwave domain, the Josephson Parametric
Amplifier (JPA) represents the state-of-the-art in phase-
sensitive amplification technology. A JPA consists of one
or more Josephson junction, typically in the form of a
SQUID loop, embedded in a low quality factor super-
conducting resonator [14, 15]. Vacuum squeezing has
been achieved with JPAs employing single cavity modes
(so-called degenerate parametric amplifiers) at the level
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FIG. 1: Experimental setup and device geometry. a Experimental setup, showing the device pattern (bottom) and close-up optical
microscope image of the interdigitated capacitor (IDC). The signal tone and bias current are combined at 20 mK using a bias tee. A diplexer

mixes the pump and signal tones immediately before the sample. A circulator splits the forward microwave path from the reflected output of the
device, which is measured at room temperature using homodyne detection (depicted) or with a vector network analyzer. b Simulated frequency
response of the two port bandstop filter, with ports A and B as marked on the pattern in a. The filter passes DC and 2ω0, and attenuates ω0.

The filter connects at port B to a quarter-wavelength resonator with resonant frequency ω0. c The phase response of the device vs bias current.
The bias current shifts the resonant frequency over more than 100 MHz. Measured resonant frequencies at each current are presented (white

diamonds), alongside a fit to the inset equation (solid white line).

of 10 dB [16] and through the entanglement of two dis-
tinct cavity modes (12 dB) [17]. However, recent ex-
perimental [18, 19] and theoretical [20] investigations of
JPAs have uncovered differences between the JPA and
an ideal degenerate parametric amplifier, which become
significant in the high gain limit (> 10 dB) and constrain
the dynamic range and amount of achievable squeezing.
Higher-order nonlinearities originating from the physics
of Josephson junctions limit the useful linear regime of
operation, with typical 1 dB-compression points measur-
ing less than −90 dBm at the amplifier output [21–23].
Attention has recently been focused on engineering JPAs
with Hamiltonians that more closely resemble that of an
ideal DPA, such as those employing junctions arranged
in a ‘SNAIL’ configuration [24–27], which has been suc-
cessful in pushing 1 dB-compression point output powers
to as high as −73 dBm.

In this work we present a new type of phase-sensitive
microwave parametric amplifier that behaves as a near-
ideal DPA. The device contains no Josephson junctions
(making it robust to electrostatic discharge) and is pro-
duced with a single-step lithography process on a thin
film of NbTiN. The nonlinearity responsible for paramet-

ric amplification in this device originates from a kinetic
inductance intrinsic to the NbTiN film [28–33]. We ob-
serve up to 50 dB of phase sensitive gain with a gain-
bandwidth product of 53(7) MHz. An exceptionally large
1 dB-compression point output power of −49.5(8) dBm is
measured and represents a 3-5 orders of magnitude im-
provement over comparable JPAs.

We demonstrate that the weak nonlinearity of our am-
plifier has the potential to produce highly-squeezed mi-
crowave fields. Through mapping the squeezing trans-
formation of our DPA using coherent tones, we observe
deamplification levels approaching 30 dB without the dis-
tortions commonly observed in JPAs [18–20]. Finally, we
explore the noise properties of our amplifier and find that
it operates close to the quantum noise limit.

II. THE KINETIC INDUCTANCE AMPLIFIER

Kinetic inductance is associated with the energy stored
in the motion of charge-carrying particles. For super-
conducting films, Ginzburg-Landau theory predicts a
current-dependence of the kinetic inductance described
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by [34, 35]:

Lk(I) ≈ L0

[
1 +

(
I

I∗

)2]
(1)

where L0 is the per-unit-length kinetic inductance of
the material without a current, and I∗ determines the
strength of the current dependence and is proportional
to the critical current Ic of the film. This form of nonlin-
ear inductance is analogous to an optical Kerr medium.
When a current passing through the film consists of two
different microwave tones, i.e. a signal tone (at a fre-
quency ωs) and a much stronger ‘pump’ tone (at ωp),
the nonlinearity gives rise to four wave mixing (4WM),
where energy transfer from the pump to the signal can
produce parametric amplification [29, 31]. In this pro-
cess, two pump photons are converted to a signal pho-
ton and a photon at an additional tone called the ‘idler’
(with frequency ωi), where energy conservation requires
2ωp = ωs + ωi. Introducing a DC current bias on top of
the microwave tones I = IDC + Iµw lowers the order of
the nonlinearity:

Lk(I) ≈ L0

[
1 +

(
IDC

I∗

)2

+ 2
IDCIµw

I2∗
+

(
Iµw

I∗

)2]
(2)

In addition to the Kerr component (∝ I2
µw), a new

term linear in Iµw appears which can facilitate a three
wave mixing (3WM) process. Here a single pump photon
produces a signal photon and an idler photon, such that
ωp = ωs + ωi. Three wave mixing is advantageous in the
context of parametric amplification since there can be a
large spectral separation between the pump and the sig-
nal. This means that the strong pump tone can be read-
ily removed through filtering, preventing the saturation
of any following amplifiers in the detection chain. 3WM-
type parametric amplifiers using kinetic inductance have
been demonstrated recently in traveling wave geometries
[30, 33]. However, at high pump powers a competition
between 4WM and 3WM processes is known to degrade
the parametric gain in devices and limit their perfor-
mance [36]. In addition, there has been limited experi-
mental work on phase sensitive amplification in quantum-
limited microwave travelling wave devices.

Here we implement a resonant 3WM-type DPA that
utilizes kinetic inductance and exhibits phase sensitive
gain. Critically, the resonant nature of our kinetic induc-
tance parametric amplifier (KIPA) strongly suppresses
4WM and other higher-order processes, permitting ex-
tremely high levels of pure 3WM gain. The device (see
Fig. 1a) is fabricated in a 9.5 nm thick film of NbTiN
on silicon, benefiting from the high magnetic field re-
silience (up to B⊥ ≈ 350 mT) and high critical temper-
ature (Tc ≈ 10.5 K) that are characteristic of this su-
perconductor [37, 38]. NbTiN on silicon can exhibit ex-
tremely low losses with internal quality factors Qi greater
than 106 [39], which is crucial to the generation of highly
squeezed states. The amplifier is measured at a temper-
ature of 20 mK in a 3He/4He dilution refrigerator (see
Supplemental Materials for details).

The KIPA is defined geometrically by a coplanar
waveguide (CPW) quarter-wavelength resonator coupled
to a single port via a microwave Bragg mirror [40, 41],
which can equivalently be viewed as a stepped-impedance
band-stop filter. The filter (which has a frequency re-
sponse depicted in Fig. 1b) mimics the role of a capacitive
coupling element commonly found in JPAs [16, 17, 21],
but importantly does not break the inner track of the
CPW, allowing a DC current to pass through the de-
vice. The resonator is realised using a segment of CPW
featuring an interdigitated capacitor (IDC) (see Fig. 1a)
terminated in a short circuit, and is designed to pro-
duce a resonance at the centre of the band-stop region
ω0/2π ≈ 7.2 GHz. The small CPW track width in the
resonator (w = 2 µm) reduces I∗ and provides a sizable
total kinetic inductance of LT = 3.84 nH. The IDC adds
additional capacitance to the resonator to decrease its
characteristic impedance (Z0 ≈ 118 Ω) and subsequently
enhance the pump current for a given pump power, which
helps to minimise device heating. Furthermore, the IDC
introduces dispersion to the resonator [33], detuning the
higher-order modes away from harmonics of the funda-
mental (i.e. 3ω0), preventing inter-mode coupling in-
duced by the strong parametric pump [42]. The KIPA
functions in the highly over-coupled regime, where the
coupling rate to the port κ far exceeds the internal rate
of loss γ.

To operate the KIPA, we feed the combined bias cur-
rent IDC, signal and pump into its port, as illustrated in
Fig. 1a. The tones mix inside the resonator and the re-
sulting amplified and reflected signal is routed to a High
Electron Mobility Transistor (HEMT) amplifier at 4 K.
This is followed by a third low-noise amplification stage
at room temperature before being measured with a Vec-
tor Network Analyzer (VNA) or undergoing homodyne
detection (see Supplemental Materials for details).

We have derived the Hamiltonian for the KIPA in
the presence of the bias current IDC and a pump tone
Ip cos(ωpt+ ϕp), expressed in a reference frame rotating
at ωp/2:

Hkipa/~ = ∆â†â+
ξ

2
â†

2
+
ξ∗

2
â2

︸ ︷︷ ︸
HDPA/~

+
K

2
â†

2
â2

︸ ︷︷ ︸
HKerr/~

(3)

where ∆ accounts for a frequency detuning of the KIPA
from half the pump frequency ωp/2. HDPA is the Hamil-
tonian for an ideal DPA [20]; it is quadratic in the field
operators and is characterized by the 3WM strength
ξ. HKerr represents the next higher-order term, which
here is a self-Kerr interaction with strength K. See the
Supplemental Materials for a detailed derivation of the
Hamiltonian. Eq. 3 is also the same approximate Hamil-
tonian found for 3WM-type JPAs, such as those that
employ flux-pumped SQUIDs [21, 23, 43] or SNAILs [24–
26]. An important quantity that largely determines the
dynamic range and squeezing potential in these DPAs is
the ratio κ/|K|, which quantifies the relative strength of
HKerr to HDPA [20] (since |ξ| → κ/2 at large gain).
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FIG. 2: Amplifier gain characteristics and compression with signal power. a Phase insensitive gain as a function of the signal frequency
ω = ∆ω + ωp/2 for different pump powers (circles). The fitted theoretical frequency response is plotted (solid lines) with fitting parameters

provided in the Supplemental Materials. b Phase sensitive gain as a function of pump phase ϕp for various pump powers. The phase response has
been aligned such that ϕp = π/2 corresponds to maximum gain. c Peak gain (as illustrated in b) as a function of signal power for the same pump

powers shown in b. Inset: output 1 dB-compression power as a function of gain.

To quantify the Kerr interaction |K| ≈
ω0(~ω0)/(I2

∗LT ) for the KIPA (refer to Supplemen-
tal Materials), we measure I∗. The DC bias current is
swept in the absence of a pump tone, resulting in a shift
of the device’s resonance frequency (detected via its
phase response, see Fig. 1c) that is related to the change
in kinetic inductance described by Eq. 1. We observe
a resonance frequency shift of ∼ 100 MHz for a 0.9 mA
bias, and extract I∗ = 5.10(9) mA from a fit of the cur-
rent dependence. We estimate the Kerr constant for this
device to be |K|/2π ≈ 0.13 Hz, a completely negligible
quantity relative to all other system parameters. We
note that I∗ is about three orders of magnitude greater
than the critical current of a typical JPA, indicating
a much weaker form of nonlinearity. This provides a
ratio κ/|K| > 108 for the KIPA that is several orders of
magnitude greater than that of a JPA [21–23].

We expect the 3WM strength |ξ| ≈ ω0(IDCIp/I
2
∗ ) (see

Supplemental Materials) to be linear in the applied DC
current. For the remainder of the paper, a bias current
of IDC = 0.834 mA is used; close to the critical current of
the film but leaving a sufficient margin for additional mi-
crowave currents applied through the pump and signal.
A comparison of the expressions for |K| and |ξ| reveals
why the KIPA functions as an ideal DPA: the photon
energy is a minuscule fraction of the characteristic Kerr
energy (i.e. ~ω0/(LT I

2
∗ )� 1) by virtue of I∗ being large.

In fact, it can be shown that the Kerr energy is related
to the superconducting pairing energy Ep = LT I

2
∗ [35],

which itself depends on the effective volume of the non-

linear inductance. The greater the volume over which LT
is spread, the smaller the Kerr interaction. This is also
observed for JPAs, where it is known that a large array
of weakly-nonlinear SQUIDs distributed throughout the
resonator can substantially lower the self Kerr interaction
strength relative to the case of a single strongly nonlinear
SQUID [44]. The 3WM strength for the KIPA is, on the
other hand, somewhat independent of I∗, since IDC and
Ip can always be raised to a sizable fraction of I∗, with
the provision that they are kept sufficiently small so that
heating of the refrigerator and device does not occur.

III. AMPLIFIER CHARACTERISTICS

Applying a pump tone at the frequency ωp/2π =
14.381 GHz and bias current IDC = 0.834 mA pro-
duces an amplification feature centred around ω0/2π ≈
7.1905 GHz (see Fig. 2a). The KIPA generates an am-
plified signal tone ωs at its output, along with an idler
at ωi such that energy is conserved in the 3WM process
ωp = ωs + ωi. The phase insensitive gain, which occurs
when the signal and idler tones are at distinct frequencies,
i.e. for ωs = ωp/2 + ∆ω (with |∆ω| exceeding the res-
olution bandwidth of the measurement), increases with
the pump power and is found to be in excess of 40 dB be-
fore the KIPA crosses the threshold where spontaneous
parametric oscillations occur (see Supplemental Materi-
als). To characterise the line-shape of the amplification
feature, we assume that the KIPA operates as an ideal
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FIG. 3: The squeezing transformation, measured with coherent inputs. a An illustration of the squeezing transformation that similarly
distorts the IQ plane for coherent inputs (top) and the quasi-probability distribution of a quantum (vacuum) state (bottom). b KIPA response to

coherent inputs of constant amplitude and varying phase, plotted on two different scales. Top: outputs are plotted with an equal aspect ratio,
where the reflected input sweep with the KIPA off is observed as a circle (green) at the center of the plot. Turning the KIPA on stretches the

circle to an ellipse, which resembles a blue line in this plot. Bottom: the same outputs plotted with a zoomed-in scale along Q so that the
elliptical transformation may be observed. Solid lines are a guide for the eye. c The deamplification GS and amplification GA as a function of
pump power. Points are extracted from the ellipses b. The dotted line is the expected deamplification for an ideal DPA and the solid lines are
the amplification and deamplification calculated with a model that includes small reflections along the measurement lines (see Supplemental

Materials).

DPA (i.e., we assume K = 0) and derive the reflection
parameter Γ using input-output theory [20]:

Γ(ω) =
κ(κ+ γ)/2 + iκ(∆ + ω − ωp/2)

∆2 +
[
(κ+ γ)/2 + i(ω − ωp/2)

]2 − |ξ|2
−1, (4)

(see Supplemental Materials for the derivation). We fit
the gain data with the reflection model and observe ex-
cellent agreement with theory (see Fig. 2a). We ex-
tract an average coupling quality factor Qc = 135, along
with a constant gain-bandwidth-product for the KIPA of
53(7) MHz.

When applying a signal tone at half the pump fre-
quency ωs = ωp/2, the KIPA enters the degenerate mode
of operation, producing phase sensitive gain as the signal
and idler tones interfere. Fig. 2b depicts the gain of the
KIPA as a function of pump phase, where up to 26 dB
of deamplification and close to 50 dB of amplification are
measured. Compared to phase insensitive amplification,
additional gain is obtained in degenerate mode due to the
constructive interference that occurs between the signal
and idler.

After calibrating the phase of the pump to achieve
maximum amplification (i.e. ϕp ≈ π/2), we characterise
the degenerate 1 dB-compression point of the KIPA as
a function of gain (see Fig. 2c). For ∼ 20 dB of phase
sensitive gain, we find a 1 dB compression power of
−69.5(8) dBm at the device input, comparable to the
performance of kinetic inductance travelling wave am-

plifiers [30, 33, 45], despite the KIPA’s resonant nature.
The output power of the KIPA for this measurement was
close to the input power 1 dB-compression point of the
cryogenic HEMT amplifier (∼ −46 dBm). It is thus pos-
sible that the true 1 dB-compression point of the KIPA
is even higher than we report here.

IV. THE SQUEEZING TRANSFORMATION

The phase-dependent interference of the signal and
idler fields in a DPA results in an affine transformation
applied to the IQ-plane of the input field, also commonly
called the squeezing transformation [5]. Fig. 3a illustrates
the distortion of the IQ-plane for coherent inputs that lie
along a contour of constant amplitude, in addition to an
equivalent transformation of a phase space representa-
tion of a vacuum state input. The fields, which initially
occupy a circular region on the IQ-plane, are stretched to
form an ellipse, with the area being conserved in the pro-
cess. Coherent states are useful for studying the squeez-
ing transformation since any noise field that couples into
the cavity through the loss channel (γ) may be neglected
(averaged away in a measurement), permitting a clear
inspection of any deviations from the expected trans-
formation. Hamiltonian non-idealities manifest as an S-
shaped distortion of the phase space at high gains, as has
been experimentally observed [18, 19] and modelled [20]
in JPAs for gains typically exceeding ∼ 10 dB.
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FIG. 4: Noise temperature characterisation. a Schematic
depicting a simplified detection chain that can be used to model the
noise properties of the KIPA. The KIPA amplifies with a gain Gk,

adding an amount of noise nk. The following amplifiers and
components are modeled as a single amplifier with a total gain of GT

and a noise contribution nsys. b Measured noise in the presence of a
coherent tone, shown in units of power (dBm) and photons, referred

to the input of the KIPA. The measurement is taken with a
bandwidth resolution of 1 kHz. Traces were recorded with the KIPA
in degenerate mode, non-degenerate mode and off. In non-degenerate
mode the signal-to-noise ratio is improved by 18 dB compared to a
measurement using the cryogenic HEMT as the first amplifier. An
additional 6 dB enhancement is observed when the KIPA is in the

degenerate mode. c Number of input-referred noise photons
calculated by measuring the noise power at the output of the chain

over a 1 kHz bandwidth around ω0 (500 kHz detuned for the
non-degenerate data), and dividing the result by zGTGk. Error bars

are within the size of the markers on this scale.

We probe the squeezing transformation by sweeping
the phase of a coherent state incident on the KIPA and
use homodyne detection to measure the transformed out-
put. A coherent tone power of −112 dBm (corresponding
to ∼ 16 intracavity photons) was chosen to provide suffi-
cient signal-to-noise ratio without saturating the ampli-
fier chain. See Supplemental Materials for details. Our
results are shown in Fig. 3b for different pump powers.
When the KIPA is off, sweeping the phase of the input
coherent state traces out a circle on the IQ-plane. Ac-
tivating the KIPA maps the circle to an ellipse at the
detector with no noticeable S-type distortion, even for
a degenerate gain of 30 dB. This exceeds the achievable
phase-sensitive gain without distortion observed in JPAs

by approximately two orders of magnitude. Further in-
creases in gain (up to 50 dB) did not produce any obvi-
ous distortions, though at these higher gains the signal
power had to be reduced to avoid saturating the cryo-
genic HEMT and room temperature amplifiers, resulting
in significant degradation in the SNR. The lack of S-
type features at high gain support the conclusion that
the self-Kerr correction is negligible and to an excellent
approximation the KIPA can be described as an ideal
DPA.

The deamplification level GS is defined as the great-
est reduction in amplitude of an input coherent state
by the squeezing transformation. We additionally de-
fine the amplification level GA as being the correspond-
ing increase in gain that occurs orthogonal to the axis of
deamplification. GS and GA are measured after aligning
the amplification and deamplification axes along I and Q,
respectively, and averaging multiple measurements (refer
to Supplemental Materials for details). Fig. 3c presents
our results, where up to 26 dB of deamplification is ob-
served for 30 dB of amplification. Using the input-output
theory for an ideal DPA, we derive the squeezing transfor-
mation and predict GS and GA for the DPA parameters
obtained from the fits in Fig. 2a (see Supplemental Mate-
rials). We observe some asymmetry GS 6= GA in our data
at high gains, as shown in Fig. 3c, which we attribute to a
small ∼ 2% reflection occurring at the input to the KIPA
(see Supplemental Materials). This reflected signal adds
to the deamplified coherent state and thus reduces the
measured deamplification level. Such a reflection would
occur for a 2 Ω impedance mismatch of the printed cir-
cuit board to which the amplifier is connected, which is
within its fabrication tolerances. Including a weak re-
flection along the signal path in our model accurately
reproduces the slight asymmetry, as shown in Fig. 3c.

V. NOISE PROPERTIES

We examine the noise performance of the KIPA by
monitoring the output power of the setup on a spectrum
analyzer. Fig. 4a portrays a simplified noise model of
the detection chain, with the KIPA amplifying either
noise (a vacuum state) or a coherent state (i.e. a dis-
placed vacuum). The following amplifiers and any loss
along the output line are modeled by a single amplifier
with a gain of GT (refer to Supplemental Materials).
The parameters nk and nsys represent the number of
noise photons in excess of the quantum limit added by
each amplifier. A conversion factor z translates the
dimensionless units of photons to an equivalent power in
watts recorded on the spectrum analyzer. The measured
output power can thus be converted to a number of
photons referred to the output of the KIPA by dividing
by the factor zGT , which is extracted from a detailed
analysis of the output noise spectrum as a function of
gain and temperature (see Supplemental Materials).
We derive expressions for the input-referred number
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of noise photons of the KIPA in degenerate (ntd) and
non-degenerate (ntn) modes using input-output theory
(Supplemental Materials):

ntd =
Ptd

zGTGk
≈ 1

4
(2nth + 2nkd + 1) +

nsys

Gk
(5)

ntn =
Ptn

zGTGk
≈ (2nth + nkn + 1) +

nsys

Gk
(6)

with Ptd(tn) the power at the output of the detection
chain measured in degenerate (non-degenerate) mode,
nth the number of thermal photons occupying the in-
put field and nkd(kn) the noise photons in excess of the
quantum limit added by the amplifier in each mode of
operation. Gk is the KIPA gain, equivalent to the ampli-
fication level GA when in degenerate mode.

In Fig. 4b we plot the input-referred number of pho-
tons recorded in the presence of an applied coherent tone,
with the KIPA in three different configurations: degen-
erate mode, non-degenerate mode and off. Both the de-
generate and non-degenerate measurements are taken at
a pump power of Ppump = −19.3 dBm, which provides
gains of 31 dB and 24.5 dB, respectively. We observe
an 18 dB enhancement in the SNR when operating in
non-degenerate mode relative to using the HEMT as the
first-stage amplifier (KIPA off) and an additional 6 dB
of SNR enhancement when operating in degenerate mode
(see Fig. 4b), which is predicted by Eqs. 5-6 in the limit
of large gain (Gk →∞).

In order to extract the noise parameters we measure
ntd and ntn as a function of Gk in the absence of an ap-
plied coherent tone and plot the results in Fig. 4c. Fits
to the curves yield n∞td = nth/2 + nkd/2 + 1/4 = 0.31(5),
n∞tn = 2nth + nkn + 1 = 1.18(9) and nsys = 80.0(46).
nkd and nkn result from internal losses in the amplifier
that mix bath photons into the output the field, whilst
nth = 1/[exp (~ω0/kBTem) − 1] is given by the Bose-
Einstein distribution, with Tem the temperature of the
electromagnetic field. It is important to note that Tem

can be a different value to the physical temperature of the
refrigerator Tf due to insufficient filtering and attenua-
tion of the measurement lines. In our noise measurement
we are not able to separate the individual contributions
of nkd/nkn and nth. At the maximum degenerate gain
measured in Fig. 4c (35 dB) we find an input-referred
noise of 0.32(3) photons, a value close to the theoretical
quantum limit of 0.25 photons.

VI. CONCLUSION

We have presented a simple and versatile microwave
parametric amplifier called a KIPA, fabricated from a
thin film of NbTiN. For the parameter space tested,
we report above 40 dB of phase insensitive gain and up
to 50 dB of phase sensitive gain. Our device features
an exceptionally high input 1 dB-compression point of

−69.5 dBm for 20 dB of gain, making it suitable for a
wide range of cryogenic microwave measurements. Us-
ing input-output theory we have been able to model our
device as an ideal DPA, with excellent agreement be-
tween theory and experiment. The close DPA approxi-
mation makes the KIPA an extremely effective microwave
squeezer, which we demonstrate through mapping its
squeezing transformation out to GA = 30 dB. We find
the amplifier operates close to the quantum noise limit
with an input-referred noise of 0.32(3) photons in phase
sensitive mode.

Future experiments will focus on exploring the noise
squeezing properties of the KIPA by using a second KIPA
as a following amplifier [16, 18]. The large levels of deam-
plification without distortion observed here sets an up-
per bound to its noise squeezing capabilities as any loss
present will act to mix in the vacuum state and reduce
squeezing (see Supplemental Materials for a theoretical
analysis of squeezing in the presence of loss). However,
we see no observable signs of loss in the current device
and note that planar NbTiN resonators can reach excep-
tionally large internal quality factors (Qi > 106 [39, 46]),
making this an attractive system to perform noise squeez-
ing.

Squeezing levels in excess of 17 dB would surpass the
fault-tolerant threshold for measurement-based quantum
computing with cluster-states [47]. Our estimates of the
internal quality factor suggests that squeezing may al-
ready be above this threshold in the current device. Com-
bining this with the already demonstrated ability to en-
gineer non-Gaussian states of light in superconducting
circuits [11, 13] raises the exciting possibility of utilising
the KIPA as a resource in continuous variable quantum
computing. Finally, high kinetic inductance NbTiN res-
onators can display excellent magnetic field compatibil-
ity, with Qi > 105 at fields up to 6 T reported [37], we
therefore envisage utilising this amplifier in applications
such as electron spin resonance spectroscopy, where the
KIPA can serve as both the microwave cavity and first-
stage amplifier to push the boundary of spin detection
sensitivity [48, 49].
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I. DEVICE FABRICATION

The KIPA is fabricated on a 350µm thick high-resistivity silicon wafer. The wafer is cleaned
with a piranha solution (a mixture of sulfuric acid, water and hydrogen peroxide) followed by an
HF etch of the natural silicon dioxide before having a 9.5 nm thick film of NbTiN sputtered on
the surface (STAR Cryoelectronics). To define the pattern we perform a standard electron beam
lithography process using AR-P 6200 (9%) as a positive resist. Reactive Ion Etching (RIE) with
CF4 and Ar is used to etch the NbTiN in the exposed regions of the chip. After the RIE step
any residual resist mask is removed using solvents before the device is bonded to a printed circuit
board and measured.

II. EXPERIMENTAL SETUP

All measurements are performed with the device situated at the mixing chamber plate (T ∼
20 mK) of a dilution refrigerator.

A. Wiring

The Pump Line: A microwave source (E8267D, Keysight Technologies) supplies the pump tone
for all experiments via a high pass filter (HFCN-9700+, Mini-Circuits) used to reduce microwave
source subharmonics. A 10 dB cryogenic attenuator is used at the 4 K temperature stage, followed
by two 3 dB attenuators at the 900 mK and 100 mK stages, respectively. The pump line connects
to the KIPA via a diplexer (DPX-1114, Marki Microwave) at the 20 mK stage (shown in Fig. 1a
of the main text), which provides > 40 dB of rejection at the signal frequency ω0/2π = 7.2 GHz.

The Signal Line: Three 20 dB attenuators are used to minimise the transmission of thermal
noise to the device, and are situated at the 4 K, 900 mK and 20 mK stages, respectively. The signal
line then connects to the RF port of the bias-T (PE1615, Pasternack Enterprises), as shown in
Fig. 1a (main text).

The DC Line: The DC line connects to the bias-T via a 1 dB attenuator at 4 K and two low
pass filters at 4 K and 100 mK (VLF-7200+ and VLF-105+, Mini-Circuits Technologies), blocking
room-temperature noise at pump and signal frequencies. The DC line breaks out to a copper wire
that is thermalised to a bobbin fixed to the 20 mK plate before connecting to the DC port of a
bias tee (shown in Fig. 1a).

The Detection Path: A cryogenic circulator (Quinstar Technology, CTH0508KCS) routes
the reflected output of the KIPA through the detection chain (shown in Fig. 1a). A high-rejection
bandpass filter (Micro-Tronics Inc, BPC50403-01) immediately follows and attenuates any power at
the pump frequency that may leak through the diplexer. A double isolator (Quinstar Technology,
CTH0508KCS ×2) at 20 mK connects the output of the bandpass filter to a cryogenic HEMT low
noise amplifier (Low Noise Factory, LNF-LNC0.3 14A) situated at 4 K.

B. VNA Measurements

Port 1 of a vector network analyzer (Rohde & Schwarz, ZVB-20) is connected to the signal line
via an attenuator, used to reduce the minimum signal power of the network analyzer. We use a
low noise amplifier (Mini-Circuits, ZX60-06183LN+) at the output of the detection chain, which
connects to port 2 of the VNA.

The data presented in Fig. 1c (main text) was collected with the pump source disabled. We
apply a DC voltage (Yokogawa Electric, GS2000) to the DC line, in series with a ∼ 10 kΩ resistor at
room temperature. We observe a 2π phase shift in the frequency response measured with the VNA,
as expected for a λ/4 resonator measured in reflection in the over-coupled regime (see Sec. V A).
A linear fit to the first 100 MHz of the phase response is used to estimate the line-delay of our
setup and is subtracted from the complete phase response. The phase is then increased by π to



3

correct for the expected phase offset that is removed by the fit to the line-delay. To model the
resonance frequency shift, we fit a quadratic polynomial to the resonance frequency as a function
of the square of the current.

The 14.318 GHz pump is then enabled with a 0.834 mA DC bias current for the measurement
of the phase insensitive gain in Fig. 2a (main text). We use the VNA to probe the magnitude
response about half the pump frequency. To estimate the baseline of the magnitude response, we
disable the pump but leave the bias current active, which yields an approximately flat magnitude
response (see Sec. X). We subtract the magnitude response of the baseline measurement from the
magnitude response of the gain curve to obtain the data presented in Fig. 2a (main text). For an
detailed explanation of the fitting procedure, refer to Sec. V.

To study the phase sensitive gain, we operate the ZVB-20 as a spectrum analyzer, using it to
measure the incident power on Port 2. The signal line is connected to another E8267D microwave
source (Keysight Technologies) via an attenuator and is configured for linear phase modulation
at half the pump frequency (7.1905 GHz) and ∼ −112 dBm of signal power at the sample. The
pump and signal sources are phase locked using a 1 GHz reference clock. With the VNA configured
for a zero-span measurement and triggered off the edge of each phase ramp, we obtain the data
presented in Fig. 2b of the main text. Again, we disable the pump, measure the baseline and
subtract the mean reflected baseline power from each measurement to obtain the phase sensitive
gain. Due to slow phase drifts between the VNA local oscillator and the signal tone, we repeat
each measurement 40 times, and use the maximum of the cross correlation between pairs of traces
to align the data before averaging. We repeat this measurement for a range of signal powers and
pump powers, and use the maximum of the gain curve to define the degenerate gain, as presented
in Fig. 2c. The compression power is determined by the signal power where the pre-saturation gain
drops by 1 dB. We define the pre-saturation gain by the average of the degenerate gains measured
for the 10 smallest signal powers.

C. Coherent State Measurement

For the remainder of the measurements, the output of the detection chain is connected to a
homodyne detection setup consisting of an IQ mixer (Marki Microwave, IQ4509), with the lo-
cal oscillator supplied by another independent ultra low phase noise microwave source (Keysight
Technologies, E8267D) which is phase locked with a 1 GHz reference clock to the pump and signal
sources. The local oscillator frequency is set to 7.1905 GHz. The I and Q outputs of the mixer
connect to 1.9 MHz low pass filters (Mini-Circuits, SLP-1.9+) followed by two 5 × pre-amplifiers
(Stanford Research Systems, SIM914) connected in series. I and Q are then digitized using a data
acquisition card (Keysight Technologies, M3300A) configured with a sample rate of 6.25 MHz.

The ellipse measurements (depicted in Fig. 3b of the main text) were performed with the pump
and local oscillator phases fixed, while the signal phase is stepped. Each (I, Q) pair is measured by
averaging 106 samples collected at each phase. The entire phase sweep is performed in less than 60 s
to minimise errors due to slow phase drift between the signal and pump. Before each measurement,
we calibrate the phase of the local oscillator by rotating the IQ-plane in software to measure the
angle that produces the least variance on Q. We refine phase calibration by repeating the procedure
three times in order to ensure measurement consistency despite small channel imbalances between
I and Q. We measure 16 repetitions of the phase sweep and software rotate each dataset to further
minimise the variance on Q due to slow phase drifts in the setup. The repetitions are aligned
by maximising the pairwise cross-correlation of I (Q) as a function of the signal phase, and then
averaged to produce the data presented in Fig. 3b.

We interleave a measurement with the pump off to measure the circular response of the reflected
signal in the IQ-plane. We measure GS (GA) by taking the ratio of the peak to peak amplitudes of
the pump off response and pump on response for Q (I) after averaging. These results are plotted
in Fig. 3c (main text). Phase calibration is performed with the pump on and the calibration phase
is kept after the pump is disabled.
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Z(ω) QN-1 QN-2 Q1 Q0

x = 0x = l
a

b

C

Lk(QN-1)

QnV(x) V(x+Δx)

Δx

C

Lk(Qn)

QN

FIG. 1. (a) Telegrapher’s model of a kinetic inductance resonator. (b) A single loop of the Telegrapher’s
model.

D. Noise Measurements

To collect the data presented in Fig. 4 of the main text, we replace the room temperature
amplifier with a low noise HEMT amplifier (Low Noise Factory, LNF-LNR1 15A) for improved
noise performance. For the measurement in Fig. 4c the signal source is disabled and the input to
the KIPA is defined by the noise produced by the nearest microwave attenuator; i.e. approximately
1/2 a photon at 7.1905 GHz and 20 mK.

III. HAMILTONIAN OF A KINETIC INDUCTANCE PARAMETRIC AMPLIFIER

A. Zero Bias

A kinetic inductance can be described as a nonlinear inductance

Lk(I) = L0

(
1 +

I2

I2∗

)
. (1)

We consider a ‘telegrapher model’ for a kinetic inductance resonator, as illustrated in Fig. S1a
and wish to write down the Lagrangian for this system. The circuit has a capacitance C and
kinetic inductance Lk(I) per unit length. We assume that the kinetic inductance is far greater
than the geometric inductance (Lg) along the transmission line (i.e. L0 � Lg). Because the
inductance depends on current, and current is related to charge in a straight-forward manner, we
find it convenient in this situation to formulate the Lagrangian with charge as the coordinate. We
therefore use the ‘loop charge’ approach described in Ref. [1]. The loop charges are related to the
current across the inductors and charge on the capacitors through:

In = Q̇n, (2)

qn = Qn −Qn−1, (3)

respectively. Note that in this particular geometry, the loop charge equals the cumulative charge
Qn =

∑n−1
k=0 qk.

Applying Kirchoff’s voltage law around a single loop in the Telegrapher circuit model (see
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Fig. S1b):

V (x+ ∆x, t) = V (x, t) + Lk(In)∆xİn,

V (x+ ∆x, t)− V (x, t)

∆x
= Lk(In)İn,

→ ∂xV (x, t) = Lk(I)∂tI,

(4)

where in the third line we take a continuum limit ∆x → 0. This is the well-known Telegrapher’s
equation, with a nonlinear inductance as provided in Eq. (1), and describes the relevant equation
of motion for our circuit. The Telegrapher equation can equivalently be expressed as:

1

C
∂2
xQ(x, t) = Lk(∂tQ)∂2

tQ, (5)

with I = ∂tQ. The Lagrangian for the system that reproduces the Telegrapher’s equation with its
Euler-Lagrange equation is found to be:

Lkipa =
1

2

N−1∑

n=0

[
L0∆x

(
1 +

1

6

Q̇2
n

I2∗

)
Q̇2

n −
1

C∆x
(Qn+1 −Qn)2

]
,

→ 1

2

∫ l

0

dx

[
L0

(
1 +

1

6

(∂tQ)2

I2∗

)
(∂tQ)2 − 1

C
(∂xQ)2

]
,

=
1

2

∫ l

0

dx

[
L0(∂tQ)2 − 1

C
(∂xQ)2

]
+

L0

12I2∗

∫ l

0

dx(∂tQ)4,

(6)

where in the second line we once again take a continuum limit ∆x → 0. We note that this form
of the Lagrangian differs from the work of Yurke and Buks, but correctly reproduces the classical
Telegrapher’s equations for a kinetic inductance transmission line (Eq. (5)) assumed in recent work
[3, 4].

The canonical momentum corresponding to Q is:

Φ =
∂Lkipa

∂Q̇
= L0∂tQ+

L0

3I2∗
(∂tQ)3, (7)

and the Hamiltonian is given by:

H =

∫ l

0

dxΦ∂tQ− L

=
1

2

∫ l

0

dx

[
L0(∂tQ)2 +

1

C
(∂xQ)2

]
+

3L0

12I2∗

∫ l

0

dx(∂tQ)4.

(8)

To express this in terms of Φ and Q we use the approximation:

∂tQ =
1

L0
Φ− 1

3I2∗
(∂tQ)3 =

1

L0
Φ− 1

3I2∗L
3
0

Φ3 +O
(

1

I4∗

)
, (9)

and:

(∂tQ)2 ' 1

L2
0

Φ2 − 2

3I2∗L
4
0

Φ4, (10a)

(∂tQ)4 ' 1

L4
0

Φ4. (10b)

Thus, to first order in 1/I2
∗ we find:

Hkipa = H0 +H1, (11a)

H0 =
1

2

∫ l

0

dx

[
1

L0
Φ2 +

1

C
(∂xQ)2

]
, (11b)

H1 = − 1

12I2∗L
3
0

∫ l

0

dxΦ4. (11c)
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1. Mode Expansion for the λ/4 Resonator

We start by finding the modefunctions of a linear (I∗ → ∞) λ/4 resonator. In this case, the
Euler-Lagrange equation corresponding to Lkipa is the Telegraper’s equation:

v2
0∂

2
xQ = ∂2

tQ, (12)

with v0 = 1/
√
L0C the linear phase velocity.

The λ/4 resonator is shorted at x = 0 corresponding to a boundary condition of zero voltage,
or (Q1 − Q0)/C∆x → ∂xQ(x = 0)/C = 0 in the continuum limit. At x = l we leave the
boundary condition general by taking an impedance Z(ω) to ground and imposing Ohm’s law
V (x = l) = −Z(ω)I(x = l) (for an I convention defined in Fig. 1) at the boundary, with V (x =
l) = ∂xQ(x = l)/C and I(x = l) = ∂tQ(x = l). In summary:

∂xQ(x = 0) = 0 (short circuit), (13a)

∂tQ(x = l) = − 1

Z(ω)C
∂xQ(x = l) (impedance Z(ω) to ground). (13b)

An open (short) boundary condition at x = l is recovered in the limit Z(ω)→ i∞ (Z(ω)→ i0).
We use an ansatz:

Q(x, t) = i
∑

m

Am cos (kmx+ φm) [a†m(t)− am(t)], (14)

with a(t) = ae−iωmt and km = ωm/v0. The first boundary condition is met by setting φm = 0.
The second boundary condition gives:

tan(kml) =
∂tQm(t)

ωmQm(t)

Z(ωm)

Z0
, (15)

where Z0 =
√
L0/C is the characteristic impedance of the λ/4 resonator and Qm(t) is the time-

dependent component of Q(x, t) oscillating at ωm. The equation must in general be solved numer-
ically for km. In the case of an open where Z(ω)→ i∞, we simply have:

cos(kml) = 0⇒ km =
(2m+ 1)π

2l
(open), (16a)

ωm =
(2m+ 1)πv0

2l
. (16b)

The band-stop filter presents the resonator with a large impedance for frequencies within the
stop band. To simplify the following analysis we assume an infinite impedance, i.e. an open
boundary condition at x = l, which allows us to utilize the relations in Eq. (16).

In the linear case, the canonical momentum is just Φ = L0Q̇, i.e.:

Φ(x, t) = −
∞∑

m=0

L0ωmAm cos (kmx) [a†m(t) + am(t)]. (17)

Quantization proceeds by imposing the commutation relations [am(t), a†n(t)] = δnm. The normal-
ization constants Am are determined by inserting Q(x, 0) and Φ(x, 0) into Hkipa and requiring:

H0 =

∞∑

m=0

~ωm

(
a†mam +

1

2

)
, (18)

which leads to Am = 1/
√
lL0ωm. We therefore find:

Q(x, t) = i
∞∑

m=0

√
~

LTωm
cos (kmx) [a†m(t)− am(t)], (19a)

Φ(x, t) = − 1

l

∞∑

m=0

√
~LTωm cos (kmx) [a†m(t) + am(t)], (19b)
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where we define LT = L0l as the total zero-bias kinetic inductance of the resonator.
More generally, we can interpret Eq. (19) as a change of variables from {Q(x, t),Φ(x, t)}

to {am(t), a†m(t)}, subject to the spatial boundary constraints. Inserting the form of Φ(x, t)
into Eq. (11)c, keeping only the fundamental mode and dropping fast rotating terms and con-
stants, we find:

H1 = − (~ω0)2

32LT I2∗
(a† + a)4,

≈ − 3(~ω0)2

16LT I2∗
(2a†a+ a†

2
a2),

= ~Ka†a+
~K
2
a†

2
a2.

(20)

The Kerr nonlinearity is thus:

K = −3

8

~ω0

LT I2∗
ω0. (21)

Here E∗ ≡ LT I
2
∗/2 can be interpreted as a characteristic energy stored in an inductor with induc-

tance LT and current I∗, which is also related to the superconducting pairing energy Ep = LT I
2
∗

[5].

B. Current Bias

1. Mode Expansion

In the presence of a current bias, we modify the boundary condition at x = l to be:

∂tQ(x = l) = − 1

Z(ω)C
∂xQ(x = l) + Ib. (22)

We take the impedance to be a stop-band filter at the relevant resonator mode frequencies:

Zs(ω) =

{
i∞ ω ∈ Ω0

50 Ω ω ∈ Ω1
, (23)

where Ω0 represents the frequency band over which we have standing resonator modes, and Ω1

covers the impedance matched frequency band, where we will have traveling waves. For Ib = 0 we
can then write:

Q(x, t) = i
∑

m

√
~

LTωm
cos (kmx) [a†m(t)− am(t)]

+ i

∫

Ω1

dω

√
~

πωv0L0
cos

(
ωx

v0

)
[b†ω(t)− bω(t)],

(24)

with b†ω(t) = b†ωe
iωt. We already know that the first term satisfies the boundary conditions at

frequencies ωm from our previous analysis, with ωm, km given in Eq. (16). For frequencies ω ∈ Ω1,
on the other hand, the circuit is modeled as a semi-infinite matched transmission line connected
to ground at x = 0.

In the presence of a current bias, we simply add to Q(x, t) a term qb(x, t) where q̇b(x, t) = Ib(x, t).
We assume that the pump frequencies are in the traveling wave band Ω1. Equivalently, we can
replace bω → bω + β(ω), with β(ω) the frequency component of qb(t) at frequency ω. This can
be interpreted as separating the continuum mode into a strong average coherent component β(ω)
and a fluctuation (or quantum) term bω. We take the pump to be infinitely narrow in frequency,
and therefore set β(ω) = βpδ(ω−ωp) + βDCδ(ω). The DC component is independent of space and
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trivially satisfies both the wave equation Eq. (12) and the short ∂xQ = 0 boundary condition. We
therefore finally have:

Q(x, t) = i
∑

m

√
~

LTωm
cos (kmx) [a†m(t)− am(t)]

+ i

∫

Ω1

dω

√
~

πωv0L0
cos

(
ωx

v0

)
[b†ω(t)− bω(t)] + qp(x, t) + qDC(t),

(25)

where:

q̇DC(t) = IDC, (26a)

q̇p(t) = Ip(x, t) = cos

(
ωpx

v0
+ φp

)
Ip(t). (26b)

In our experiments we apply a pump tone Ip(x, t) that oscillates at a frequency very close to
2ω0 and we will therefore assume ωp = 2ω0 for simplicity. Furthermore, the boundary condition
in Eq. (13)a implies that φp = 0. Thus:

Ip(x, t) = cos(2k0x)Ip(t). (27)

As before, we will use the strategy of taking the mode expansion of Φ(x, t) in the absence of any

nonlinearity, and substitute this back into the nonlinear Hamiltonian H1. Using Φ(x, t) = L0Q̇(x, t)
we find:

Φ(x, t) = − 1

l

∑

m

√
~LTωm cos (kmx) [a†m + am]

− 1

v0

∫

Ω1

dω

√
~ωZ0

π
cos

(
ωx

v0

)
[b†ω + bω] + L0 cos(2k0x)Ip(t) + L0IDC.

(28)

2. Hamiltonian

For the linear Hamiltonian we have as before:

H0 =

∞∑

m=0

~ωm

(
a†mam +

1

2

)
, (29)

where we have kept only the resonator modes and dropped the continuum modes in Ω1. To
proceed we will substitute the (Schrödinger picture) flux field into H1. In general this will lead to
coupling (e.g. cross-Kerr) between resonator and quantum continuum modes. However, given that
the nonlinearity of the KIPA is extremely weak, we will neglect the quantum fluctuations of the
current, i.e. drop the bω modes completely from the nonlinearity. We also, for simplicity, truncate
to the fundamental resonator mode, and thus use:

Φ(x, t) = − 1

l

√
~LTω0 cos (k0x) (a† + a) + L0 cos(2k0x)Ip(t) + L0IDC. (30)

Dropping fast rotating terms in a, a† from H1:

H1 = − 3(~ω0)2

16I2∗LT

(
2a†a+ a†

2
a2
)

− ~ω0

8I2∗

(
2I2

DC + 2IDCIp(t) + I2
p(t)

) (
2a†a+ a†

2
+ a2

)
.

(31)

We take the time-dependent AC current amplitude to be:

Ip(t) =
Ip
2

(
e−i(ωpt+ϕp) + ei(ωpt+ϕp)

)
. (32)
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Substituting Ip(t) into H1 and transferring to a frame rotating at ωp/2, the KIPA Hamiltonian
becomes:

Hkipa = ~
(
ω0 + δDC + δp +K − ωp

2

)
a†a+

~ξ
2
a†

2
+

~ξ∗

2
a2 +

~K
2
a†

2
a2, (33)

where any fast rotating pump terms have been ignored. We thus define the following important
Hamiltonian parameters:

δDC = − 1

2

I2
DC

I2∗
ω0, (34a)

δp = − 1

8

I2
p

I2∗
ω0, (34b)

K = − 3

8

~ω0

LT I2∗
ω0, (34c)

ξ = − 1

4

IDCIp
I2∗

ω0e
−iϕp . (34d)

We note that the term δp arises from the square of the pump current, which has a non-zero
average value of I2

p/2 and therefore causes an effective detuning of the cavity frequency.
As a sanity check, in the absence of a pump tone (i.e. Ip = 0) we find the resonance frequency

of the cavity to be:

ω′0 ≈ ω0

(
1− 1

2

I2
DC

I2∗

)
, (35)

neglecting the Kerr term. For (IDC/I∗)2 � 1, which is the approximation used in Eq. (10), we can
write:

ω′0 ≈
ω0√

1 + I2
DC/I

2∗
=

π

2l
√
CLk(IDC)

, (36)

which is the fundamental frequency of a λ/4 resonator with a per unit length capacitance of C and
inductance Lk(IDC) (provided by Eq. (1)), as expected.

C. DPA Approximation

A comparison of the expressions for K (Eq. (34)c) and ξ (Eq. (34)d) reveals why the KIPA
functions as an ideal DPA: the photon energy is a minuscule fraction of the characteristic nonlinear
inductive energy (i.e. ~ω0/(LT I

2
∗ )� 1) by virtue of I∗ being large.

We estimate the per-square kinetic inductance L� of the NbTiN film by performing a simulation
of the full KIPA device structure (using the software Sonnet) and adjusting L� until we obtain
the measured zero current bias resonance frequency ω0. We find LT = L�(l/w) = 3.84 nH (with
l and w the length and width of the λ/4 resonator), which together with the measured value of
I∗ gives K ≈ 0.13 Hz, a completely negligible quantity relative to all other system parameters.
Compared to the coupling rate, we achieve the ratio: κ/K > 108, greater than the typical values of
κ/K < 104 seen in JPAs [6]. Because the Kerr term is so small, we approximate the Hamiltonian
for the KIPA with the Hamiltonian for the ideal DPA for the remainder of this work:

Hkipa ≈ HDPA = ~∆a†a+
~ξ
2
a†

2
+

~ξ∗

2
a2 (37)

with:

∆ = ω0 + δDC + δp − ωp/2 (38)

which is identical to Eq. (33) with the Kerr terms neglected.
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FIG. 2. The single port input-output theory system, with input and output fields ain and aout, intracavity
field operator a, and bath input and output fields ain and aout. The input field is coupled to the cavity
at rate κ, and the cavity to the bath at rate γ. The accompanying circuit is coloured according to the
correspondence with the associated fields and coupling constants. The bath continuum is coupled to the
circuit via the resistor.

IV. INPUT-OUTPUT THEORY FOR A DPA

The field operators a, Φ and Q and Hamiltonian Hkipa so far describe the intracavity field
dynamics. In the experimental setting we stimulate the resonator with an input field operator
ain and measure a reflected response aout that enter and exit the cavity via the coupling circuit.
For example, a Vector Network Analyzer (VNA) measures the reflection parameter S11(ω) =
〈ain〉/〈aout〉. To obtain a classical description of the microwave response we would typically adopt
a scattering matrix approach [7]. The below derivation follows that presented in Ref. 8, and is
reproduced here for completeness.

Input-output theory, developed by Gardiner and Collett [9], extends the scattering matrix for-
malism to the quantum regime. Let H be the Hamiltonian written in terms of the creation and
annihilation operators a† and a, where H is coupled to the bath at rate γ, used to model the losses
in the system, and input field ain at rate κ (see Fig. 2). We write down the following Heisenberg
picture master equation to describe the system:

∂a(t)

∂t
=

[a,H]

i~
− κ̄a(t) +

√
κain +

√
γbin(t) (39)

where κ̄ = (γ + κ)/2. The output field operator aout is then given by the input-output relation:

aout(t)− ain(t) =
√
κa(t) (40)

Consider now the linear λ/4 resonator Hamiltonian provided in Eq. (18), truncated to the
fundamental mode. We re-write Eq. (39) in the Fourier domain using:

a[ω] =
1√
2π

∫ ∞

−∞
eiωta(t)dω (41)

which gives:

−iωa[ω] = − i
~
[
a[ω], ~ω0a

†[ω]a[ω]
]
− κ̄a[ω] +

√
κain[ω] +

√
γbin[ω] (42)

−iωa = −iω0a− κ̄a+
√
κain +

√
γbin (43)

Substituting for a using the input-output relation (Eq. (40)) yields the output field operator in
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terms of the input and bath fields:

−iω(aout − ain) = −(κ̄+ iω0)(aout − ain) + κain +

√
γ

κ
bin (44)

⇒ aout =

(
κ

κ̄− i(ω − ω0)
− 1

)
ain +

√
γ/κ

κ̄− i(ω − ω0)
bin (45)

Treating the bath input field bin as a thermal state such that 〈bin〉 = 0, we retrieve the expression
for the reflection parameter:

S11[ω] =
〈aout[ω]〉
〈ain[ω]〉 (46)

=
κ

κ̄− i(ω − ω0)
− 1 (47)

We can apply the same mathematics to the idealized KIPA Hamiltonian (Eq. (37)). We first
write the master equation in the Fourier domain, as before [6]:

−iωa = −
(
κ̄a+ i∆a+ i

ξ

2

[
a, a†2

]
+ i

ξ∗

2

[
a, a2

])
+
√
κain +

√
γbin (48)

−iωa = −((κ̄+ i∆)a+ iξa†) +
√
κain +

√
γbin (49)

Next, we take the Hermitian conjugate of both sides. Note that in the Fourier domain (a[ω])† =
a†[−ω]. To simplify notation the frequency reversal is implied. We find:

iωa† = −((κ̄− i∆)a† − iξ∗a) +
√
κa†in +

√
γb†in (50)

Combined with Eq. (49), we obtain the matrix equation:

iω

(
−a
a†

)
=

(
−i∆− κ̄ −iξ
iξ∗ i∆− κ̄

)(
a
a†

)
+
√
κ

(
ain

a†in

)
+
√
γ

(
bin
b†in

)
(51)

⇒
(
a
a†

)
= −√κ

(
−i∆ + κ̄+ iω −iξ

iξ∗ i∆− κ̄− iω

)−1
[(

ain

a†in

)
+

√
γ

κ

(
bin
b†in

)]
(52)

= −
√
κ

D[ω]

(
−i∆ + κ̄+ iω −iξ

iξ∗ i∆− κ̄− iω

)[(
ain

a†in

)
+

√
γ

κ

(
bin
b†in

)]
(53)

where D[ω] = ∆2 + (κ̄ − iω)2 − |ξ|2. Substituting the input-output relation (Eq. (40)) gives the
input-output equation for the ideal DPA [6]:

aout[ω] = gS [ω]ain[ω] + gI [ω]a†in[−ω] +

√
γ

κ

[
(gS [ω] + 1)bin[ω] + gI [ω]b†in[−ω]

]
(54)

where we make the frequency reversal explicit, and define the signal and idler gains:

gS [ω] =
κκ̄− iκ(∆ + ω)

D[ω]
− 1, gI [ω] =

−iξκ
D[ω]

(55)

V. PHASE INSENSITIVE AMPLIFICATION

Phase insensitive gain is readily measured with a vector network analyzer (VNA) once an appro-
priate pump tone and bias current are applied to the device concurrently. For the measurements in
Fig. 2a of the main text, we chose a pump frequency of ωp/2π = 14.381 GHz ≈ ω0/π, close to twice
the resonant frequency of ω0 = 7.1924 GHz for the bias current IDC = 0.834 mA. Ideally, the KIPA
should be operated at precisely ∆ = 0, or ωp ≈ 2(ω0 + δDC + δp) for maximal gain. However, in
our experiments we optimise the pump frequency for gain at a fixed pump power and bias current,
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FIG. 3. (a) Phase insensitive gain as a function of frequency ω = ∆ω + ωp/2 for different pump powers
(circles). Traces are labelled by the pump power at the cavity input. The fitted theoretical frequency
response is plotted (solid lines). The parameters |κ|, Arg(κ) and the pump line transmittance λp were
the only free parameters. (b) |κ| as a function of the estimated pump current in the device (circles), with
linear fit (solid line). (c) Arg(κ) as a function of pump power. The dashed line is a guide for the eye.

arriving at a close to optimal pump configuration. A fixed pump frequency of ωp/2π = 14.381
GHz is used throughout the experiments, despite the expected shift in resonance (Eq. (34)).

The VNA supplies a signal tone, which is swept about ωp/2, while the reflected response from the
KIPA is measured. Because the magnitude response of the KIPA is approximately flat, we measure
gain by taking the difference between the response with the pump on and the pump off, depicted
in Fig. 2 at different pump powers. The KIPA produces an amplified signal tone ωs at its output,
along with an idler at ωi such that energy is conserved in the 3WM process ωp = ωs + ωi. Phase
insensitive gain occurs when ωs = ωp/2 + ∆ω with |∆ω| exceeding the bandwidth resolution of the
measurement. Gain increases with the pump power and is found to be in excess of 40 dB before
the KIPA crosses the threshold where spontaneous parametric oscillations occur (see Sec. V C).

A. Gain Feature Fits

To characterise the line-shape of the non-degenerate amplification features in the main text,
we define the reflection parameter Γ(ω), which is simply the signal gain (Eq. (55)) written in the
laboratory frame (i.e. gS [ω]→ Γ(ω) with ω → ω − ωp/2) [6]:

Γ(ω) =
κ(κ+ γ)/2 + iκ(∆ + ω − ωp/2)

∆2 +
[
(κ+ γ)/2 + i(ω − ωp/2)

]2 − |ξ|2
− 1 (56)

To fit the data in Fig. 2, we adopt a complex coupling rate in the reflection model Γ(ω): κ ∈
R → κ ∈ C, with complex phase Arg(κ). A complex quality factor may be used to model an
asymmetric response that occurs due to an impedance mismatch across the coupling circuit where
reflections at the coupler interfere with photons exiting the resonator [10, 11].

The pump current in our device is not precisely known. We simulate an impedance of Z0 = 118 Ω
for the λ/4 resonator (using the software Sonnet) and introduce a loss parameter λp that quantifies
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bandwidth as a function of gain in dB. (b) Gain Bandwidth Product (GBP) vs peak phase insensitive gain
(bottom). The dashed black line is the average GBP across all gains.

the amount of pump power transmitted from room temperature down to the sample such that
I2
p = 2λpPpump/Z0, where Ppump is the pump power at microwave source.

We may predict the parameter ∆ = ω0 + δDC + δp − ωp/2 from our theory (Eq. (34)a,b) as ωp

and IDC are known, and we have measured ω0 and I∗. Further, Eq. (34)d allows us to also predict
|ξ| as a function of the pump current in the sample. To further constrain the model we assume
the quality factor Qi = ω0/γ to be 105 for all pump powers. We base this estimate on the internal
quality factors observed in similar devices (e.g. the device measured in Fig. S16), and note that
in the over-coupled regime in which the KIPA operates Qi has minimal impact on the predicted
gain as κ + γ ≈ κ. We are left with a model where the only free parameters are |κ|, Arg(κ) and
λp. The fit results are shown in Fig. S3.

We observe that κ varies from ∼ 52 MHz to ∼ 54 MHz, corresponding to an average coupling
quality factor of Qc ≈ 135. The RMS pump current increases the kinetic inductance and thus
modifies the coupling circuit (i.e. it changes the impedance step in the band stop filter), which
might explain the pump power dependent coupling rate κ. A weak drift (∼ 30 mrad) in the phase
of the coupling rate was necessary to fit the data (see Fig. S3c). This is not unreasonable, as a
small shift in the cavity and coupling circuit impedances due to the pump current will influence
any reflections that occur at the cavity input.

From the fits, we extract an average pump attenuation of −10log(λp) = 22.8 dB. At room tem-
perature the measured loss of the lines and components is ∼ 30 dB. Since the line and component
loss is expected to reduce at cryogenic temperatures, this fitted average pump attenuation is real-
istic. We also note that the extracted pump attenuation increases marginally as the pump power
increases, raising by ∼ 0.4 dB over the range of powers explored (see Fig. S3d). This could be an
indication that the pump becomes slightly depleted as the gain raises [12].

Overall, we find excellent quantitative agreement with our theory, and are able to predict the
observed gain curves from the KIPA Hamiltonian (Eqs. (33-34)) derived in Sec. III.

B. Gain Bandwidth Product

From the fits to the amplification features depicted in Fig. S3, we can extract the Gain Bandwidth
Product (GBP), defined by the product of the peak phase insensitive amplitude gain G and the

bandwidth when the amplitude gain drops to G/
√

2 [13]. We find that the GBP of the KIPA shows
good consistency across the different pump powers, as evidenced by the highly linear log-log plot
of the gain and bandwidth (see Fig. S4), and we extract an average GBP of 53(7) MHz.
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C. Parametric Self Oscillations

Increasing the pump current Ip, and hence ξ, will not increase the gain indefinitely. Past a
certain threshold, the device enters the regime of parametric self-oscillation and ceases to behave
as an amplifier [14]. Pumped at twice the resonant frequency, the cavity spontaneously produces
photons at ω0 that grow rapidly in number. Competition from system nonlinearities eventually
limit growth, resulting in a fixed power ω0 tone at steady state.

Although, we do not study the KIPA in the self-oscillation regime in this work, we use our theory
to predict the range of pump currents at which the KIPA behaves as a parametric amplifier. The
parametric oscillation threshold corresponds to the zero crossing of the denominator of |Γ(ω)|. At
the point of maximum phase sensitive amplification, spontaneous oscillations occur when |ξ|2 ≥
∆2 +(κ+γ)2/4. Using our theory along with the coupling rate |κ| extracted from the fits depicted
in Fig. S3, we can predict the pump current at which parametric self-oscillation occurs. We assume
a real coupling rate κ to simplify the analysis.

Fig. S5 depicts the predicted |ξ| as a function of pump power alongside the predicted threshold of

parametric self-oscillation:
√

∆2 + (κ+ γ)2/4. The threshold increases with the pump power due
to the pump dependent detuning δp, which increases ∆2 as the pump current becomes larger. The
curves intersect at a pump power of Ppump = 4.22 dBm referred to the output of our microwave
source.

We found in practice that the KIPA would self-oscillate beyond a pump power of 4.10 dBm,
demonstrating an excellent quantitative agreement between experiment and theory.

VI. PHASE SENSITIVE AMPLIFICATION

When applying a signal tone at half the pump frequency ωs = ωp/2, the KIPA enters the
degenerate mode of operation, producing phase sensitive gain as the signal and idler tones interfere.
From the input-output equations (see Eq. (55)), the rotating frame gain is: Γ(ϕp) = gS [0] + gI [0].
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More explicitly, the phase sensitive gain is:

|Γ(ϕp)| =
∣∣∣∣
κ(κ+ γ)/2 + iκ∆ + iκ|ξ|e−jϕp

∆2 + (κ+ γ)2/4− |ξ2| − 1

∣∣∣∣ (57)

=

√[
κ((κ+ γ)/2− |ξ| sin(ϕp))

∆2 + (κ+ γ)2/4− |ξ|2 − 1

]2

+

[
κ(∆ + |ξ| cos(ϕp))

∆2 + (κ+ γ)2/4− |ξ|2
]2

(58)

where we separate out the modulus of ξ and its argument corresponding to the pump phase ϕp

(see Eq. (34)d). From Eq. (58) we observe that the KIPA gain is sensitive to the pump phase ϕp.

Experimentally, we observe phase sensitive amplification by modulating the phase of a signal
tone which has a frequency of ωp/4π = 7.1905 GHz. As ϕp represents the phase difference between
the signal and the pump, phase modulation of either tone will allow us to characterise the phase
sensitive gain. Fig. (2)b of the main text (reproduced here in Fig. S6a) depicts the gain of the
KIPA as a function of pump phase, where up to 26 dB of deamplification and close to 50 dB
of amplification are observed. Compared to phase insensitive amplification, additional gain is
observed in degenerate mode due to the constructive interference that occurs between the signal
and idler. The traces are aligned such that the point of maximum deamplification occurs for
ϕp = 0.

Fig. S6b shows the phase sensitive gain predicted by our theory (Eq. (58)), where we use in-
terpolated data from the fitted κ points in Fig. S3, the extracted pump loss λp = 22.8 dB, and
the pump current dependent expressions for ξ and δω from our Hamiltonian derivation (Sec. III).
We find excellent agreement with theory for the amplification regions of each pump power. On
the other hand, the theory predicts greater deamplification than is observed experimentally for
the three highest pump powers. To obtain the data plotted in Fig. S6a, significant averaging was
required to reduce the noise. We believe that the maximum deamplification of 26 dB measured is
partially limited by our ability to resolve the sharp gain feature at ϕp = 0, which is highly sensitive
to instrumental phase noise and slow phase drifts between the signal and pump. Reflections may
also limit the observed deamplification, as discussed in Sec. VII.
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A. 1dB Compression Point

The 1 dB compression point of the KIPA is characterised in phase sensitive mode. After cali-
brating the phase of the pump to achieve maximum amplification (i.e. ϕp ≈ π/2), we characterise
the degenerate 1 dB compression point of the KIPA by increasing the signal power until the gain
drops by 1 dB, as is presented in Fig. 2c of the main text. For ∼ 20 dB of phase sensitive gain, we
find a compression power of −49.5(8) dBm at the KIPA output, comparable to the compression
performance of kinetic inductance travelling wave amplifiers [4, 15, 16]. Our HEMT is expected to
saturate for approximate input powers of ∼ −46 dBm [17]. Factoring in the loss between the KIPA
and the HEMT, we are unable to rule out the possibility that the measured the 1 dB compression
point is limited by the HEMT, and that the dynamic range of the KIPA is indeed higher.

VII. SQUEEZING TRANSFORMATION OF THE DPA

Re-writing the input-ouptput relation (Eq. (54)) in the degenerate case (ω = 0), we find [6]:

aout = gsain + gia
†
in +

√
γ

κ

(
(gs + 1)bin + gib

†
in

)
(59)

a†out = g∗sa
†
in + g∗i ain +

√
γ

κ

(
(g∗s + 1)b†in + g∗i bin

)
(60)

giving the output quadrature relations:

Iout =
1

2
(a†out + aout) =

1

2

[
εain + ε∗a†in +

√
γ

κ

(
(ε+ 1)bin + (ε∗ + 1)b†in

)]
(61)

Qout =
i

2
(a†out − aout) =

i

2

[
ε′∗a†in − ε′ain +

√
γ

κ

(
(ε′∗ + 1)b†in − (ε′ + 1)bin

)]
(62)

where ε = gs + g∗i and ε′ = gs − g∗i . Using the identities:

1

2

[
β∗a† + βa

]
= Re(β)I − Im(β)Q (63)

i

2

[
β∗a† − βa

]
= Re(β)Q+ Im(β)I (64)

where β is an arbitrary complex number (such as ε or ε′), we arrive at a set of linear equations for
the output field quadratures:

(
Iout

Qout

)
= AG

(
Iin
Qin

)
+

√
γ

κ

(
AG + 1

)( Ib
Qb

)
(65)

where Ib and Qb are the quadratures of the bath field. As a function of the pump phase ϕp, the
affine transformation of the quadratures AG is given by:

AG(ϕp) =

(
Re(ε) −Im(ε)
Im(ε′) Re(ε′)

)
(66)

=
κ

∆2 + (κ+ γ)2/4− |ξ|2
(

(κ+ γ)/2− |ξ| sin(ϕp) −|ξ| cos(ϕp) + ∆
−|ξ| cos(ϕp)−∆ (κ+ γ)/2 + |ξ| sin(ϕp)

)
− 1 (67)

The pump phase ϕp has the effect of rotating the basis of the transformation. In fact, one can
show that AG(ϕp) = RT (ϕp)AG(0)R(ϕp) where R(θ) is the standard 2× 2 rotation matrix.

As the bath is a thermal state, taking the expectation of both sides of Eq. (65) gives the simple
expression:

(
〈Iout〉
〈Qout〉

)
= AG(ϕp)

(
〈Iin〉
〈Qin〉

)
(68)

Assuming ∆ = 0 we find AG → 1 in the limit that |ξ| → 0, as expected. Conversely, if ∆ 6= 0
then AG is an affine transformation that will always mix the input quadratures to some degree,
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FIG. 7. Visualisation of the linear transformation AG(0) acting on points on the unit circle. The red
(blue) points/lines correspond to the standard basis vectors in V . (a) Unit circle before the transformation
AG(0). (b) Unit circle after the transformation.
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FIG. 8. Visualisation of the linear transformation AG(π/2−arccos(−∆/|ξ|)) acting on points on the unit
circle. The red (blue) points/lines correspond to the standard basis vectors in V . (a) Unit circle before
the transformation AG(π/2− arccos(−∆/|ξ|)). (b) Unit circle after the transformation.

limiting the achievable squeezing for a given ξ. Fig. S7 illustrates the mapping of points on the
unit circle (I,Q)T = (sin(φ), cos(φ))T in the vector space V ∈ R2 by the linear transformation
AG(0) : V → W . Setting ϕp = 0 yields a mapping where the standard unit vectors in V do not
in general map to the standard unit vectors in W , nor do they correspond to the principal axes of
the elliptical output state.

We may align the axis of amplification along Q, as depicted in Fig. S8, by choosing ϕp =
π/2 − arccos(−∆/|ξ|). Note that in Fig. S8, we deliberately set ∆ 6= 0 to illustrate the fact
that orthogonal vectors in V do not necessarily map to orthogonal vectors in W . On the other
hand, when ∆ = 0, the optimal angle of rotation will correspond to ϕp = 3π/2 giving a strictly
diagonal matrix AG(ϕp) with partial diagonal elements (κ+γ)/2+ |ξ| and (κ+γ)/2−|ξ|, such that
orthogonality is preserved. Degenerate amplification increases as |ξ| approaches the asymptote of
self oscillation (|ξ|2 = ∆2 + (κ+ γ)2/4), while simultaneously, deamplification approaches 0.

The expression for gain as a function of the pump phase ϕp is given by:

g(ϕp) =
||(〈Iout〉, 〈Qout〉)T ||
||(〈Iin〉, 〈Qin〉)T ||

(69)

=

√
(Iing11(ϕp) +Qing12(ϕp))2 + (Iing21(ϕp) +Qing22(ϕp))2

I2
in +Q2

in

(70)

where gij are the matrix elements of AG(ϕp). This corresponds exactly with the expression for
phase sensitive gain provided earlier in Eq. (58).
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A. Reflections with the Predicted DPA Transformation

The ellipses depicted in Fig. 3 of the main text are not simply a result of the squeezing transfor-
mation applied to coherent inputs of fixed magnitude. Because our setup is not perfectly impedance
matched, reflections will occur at the input to the KIPA (e.g. from the PCB and input connector)
that superimpose on the squeezing transformation. Although these reflections only account for a
small percentage of the detected signal, they become considerable as the deamplification increases.

To be precise, we define ‘reflections’ to be the total microwave signal that propagates towards
the HEMT input that has not been amplified by the KIPA. The total reflected signal will have a
constant amplitude that is a fraction of the input amplitude, and, relative to the KIPA output,
will be offset in phase according to the difference in path length. Taking the vector sum between
the total reflected signal and the phase sensitive output of the KIPA gives a resulting ellipse that
we observe at the output of our fridge (see Fig. S9). That is,

(
〈Iout〉
〈Qout〉

)
=

[
T AG(ϕp) +RR(φ)

](
〈Iin〉
〈Qin〉

)
(71)

where T is the coefficient of the input signal transmitted to the KIPA, R is reflection coefficient
(with T 2 +R2 = 1) and R(φ) is the standard rotation matrix that accounts for a phase shift of φ.
Fig. S9b illustrates the effect of a 5% reflection on the measurement of the output of a DPA. In
the worst case of φ = 0, the output of the KIPA and the reflected signal constructively interfere
and degrade the observed deamplification by ∼ 9 dB. The error introduced by the reflected signal
will depend on the phase relationship between the KIPA output and the reflected signal, which in
general is unknown. To proceed with the analysis, we define an in-phase reflection coefficient R′
and set φ = 0. The in-phase reflection coefficient R′ therefore represents a lower bound for the
reflections in the setup needed to explain a given reduction in the observed deamplification level
(see Fig. 3c of the main text).

Using Eq. (71) combined with the DPA parameters extracted from the fits in Sec. V (κ, |ξ|, ∆,
etc.), we are able to predict the transformation of a unit magnitude input by the KIPA for different
levels of in-phase reflection. We fit the in-phase reflection coefficient to be ∼ 2% and find excellent
agreement between theory and experiment (see Fig. S10).

The most likely sources of reflections from our setup are the connection from the coaxial lines
to our bespoke PCB, and at the wire bonds between the PCB and the chip. Assuming 50 Ω lines
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down to the sample, a 2% reflection corresponds to an equivalent PCB impedance of:

ZPCB = ZCPW
1−R
1 +R = 48 Ω (72)

which is realistic accounting for the uncertainty in the design and manufacturing tolerances of the
PCB and the temperature dependence of the materials.

The maximum deamplification level GS is defined as the greatest reduction in amplitude of a
coherent input by the squeezing transformation, whilst GA is the corresponding increase in gain
that occurs orthogonal to the axis of deamplification. GS and GA are extracted from the ellipse
data of Fig. 3b and plot in Fig. 3c in the main text. We reproduce the ellipse measurement
data here in Fig. S10, along with a set of ellipses generated using our theoretical model. We
observe some asymmetry GS 6= GA in the data, which is captured accurately by our model that
includes weak reflections in the experimental setup (solid lines in in Fig. 3c). The ideal amplifier
symmetrically transforms both quadratures (i.e. GS = GA) [18], however, according to our model
for the squeezing transform, symmetry can also be broken if either Qi < ∞ or |∆| > 0. While
some asymmetry is expected, for our estimate of Qi = 105, this asymmetry is small as is evident
in Fig. 3c (dashed line) where we show the predicted GS for the reflection-less DPA measurement.

VIII. NOISE SQUEEZING THEORY

In Sec. VII we analyzed the gain of the KIPA in phase sensitive mode when coherent states were
applied to its input. In this section we consider the case of a vacuum input state (i.e. noise) and
derive expressions for the squeezing (noise deamplification) and anti-squeezing (noise amplification)
properties of the KIPA. We assume that noise squeezing is measured over a narrow-band such that
the frequency dependence of gs and gi may be ignored, allowing us to draw on the theory presented
in Sec. VII. In terms of the matrix elements gij of the squeezing transformation matrix AG, Eq. (65)
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becomes:
(
Iout

Qout

)
= AG(θ)

(
Iin
Qin

)
+

√
γ

κ

(
AG(θ) + 1

)( Ib
Qb

)
(73)

=

(
g11 g12

g21 g22

)(
Iin
Qin

)
+

√
γ

κ

(
g11 + 1 g12

g21 g22 + 1

)(
Ib
Qb

)
(74)

To obtain expressions for the vacuum squeezing, we model the input field as a vacuum state
with variances 〈∆I2〉 = 〈∆Q2〉 and zero mean: 〈I〉 = 〈Q〉 = 0. Assuming the bath and the input
fields are uncorrelated, and using the fact that 〈IQ〉+ 〈QI〉 = 0, we may write a system of linear
equations for the second order moments of the output quadratures:

(
〈I2

out〉
〈Q2

out〉

)
=

(
g2

11 g2
12

g2
21 g2

22

)(
〈I2

in〉
〈Q2

in〉

)
+
γ

κ

(
(g11 + 1)2 g2

12

g2
21 (g22 + 1)2

)(
〈I2

b 〉
〈Q2

b〉

)
(75)

Since the vacuum and bath fields are at the same temperature, we define 〈∆I2
v 〉 = 〈I2

in〉 = 〈I2
b 〉 =

1/4 and 〈∆Q2
v〉 = 〈Q2

in〉 = 〈Q2
b〉 = 1/4. Thus, the variances of the output quadratures are given

by:

(
〈∆I2

out〉
〈∆Q2

out〉

)
=

[(
g2

11 g2
12

g2
21 g2

22

)
+
γ

κ

(
(g11 + 1)2 g2

12

g2
21 (g22 + 1)2

)](
〈∆I2

v 〉
〈∆Q2

v〉

)
(76)

The increase/decrease in quadrature variance as a function of the pump phase ϕp is described
by:

S(ϕp) = 10 log10

〈∆I2
out〉

〈∆I2
v 〉

= 10 log10

(
g2

11 + g2
12 +

γ

κ
((g11 + 1)2 + g2

12)

)
(77)

and the vacuum squeezing level Sv is defined by the minimum of S:

Sv = min
ϕp

S(ϕp) (78)

Using the DPA parameters extracted from the phase-insensitive gain features (see Sec. V), we
can simulate the expected noise variance gain (Eq. (77)) as a function of the pump phase. The
results are depicted in Fig. S11a, where we observe a similar phase dependent response as was
measured in Sec. VI for strong coherent inputs. In contrast to the phase-sensitive gain for coherent
inputs, the coupling of the bath mode into the cavity requires a strictly asymmetric noise variance
gain such that (minϕp

S(ϕp)×maxϕp
S(ϕp)) ≥ 1, where equality holds only in the limit of Qi →∞.

We observe a weak shift in the pump phase corresponding to the point of maximum squeezing as
the pump power increases, which is a consequence of the non-zero detuning between the cavity
and the pump ∆.

Equipped with this squeezing model and a realistic set of resonator parameters, we can study
the effect of Qi on the maximum attainable squeezing. Fig. S11b plots the vacuum squeezing level
Sv against the maximum variance gain, or anti-squeezing gain. In the limit of no losses, Cave’s
theory predicts symmetric squeezing and anti-squeezing with zero noise photons contributed by the
amplifier [18]. We observe here that the squeezing/anti-squeezing relationship of the KIPA closely
follows the expected symmetric behaviour before the squeezing level plateaus to a constant level
as the anti-squeezing gain increases. The squeezing level plateaus as the total cavity fluctuations
are limited by the bath mode variance, which is not squeezed by the KIPA since:

(
AG + 1

)(
Var(Ib)
Var(Qb)

)
≥
(

Var(Ib)
Var(Qb)

)
(79)

We observe an approximate 10 dB improvement in the maximum achievable squeezing for each
order of magnitude increase in Qi. The order of magnitude improvement in squeezing performance
is a result of the corresponding order of magnitude decrease in γ/κ, which sets the magnitude of the
bath variance contribution to the KIPA output (see Eq. (65)). For a Qi = 105, our theory predicts
up to Sv ≈ −29 dB of squeezing could be produced by the KIPA, corresponding to approximately
40 dB of phase sensitive gain.
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IX. NOISE TEMPERATURE

A. Non-Degenerate Noise Temperature Theory

The output fluctuations of the KIPA operating as a non-degenerate amplifier are found from
Eq. (54)) to be:

〈∆I2
out〉 =

〈[
1

2

(
a†out + aout

)]2
〉

=

(
|gs|2 +

γ

κ
|gs + 1|2

)(
nth

2
+

1

4

)
+ |gi|2

(
1 +

γ

κ

)(
nth

2
+

1

4

) (80)

where the signal and idler gains (gs(ω) and gi(ω)) depend on the frequency of the signal being
amplified. Here we assume that the input and bath fields (both signal and idler modes) have a

thermal occupation 〈a†inain〉 = 〈b†inbin〉 = nth.

One useful identity of the DPA is the relationship between the signal and idler gains [6]:

|gi|2
(

1 +
γ

κ

)
= |gs|2 +

γ

κ
|gs + 1|2 − 1 (81)

which holds for all ω (see Eq. (55)), and is a by-product of the KIPA output field satisfying the

commutation relation [aout, a
†
out] = 1. Substituting Eq. (81) into our expression for the quadrature

fluctuations along I, we obtain:

〈∆I2
out〉 =

(
|gs|2 +

γ

κ
|gs + 1|2

)(
nth +

1

2

)
− nth

2
− 1

4
(82)

Referring the quadrature fluctuations to the input of the KIPA and subtracting the vacuum con-
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tribution, we find:

〈∆I2
out〉
|gs|2

− 1

4
=

(
1 +

γ

κ

|gs + 1|2
|gs|2

)(
nth +

1

2

)
− nth

2|gs|2
− 1

4|gs|2
− 1

4
(83)

≥ 1

4

(
1− 1

|gs|2
)

+
γ

κ

|gs + 1|2
2|gs|2

(84)

≥ 1

4

(
1− 1

|gs|2
)

(85)

where in the second line we assume zero temperature (nth = 0) and in the third line we assume
no loss (γ = 0). As required by Cave’s fundamental theorem of phase sensitive amplifiers, the
KIPA/DPA adds 1/4 photons to the input referred noise in the limit of high gain [18]. Equality
only holds in the limit of zero temperature and no losses.

To maintain consistency with the input-output models for phase sensitive amplifiers used later
in this section (e.g. see Eq. (95)), we write the phase insensitive output of the KIPA as follows:

〈∆I2
out〉 = Gk

(
nth

2
+

1

4

)
+ (Gk − 1)

(
nth

2
+
nkn
2

+
1

4

)
(86)

where Gk = |gs|2 and nkn is the input referred noise contribution of the KIPA in non-degenerate
mode. Comparing Eq. (82) with the (Gk − 1) term from this expression we obtain a relation for
the additional noise photons contributed by the KIPA nkn:

nkn =
2

|gs|2 − 1

(
〈∆I2

out〉 − |gs|2
(
nth

2
+

1

4

))
− nth −

1

2

=
2

|gs|2 − 1

((
nth

2
+

1

4

)
(|gs|2 − 1) +

γ

κ
|gs + 1|2

(
nth +

1

2

))
− nth −

1

2

=
γ

κ

|gs + 1|2
|gs|2 − 1

(2nth + 1)

(87)

The temperature dependence for nkn is depicted in Fig. S12 for various internal quality factors, and
using the same DPA parameters as were measured previously. Compared to nth the change in nkn
is small across the range of internal quality factors considered. At zero temperature nkn appears
to decrease by an approximate order of magnitude for every increase in the order of magnitude for
Qi, further motivating the desire to maximise the Qi of a DPA.

Operating the KIPA such that ~ω0 � kBT , we have:

nkn0 =
γ

κ

|gs + 1|2
|gs|2 − 1

(88)

We plot nkn0 as a function of Qi = ω0/γ and observe rapid convergence to zero as Qi →∞.

B. Degenerate Noise Temperature Theory

The output fluctuations of the KIPA in degenerate mode as a function of the pump phase ϕp

are given by (see Sec. VIII):

〈∆Iout(ϕp)2〉 = |gs + g∗i (ϕp)|2
(
nth

2
+

1

4

)
+
γ

κ
|gs + 1 + g∗i (ϕp)|2

(
nth

2
+

1

4

)
(89)

with phase sensitive power gain Gk(ϕp) = |gs + g∗i (ϕp)|2. Referred to the KIPA input, the excess
quadrature fluctuations contributed by the amplifier are:

〈∆Iout(ϕp)2〉
Gk(ϕp)

− 1

4
=
nth

2
+
γ

κ

|gs + 1 + g∗i (ϕp)|2
|gs + g∗i (ϕp)|2

(
nth

2
+

1

4

)
≥ 0 (90)

As predicted by Caves, the excess quadrature fluctuations referred to the input can be as small
as zero in limit of ~ω � kBT and provided there are no losses in the system (i.e. γ = 0) [18].
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n d

FIG. 12. (a) The simulated non-degenerate noise photon number nkn as a function of temperature for
different values of Qi. (b) The simulated degenerate noise photon number nkd as a function of temperature
for different values of Qi. (c) The simulated non-degenerate (degenerate) noise photon number at zero
temperature as a function of the internal quality factor Qi. All calculations performed at a non-degenerate
(degenerate) gain of Gk = 25 dB (31 dB).

Writing Gk = |gs + g∗i (ϕp)|2, we define a similar expression to Eq. (86) for the phase sensitive
amplifier along the amplified quadrature:

〈∆I2
out〉 = Gk

(
nth

2
+

1

4

)
+ (Gk − 1)

(
nkd
2

)
(91)

with,

nkd =
γ

κ

|gs + 1 + g∗i |2
|gs + g∗i |2 − 1

(
nth +

1

2

)
(92)

nkd0 =
γ

2κ

|gs + 1 + g∗i |2
|gs + g∗i |2 − 1

(93)

Again, we simulate nkd for varied internal quality factors and temperatures and find similar
behaviour to the non-degenerate case. In the limit of high gain, the minimum noise added nkd0 is
approximately half the corresponding noise added in the non-degenerate case (see Fig. S12).

C. Noise Temperature Measurement

The detection chain of the KIPA consists of a series of amplifiers and attenuators, which we depict
in Fig. S13a. Directly after the KIPA there are microwave losses associated with the diplexer, the
circulator and the microwave lines. To model the detection chain we divide these losses into two
effective attenuators, one at 20 mK and the other at 4 K. Each attenuator acts like an optical
beam splitter, where the transmitted field is reduced by

√
α and the open port mixes the thermal

field v into the output according to the beam splitter equation [19]:

aout =
√
αain +

√
1− αv (94)

At 4 K we have the HEMT amplifier, followed by a second microwave amplifier at room tem-
perature. Each amplifier contributes additional noise to its output field [18]:

aout =
√
Gampain +

√
Gamp − 1h† (95)

Combining the attenuator models for α1 and α2 (Eq. (94)), with the amplifier models for the
HEMT and room temperature amplifier (Eq. (95)), we may simplify the detection chain to a single
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a b

FIG. 13. (a) The complete detection chain model, consisting of the KIPA and attenuator α1 at 20 mK,
attenuator α2 and the HEMT at 4 K, and the room temperature amplifier at 300 K. The attenuators
are modeled as beam splitters, mixing in the thermal operators v1 and v2 with the detected field as it
propagates along the detection chain. Each amplifier contributes noise to its output, denoted here by the
field operators hk (KIPA), hH (HEMT), and hR (room temperature amplifier). (b) The simplified detection
chain model, where the attenuators and amplifiers after the KIPA may be modeled as an effective amplifier
with gain GT and noise field htot.

equivalent amplifier with gain GT and noise contribution htot (see Fig. S13b). The total output
field at the end of the detection chain is given by:

atot =
√
GTaout +

√
GT − 1h†tot (96)

where,

GT = GRGHα1α2 (97)

h†tot =

√
GRGH

GT − 1

[
√
α1(1− α1)v1 +

√
(1− α2)v2 +

√
GH − 1

GH
h†H +

√
GR − 1

GRGH
h†R

]
(98)

Rewriting the output field aout as a pump phase dependent quadrature operator Iout(ϕp) =

(a†oute
−iϕp + aoute

iϕp)/2, we have:

Itot(ϕp) =
√
GT Iout(ϕp) +

√
GT − 1Ih(−ϕp) (99)

where Iout(ϕp) is the pump phase dependent quadrature operator at the KIPA output, and Ih is

the detection chain noise quadrature operator Ih(−ϕp) = (h†tote
iϕp + htote

−iϕp)/2.
Assuming htot and aout are composed of uncorrelated thermal states the quadrature fluctuations

at the detector simplify to:

〈∆I2
tot〉 = GT 〈∆I2

out〉+ (GT − 1)〈∆I2
h〉 (100)

= GT 〈∆I2
out〉+ (GT − 1)

(
nsys

2
+

1

4

)
(101)

where we introduce the effective system noise photon number nsys:

nsys = 〈h†tothtot〉 (102)

=
GRGH

GT − 1

[
α2(1− α1)(n20mK + 1) + (1− α2)(n4K + 1) +

GH − 1

GH
nH +

GR − 1

GRGH
nR

]
(103)

The average microwave noise power that would be measured by a spectrum analyzer is simply
the sum of the output quadrature variances:

Ptot = z(〈∆I2
tot〉+ 〈∆Q2

tot〉) (104)

We introduce the parameter z here that converts the units from photons to Watts as is measured
by the spectrum analyzer over a certain measurement bandwidth resolution.
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In non-degenerate operation, the variance of both the KIPA output and the system noise fields
are independent of the pump phase, allowing us to write the measured microwave power as:

Ptn = zGT (〈∆I2
out〉+ 〈∆Q2

out〉) + z(GT − 1)

(
nsys +

1

2

)
(105)

= 2zGT 〈∆I2
out〉+ z(GT − 1)

(
nsys +

1

2

)
(106)

In non-degenerate mode, the output fluctuations of the KIPA are given by (see Section IX A):

〈∆I2
out〉 = Gk

(
nth

2
+

1

4

)
+ (Gk − 1)

(
nth

2
+
nkn
2

+
1

4

)
(107)

with Gk = |gs|2 as defined in Eq. (55), thermal noise population nth = 〈a†inain〉, and an additional

number of noise photons added by the KIPA nkn = 〈h†khk〉. In the non-degenerate case, the idler
mode contributes a minimum nth/2+1/4 input-referred photons to the variance of each quadrature
at the signal frequency, while an additional nkn/2 photons arise from internal cavity losses. The
excess noise nkn is expected to vary with temperature (see Sec. IX A), however, for Qi > 104 this
dependence is negligible since nth � nkn and therefore we approximate nkn ≈ nkn0 to be constant
with temperature.

Substituting Eq. (107) into Eq. (106), we arrive at:

Ptn = zGTGk

(
nth +

1

2

)
+ zGT (Gk − 1)

(
nth + nkn0 +

1

2

)
+ z(GT − 1)

(
nsys +

1

2

)
(108)

Both nsys and the conversion factor zGT are unknown. We begin by finding zGT , observing
that when the KIPA is off (i.e. Gk = 1), Eq. (108) simplifies to:

Poff = zGT

(
nth +

1

2

)
+ z(GT − 1)

(
nsys +

1

2

)
(109)

Evaluating the difference in power between when the KIPA is on compared to off removes the
dependence on nsys:

Ptn − Poff = zGT (Gk − 1)

(
2nth + nkn0 + 1

)
(110)

To extract zGT we sweep the temperature of the mixing chamber of our dilution refrigerator
(and thus nth) while operating the KIPA as a non-degenerate amplifier (500 kHz detuned from
ωp/2). At each temperature, we measure the noise power at the output of our detection chain using
a spectrum analyzer configured in zero-span mode with a measurement bandwidth of 130 kHz. We
constrain the experiment to non-degenerate gains below 20 dB, since below this the KIPA gain
responses are completely flat over the 500 kHz detuned measurement band and we can therefore
approximate Gk by measuring the gain using a (narrow band) coherent tone. At each KIPA gain
Gk = |gs|2, we expect the difference in power to increase linearly according to Ptn−Poff = m·nth+b
with gradient m = 2zGT (Gk − 1). The data is shown in Fig. S14a, which displays a clear linearity
with nth for various non-degenerate gains. We plot m against Gk − 1 and extract the conversion
factor zGT = 93.2(10) fW/photon (see Fig. S14b). Considering Eq. (92), we see that the zGT

determined with this method may be smaller by a factor of approximately ∼ 1 + γ/κ. Given our
estimates of the loss in the KIPA (see Sec. X), we believe this error is small (i.e. < 5%). Assuming
the lower-bound for Qi, we evaluate the uncertainty in the conversion factor to be zGT = 93.2(53)
fW/photon.

Knowing zGT , we may extract the noise temperature of the KIPA in non-degenerate mode by
considering the noise referred to the input of the KIPA in photon units:

ntn =
Ptn

zGTGk
≈ (2nth + nkn0 + 1) +

1

Gk

(
nsys − nth − nkn0

)

≈ (2nth + nkn0 + 1) +
nsys

Gk

(111)
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FIG. 14. (a) The difference power reported by the spectrum analyzer for the KIPA on vs off in non-
degenerate mode as a function of the thermal photon population at the mixing plate for different non-
degenerate (ND) gains (see legend). Solid lines are linear fits. (b) The gradient m of the linear fits
presented in (a) (Pon − Poff = m · nth + b) vs Gk − 1 = |gs|2 − 1.

where in the second line we assume that nsys � nth +nkn0. We use this equation to fit the data in
Fig. 4c of the main text and extract n∞tn = 2nth + nkn0 + 1 = 1.18(9) photons and nsys = 80.0(46)
photons, where n∞tot is the input-referred noise in the limit of infinite KIPA gain. To validate nsys,
we substitute data-sheet values for the HEMT and room temperature amplifier into Eq. (103)
and estimate α1 and α2 based on manufacturer values for cable, circulator and diplexer insertion
losses. Eq. (103) gives nsys ≈ 64 photons – a reasonable agreement provided the uncertainty in the
estimated losses.

We turn our attention now to the degenerate gain. Because the fluctuations along one quadrature
of the KIPA output are squeezed and are therefore considerably smaller than the fluctuations along
the orthogonal amplified quadrature, the total noise power measured at the spectrum analyzer may
be approximated by:

Ptd = zGT (〈∆I2
out〉+ 〈∆Q2

out〉) + z(GT − 1)

(
nsys +

1

2

)
(112)

≈ zGT 〈∆I2
out〉+ z(GT − 1)

(
nsys +

1

2

)
(113)

From Eq. (91), we have:

Ptd = zGTGk

(
nth

2
+

1

4

)
+ zGT (Gk − 1)

(
nkd0

2

)
+ z(GT − 1)

(
nsys +

1

2

)
(114)

giving:

ntd =
Ptd

zGTGk
≈ nth

2
+
nkd0

2
+

1

4
+

1

Gk

(
nsys +

1

2
− nkd0

2

)

≈ 1

4
(2nth + 2nkd0 + 1) +

nsys

Gk

(115)

As before, we fit Eq. (115) to the measured noise power at the spectrum analyzer, referred to
the input of the KIPA and expressed in photons. The results are depicted in Fig. 4c of the main
text alongside the non-degenerate measurement. We find n∞td = (2nth + 2nkd0 + 1)/4 = 0.31(5)
photons, very close to the quantum-limited value of 0.25 photons.

We can set a bound on nkd (nkn) by estimating the loss in our KIPA. The reflection magnitude
response recorded with the KIPA off appears flat within the 0.7 dB measurement ripple, which
implies Qi > 3, 350 and thus nkd < 0.03 (nkn < 0.06), see Sec. X details. High internal quality
factors are typical of planar NbTiN resonators, with Qi ∼ 100, 000 often observed for our PBG
resonators with higher external quality factors (Sec. X).
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FIG. 15. Measured magnitude (a) and phase (b) response of the KIPA investigated in this work. No
pump is applied in this measurement and IDC = 0.85 mA.

D. Signal Line Attenuation

In Fig. 4b of the main text we plot the input-referred number of photons recorded in the presence
of an applied coherent tone, with the KIPA in three different configurations: degenerate mode,
non-degenerate mode and off. We calculate the input-referred number of photons by dividing the
measured output power by zGTGk and then the equivalent input-referred power by multiplying
the number of photons by ~ω0B, where B = 1 kHz is the measurement bandwidth resolution.
Knowing the power at the output of the signal generator (−60 dBm) used in this measurement,
the input-referred coherent tone power (−132 dBm) can be used to calculate a 72 dB loss along the
input signal line. This loss is consistent with the 60 dB of fixed attenuation in our setup, plus our
estimates for additional cable and component insertion loss based on manufacturer data-sheets.

X. KIPA LOSSES

The KIPA operates in the over-coupled regime, where the external coupling rate far exceeds the
rate of internal losses (κ � γ). As such, the magnitude response in the absence of a pump tone
(Fig. S15a) is flat, as predicted by input-output theory (Eq. (56)). We can place a lower bound on
the internal quality factor based on the ∼ 0.7 dB ripple observed in our reflection measurement,
which indicates Qi > 3, 350.

Fig. S16 depicts the reflection response of a device similar to the KIPA, fabricated on a 50 nm
thick NbTiN film and with additional cells in the band stop region to produce a larger external
quality factor (i.e smaller κ). This device operates close to critical coupling where both γ = ω0/Qi

and κ = ω0/Qc may be extracted. Although resonator losses are sensitive to the exact device
geometry, this measurement provides an indication of the attainable internal quality factors for
Bragg-mirror-coupled microwave resonators.

We note that the loss in the KIPA will almost certainly depend on its operating conditions. Large
intra-cavity fields can induce two photon losses [2, 15] and we observe a non-trivial dependence of
Qi on the DC current bias (Fig. S16b). Future work will explore the noise properties of the KIPA
in further detail, including the search for optimal working points in the device parameter space
that maximise noise squeezing.
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FIG. 16. (a) Measured magnitude response of a similar device to the KIPA, as a function of IDC. (b)
Coupling and internal quality factors extracted from fits to the magnitude response in panel a.
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