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Abstract. This work completes the task of solving locally the Einstein–Ashtekar equations for

degenerate data. The two remaining degenerate sectors of the classical (3 + 1)-dimensional theory

are considered. First, with all densitized triad vectors linearly dependent and second, with only

two independent ones. It is shown how to solve the Ashtekar–Einstein equations completely by

suitable gauge fixing and choice of coordinates. Remarkably, the Hamiltonian weakly Poisson

commutes with the conditions defining the sectors. The summary of degenerate solutions is given

in an appendix.

PACS number: 0420

1. Introduction

Einstein’s standard gravity theory corresponds to an open region in the real section of the

Ashtekar theory phase space. The boundary† of that region is set up by degenerate data.

There are several motivations to study the degenerate sector. First, a natural question which

arises is whether or not the evolution could throw some data out of the Einstein theory region.

However, then, since reality is preserved, the evolving data should cross the degenerate sector.

Secondly, according to loop quantization, quantum excitations of the gravitational field are

lower dimensional and define degenerate, non-invertible metric tensors (see [1]).

The degenerate data can be classified with respect to the rank of the densitized triad, and

the rank of the squared triad (see the next section). It should be noted that all the considerations

in this paper are local. Our classification of the degeneracy, in particular, applies only to open

regions of the surface of initial data, whereas in a general case the types can vary from one

region to another.

All the solutions of the Einstein–Ashtekar equations of types (1, 1) and (2, 2) were derived

in [6, 7]. In the first case [6], a general solution is the congruence of the integral curves defined

by the triad and foliating 6 which behave like (1 + 1)-dimensional vacuum spacetimes with

a pair of massless complex-valued fields propagating along them. In the (2, 2) case [7], it

was shown that the preservation of reality by the evolution implies the existence of a foliation

of 6 into the integral 2-surfaces tangent to a given triad. Analogously to Jacobson’s case,

the equations of (3 + 1) gravity make the 2-surfaces behave like (2 + 1)-dimensional empty

spacetimes with an extra massless complex field assigned to each surface and propagating

along it. An important observation was that the conditions defining each of the sectors Poisson

commute with the Hamiltonian modulo themselves and the constraints.

† Meaning here just the closure of the region minus the region itself.
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In the present paper, the Einstein–Ashtekar equations will be solved for the remaining two

types of degenerate data. In the first (1, 0) case the solution is spacetime which is a ‘set of

independently evolving points’. In the second (2, 1) case, the general solution is such that the

surface of initial data 6 is foliated by integral curves of the vector field from the triad. Nine

complex fields evolve along these curves. As in the previously studied cases, it is shown that

the conditions defining each degeneracy sector weakly (in the same sense as above) Poisson

commute with the Hamiltonian†.

Before the systematic study of the Ashtekar equations in the degenerate sector which was

started by Jacobson [6], various aspects of the degenerate sector were discussed, for instance,

by Jacobson and Romano [3], Bengtsson [2], Reisenberger [4] and Matschull [5] (see also

more recent work [9]).

2. Ashtekar’s theory

For the reader’s convenience we shall briefly review Ashtekar’s theory.

It is a canonical theory on a spacetime manifold 6 × R, where 6 is a 3-real-surface of

initial data (the ‘space’) and R is the one-dimensional space of values for a time parameter.

The phase space consists of the pairs of fields (A, E), where A is an algebra sl(2, C)-valued

1-form on 6 and E is an sl(2, C)-valued vector density field of weight 1 defined on 6. Using

local coordinates (xa) = (x1, x2, x3) on 6 and a basis (τi) = (τ1, τ2, τ3) of sl(2, C) we write

A = Ai
aτi ⊗ dxa, E = Eiaτi ⊗ ∂a, (1)

where Ai
a , Eia are complex-valued functions on 6. We fix the standard bilinear complex-

valued inner product in sl(2, C) by

k(v, w) := −2 tr(vw) (2)

for any v, w ∈ sl(2, C). The variables (A, E) are canonically conjugate, the only non-

vanishing Poisson bracket is

{Ai
a(x), Ejb(y)} = ikijδb

aδ(x, y). (3)

Data (A, E) are accompanied by Lagrange multipliers, a −1 weight density N (the densitized

lapse function), a vector field Na (the familiar shift) and an sl(2, C)-valued function 3, all

defined on 6. The Hamiltonian is given by

H = CN + C EN + G3, (4)

CN :=

∫

6

d3x NC(A, E) := − 1
2

∫

6

d3x NF i
abE

jaEkbcijk, (5)

C EN :=

∫

6

d3x Na
Ca(A, E) := −i

∫

6

d3x NaF i
abE

b
i , (6)

G3 :=

∫

6

d3x 3iG
i(A, E) := i

∫

6

d3x 3iDaE
ia, (7)

where

F := 1
2
F i

abτi ⊗ dxa ∧ dxb := dA + A ∧ A (8)

† Another interesting derivation of our result on the possibility of the evolution of non-degenerate data into degenerate

data was given in [8].
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is the curvature of A, and

Daw
i := ∂aw

i + ci
jkA

j
aw

k (9)

is the covariant derivative (wi is a function on 6). ci
jk are the structure constants of sl(2, C)

defined by

[τi, τj ] = ck
ijτk. (10)

The constraints CN , C EN , G3 generate, respectively, the time evolution, diffeomorphisms of 6

and the Yang–Mills gauge transformations

A 7−→ g−1Ag + g−1 dg, (11)

E 7−→ g−1Eg, (12)

where g is any SL(2, C)-valued function on 6.

Apart from the resulting constraint equations, the data (A, E) are subject to the following

reality conditions:

Im(EiaEb
i ) = 0, (13)

Im({EiaEb
i , CN }) = 0. (14)

As long as the matrix (Eia)i,a=1,2,3 is of rank 3 and the signature of the symmetric matrix

(EiaEb
i )a,b=1,2,3 is (+, +, +) one constructs ADM data from (A, E) and the Ashtekar theory is

equivalent to the Einstein gravity with the Lorentzian signature. However, the theory naturally

extends to degenerate cases, when the ranks are lower than 3.

Classification of degeneracies.

Since the E field is complex valued, in general the rank of the ‘2-area matrix’ (see, e.g., [7])

(EiaEb
i ) is lower or equal to the rank of the (Eia) matrix. If we restrict ourselves to the

semi-positive definite case of the 2-area matrix, the possible cases are (0, 0), (1, 0), (1, 1),

(2, 1), (2, 2) and (3, 3), where the numbers indicate the ranks of the triad matrix and the 2-area

matrix, respectively.

The examples of triad vector fields falling into specific sectors could be as follows:

(0, 0) E = 0, (1, 0) E = (τ1 + iτ2) ⊗

(

∂

∂x1

)

, (1, 1) E = τ1 ⊗

(

∂

∂x1

)

,

(2, 1) E = (τ1 + iτ2) ⊗

(

∂

∂x1

)

+ τ3 ⊗

(

∂

∂x3

)

,

(2, 2) E = τ1 ⊗

(

∂

∂x1

)

+ τ2 ⊗

(

∂

∂x2

)

,

(3, 3) E = τ1 ⊗

(

∂

∂x1

)

+ τ2 ⊗

(

∂

∂x2

)

+ τ3 ⊗

(

∂

∂x3

)

.

3. Sector (1, 0)

Sector (1, 0) is defined as the one for which rank
(

Eia
)

= 1, sign
(

EiaEb
i

)

= (0, 0, 0) at the

surface of initial data 6. In this paragraph the Ashtekar equations for the sector (1, 0) will

be solved. At the beginning, it is useful to choose a convenient gauge. One may show the

following.
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Lemma 1.
[(

EiaEb
i = 0

)

∧
(

rank
(

Eia
)

= 1
)]

⇒
[

∃g ∈ SL(2, C): g−1Eg = (τ1 + iτ2) ⊗
(

E1a∂a

)]

.

Proof. Let us assume that

rank(Eia) = 1, (15)

EiaEb
i = 0. (16)

Equality (15) implies that

E = λτ1 ⊗ E3 + µτ2 ⊗ E3 + τ3 ⊗ E3, (17)

where λ, µ are functions on 6 and E3 := E3a∂a 6= 0.

From (17) and (16) we conclude that

1 + λ2 + µ2 = 0. (18)

By the fact given in the appendix we can make a gauge transformation such that Im λ = 0. It

can be easily shown that we can transform E with real λ to

E = λ′τ1 ⊗ E3 + µτ2 ⊗ E3, (19)

with some new real function λ′. It can be done using

g =

(

cos φ, − sin φ

sin φ, cos φ

)

with a suitably chosen φ ∈ R (see the appendix).

From fact 1 it follows that

λ′ 2 + µ2 = 0, (20)

hence µ = ±iλ′.

Our field variable takes now the simple form

E = λ′(τ1 ± iτ2) ⊗ E3. (21)

By another gauge, with

g =

(

i 0

0 −i

)

,

we obtain the required form

E = (τ1 + iτ2) ⊗ E+, (22)

which ends the proof. �

Now, let us change the basis in sl(2, C) to (τ+, τ−, τ0), where τ+ := τ1 +iτ2, τ− := τ1−iτ2,

τ0 := τ3. The expression for the field E takes the simple form

E = τ+ ⊗ E+, (23)

where E+ := E+a∂a = E1a∂a . It is easy to calculate that in the new basis

c+−0 = 2i = c[+−0], (24)

and

(kij ) =





0 2 0

2 0 0

0 0 1



, (25)

where i, j = +, −, 0.
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Constraints

The constraint equations read now as follows:

C ≡ 0, G
− ≡ 0,

Ca = −2i
(

i(E+)F−
)

a
= 0, (26)

G
0 = −2i(E+)A− = 0, (27)

G
+ = i∂aE

+a + i(E+)A0 = 0, (28)

where i denotes the inner product and we use the convention for A−, A0, to be defined

analogously to E+ and F− := dA− + (A ∧ A)−. We will also use this convention for the

other components of the field variables.

Since F− = dA− − iA− ∧ A0, the following equality is true, provided the constraint

equations are fulfilled:

i(E+)
(

dA− ∧ A−
)

= i(E+)
(

F− ∧ A−
)

=
(

i(E+)F−
)

∧ A− + F−
(

i(E+)A−
)

= 0.

Hence the 3-form dA−∧A− = 0. Therefore, there exist coordinates on 6 such that A− = α dz̄,

where α is a function on 6 and z̄ = x − iy (x, y are two of the three real coordinates on 6)

or z̄ ∈ R (in this case (x, y, z̄) are the real coordinates on 6).

If α 6= 0 we can make gauge transformation with g = eiλτ3 , where λ = − log α. This

gives A− = dz̄ and leaves the form of E unchanged. Indeed, let g = eλτ0 , with λ any complex

function on 6. We know that g−1 = e−λτ0 . Therefore,

g−1τ±g = e−λτ0τ±eλτ0 = e−λτ0τ±(1 + λτ0 + 1
2
λ2τ 2

0 + · · ·)

= e−λτ0(τ± + λτ±τ0 + 1
2
λ2τ±τ 2

0 + · · ·)

= e−λτ0(τ± + λτ0τ± ∓ iλτ± + 1
2
λ2τ0τ±τ0 ∓ 1

2
iλ2τ±τ0 + · · ·)

= e−λτ0(τ± + λτ0τ± ∓ iλτ± + 1
2
λ2τ 2

0 τ± ∓ iλ2τ0τ± + 1
2
(iλ)2τ± ± + · · ·)

= e−λτ0 eλ(τ0∓i)τ± = e∓λiτ±,

g−1τ0g = τ0,

g−1 dg = e−λτ0 d(eλτ0) = e−λτ0
(

(dλ)τ0 + 1
2
(dλ2)τ 2

0 + · · ·
)

= e−λτ0(dλ)τ0eλτ0 = (dλ)τ0.

We will now solve the constraint equations separately for three possible cases.

(a) A− = dz̄, z̄ = x − iy, x, y ∈ R.

It follows from (27) that

E+ = E+z ∂

∂z
+ E+u ∂

∂u
,

where u ∈ R, z = x + iy. Since dA− = 0, from (26) and (27) we obtain

i(E+)A0 = 0 = G
+ − i∂aE

+a,

hence we need to solve the equation

∂aE
+a = 0. (29)

The general solution of this equation is

E+a = εabc9b,c, (30)

where 9 is any complex function on 6. The condition E+z̄ = 0 gives 9z = 8,u and

9u = 8,z with some complex function 8.
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To solve the constraint equations completely we only have to consider the condition

i(E+)A0 = 0.

This is a simple algebraic equation for A0, provided E+ is fixed. To end this discussion,

it should be noted that there are no constraints for A+.

(b) A− = dz̄, z̄ ∈ R.

From (27) we obtain

E+ = E+x ∂

∂x
+ E+y ∂

∂y

with (x, y, z̄) coordinates on 6. It is easy to see that we can solve this case in the same

way as we solved point (a). We should only exchange z with x and u with y.

(c) A− = 0.

In this case F− = 0, hence Ca ≡ 0. Moreover, G0 ≡ 0. We only have to solve

∂aE
+a = iE+aA0

a. (31)

For any given E+ it is a simple equation for A0. We can see that in this case we have no

constraints on E+ and A+.

Evolution equations

If we take the conditions E− = 0, E0 = 0 and A− − dz̄ = 0 as the additional constraints, it is

easy to see that they weakly commute with the Hamiltonian so their vanishing is preserved by

the time evolution provided the constraints are satisfied. In particular, the simple form of E is

preserved by the time evolution. In fact,

Ė−a = −i(c−
−kE

−b + c−
0kE

0b)(DbE
ka) = 0, (32)

Ė0a = E+b(∂bE
−a + iA0

bE
−a − iA−

b E0a) − E−bDbE
+a = 0. (33)

The gauge fixing A− = dz̄ is also unchanged by the evolution. Namely,

Ȧ−
a = E−aF 0

ba − E0aF−
ba = 0. (34)

The variable E is independent of time:

Ė+a = E+b(∂bE
0a + 2iA−

b E+a − 2iA+
bE

−a) − E0bDbE
+a = 0. (35)

Moreover,

Ȧ0
a = 2E+bF−

ba − 2E−bF +
ba = 0, (36)

and

Ȧ+
a = −E+bF 0

ba + E0bF +
ba = E+b(∂aA

0
b − ∂bA

0
a + 2iA−

a A+
b). (37)

In order to calculate all the above time derivatives we used constraint equations. We can show

that the part of A+
a tangential to E+a is independent of time and the transversal components are

linear functions of time. In fact,

∂

∂t
(E+aA+

a) = E+aȦ+
a = 2E+aE+b∂[aA

0
b] = 0.

Hence the right-hand side of (37) is independent of time and ∂
∂t

Ȧ+
a = 0. Now, it can be easily

checked that the reality conditions are satisfied identically for the solutions of the constraint

and the evolution equations.
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Summary

We have solved completely the (1, 0) sector of Ashtekar gravity. The general solution for

this case (for a certain gauge fixing and choice of coordinates) is as follows. The fields E−,

E0 vanish. The field E+ is given by (30) and vanishing of the component transversal to A−

if A− 6= 0 or E+ is arbitrary if A− = 0. A− is any closed 1-form on 6, A0 is given by

equation (31) and A+ is an arbitrary 1-form. All the fields are constant in time except for A+

which is constant in the direction of E+ and is linear in time in the other directions.

An interesting feature of these solutions is that after imposing certain initial constraints

on the field variables at t = t0, at each point they evolve independently of the other points.

The points of 6 ‘cannot see each other during the evolution’.

4. Sector (2, 1)

Sector (2, 1) is defined by rank
(

Eia
)

= 2 and sign
(

EiaEb
i

)

= (+, 0, 0) at t = t0 (on the

surface 6). The complete local solution of the Ashtekar–Einstein equations in the sector

(2, 1) will be given in the present section. We will start from fixing a gauge freedom and a

useful choice of coordinates.

Lemma 2.

[(

sign
(

EiaEb
i

)

= (+, 0, 0)
)

∧
(

rank
(

Eia
)

= 2
)]

⇒
[

∃g ∈ SL(2, C): g−1Eg = τ+ ⊗ E+ + τ0 ⊗ E0 and A′ 0
3 = 0

]

,

where A′ def
= g−1Ag + g−1 dg and E0 is real.

Proof. We assume that

rank(Eia) = 2, (38)

sign(EiaEb
i ) = 1. (39)

Let us choose such a real basis (e1, e2, e3) in the tangent space to 6 that (EiaEb
i ) =

diag(0, 0, 1). From the fact in the appendix we conclude that there exists gauge transformation

such that

E = Eklτk ⊗ el + τ3 ⊗ e3, (40)

where k, l = 1, 2.

The rank assumption (38) implies that E2 = f E1, where f is a complex function on 6.

Equation (39) gives f = ±i. The minus sign can be removed in the same way as in (21),

which completes the proof. �

From now on let us use the gauge given by the above lemma. We can make use of the

reality of E0 by choosing a convenient coordinate system (x1, x2, x3) such that

E0 =
∂

∂x3
. (41)
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Constraints

Constraint equations now read as follows:

C = 4iE+aE0bF−
ab = 0, (42)

Ca = E0bF 0
ab + 2E+bF−

ab = 0, (43)

G
+ = ∂aE

+a + i(A+
aE

0a − A0
aE

+a) = 0, (44)

G
0 = ∂aE

0a + 2iA−
a E+a = 0, (45)

G
− = −iA−

a E0a = 0. (46)

Due to (41), equation (46) is solved by A−
3 = 0. Since ∂aE

0a = 0, equation (45) is equivalent

to A−
a E+a = 0, or

A−
1 E+1 = −A−

2 E+2. (47)

Equation (42) gives

E+aE0bF−
ab = −E+1∂3A

−
1 − E+2∂3A

−
2 = 0.

Let us assume that E+2 6= 0. Because of (47) we have

A−
1 ∂3A

−
2 = A−

2 ∂3A
−
1 . (48)

If we assume A−
1 6= 0, this is equivalent to the condition that A−

2 = �A−
1 , where � is a

complex function on 6 such that ∂3� = 0. Thus

A− = A−
1

(

dx1 + �
(

x1, x2
)

dx2
)

(49)

and

E+ = −�E+2 ∂

∂x1
+ E+2 ∂

∂x2
+ E+3 ∂

∂x3
. (50)

We know, however, that the coordinates x1 and x2 can be chosen in such a way that instead of

� we can put i (if Im � 6= 0) or 0 (if Im � = 0). Let us assume then, that from now on � = 0

or � = i.

In order to solve the constraints completely we have to solve two more equations, namely

(43) and (44). Straightforward calculation shows that

E+bF−
ab = −E+b∂bA

−
a − iE+bA0

bA
−
a ,

and

E0bF 0
ab = −∂3A

0
a + 2iA−

a A+
3 .

Hence (43) gives

2E+b∂bA
−
a + ∂3A

0
a = 2iA−

a (A+
3 − E+bA0

b).

Substituting (44) into the above equation gives

∂3A
0
a = −2∂b(E

+bA−
a ). (51)

With a given E+ and A−, the above equation describes the dependence of A0 on the coordinate

x3.
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To end the analysis of the constraints we should add (44), which can be treated as the

constraint on A+
3 , provided E+ and A0 are known

A+
3 = i∂aE

+a + A0
aE

+a. (52)

Finally, the case E+1 = E+2 = 0 should be considered separately. However, the only difference

in the family of solutions for this case is in the form of A−. Now, we have no restrictions on

A−
1 and A−

2 .

For A−
1 = 0 we obtain from (47) that A−

2 = 0 or E+2 = 0, but these cases are included in

the other ones.

Hence we have solved the constraint equations completely for the sector (2, 1).

Evolution

Let us now consider conditions E− = 0, E0 − ∂/∂x3 = 0, A−
3 = 0 as the new additional

constraints on the initial data. One can show that they commute weakly with the Hamiltonian,

hence they are preserved by the evolution. In fact,

Ė−a = E0b∂bE
−a + iG−E0a + iE0bA0

bE
−a − E−bDbE

0a = 0, (53)

Ė0a = −2E+b∂bE
−a − E0a∂bE

0b + G
0E0a − 2iE+bA0

bE
−a + 2E−bDbE

+a = 0, (54)

Ȧ0
3 = 2E+bF−

b3 − 2E−bF +
b3 = E0bF 0

3b = 0. (55)

Moreover, due to constraint equations, we obtain

Ȧ−
a = E−bF 0

ba − E0bF−
ba = F−

a3, (56)

thus

Ȧ−
3 = 0, (57)

Ȧ−
1 = −∂3A

−
1 , (58)

Ȧ−
2 = −∂3A

−
2 . (59)

In order to find the evolution of E+, let us first calculate

Ȧ+
3 = −E+bF 0

b3 + E0bF +
b3 = −E0aE+bF 0

ba = −E+b
Cb = 0. (60)

Now we have

Ė+a = −ic+
ijE

ib(∂bE
ja + cj

klA
k
bE

la), (61)

thus

Ė+a = E+b∂bE
0a − E0b∂bE

+a − 2iA+
bE

−bE+a + E+a
G

0 − 2i(∂bE
0b)E+a

−iE0aE0bA+
b + iE+aE0bA0

b,

and since the constraints show that E0bA0
b = A0

3 = 0, we obtain

Ė+a = −∂3E
+a − iE0aA+

3 . (62)

Since E0aA+
3 does not depend on time, equation (62) can be easily integrated for E+a(t).

We obtain similar equations for the components of A0. In the same way as in (55) we find

that Ȧ0
a = F 0

a3, hence

Ȧ0
a = −∂3A

0
a + 2iA−

a A+
3 . (63)

Again we have a simple linear equation for A0.
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The last thing we need to do to solve the evolution equations completely is to find the

function A+(t). Let us calculate

Ȧ+
a = −E+bF 0

ba + E0bF +
ba. (64)

This gives

Ȧ+
a = −2E+b∂[bA

0
a] − G

0A+
a + (∂bE

0b)A+
a + 2iE+bA+

bA
−
a + 2E0b∂[bA

+
a] + 2iE0bA+

[bA
0
a].

Using the constraints we obtain

Ȧ+
a = −2E+b∂[bA

0
a] + 2iE+bA+

bA
−
a + 2∂[3A

+
a] + 2iA+

[3A
0
a], (65)

thus

Ȧ+
a = ∂3A

+
a + 2iA−

a E+bA+
b − ∂aA

+
3 + iA0

aA
+
3 − 2E+b∂[bA

0
a]. (66)

We can see that due to the second term on the right-hand side of the above equation A+
1 depends

on A+
2 and vice versa. However, we can simplify this equation using the results of constraint

analysis. Let us consider two different possibilities.

(a) E+1 = E+2 = 0.

In this case E+bA+
b = 0 and we obtain simple linear equations for A+

1 and A+
2 , namely

Ȧ+
a = −∂3A

+
a − ∂aA

+
3 + iA0

aA
+
3 − 2E+b∂[bA

0
a]. (67)

(b) E+2 6= 0, E+1 = −�E+2 (� = 0 or i).

It is easy to calculate that

∂

∂t
(A+

2 − �A+
1) = ∂3(A

+
2 − �A+

1) − (∂2 − �∂1)A
+
3 + iA+

3(A
0
2 − �A0

1)

−E+b
[

∂b

(

A0
2 − �A0

1

)

− (∂2 − �∂1) A0
b

]

.

Hence we have a simple linear equation for (A+
2 −�A+

1)(t). Substituting �A+
1(t) + (A+

2 −
�A+

1)(t) for A+
2(t) in (66) we obtain the linear equation for A+

1(t). It can be integrated if

A−, E+, A+
3 , A0 are known.

This solves the evolution equations. One can see that the reality conditions are satisfied

for all the solutions we have found.

Summary

Let us summarize the general solution of the Ashtekar–Einstein equations in the sector

(2, 1). First, we have E−(t) = 0 and E0(t) = ∂/∂x3. The fields E+a propagate along the

integral curves of E0 according to equation (62). The components E+2 and E+3 are arbitrary

functions of the ‘spatial‘ coordinates (but E+3 6= 0) and the remaining component is given by

E+1 = −�E+2, equation (50) (� = 0 or i). If E+2 6= 0, A− is given by (49) with the same

� as above, and if E+2 = 0, arbitrary 1-form A− with A−
3 = 0 is the solution. Fields A−

1

and A−
2 propagate along the integral curves of E0 at the speed of light. A0 is any field which

propagates along the same curves as A− and E+ according to equation (63) and depends on

the coordinate x3 according to equation (51).

The field A+
3 does not depend on time and is given by equation (52). A+

1 and A+
2 are any

functions on 6 with the dependence on time given by (66).

It should be noted that, as in sector (2, 2), the characteristic feature of our solutions is the

fact that evolution takes place on the curves, namely the curves defined by x1, x2 = constant.

During the evolution these curves do not interact.
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5. Concluding remarks

As indicated in the introduction, all the possible degenerate sectors of Ashtekar’s gravity have

been solved. They all have certain important features in common.

First of all, the conditions defining the degeneracy sectors commute weakly with the

Hamiltonian. Therefore, if t = t0 corresponds to the surface of initial data 6, then there is an

ε > 0 such that for all t between t0 and t0+ε the degeneracy type is the same (evolution preserves

the degeneracy locally, where the word ‘local’ refers to both space and time). Hence if the

initial data on 6 are specified in such a way that all of them belong to the same degeneracy

sector, the generic behaviour will be such that the evolution preserves the character of the

degeneracy. On the other hand, if there are regions on 6 with different types of data then the

above need not be true (see [9]).

The other important feature is that for all the sectors, the surface of initial data 6 is foliated

by sub-manifolds of dimension equal to the rank of the densitized inverse 3-metric qqab on 6.

The evolution always takes place in such a way that these sub-manifolds evolve independently.

The time derivatives of the field variables on a fixed leaf of the foliation depend only on the

values of these fields on the leaf and on the derivatives along the leaf. qqab decides that

the fields evolve along the surfaces [7], along the curves (sector (2, 1) and [6]), at the points

independently (sector (1, 0)) or do not evolve at all (Eia = 0 for all i, a).
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Appendix

Useful fact

Fact 1. Let ui , vi , wi be such vectors in sl(2, C) that uiui = vivi = wiwi = 1 and

uivi = uiwi = viwi = 0. Then, there exists g ∈ SL(2, C) such that

g−1ug = τ1, g−1vg = τ2, g−1wg = τ3,

where (τi) is an orthonormal basis in sl(2, C) such that [τi, τj ] = εij
kτk .

Proof. Let us fix

τ1 =
1

2

(

0 i

i 0

)

, τ2 =
1

2

(

i 0

0 −i

)

, τ3 =
1

2

(

0 1

−1 0

)

. (A1)

Let us check what transformation is made by

g3 =

(

cos φ i sin φ

i sin φ cos φ

)

∈ SL(2, C), (A2)

with φ ∈ R. It is easy to calculate that

g−1
3 τ1g3 = cos(2φ)τ1 − sin(2φ)τ2, (A3)

g−1
3 τ2g3 = sin(2φ)τ1 + cos(2φ)τ2, (A4)

g−1
3 τ3g3 = τ3. (A5)
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Hence, choosing proper φ ∈ R we can make any rotation around the τ3-axis in the vector space

sl(2, C).

Analogously we can check that

g1 =

(

eiφ 0

0 e−iφ

)

and g2 =

(

cos φ − sin φ

sin φ cos φ

)

(A6)

give rotations around the τ1, τ2 axes, respectively.

The above fact now follows from the properties of rotations in three-dimensional vector

space. �

Complete set of local solutions for degenerate gravity.

We shall list here the general solutions obtained for all possible kinds of degeneracy which

can potentially occur in Ashtekar’s theory for the Lorentzian signature. The interpretation and

some properties of these solutions are given in the preceding sections.

Sector (0, 0). Where Eia = 0, Ai
a are arbitrary, constant in time.

Sector (1, 0). E−a = 0, E0a = 0. There are two possibilities for E+ and A−:

(a) A−
a = 0, E+a is arbitrary and constant in time, or

(b) A−
a = (dz̄)a (z̄ is a real or complex coordinate on 6), E+a = εabc9b,c, where 9a is

constant in time and 9z = 8,u, 9u = 8,z with 8 an arbitrary function on 6 and z,z̄ = 0,

u,z̄ = 0.

A0
a is given by ∂aE

+a = iE+aA0
a and A+

a is given by Ȧ+
a = E+b(∂aA

0
b − ∂bA

0
a + 2iA−

a A+
b).

Sector (1, 1).

E1a = E2a = 0, E3a =

(

∂

∂x3

)a

, Ai
3 = 0,

where A3
a is arbitrary, constant in time and x3, A1

a , A2
a are given by ∂t (A

1
a ± iA2

a) =
±∂3(A

1
a ± iA2

a).

Sector (2, 1).

E−a = 0, E0a =

(

∂

∂x3

)a

,

where (E+2, E+3) are arbitrary functions of spatial coordinates (E+3 6= 0),

E+1 = −�E+2

(� = 0 or i).

If E+2 6= 0, then A−
a = A−

1

(

dx1 + � dx2
)

a
.

If E+2 = 0, then A−
a is an arbitrary function of spatial coordinates with A−

3 = 0.

For both cases: Ȧ−
1 = −∂3A

−
1 and Ȧ−

2 = −∂3A
−
2 .

A0
a depends on spatial coordinates according to ∂3A

0
a = −2∂b(E

+bA−
a ).

A+
3 is constant in time and given by A+

3 = i∂aE
+a + A0

aE
+a .
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Evolution of A0
a is given by Ȧ0

a = −∂3A
0
a + 2iA−

a A+
3 .

Evolution of E+a is determined from Ė+a = −∂3E
+a − iE0aA+

3 .

A+
1 and A+

2 are arbitrary functions evolving according to

(a) Ȧ+
a = −∂3A

+
a − ∂aA

+
3 + iA0

aA
+
3 − 2E+b∂[bA

0
a],

if E+1 = E+2 = 0, or

(b)
∂

∂t
(A+

2 ± �A+
1) = ∂3(A

+
2 ± �A+

1) − (∂2 ± �∂1)A
+
3 + iA+

3(A
0
2 ± �A0

1)

−E+b
[

∂b

(

A0
2 ± �A0

1

)

− (∂2 ± �∂1) A0
b

]

,

if E+2 6= 0.

Sector (2, 2).

E1a =

(

∂

∂x1

)a

, E2a =

(

∂

∂x2

)a

, E3a = 0,

Ai
1 = 0, Ai

2 = 0, A1
3 = −λ,2, A2

3 = λ,1, A3
3 = iλ,t ,

where λ is any complex function satisfying λ,t t − λ,11 − λ,22 = 0.
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