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DEGENERATIONS OF K2> SURFACES OF DEGREE 4
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Abstract. A generic K3 surface of degree 4 may be embedded as a nonsingular
quartic surface in P3. Let /: X -» Spec C[[t]] be a family of quartic surfaces such
that the generic fiber is regular. Let ¿\), 2%, 24 be respectively a nonsingular
quadric in P3, a cone in P3 over a nonsingular conic and a rational, ruled surface in
P9 which has a section with self intersection —4. We show that there exists a flat,
projective morphism /': X' —► Spec C[[i]] and a map p: Spec C[[<]] -» Spec Q[r]]
such that (i) the generic fiber of /' and the generic fiber of the pull-back of / via p
are isomorphic, (ii) the fiber X¿ of /' over the closed point of Spec C[[/]] has only
insignificant limit singularities and (iii) Xg is either a quadric surface or a double
cover of 2^,, 2° or 24. The theorem is proved using the geometric invariant theory.

The purpose of this paper is to prove projective analog of the Kulikov-Persson-
Pinkham theorem [7], [11] via the geometric invariant theory in a special case. We
recall that a nonsingular, projective surface, V, over C is called a Tí 3 surface if
Hl(V, ov) = 0 and the canonical divisor class of the surface is trivial. It is called a
AT3 surface of degree n if V carries a line bundle L with L • L = n. V is said to be
generic if the rank of its Néron-Severi group is equal to one. If L is a line bundle
on a generic ÄT3 surface V such that L ■ L = 4, then, the linear system \L\ has no
fixed components and embeds V into P3 as a quartic surface [8]. Conversely, a
nonsingular quartic surface is a 7c3 surface of degree 4.

Let 5 denote Spec C[[/]]. A family of surfaces over 5 is a flat, projective
morphism, f : X -» S such that the generic geometric fiber of f is a nonsingular,
connected surface. A family of surfaces, f: A" —» S is called a modification of the
family f : X -» S if there exists a map p: S -» 5 such that the generic fiber of f and
the generic fiber of the pull-back of f via p are isomorphic. We emphasize that a
modification also is a projective morphism.

Let 2n = a nonsingular quadric surface in P,,
S" = a cone over a nonsingular conic in P3, and
S4 = a rational, ruled surface in P9 which has a section whose selfintersection is

equal to -4.
We prove

Theorem 1. Let f: .Y—> S be a family of surfaces such that the generic geometric
fiber of f is  isomorphic  to a  quartic surface.   Then,  there exists  a  (projective)
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272 JAYANT SHAH

modification f : X' —» 5 sucn í/iaí í/ A'ó « the fiber of f ewer r/ie closed point of S, then
(i) A'ó « e/rner a quartic surface or a double cover of 20, 2° or 24,
(ii) A^ has only insignificant limit singularities [16].

The theorem is easier to prove if one assumes that the generic geometric fiber is
already a double cover of 20, 2° or 24. The insignificant limit singularities that
actually occur are isolated rational double points, simple elliptic singularities, cusp
singularities, and nonnormal limits of these singularities (see § 1 for explicit descrip-
tion). The theorem is proved using the technique described in [17]. It follows from
the geometric invariant theory [9] that there exists a modification such that the
fibers of the new family are semistable quartic surfaces. Moreover, we may assume
that the fibers belong to minimal orbits. The trouble with the moduli space of
semistable quartics is that it cannot represent K3 surfaces which carry a line
bundle L such that L ■ L = 4, L is ample, but L is not very ample. If V is such a
surface, let <pL : V -» P3 be the map defined by L. We have the following possibili-
ties [12]:

(i) |7_| has no fixed components. <pL is generically two-to-one and q>L(V) equals
20or2°.

(ii) \L\ has a fixed component, D, which is a nonsingular rational curve. L is
isomorphic to ov(3C + D) where C is a nonsingular elliptic curve. <pL(V) is a
twisted cubic curve in P3.

Let g: F-» S be a family of 7C3 surfaces such that g is smooth and such that its
generic fiber is a generic K2> surface of degree 4. Let £ be a line bundle on Y such
that £ induces an ample line bundle of degree 4 on the geometric fibers of g. Let
<pe be the rational map, <pe: Y—»P3 X S, defined by £. Let Y0 be the fiber of Y
over the closed point of S. Let L0 be the restriction of £ to Y0. Suppose that L0 is
not very ample. If |L0| has no fixed components, then <pe is a morphism and the
singular fiber of <Pe(Y) equals 220 or 22° If \L0\ has a fixed component, D, then Y
must be blown up along D in order to extend <pe to a morphism <p'¿. Y' —> P3 X S.
y'^Y') has a singular fiber which contains a twisted cubic curve as a cuspidal
curve. All of these degenerations except 22° are semistable. 22° has a quadruple
point and all quartics with a quadruple point are unstable. Therefore, under the
action of PGL(4), the family may be further modified so that 22° is replaced by a
semistable quartic with significant limit singularities. In proving Theorem 1, we
essentially reverse this phenomenon.

If we have a family of semistable quartic surface over S such that the singular
fiber has significant limit singularities, we modify the family under the action of a
one-parameter subgroup of PGL(4) or PGL(IO) so that the singular fiber of the
new family equals 220, 22° or 224. The singular fiber of the normalization of the
family is a two-to-one cover of 20, 2° or 24. The key point of the method is the
simplification of the singularities of the branch locus of the double cover under the
action of the stabilizer group of 20, 2° or 24 via the geometric invariant theory. For
this, it is essential that the equation of the family be put in a standard form. For a
given type of quartic surface, A'ó, with significant limit singularities, this amounts to
showing the following: (i) Find a minimal subspace, N of |77°(P3, oP(4))| corre-
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DEGENERATIONS OF 7C3 SURFACES OF DEGREE 4 273

sponding to an appropriate subgroup G0 of the relevant stabilizer group such that
N is invariant under G0 and the map G X N -» |77°(P3, oP(4))| is dominant, and
(ii) show that any family specializing to X0 is equivalent under the action of PGL(4)
to a family induced by a map 5 —* N. Then the stage is set for applying the
geometric invariant theory once more. This technique is applied repeatedly until a
family whose fibers have only insignificant limit singularities is obtained.

This work was begun as the author's thesis at M.I.T. [18]. A weaker version of
Theorem 1, based upon straightforward blowing-up of significant limit singularities
was announced in [19].

I thank Professor Artin for his interest and support in this research project.

1. Terminology. Throughout this paper, we will use the following terminology.
Surface singularities of embedding dimension 3. Let o be a Cohen-Macaulay, local

ring of dimension 2 over C with embedding dimension = 3. ô « C[[w, v, w]]/(f).
We will need to refer to the following types of singularities.

Insignificant limit singularities.
I. Rational double points: An, Dn, E6, Em Es [3].
II. Am:f- uv,

Dx: f = u2 + oV, (a simple pinch point).
III. Simple elliptic (or parabolic) singularities [13]:

É6: f=wu2 + v(v + w)(v + kw), k =£ 0 or 1.

En: f=u2 + vw(v + w)(v + kw), k ^ 0 or 1.

Ég: f = u2 + v(v + w2)(t; + kw2), k =£ 0 or 1.

IV. Cusp (or hyperbolic) singularities [2]:

Tnar:f= kuvw + up + v" + wr,        - + - + -< 1,       ¿^0.
p,q' p      q      r

V. Double pinch points: f = u2 + v2g where g G Q[v, w]] such that g = w2
(mod t>).

Significant limit singularities: [2].

EX2:f= u2 + v3 + w1 + kvw5.

Ex3:f= u2 + v3 + vw5 + kw*.

£14:/= u2 + v3 + w* + kvw6.

Jxo-f= u2 + v3 + bvhv3 + w9 + cvw1,       4b3 + 27 *= 0.

J3,: / = u2 + v3 + t)V + (a0 + axw)w9+r,        r > 0, a0 =£ 0.

•/3,oo:/=   U2 +  V3 +  t)V.

J^-f= u2+ V3 + cV.

We will also refer to types of double points as follows:
Type 0: Rational double points, Ax and Dx.
Type 1 : / = u2 + v3 + vg + h where g, h e C[[w]], multiplicity of g > 4, multi-

plicity of n > 6.
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Type 2:f=u2 + g where g G C[[v, w]] and multiplicity of g > 4.
The double points of Type 1 and Type 2 may be characterized as follows. In

each case, Proj(Grm o) consists of a single line. Let Y —> Spec o be the monoidal
transformation with the closed point as center. Let e be the exceptional curve in Y.
Then, o is of Type 2 if and only if Y is singular along e. o is of Type 1 if and only if
Y is nonsingular everywhere along e except at one point which is a double point of
Type 2.

Let V be a two-dimensional, Cohen-Macaulay, reduced scheme over C. If V is
singular along a curve C, then C is called a double curve if, for every generic point
x of C, ov has multiplicity 2. A double point P of V on C is called a pinch point if
the projective tangent cone at P consists of a single line. A double curve is called a
nodal curve if it has only finitely many pinch points. A nodal curve, C, is called
ordinary (respectively, quasi-ordinary) if V has no points on C of multiplicity > 3
and each pinch point on C is a simple (respectively, a simple or a double) pinch
point. C is called strictly quasi-ordinary if it is quasi-ordinary, but not ordinary. A
double curve C is called cuspidal if every point of V on C is a pinch point. (A
cuspidal curve is a significant limit singularity.) A cuspidal curve C is called simple
if, for every point P on C, ôVP « C[[k, t¡, h>]]/(k2 + f) where either f = v3 or
/ = üV

A singular point P on a surface V over C is called a normal crossing if
¿V/) » C[[w, t>, vc]]/(/) where either/ = uv or/ = uvw.

Let F be a projective (possibly singular) surface over C. Let hp'q(V) = the
dimension of the (p, <sr)-component of the mixed Hodge structure [5] on 772( V, Q).
Assume that the singularities of V are insignificant limit singularities. Then, V is
called a surface of Type I if n°°(K) = /i'°(K) = h°\V) = 0, (that is, if the mixed
Hodge structure on H2(V, Q) is a pure Hodge structure). V is called a surface of
Type II if h0fi(V) = 0, but, hl-°(V) ^ 0. It is called a surface of Type III if
n°°( V) ¥= 0. This classification is motivated by the following. Let A be a nonsingu-
lar curve over C. Let s be a closed point of A. Let t: S —» A be the map which
induces an isomorphism ôAtS m C[[í]]. Let g: Y ̂  A be a flat, projective morphism
such that Y XA S —* X' over 5 where A" -» S is a family of surfaces as in Theorem
1. Let T be the local Picard-Lefschetz transformation at s [15]. We may assume
that T is unipotent. Let N = In T. Let m = min{/: TV' = 0}. Since X¿ detrmines the
dimensions of the (p, ^-components of the limit mixed Hodge structure at í [16,
Theorem 2],

X¿ is of Type I if and only if m = 1,
XÍ, is of Type II if and only if m = 2,U Jf J

Xq is of Type III if and only if m = 3.
S will denote Spec C[[t]] and o will denote its closed point. If g: Y-* S is a

family of surfaces over S, Y0 will denote the fiber of g over o. G will denote the
group scheme PGL(4). Let M = |77°(P3, oP(4))|. We consider the canonical action
of G on M.

2. Stability of quartic surfaces. We follow the method of computation illustrated
in Chapter 4, §2, in [9]. Throughout this section, we will use the following notation:
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R0: the ring C[x, y, z\.
Rx: the ring 7?0, graded by assigning weights 1, 2, 3 to x,y, z respectively.
R2: the ring 7?0, graded by assigning weights 1, 1, 2 to x,y, z respectively.
/> g¡> h¡, ßj, /', g'¡, . . . ; homogeneous polynomials of degree i in the variables

indicated in parentheses.
a, b, c, a', a0, . . . : complex numbers.

Proposition 2.1. A quartic surface V is unstable if and only if V has an affine
equation of one of the following forms :

(i) / = z2 + axz2 + f3(y, z) + x2zgx(y, z) + xg3(y, z) + g4(y, z) = 0. That is, f
is an element of Rx with the initial form z2 + by3; V has a double point, P, of Type 1
such that the tangent plane at P makes a 3-fold contact with V and such that P is a
significant limit singularity.

(ii) f=z2 + z{axz+ f2(y, z)} + a'x3z + x2zgx(y, z) + xg3(y, z) + g4(y, z) =
0. That is,fis an element of R2 with the initial form z2 + a^y2 + axxy3 + a2y4; V
has a double point, P, of Type 2 such that either the tangent plane at P is a component
of V or it makes a threefold or fourfold contact with V along a line and such that P is
a significant limit singularity.

(iii)/ = axz2 + g3(y, z) + ß4(x,y, z) = 0. That is, either V has a quadruple point
or it has a triple point whose projective tangent cone has a singularity which is not an
ordinary double point.

Proof. Recall that if a point p in M represents the surface V, then V is unstable
if and only if there exists a one-parameter subgroup A of G such that ¡ix(p) < 0
where ¡ix is the numerical function defined on M by X [9, Chapter 2]. For any
one-parameter subgroup, X, let Mx = {p G M: nx(p) < 0}. It is enough to
determine all the maximal sets Mx . Let A be a one-parameter subgroup of G.
Choose a basis {x0, xx, x2, x3] of 77°(P3, oP (1)) so that X acts via the diagonal
matrices:

ar° 0       0 0
0 ar'      0 0
0 0 ar> 0
0 0        0 a'3

2 /•: = 0 and r0 > rx > r2 > r3. Let p be a point of M. Let F be the homogeneous
form corresponding to/?; F = 2|Y|=4 ayx} where y is the multi-index (y0, yx, y2, y3)
each y, > 0, |y| = S y¡ and x} = x^x^x^x]'. 7?X(a) = 2 a~ir-^ayxt where (r • y)
= 2 r¡y¡. nx(pj = max{(r • y): all 4-tuples y such that ay ^ 0}. Thus, if ay ¥= 0 in F
and iix(p) < 0, then the 4-tuple r = (r0, r„ r2, r3) must satisfy the linear inequality
(r ■ y) < 0. The maximal sets Mx~ are determined by inspection of these inequali-
ties. There are exactly three such sets. The controlling inequalities correspond to
the multi-indices y = (2, 0, 0, 2), y' = (1, 0, 3, 0) and y" = (0, 3, 0, 1). The three
cases are as follows where we have parametrized the sets Mx by quartic polynomi-
als in the variables x = xx/x0,y = x2/x0, z = x3/x0.

(1) X satisfies (r_ ■ y) < 0 and (r ■ y') < 0, e.g. r_ = (5, 4, -3, -6).

Mx: bz2 + axz2 + f3(y, z) + x2zgx(y, z) + xg3(y, z) + g4(y, z).
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(2) X satisfies (r ■ y) < 0 and (r ■ y) < 0; e.g. r = (6, 2, -1, -7).

Mx: bz2 + z{axz + f2(y, z)} + a'x3z + x2zgx(y, z) + xg3(y, z) + g4(y, z).

(3) X satisfies (r ■ y) > 0; e.g. r = (8, -1, -3, -4).

Mx:axz2+g3(y,z) + ß4(x,y,z).

Note that if the coefficient of y3 is zero in case (1), the case degenerates into case
(2) and if the coefficient of z2 is zero, then cases (1) and (2) degenerate into case
(3).    Q.E.D.

Let Mss = the open subset of M consisting of semistable points. Let h: M" —» m
be the universal categorical quotient of Mss by G. Recall that the fiber of h over
any closed point of m contains a unique minimal orbit which lies in the closure of
every orbit in the fiber. A closed point/; in Mss is stable if and only if h~'(&(/»))
consists of the minimal orbit. If O and O' are two orbits in Mss such that O' c the
closure O of O in Mss, then, there exists a one-parameter subgroup, A:
Spec C[a, a~l] —* G, a pointp in O and a point/»' in O' such that lima_>0/»X(a) = p'
and (ix(p) = nx(p') = 0. _

For each one-parameter subgroup, X, let Mx = {p G M: /iA(/») = 0}, Mx = the
points in Mx which are fixed under the action of X, Mx = Mx n Mss, Mx = Mx
n Mss. If p G Mx, then lima_0/»X(a) G Mx. A point/» does not belong to a minimal
orbit in M" if and only if there exists a one-parameter subgroup X such that
p G Mx - Mx and such that p and Hma_>0 /?X(a) do not belong to the same orbit. If
we partially order the sets Mx by the relation Mx > Mx if and only if AÍ" r> M"
and for every point/» G Mx, the closure of the orbit of/» in Mss contains a point of
Mx, then, in order to determine the minimal orbits in Mss, it is enough to
determine all the maximal sets Mx. If ay =£ 0 for a generic member of Mx, then
(r ■ y) < 0. By inspecting these inequalities, we get

Proposition 2.2. Let X be a one-parameter subgroup of G such that Mx is
maximal. Assume that X is diagonalized as in the proof of Proposition 2.1. Then, we
have the following cases where we have parametrized Mx and Mx by quartic
polynomials f andf respectively :

(1) rx + r2 = r0 + r3 = 0; r_ = (n, m, — m, — n), 1 > m/n > 0.
(1.1) m/n = 1/3 or r0 + 3r2 = 0.

/ = axz2 + xzfx(y, z) + f3(y, z) + a5x3z + x2g2(y, z) + xg3(y, z) + g4(y, z)

= axz2 + a2y3 + a3xyz + a4x2y2 + a5x3z + terms of weight > 6 in Rx.

Either axa2as = 0 and the quartic belongs to one of the cases below or else,
axa2a5 =£ 0 and the quartic contains the line y = z = 0 and has a double point of
Type 1 at the origin.

r 2    . 3    . 2. 2    . 3/ = axz   + a2y   + a3xyz + a4xy   + a5x z.

If axa2a5 ¥= 0, the quartic contains two lines, x2 = x3 = 0 and x0 = jc, = 0 and has
double points of Type 1 at the points xx = x2 = x3 = 0 and x0 = xx = x2 = 0.

(1.2) m/n = 0.

f=az2 + zß2(x,y, z) + ß4(x,y, z),
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that is, f consists of elements of weight > 4 in R2. If a = 0, the quartic belongs to one
of the cases below. If a ¥= 0, the quartic has a double point of Type 2 at the origin.

f=az2 + zg2(x,y) + g4(x,y),

that is, f consists of elements of weight = 4 in R2. If a =£ 0, the quartic has double
points of Type 2 at the points xx = x2 = x3 = 0 and x0 = xx = x2 = 0.

(1.3) m/n = 1.

/ = f2(y> z) + xg2(y, z) + x2h2(y, z) + g3(y, z) + xh3(y, z) + h4(y, z).

Mx consists of the quartics which are singular along the line y = z = 0.

/ = fiiy, z) + xg2(y, z) + x2h2(y, z).

Mx consists of the quartics which are singular along the lines x2 = x3 = 0 and
x0 = xx = 0.

(1.4) 1 > m/n > 1/3.

/ = axz2 + a2y3 + a3xyz + a^2)/2 + terms of weight > 6 in 7?,

= axz2 + xzgx(y, z) + x2h2(y, z) + g3(y, z) + xh3(y, z) + h4(y, z).

If a ¥=0 the quartic has a nodal line, y = z = 0, which has a double pinch point at
the origin.

f = axz2 + a3xyz + a^2}'2.

If axa4 ¥= 0, the quartic is either a nonsingular quadric with multiplicity two or the
union of two distinct nonsingular quadrics which intersect in the four lines, {xxx2 = 0,
x0x3 = 0).

(1.5) 1/3 > m/n > 0.
/ = axz2 + yzgx(x,y) + y2g2(x,y) + terms of weight > 4 in R2

= axz2 + a2xyz + a3x2y2 + a5x3z + terms of weight > 6 in R2.

Mx is a subset of the sets in cases (1.1) and (1.3). Let A, be a one-parameter subgroup
of G with m/n = 0 and let X2 be a one-parameter subgroup with m/n = 1/3. 77ien,
a point p in Mx¡ belongs to case (1.5) // and only if lima^0/»x,(a) corresponds to a
quartic which is singular along the line x0 = xx = 0. A point p in Mx belongs to case
(1.5) // and only if lima_>0/»X2(a) corresponds to a quartic which is singular along the
line x2 = x3 = 0.

/ = axz2 + a3xyz + a4x2y2.

(2) r, -f- r2 > 0 and rx = r2; r = (n, m, m, — n — 2m), 1 > m/n > 0.
(2.1) m/n = 1.

f=z{a + ßx(x,y, z) + ß2(x,y, z) + ß3(x,y, z)}.

Each quartic in Mx is the union of a cubic surface and a plane not contained in the
cubic surface.

/= z{a + hx(x,y) + h2(x,y) + h3(x,y)}.

Each quartic in Mx is the union of a plane and a cone over a cubic curve in the plane.
(2.2) 1 > m/n > 0.
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/= z{az + ß2(x,y,z) + ß3(x,y, z)}.

Each quartic in Mx   is the union of a plane and a cubic surface such that their
intersection is a cubic curve with a double point.

f=zh2(x,y).
Each quartic in Mx consists of four planes.

(3) rx + r2 > 0, rx > r2. Mx  is maximal if and only if either r0 = rx and r0 + 3r2
< 0 or 3rx + r3 < 0 and r2 < 0.

(3.1) r0 = rx, rx + r2 > 0, rx > r2, r0 + 3r2 < 0. r = (n, n, m, — 2n — m) where
- 1/3 > m/n > -1.

/= z{fi(y> z) + x8i(y, z) + x2hx(y, z)} + g3(y, z) + xh3(y, z) + h4(y, z).

Each quartic in Mx   is singular along the line y = z = 0 such that either the plane
z = 0 is a component of the quartic or the plane makes a 3-fold or 4-fold contact with
the quartic.

f = yz(ax + a2x + a3x¿).

Each quartic in Mx consists of four planes.
(3.2) r0 + r2> 0, r, > r2, r2 < 0, 3rx + r3 < 0; e.g. r_ = (6, 2, -1, -7).

/ = axz2 + a3xyz + a5x3z + terms of weight > 6 in Rx.

Mx   is a subset of the set in case (1.5). Let Xx be a one-parameter subgroup of G
corresponding to case (1.5). A point p in Mx¡ belongs to case (3.2) if and only if
lima_>0/»Xl(a) belongs to case (3.1).

/ = xyz (four planes).
(4) rx + r2< 0, r2 = r3. i• = (3n - m, — n + m, — n, — n), 2 > m/n > 0.
(4.1) m/n = 0.

/= ßy{x,y,z) + ß4(x,y,z).

Mxs consists of quartics with a triple point.

f=ß3(x,y,z).

Each quartic in Mx is the union of a plane and a cone over a cubic curve in the plane.
(4.2) 2 > m/n > 0.

/ = xg2(y, z) + g3(y, z) + ß4(x, y, z).

Each quartic has a triple point whose projective tangent cone is singular.

f=xg2(y,z)    (four planes).

(5) rx + r2 < 0, r2 > r3. Each quartic in this case also belongs to case (4.2).

Corollary 2.3. A quartic surface V is not stable if and only if V has either
(i) an isolated, nonrational, double point of Type 1 through which passes a line

contained in V, or
(ii) an isolated, nonrational, double point of Type 2, or
(iii) a double line, or
(iv) a nodal curve with a pinch point through which passes a line contained in V, or
(v) a plane as a component, or
(vi) a point of multiplicity > 3.
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The following theorem describes the semistable quartics in more geometric
detail.

Theorem 2.4. Let V be quartic surface. Let A = the singular locus of V.
A. V is stable if and only if V is one of the following surfaces.
Type I: Aw empty or consists of rational double points.
Type II: (i) A consists of a double point P of type Es and some rational double

points such that no line in Vpasses through P.
(ii) A consists of an ordinary nodal curve, C, and some rational double points. Either

V is irreducible and C is a nonsingular curve of degree 2 or 3 with four simple pinch
points or V consists of two quadric surfaces which intersect transversely along a
nonsingular elliptic curve of degree 4.

Type III: (i) A consists of a double point, P, of type T23r and some rational double
points such that no line in Vpasses through P.

(ii) A consists of a strictly quasi-ordinary nodal curve, C, and some rational double
points such that no line in V passes through a double pinch point. C is a nonsingular,
rational curve of degree 2. V has either two double pinch points on C or one double
pinch point and two simple pinch points on C.

Surfaces with significant limit singularities : (i) A consists of a double point, P, of
type Ex2, Ex3, Ex4 or J3r and some rational double points such that no line in V passes
through P.

(ii) A consists of a nodal curve, C, and rational double points such that no line in V
passes through a nonsimple pinch point. C is a nonsingular, rational curve of degree 2.
Every point of V on C is a double point and the set of pinch points consists of either a
point of type J3oo and a simple pinch point or a point of type J4 x.

B. V is strictly semistable and belongs to a minimal orbit if and only if V is one of
the following surfaces.

Type II: (i) Either A consists of two double points of type E% or it consists of two
double points of type E7 and some rational double points.

(ii) A consists of two skew lines, each of which is an ordinary nodal curve with four
simple pinch points.

(iii) V consists of aplane and a cone over a nonsingular cubic curve in the plane.
Type III: (i) A consists of a nonsingular, rational curve of degree 2 or 3, and some

rational double points. C is a strictly quasi-ordinary, nodal curve and the set of pinch
points consists of two double pinch points. Each double pinch point lies on a line in V.

(ii) V consists of two, nonsingular, quadric surfaces which intersect in a reduced
curve, C, of arithmetic genus 1. C consists of two or four lines such that its
singularities consist of 2 or 4 ordinary double points; the dual graph of C is
homeomorphic to a circle.

(iii) V consists of four planes with normal crossings.
Surfaces with significant limit singularities: (i) A consists of a nonsingular, rational

curve, C, of degree 2 or 3; C is a simple cuspidal curve. The normalization of V has
exactly two rational double points if C is of degree 2; it is nonsingular otherwise.

(ii) V consists of two quadric surfaces, Vx and V2, tangent to each other along a
nonsingular, rational curve of degree 2 such that Vx n V2 = 2C.

(iii) V consists of a nonsingular, quadric surface with multiplicity equal to 2.
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Proof. We first describe the representation of quartics with a double point as
double planes. Let P be a double point on a reduced quartic, V, which contains
only finitely many lines through P. Let V be the monoidal transformation of V
with center P. Let it: V —» P2 be the morphism defined by the projection of V from
P. Let

, 0 v%

It   \ l/   7T*

P,

be the Stein factorization. Clearly, V* is reduced. Suppose that V* is irreducible.
Let V* be the normalization of V*. The canonical map, V* —> P2 is flat [1,
Proposition V-3.5]. It follows that it* must be flat. Similar argument shows that the
same conclusion holds when V* is not irreducible. Thus, V* is a double plane,
ramified over a plane curve, fi. If V is defined by the affine equation ß2(x, y, z) +
ß3(x, y, z) + ß4(x, y, z) = 0 such that P is the origin, then ß is defined by the
equation, ß2 — ß2ß4 = 0. The map it contracts the proper transform of the lines in
V through P and is an isomorphism everywhere else. Let E be the exceptional
curve in V. Let e be the (reduced) image of E in P2; e = the algebraic set defined
by the equation ß2 = 0.

We consider now the stable quartics. Corollary 2.3 gives us the following cases.
S-l. Kis nonsingular.
S-2. A consists of isolated, rational, double points.
S-3. A consists of isolated, rational, double points and an ordinary nodal curve,

C. Since V is stable, C cannot have a line as a component. If V is irreducible, then
the degree of C must be less than 4 since the generic plane section of V is then an
irreducible plane quartic curve and such a curve cannot have more than 3 double
points. If degree(C) = 3, then C cannot be a planar curve since, otherwise, the
plane containing C would intersect V in a curve of degree > 4. Thus, C must be a
nonsingular, rational curve of degree 2 or 3. In general, if W is an irreducible,
reduced, surface of degree n in P3, and if the singular locus of W consists of a
nonsingular curve, D, and some isolated rational double points, such that D is an
ordinary nodal curve, we have the formula [10]

y,. = 2(n - 4)4 - 4gD + 4

where y, = the number of pinch points on a connected component 7), of D,
d¡ = the degree of the connected component D¡ of D, gD = dim(77 '(7)„ oD )). The
formula is proved as follows. From Grothendieck's duality theory, it follows that if
W is the normalization of W and D', h! are inverse images of D and a generic
plane n in P3, respectively, then, (n — 4)h' — D' is a canonical divisor on W. Now
apply the formula

D¡(D¡ + K#) = 2gD, - 2 = 2{2gD¡ - 2) + y,..

It follows that, in our case, C has four simple pinch points. The normalization of
V* is either a quartic or quadric double plane and hence, a rational surface.
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If V is reducible, then, since it can have neither a triple point nor a plane as a
component, it must consist of two irreducible quadric surfaces, intersecting in a
nonsingular curve, C. C must, therefore, be a nonsingular connected curve of
degree 4 and hence, an elliptic curve.

S-4. Suppose now that V has a double point, P, of Type 1 such that no line in V
passes through P so that V = V*. We may assume that ß2 = z2 so that ñ has the
homogeneous equation of the form ß2 — z2ß4 = 0. e is defined by the equation
z = 0. Therefore, e is not a component of ß. Every point in e n ß is a singular
point of ß. Since V has exactly one singular point on E and that point is a double
point of Type 2, e n ß consists of a single point, /», with multiplicity equal to 6 and
p is a quadruple point of ß. It follows that e must be a component of the tangent
cone of ß at/». Choose coordinates so that/» has the coordinates, y = z = 0 and
x = 1. Then, the coefficient of x3 in ß3 must be zero. Since no line in V passes
through P, the coefficient of x4 in ß4 cannot be zero and may be assumed to be 1.
Since z does not divide ß3, the coefficient of y3 in ß3 may be assumed to equal 1.
The equation of the tangent cone at /» must have the form

z(y3 + axy2z + a2yz2 + a3z3) = 0.

Choose v so that a3 = 0. Then, by comparing the coefficients, it is easily checked
that V is defined by an affine equation of the form

{z + h2(x,y) + zß'x(x,y, z)f + y3 + xfa^y, z) + xg3(y, z) + g4(y, z) = 0
where h2(x, y) = x2 + bxy + ay2. By replacing x0 by x0 — ß[(xx, x2, x3), we may
assume that ß{ = 0. Finally, by replacing xbyx- (b/2)y, we may assume that
b = 0. Thus, the affine equation of V takes the form

f = {z + x2 + ay2}2 + y3(l + ßx(x,y, z))

+ v2/2'(x, z) + yzf2"(x, z) + z3f[(x, z) = 0.

Since V is stable, f2, /2" and f[ cannot all be identically zero. If they were, V would
have a double point of Type 2 at a point in the locus of x3 + x2 = x2 = x0 +
ßx(xx, x2, x3) = 0. The tangent cone of ß at /» has the equation

yz(y2 - yzf2(\, 0) - z2/2"(l, 0)) - 0.

The next task is to classify the singularities that V can have at 7\ Let Z = z + x2
+ ay2. Consider the ring 7? = C[[x, y, z]], filtered by assigning weights wx, w2, w3,
to x, y, Z, respectively, as follows. The weights satisfy the inequalities w2 > 2wx
and w3 > 3wx. Let d6, d3, d2 denote the weights of the initial forms in 7? of/2, z/2"
and z3f{. Note that the initial form of z is x2 and 2 < djwx < 4, 4 < d3/wx <, 6,
7 < d2/wx < 8. Let d = min¡{idj}. Let w, = the smallest positive integer such that
6 divides d. Let w2 = d/3 and w3 = d/2. Then the initial form of/in 7? is

/= Z2 + y3 + a6x"<y2 + a3x"*y + a2x">

where a¡ = 0 if iwx does not divide d and n¡ = d/iwx if iwx divides d. Note that
2 < n6 < 4, 4 < n3 < 6 and 7 < n2 < 8. If the discriminant S of y3 + a6x"6y2 +
a3xn,y + a2x"2 is not identically zero, then, S is homogeneous of weight d.
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V is normal if and only if ß is reduced. Suppose that ß is reduced. Then, the
singularities of ß consist of the quadruple point/», triple points which have at least
two distinct tangents and double points. Therefore, A consists of the point P and
some rational double points. Suppose that ß is not reduced, ß cannot equal 27?
where B is a cubic curve since ß has a quadruple point with a simple tangent, ß
cannot have a nonsingular conic as a component with multiplicity two. If it did, ß
would equal 27?, + 7?2 where 7?, is nonsingular. But, since p is a quadruple point,
7?2 must consist of two lines passing through /», one of which then must be e.
Contradiction! ß cannot have a line with multiplicity three since, if ß = 3L + B
where L is a line and B is a cubic, then, V would have double points of Type 2
above L n 7?. Thus, ß = 2L + B where L is a line, B is a quartic and L 0 B. B
cannot have a quadruple point since then, ß would consist of lines and would
contain e. Hence /» G L. If ß is not reduced, choose y so that L is the line y = 0;
then, /2" and f{ are identically zero. V has a nodal curve which is a nonsingular,
plane curve of degree 2 and V is defined by an affine equation of the form

/ = (z + x2 + ay2)2 + y2(y + yß'x(x,y, z) + fi(x, z)) = 0.

The pinch points are given by the equations
2 - ft \ — nX2 — X(yX3 + xx — f2(xx, x3) — (J.

It is now easy to verify that we have the following possibilities.
S-4.1. z does not divide /2", d = 12 and <S ¥= 0, wx = 1, n6 = 2, n3 = 4, a2 = 0.

There are four distinct tangents at/». P is of type Es. V is a rational surface.
S-4.2. d = 12 and 8 = 0. There are exactly three distinct tangents at/». Choosing

y so that the line y = 0 is a double tangent at/», we may assume that z divides/2",
but not/2. Then, n6 = 2, a3 = a2 = 0.

S-4.2.1. P is an isolated singularity. Then, P is a cusp singularity of type T23r
and F is a rational surface.

S-4.2.2. ß = 2L + B.
S-4.2.2(a). f'2(x, z) has distinct factors. L n 7? = 2/» + ç, + q2 where qx and q2

are distinct points. The nodal curve in V has one double pinch point and two
simple pinch points. V is a rational surface.

S-4.2.2(b). f2 is a perfect square. L r\ B = 2p + 2q. The nodal curve in V has
two double pinch points. F is a rational surface.

S-4.3. z|/2 and z|/2". There are exactly two distinct tangents at /». V has a
significant limit singularity at P. The affine equation of V has the form

/= {z + x2 + ay2}2 +y3{l + ßx(x,y,z)}

+ z{y2A(x, z) + yzgx(x, z) + z2hx(x, z)} = 0.

S-4.3.1. z \ hx; n2 = 1, a6 = a3 = 0. P is of type Ex2.
S-4.3.2. z\hx, z } gx; n3 = 5, a6 = a2 = 0. P is of type 7s13.
S-4.3.3. z| g, and n, = cz ¥= 0; n2 = 8, a6 = a3 = 0. P is of type 7s14.
S-4.3.4. hx = 0 and gx = bz =£ 0; n6 = 3, n3 = 6, a2 = 0. P is of type 73 r.
S-4.3.5. A, = g, = 0 and z \ fx; n6 = 3, a3 = a2 = 0. V has a nodal curve through

P and 7* is of type J3ao.
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S-4.3.6. A, = g, = 0 and/, = a'z ^ 0; n6 = 4, a3 = a2 = 0. V has a nodal curve
through 7* and P is of type J4oo.

We now turn to strictly semistable quartics. Let F be a quartic surface which is
strictly semistable and belongs to a minimal orbit. V is defined by one of the
equations, / = 0, of Proposition 2.2.

SS-1. / = z2 + y3 + a3xyz + a^2 + a5x3z.
The quartic has two points of Type 1, one at P with coordinates xx = x2 = x3 = 0
and the other at 7" with coordinates x0 = xx = x2 = 0. ß consists of three (not
necessarily distinct), nonsingular conies with consecutive triple points at p with
coordinates y = z = 0 and at /»' with coordinates y = x = 0. There is a single line,
/ in V through P, mapping onto a point/», in P2 and a single line, /' in V through
7". / and /' do not intersect. Clearly, V is nonsingular everywhere along / and /'
except at P and P'.

SS-1.1. ß consists of 3 distinct, nonsingular conies which are mutually tangent at
p and/»'. A consists of the points P and 7" which are of type Es. V is birationally a
ruled variety with the base curve of genus 1.

SS-1.2. ß = 2B + B' where B and 7?' are nonsingular conies, mutually tangent at
/» and /»'. A consists of a nonsingular, rational curve of degree 3 which is a strictly
quasi-ordinary nodal curve with two double pinch points. V is a rational surface.

SS-1.3. ß = 37? where B is a nonsingular conic. A consists of a nonsingular,
rational curve, C, of degree 3 which is a simple cuspidal curve. The normalization
of V is nonsingular. Choose coordinates so that B is defined by the equation
xz — y2 = 0. Then, V is defined by the affine equation

z2 + 4y3 - 6xyz - 3x2y2 + 4x3z = 0j j j

and C is defined by the equations y = x2 and z = x3.
SS-2./= z2 + 2zA2(x,y) + A4(x,y) = {z + A2(x,y)}2 + A4(x,y) - h\(x,y).

The quartic has two points of Type 2, one at P with coordinates xx = x2 = x3 = 0
and the other at 7" with coordinates x0 = xx = x2 = 0.y|A2 andy2|A4 if and only if
the quartic has a double line, x2 = x3 = 0. If the quartic has the double line,
x2 = x3 = 0, it also has the double line, x0 = x2 = 0. If the quartic has a double
line, it belongs to one of the cases SS-i, i > 3. We assume then that the quartic
does not have a double line. The quartic has four lines, /,, l2, l3, l4 through P which
intersect the four lines /,', l2, 1'3, T4 through P' at points defined by the equations
x0 = x3 = h4(xx, x2) = 0. It is easily checked that V has at most a rational double
point at such a point and that V is nonsingular along these lines except at their
intersections, ß has the equation z2(A4 — A§) = 0 so that ß = 2e + B where B is a
quartic cone. The lines /, are mapped onto the points defined by z = A4 = 0.

SS-2.1. B has no multiple component. A consists of the points P and P' which
are of type E7 and some rational double points. V is birationally a ruled variety
with the base curve of genus 1.

SS-2.2. B has three distinct components. A consists of some rational double
points and a nonsingular rational curve of degree 2 which is a strictly quasi-
ordinary nodal curve with two double pinch points. F is a rational surface.
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SS-2.3. B = 2LX + 2L2 where L, and L2 are the lines x = 0 and y = 0. There-
fore, x | A2 and y } A2 and / factors as (z + x2 + y2 + axxy\z + x2 + y2 + a2xy)
where ax ^ a2. V consists of two quadric surfaces intersecting in a curve C. C
consists of two nonsingular conies and the singularities of C consist of two
ordinary double points.

SS-2.4. B = 3L, + L2 where L, is the line y = 0 and L, ¥= 7^. A consists of some
rational double points and a nonsingular rational curve of degree 2 which is a
simple cuspidal curve. V is a rational surface and its normalization has two rational
double points over the cuspidal curve. The affine equation of V has the form

{z + x2 + ay2}2 +y3A,(x,y) = 0   whereyjA,.

SS-2.5. B = 4L. V is defined by an equation of the form

{z + x2 + ay2}2 +y4 = 0.

V consists of two quadric surfaces, Vx and K2, which are tangent to each other
along a nonsingular plane curve, C, of degree 2. Vx n V2 = 2C.

SS-3. / = z" + xg2(y, z) + xzA2(y, z).
The quartic has double lines, x2 = x3 = 0 and xQ = xx = 0. V has a double pinch
point at the point x=y = z=0if and only if z|g2. Therefore, if z|g2, V belongs
to one of the cases that follow. If z} g2, then the double lines are ordinary nodal
curves, each with four simple pinch points. V is birationally a ruled surface with an
elliptic curve as its base curve.

SS-4. f = (z + xy)(z + axy), a^O.
SS-4.1. a ¥= L V consists of two nonsingular, quadric surfaces, intersecting in 4

lines.
SS-4.2. a = 1. V consists of a nonsingular, quadric surface with multiplicity two.
SS-5. V consists of a plane and a cone over a nonsingular cubic curve in the

plane.
SS-6. V consists of 4 planes with normal crossings.
This finishes the geometric description. The mixed Hodge structure of a quartic

with insignificant limit singularities is computed via its dual complex as in [17, §3].

3. Double covers of 24. Let f : X -> S be a family of quartic surfaces such that the
singular locus of X0 consists of a twisted cubic curve, C, which is a simple cuspidal
curve in X0. We will show that there exists a modification f * : X* -> S such that X£
is a double cover of 24 and has only insignificant limit singularities.

From inspection of the affine equation of X0, it can be immediately seen that X0
contains all lines which are tangent to C and thus, X0 is traced out by the tangent
lines of C.

Step I. We embed the family in P9 X S and deform it under the action of a
one-parameter subgroup of PGL(IO) such that we get a family whose singular fiber
equals 224.

Let A = 77°(P3, Op (2)). Let i: P3 —> P9 be the embedding defined by the linear
system A. Let W = t(P3).

Lemma 3.1. W is projectively Gorenstein.
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Proof.2 The homogeneous coordinate ring of W is isomorphic with the ring of
invariants in C[x0, xx, x2, x3] under the involution which sends x¡ to — xt. There-
fore, W is projectively Gorenstein by a theorem of Watanabe [20], [21].    Q.E.D.

Next, we describe the defining equations of W. Let G0 be the stabilizer of the
twisted cubic, C, in PGL(4). G0 acts on A. We have a unique, (/„-invariant
decomposition A « A3 © A7 where A3 consists of the quadrics vanishing on C. For
i = 2 and 6, let L, be the G0-invariant subspace in P9, defined by vanishing of the
elements of A,.,. Let D = L6 n W. D is an embedding of C in P9 as a sex tic
curve, defined by the linear system A7, restricted to C. Choose a basis {q0, . . . , q9}
of A such that {q0, qx, q2} is a basis of A3 and {q3, . . . , q9} is a basis of A7. Let A
be the graded ring C[q0, . . . , q9] = © , Symm' A. Let I be the ideal of W in A;
I = ffi Ik- Let A be the graded subring C[o3, . . . , q9] c A. We have a canonical
surjection A —> A which sends q0, qx, q2 to zero. If u is an element or a subset of A,
we let ü denote its image in A. Note that L6 « Proj A and 7 is the ideal of the
rational, normal, sextic curve, D.

Lemma 3.2. (i) T2 generates I and dimension of I2 = 20.
(ii) T2 generates I and dimension of I2 = 15.
(iii) Choose a basis {Qx, . . . , Q20} of I2 such that {Q6, . . . , Q20} is a basis of I2.

For 1 < / < 5, let

e,=  z ha*   z   %k<ij<ik
0<j<2 0<j<k<2

where each ltj is a linear form in variable q3, . . . , q9 and each aijk G C. Then, for
0 < j < 2, the set {//,},«;,<; 5 is linearly independent.

Proof. Since A/T is Gorenstein, has multiplicity e = 8 at the origin, and has
embedding dimension = e + dim — 2 = 10, (i) follows from [14]. D is projectively
normal [4]. Since the multiplicity ë of A/T at the origin is 6 and the embedding
dimension = ë — dim —1=6, (ii) follows from [14] also. Let [j, k, m) be an
ordered set of integers which is a permutation of the ordered set {0, 1, 2}. Let E be
the curve in P3, defined by the equations qk = qm = 0. E contains C and is a
reduced curve of arithmetic genus 1. Let L' and L" be the hyperplanes in P9,
corresponding to qk and qm. Then, W n 7/ n L" is the image of E in P9 and is
reduced and projectively Gorenstein. Therefore, its ideal is generated by 20 linearly
independent, quadratic forms and, for 1 < / < 5,

Qi  =   (%  +   aW<lMj      m0d(<7Ar> ?«)•
Hence, the set {l¡j + awqj}x<i<s must be linearly independent. Suppose that
{/j,-}i</<5 is hnearly dependent. But, then, we may choose Q/s so that some ly = 0.
That would mean that W n L' n If is not reduced. Contradiction!    Q.E.D.

For an integer n > 1, let \ be the one-parameter subgroup of PGL(10) which
acts on C[<70, . . . , q9] via transformation: q¡ -> t"qj if 0 < / < 2 and q¡ —> q¡ if
3 < 1 < 9. Note that \, commutes with G0. Deform W in P9 under the action of Xn.
Let A = Spec C[t].  In the graded algebra A[t] over C[f], let T, be the ideal

:This proof was supplied to me by D. Eisenbud.
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generated by the 20 quadratic forms, {Qi,}i<i<20, obtained as follows. For 6 < / <
20, Qn is obtained from Q¡ by replacing q0, qx, q2 by t"q0, t"qx, t"q2. For 1 < i < 5,
<2„ is obtained from Q¡ by replacing each coefficient aiJk by t"aiJk. We have a
scheme s\SSn c A X P9, defined by the ideal I, and a canonical projection, p:
<¥„ -» /Í. Let W0 = p"' (origin).

Lemma 3.3. PFq « projectively Gorenstein.

Proof. Let N4 denote the four-dimensional cone over the sextic D with a
two-dimensional vertex, L2. The ideal of N4 is generated by Q6, . . . , Q20. The ideal
of WQ is generated by Of, ... , g£, Q6, . . . , Q20 where, for 1 < i < 5, Q* =
20<j,<2 4 <?>• Thus, W0 c N4 and 3 < dim W0 < 4. For 1 < i < 5, gf = /,0^0
mod(^,, q2). Since the set {/,o}i</<5 is linearly independent, we may choose
coordinates so that for 1 < / < 5, li0 = qj+4. Let L' and L" be the hyperplanes in
P9 corresponding to qx and q2. Let 7J = If n L' n L" and E0 = PF0 n 7/ n 7/'.
Let A' = C[<70, q3, . . . , q9]. The ideal of E in A' is generated by Q'x, . . . , Q20
where, for I < i < 20, Q{ is obtained from Q¡ by setting qx = q2 = 0. For 1 < / <
5, Q[ = 90qr/+4 where <7,'+4 = qi+4 + ai00q0. The equations qx = q2 = 0 define a
curve in P3, consisting of C and a line, /; C n / is a divisor of degree 2 on C.
Under the embedding t: P3 -» P9, / is mapped onto a plane conic, B, which is
contained in the plane defined by qx = q2 = q'4 = • • • = q's = 0. Let 7? n 7) =
{/»,,/»2}. It follows that the linear system spanned by q5, . . . , q9 cuts out a system
of divisors on D with its fixed component equal to/», + p2. We turn now to 7s0. The
ideal of 7s0 in A' is generated by the linearly independent forms, q0q5, ■ . ■ , q0q9,
Q6, . . . , Q20. The ideal (Q6, . . . , Q2Q) defines a two-dimensional cone, N2, over D
with the vertex at a point in L2 with coordinates q0= I, qx = q2 = 0. Clearly,
D c E0 § N2 and E0 contains the two lines, /, and l2, connecting the points/», and
p2 to the vertex. But the curve D u /, U l2 is projectively Gorenstein. This follows
from a general (unpublished) theorem of D. Eisenbud which asserts in our case
that the curves on N2 of degree 8 are precisely the curves which are projectively
Gorenstein. Therefore, the ideal of D \j /, u l2 is generated by 20 linearly indepen-
dent, quadratic forms in A' and hence must equal the ideal of £0. It follows that
W0 must be three-dimensional and projectively Gorenstein.    Q.E.D.

Corollary 3.4. W0 is of pure dimension 3. 6l£n is flat over A so that W0 =
lim^Q IV^'K Moreover, W0 is invariant under Xn and Go-

Proof.  W0 is equidimensional and without embedded primes by the Cohen-
Macaulay theorem [1,  Proposition III-4.3.]. Therefore,  6l£n  is flat over A  by
Proposition V-3.5 in [1]. Since W is invariant under G0 and since \, and G0
commute, W0 is invariant under \, and G0.   Q.E.D.

Corollary 3.5. Let q', q" be distinct elements of A3. Let p0 be the point in L2
defined by the equations q' = q" = 0. Let I be the line in P3 such that C \J I is the
curve in P3 defined by the equations q' = q" = 0. Let i(C n /) = {/»',/>"} C D and
let I' and I" be the lines in P9 joining/»„ top' andp". Then, limr^0 i(l)KW = /' u /".
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Proof. Clear from the proof of Lemma 3.3.
The next lemma describes the geometry of W0.

Lemma 3.6. (i) L2 is canonically isomorphic to the space of divisors of degree 2 on
D. The isomorphism is G0-invariant. The isomorphism canonically determines a
G0-invariant conic, D0, in L2, corresponding to the divisors on D of the form 2/».

(ii) TiacA point p on D determines a line lp in L2, corresponding to the divisors on D
of the form p + /»'. lp is tangent to D0. W0 contains the plane determined by p and I ;
W0 is in fact the set-theoretic union of all such planes. It follows that W0 — L2 is a
vector bundle of rank 2 over D. The multiplicity of W0 at every point of L2 is equal to
2.

Proof, (i) We omit the construction of the actual isomorphism since we do not
need it here. We show only a one-to-one correspondence. Let p0 be a point in L2.
Let q' = q" = 0 be the equations defining p0 in L2. Then, as in Corollary 3.5, q'
and q" determine a secant / (which may actually be a tangent) of C and hence a
divisor of degree 2 on D. Conversely, a divisor of degree 2 on D determines a
secant, /, of C. The ideal of C u / is generated by two quadratic forms, q' and q",
which, in turn, determine a point in L2. The G0-invariance is obvious. Note that the
divisor corresponding to a point p0 in L2 is of the form 2/» if and only if the
corresponding secant of C is actually a tangent.

(ii) If /»' + /»" is the divisor of D corresponding to a point p0 in L2, then, by
Corollary 3.5, W0 contains the lines, /' and /" which joinp0 top' and/»". Therefore,
W0 contains the plane determined by/» and lp. As in the proof of Lemma 3.3, let N4
be the cone over D with vertex L2. Recall that W0 c N4. Let/»0, q', q", /', /", be as
above. Let N2 be the cone over D with vertex p0. N2 is defined in N4 by the
equations q' = q" = 0. Therefore, N2P\ WQ= D \j I' \j l".\X follows that W0 is
the set-theoretic union of the lines joining points of L2 to their corresponding
divisors on D. The rest of the assertion is now clear.    Q.E.D.

Lemma 3.7. W0 contains a X„ X G0-invariant, rational, ruled surface, 24, such that
limr_>0(A'0)X"(') = 224. 24 contains the curves D and D0 as sections such that D0 ■ D0
= — 4 and D ■ D = 4. 24 is not contained in a hyperplane of P9 and its degree is
equal to 8.

Proof. Let F0 G 77°(P3, oP (4)) be a quartic form which vanishes on X0. F0 is
G0-invariant. Let 2^ be the quadric hypersurface in P9 defined by F0. The equation
F0 = 0 defines a divisor 'Y on GlSn which is flat over A such that the fibers of T are
projectively Gorenstein. Let V0 = % n W0. V0 = lim,_>0 i(Ar0)x"(,). Let q G A3 be a
nonzero element. The equation q = 0 defines a line, /, in L2 such that / n D0 =
{Po'Po}- Therefore, the quadric in P3 corresponding to q contains exactly two
tangents, /' and /" of C, touching C at points /»' and /»" respectively, and
intersecting X0 in the divisor 2C + /' -t- /". By Corollary 3.5,

lim t(2C + /' + l")K(,) = 2D + 2/0 + 2/0'
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where l¿ and l¿' are the lines joining p'0 and p'¿ to i(p') and i(p") respectively.
Therefore, if 77? is the hyperplane in P9 corresponding to q, then Hq n V0 equals
2(7) u l¿ U /Ó'). Since X0 is traced out by the tangents of C, it follows that if we let
24 = K0red, then 24 is traced out by the lines joining points on D0 to the
corresponding reduced divisor on D and V0 = 224. Since the degree of V0 = the
degree of i(X0) = 16, deg(24) = 8. Now, 7T? n 24 = D u l¿ U l¿'. For any point/»
on D, we can find ?eA3 such that l¿ and l¿' are distinct and /» lies on l¿.
Therefore, 24 can have singularities only on D. But, if 24 has a singularity, then, by
homogeneity under G0, it must be singular everywhere along D. Then, since
D c Hq, Hq n 24 must contain D with multiplicity > 1. Since D has degree 6, this
is a contradiction. Therefore, 24 must be nonsingular. Since 24 contains D0 and D
which span L2 and L6 respectively, 24 cannot be contained in a hyperplane. 24 is
therefore a nonsingular, rational, scroll [12] with D0 and D as sections.

(D + /0 + /„") • (D + l¿ + l¿') = deg(24) = 8.
Therefore, D ■ D — 4. Let q' be a nonzero element in A7 and let 77' be the
corresponding hyperplane in P9. D0 c 77'. Therefore, 77' n 24 = DQ + D' where
D' is a curve in 24 of degree 6. D ■ D' = D • (D0 + D') = 6. Hence, D' is linearly
equivalent to 6/ + ks where k > 0, / is a fiber of 24 and s is a section of 24 with
the smallest self intersection number. Since deg(T>') = 6, k must be zero and
77' n 24 is linearly equivalent to D0 + 61. Since (D0 + 61) ■ (D0 + 61) = 8, D0- D0
= - 4 and D0 = s.    Q.E.D.

Another description of 6ISn. We need to describe GHS„ in another way in order
to calculate the limit cycles of subvarieties under the action of \. Let oA denote the
origin in A. Let X: A — oA -* PGL(10) be the one-parameter subgroup such that /
corresponds to the transformation which sends q¡ to tq¡ if 0 < / < 2 and sends q¡ to
q¡ if 3 < i < 9. For any positive integer n, the one-parameter subgroup X„ is the
composition

A - oA^*A - o^PGLOO)
where the first morphism sends / to t". Let A* denote A — oA. Let a* denote the
composition

x x«Ax XV3"-^   PGL(IO) X P9->P9

where the second morphism is the canonical action of PGL(IO) on P9. As a rational
map from A X P3 to P9, a„x has the fundamental set oA X C. Let T' —» A X P3 be
the monoidal transformation with oA X C as center and let %' be the pull-back of
'V via the morphism pn. Let P* be the proper transform of oA X P3 in T„'. Let V be
the exceptional divisor in T'. Let E = V n P?.

Lemma 3.8. o* extends to a morphism on: Y'n -+ P9. a„ wa/»i P* on/o L2 an¿/ maps
V — E isomorphically onto W0 — L2.

Proof. Let P be a point on C. Choose coordinates so that P is the point
xx = x2 = jc3 = 0. Let ^f0 = x0x3 — xxx2, qx = x0x2 — x2, q2 = xxx3 — x\. Choose
a basis {q3, . . . , q9) of A7 such that, mod(^0, qx, q2), q3 = x2, q4 = XqX^ q5 = x\,
q6 = xxx2, q-¡ = x\, qs = x2x3, q9 = x\. Let 7" denote the point x0 = xx = x2 = 0.
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Then, x0, xx, x2, x3 cut out divisors 37*', 27*' + P, 7" + 27*, 3P, respectively, on C.
For 3 < / < 9, <?, cuts out the divisor (9 - i)P' + (i - 3)P on C. Let the embed-
ding t be given by the equations q¡ = w, where u¡ G oP P. Let x = xx/x0, y =
x2/x0 and z = x3/x0. Then w0 = z — xy, «, = y — x2, m2 = xz — y2 and, for
3 < / < 9, m, = x3"' mod(w0, «,). Note that, u2 = xw0 - x2ux — u2. Let 0 denote
the complete local ring of A X P3 at oA X P; 0 « C[[w0, «,, m4, t]\ «s
C[[u0, u,, x, /]]. The map a* is given at oA X P by the equations:

<?, = «,.//",        0 < i < 2,
</,. = i/„        3 < / < 9.

Let 11 be the ideal (u0, ux, u2, t"u3, . . . , t"u9); U is generated by u0, ux, t". The map
o-„x then extends to the monoidal transformation C\P P —* Spec 0 of Spec 0 with
center tl. Clearly, %' P is the fiber of %' over Spec 0. Since \, projects P9 — L6
onto L2, it follows that an maps P* onto L2. (A point /» in P3 — C lies on a unique
secant, ^,, of C since the projection from/» maps C onto a plane cubic curve with
exactly one double point. an maps the proper transform of lp in P* onto a point in
L2.)

Let/»,: T,¡ —» /I be the projection. The map/», X an: °V^ —» /I X P9 is proper since
pr is. Hence, the image of pr X on equals %„ and we get a proper, surjective,
birational, A -morphism tr: °V^ —» ̂ZlTn which is an isomorphism over A — oA. It
follows that an( V) = W0.

The fiber of V — E over the point P of C is the affine Spec R$ where 7?0 = C[[x]]
[u0/t", ux/t"]. In 7?0, u2 = 0 and, for 3 < /' < 9, w, = x3-'. The map oP: Spec 7?0
-> P9 is defined by sending q0 to u0/t", qx to ux/t", q2 to xu0/t" — x2ux/t", and,
for 3 < / < 9, c, to x3"'. Therefore, (^(Spec 7?0) does not meet the hyperplane
q3 = 0. For 0 < / < 9, let s¡ = q¡/q3. Then the map aP is induced by the homomor-
phism C[j0, . . . , s9] -> 7?0 which sends s0 to u0/t", j, to ul/t", s2 to xu0/t" —
x2ux/t" and i, to x3-' for 3 < / < 9. Therefore, aP is injective. It follows that m is
one-to-one over Yn — P* and, hence, by Zariski's Main Theorem, it is an isomor-
phism when restricted to % - P^.    Q.E.D.

Remark 3.9. Let G = the proper transform of A X C in °V^. Then, C n V = the
inverse image of 7) under the restriction of on to K.

Step II. Standardization of the equation of the family.

Lemma 3.10. Let I denote a fiber of 24. Let \ml\ denote |7/°(24, Oj. (m/))|. There is
a unique, \ X G0-invariant decomposition

77°(24, o2<(2)) « 9 © $ © Z

such that
(i) |©| has 2D as the fixed component and |0| — 27) = |4/|, dim 0 = 5.
(ii) |4>| has D + D0as the fixed component, \$\ — D - D0 = |8/|, dim $ = 9,
(iii) |¿| has 27)0 as the fixed component and \E\ — 27)0 = |12/|, dim E = 13.

Proof. From the proof of Lemma 3.7, we have that D is linearly equivalent to
7)0 + 4/ and 27) + 41, D + D0 + SI, 27)0 + 12/ are elements of |77°(24, oZi(2))\.
Clearly, 0, $, S are \ X G0-invariant and have the indicated dimensions. From
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[12], the canonical divisor on 24 belongs to | - 27)0 — 6/| and T7'(24, o^(m)) = 0
for m > 1. It follows from duality that T72(24, o^(m)) = 0 for m > 1. By Rie-
mann-Roch, dim T7°(24, o2<(2)) = 27. Therefore, 0,' Í» and S span TT°(24, 0^(2)).
The uniqueness follows from the irreducibility of 0, <í> and E.   Q.E.D.

Lemma 3.11. There is a \, X G0-invariant decomposition 77°(P9, oP (2)) « J5 ©
J,5 © B, © B5 © B7 © B9 © B,3 such that

(i) J,5 generates the ideal of N4, the cone over D with vertex L2,
J5, together with J,5 generates the ideal of W0,
B, = C • F0 where F0 G Symm2(A3) and F0 vanishes on X0 in P3,
B7, together with J5, J15, B, generates the ideal of 24, and there are Xn X G0-linear

isomorphisms B5 s» 0, B9 «¿ <ï>, B,3 « E.
(ii) Xn acts as follows:

ifFŒJX5®Bx3,F^= F,
if F G J5 © B7 © B9, F^° = tnF,
if F G B, © B5, F*»« = t2nF.

Proof. Under the \, X G0-linear restriction, 77°(P9, oP/l)) -h> 77°(24, o2/l)), |A3|
restricts to divisors on 24 with D as the fixed component such that |A3| — 7) = |2/|
where / is a fiber of 24. If q G A3, q*"(l) = t"q. A7 restricts to divisors on 24 with 7)0
as the fixed component such that |A7| — 7)0 = |6/|. \, acts trivially on A7.

Let F0 G 77°(P3, oP (4)) be a quartic form, vanishing on XQ. Since X0 is singular
along C, F0 G Symm2(A3). F0 vanishes on 24 and hence on 7)0. Therefore, we have
a X„ X G0-linear exact sequence

0 -> C • F0 -+ Symm2(A3) -* T7°(7)0, oDo(2)) ̂ 0.

Choose a \, X G0-linear section s: 77°(7)0, oß (2)) —> Symm2(A3) and let B, = C •
F0, B5 = image of 5. Clearly, Bs œ 0 under the \, X G0-linear restriction to 24. If
F G Symm2(A3), F***0 = t2nF.

Similarly, we have the \ X G0-linear exact sequence

0 -+ J,5 -^ Symm2(A7) U H°(D, oD(2)) -+ 0
where \, acts trivially on Symm2(A7). J,5 consists of elements which vanish on D
and, hence, vanish on N4. Since dim J,5 = 15, J,5 in fact, generates the ideal of A^.
Let s' be a \, X G0-linear section of/ and set B,3 = the image of s'. B,3 ss E under
restriction to 24.

Let B" = the image of A3 ® A7 in 77°(24, o2 (2)) under the restriction map. Let
J" = the kernel of the restriction map. The exact sequence

0-► J" ^ A3 <8> A7^B"->0
is \, X G0-linear. If F G A3 ® A7, FKW = t"F. Therefore, B" n 0 = {0} and
B" n E = {0}. Since the restriction T7°(P9, oP/2)) -+ T7°(24, o2<(2)) is surjective,
dim B" = 9. By the uniqueness of decomposition, B" aa í>. Let s" be a \ X G0-
linear section oí j" and let B9 = s"(B"). J" vanishes on 24 and has dimension 12.
J" contains the \, X G0-invariant, 5-dimensional subspace, J5, consisting of ele-
ments which vanish on W0. Let B, be a \ X G0-invariant complement of J5 in J".
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According to [12], the ideal of 24 is generated by quadratic elements and, hence, by
J"©J,5©B,.   Q.E.D.

Lemma 3.12. There is a G0-linear isomorphism

r: B, © B5 © B7 © B9 © B13 -» T7°(P3, op¿4)).

Proof. The map r is the composition

T7°(P9, Op9(2)) - 77°( W, ow(2)) -* 77°(P3, oP (4)).

Let B denote the space on the left side of the map r. Let ß be a nonzero element of
B. Let Z be the quadric hypersurface in P9 defined by the equation ß = 0. Let
lim^o Z^w = Z0. Since the projective space |B| is invariant under Xn, there exists
ß0 in B such that Z0 is defined by the equation ß0 = 0. Now suppose that r( ß) = 0.
Then, W = t(P3) c Z and WKW C ZK(i). Therefore, W0 c Z0, ß0 must vanish on
W0 and ß0 G J5 © J,5. Contradiction. Therefore, r must be injective. Since dim B
= dim 77°(P3, oP (4)) = 35, r must be an isomorphism.    Q.E.D.

For / = 1, 5, 7, 9, 13, let D, = r(B¡). Fix a nonzero element F0 in D,. Let
N = D, © D9 © D,3.

Lemma 3.13. The morphism -q: G X |N| —» A/-, induced by the G-act ion on M is
smooth in a neighborhood of G X |D,|.

Proof. Let e denote the identity in G. Let/» = T?(e X |D,|). By homogeneity, it is
enough to show that the tangent space at « X |D,| maps surjectively onto the
tangent space at/». Let O = t/(G X |D,|), the orbit of/» in M. Let Tc = the tangent
space of G at e and T0 = the tangent space of O ai p. The canonical map
G X |D,| —> O maps TG surjectively onto T0 , sending tangent vectors along G0 to
zero. Also, e X |N| maps isomorphically into M. Therefore, it is enough to show
that no nonzero tangent vector in the image of TG lies along |N| in M.

Let t: Spec C[e]/(e2) -^Gbea morphism which maps the closed point on the
identity, t determines an infinitesimal automorphism of T7°(P3, oP (4)) under which
F0 transforms into F0 + AF0. Let P be a point of P3 on C. t determines a
derivation d: oP P —> op p such that if /0 and A/0 are the images of F0 and AF0 in
oP P, then d(f0) = A/0. Choose a basis of 77°(P3, oP(2)) as in the proof of Lemma
3.8. We use the same notation. We may assume that F0 = q\ — 4qxq2 so that
/„ = (u0 - 2xux)2 + 4«3. Let f = u0 - 2xux. Then, A/0 = ?¿(f ) + \2u2xd(ux). The
proper transform/; of/0 in Q[u0/t", ux/t"] is (f/f")2 + 4tn(ux/tn)3 and the image
of/Ó in 7?0 is (Ç/tn)2. Since lim^o F^"(,) vanishes on 24, f/i" must vanish on
7T_1(24) n V. Let 2' = 7t"'(24) n V. Let A/Ó = the proper transform of A/0 in
6[u0/t", ux/t"]. Then, the restriction of A/Ó to 2' either is zero or else vanishes to
the order > 2 on the inverse image of D in 2'. It follows that lim,_>0(A/¿)x"(') G D,
© D5 © D7 and hence, A/0 must be in D, © D5 © D7. Therefore, the image of the
tangent vector lies along |N| if and only if A/0 G D,. But, then the infinitesimal
automorphism of M determined by t fixes/». Hence r must factor as
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Go

Spec Ciel/(e2)     ->     G

and the image of the tangent vector must be zero.    Q.E.D.

Corollary 3.14. Fix a nonzero element F0 of D,. There exist elements, F¡ G D9
<8> C[[/]] and F" G D,3 ® C[[t]] such that the family X may be defined by an equation
of the form

F(t) = f0 + f; + Ft" = 0.

Proof. Let /» be the point of M corresponding to F0. The family X is defined by
a map t: S —> M, mapping the closed point onto />. The map t lifts to a map p:
S -» G x |N| which maps the closed point onto e X |D,| where e is the identity in
G. Let ¡x' be the composition

5->G x|N|-*W->ff X|N|-»G X|N|

and let t' = tj ° ¡i'. Clearly, the maps ¡i and ¡i' are G-equivalent and hence, so are
the maps t and t'.    Q.E.D.

Step III. Modification of the family via the geometric invariant theory.
Let N denote the affine in |N| which is the complement of the hyperplane in |N|,

F0 = 0. A closed point of N corresponds to an element of N which can be written
uniquely as F0 + F' + F" where F' G D9 and F" G D,3. Let

ß = Symm(D* © Df3)

where the superscript * denotes the dual vector space. Grade ß by assigning weight
2 to T>* and weight 3 to Df3. G0 acts on Spec ß and Proj ß. Proj ß contains
G0-invariant subspaces D9 and D,3. Let/»,: Proj ß—»D9 and/»2: Proj ß—»D,3 be
the rational maps defined by the canonical projections. If w G Proj ß and if /», is
not defined at w, we let /»,(to) denote the empty set. By Lemma 3.11 there are
G0-linear isomorphisms D9 « $ and D,3 « E. If to G |D9| (respectively, |D,3|), let w
denote the corresponding element in |4>| (respectively, \E\). It is easy to verify the
following [17]:

Proposition 3.15. Let to G (Proj íly" such that to belongs to a minimal orbit. Then,
to is stable if and only if no fiber of 24 has multiplicity > 4 in /»,(w) and multiplicity
> 6 in p2(io). co is not stable if and only if there exist two distinct fibers of 24 such
that each has multiplicity of 4 in /»,(«) if it is not empty and multiplicity of 6 in p2(u)
if it is not empty.

Let oN denote the origin in N. Let pr: N — oN —» Proj ß be the canonical
projection.

Lemma 3.16. The family may be modified so that the new family is induced by a
map u: S —» N, mapping the closed point o onto oN, such that, if u* is the restriction of
u to Spec C((/)), then the composition pr ° u* extends to a map v: S —* (Proj ß)M
which maps o onto a point in a minimal orbit.
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Proof. By Corollary 3.15, we may assume that the given family of quartics is
induced by a map u0: S -» N such that u0(o) = oN. Let t: N -*3l be the universal
categorical quotient of N by G0. It is enough to find a section of t over t ° u0 after
replacing t by a suitable root of / such that the section has the required properties.
We define a blow-up of N and 31 as follows. Let ß = © ß, where ß, is the graded
component of weight /. Let ß* be the graded ring ®k>0 ß* where ß£ = © i>k ß(.
If we regard ß as an ungraded ring, then ß* is a graded algebra over ß. Let
N' = Proj ß* and let it: N' —> N be the canonical projection, it is an isomorphism
everywhere except over the origin oN. Let E be the exceptional divisor in N'. The
projectionpr extends to a morphism/»^: N' —> Proj ß which maps E isomorphically
onto Proj ß. Since the blow-up is equivariant with respect to the action of G0, G0
acts on N' anáp'r is equivariant also.

Let 3= t(on). Let A = (t ° w)~'(3). Up is a closed point of N' — A, the closure
of its orbit lies in A/' - A since the closure of the orbit of ir(p) lies in N — r~\d).p
is semistable since tt(p) is. Suppose that/» G A — E. Then, <rr(p) lies in t~'(3) — oN
and oN lies in the closure of the orbit of tr(p). That is, there exists a one-parameter
subgroup X(t) of G0 such that lim,^^/»))^0 = oN. Therefore, ir(p) is represented
by a quartic form F0 + F' + F" such that F' G D9, F" G D,3 and
lim,_0(F', T"')X(,) = (0, 0). In other words, (F', F") represents an unstable point of
Proj ß. There exists a positive integer m such that (F', F")m = (t2mF't, t3mFt")
where lim,_0(F/, Ft") = (F¿, F¿') ¥f (0, 0) and n((F¿, F¿'), X) > 0. Therefore, p is
unstable. Hence, A" = Ess.

Let 31' denote the categorical quotient of (N')ss by G0. We have a canonical
commutative diagram

N

31

The morphism p is an isomorphism over 31' — 3 and by Proposition 5.2 in [17], the
exceptional divisor & in 9?' over 3 is the universal categorical quotient of (Proj ßj"
by G0. The map t ° u0 lifts uniquely to a map w: S —> 31'. From the properties of
universal quotients (Proposition 2.1 in [17]) it follows that there is a positive integer
n and a map p: S —» S which sends ( to i" such that w ° p lifts to a section u':
S —» A7' and u'(o) belongs to a minimal orbit, it ° u' now provides the required
map.    Q.E.D.

Assume now that the family of quartics, f : X -» S is defined by the equation

F= F0+ t4mF¡ + t6mF," = 0

where F¡ G D9 ® C[[/]] and F," G D,3 ® C[[i]] such that lim^F/, Ft") = (F¿ F0")
is not zero and defines a semistable point to of (Proj ß)JI belonging to a minimal
orbit. The quadric hypersurface in P9 X 5, corresponding to F, transforms under
the action of X2m to the quadric surface defined by the equation

F0 + t2mF't + t2mF," = 0.

N'

31'
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The latter hypersurface defines a divisor, Y, on %2m XA S which is flat over S. Y
is a modification of the family X. Let Y be the normalization of Y.

Theorem 3.17. The special fiber Y0 is a two-to-one cover of 24, ramified over a
curve with two connected components, D0 and B, such that B is linearly equivalent to
3D. Y0 has only insignificant limit singularities.

Proof. We use the description of,<3Zli2m given above the statement of Lemma 3.8
and the local description given in the proof of the lemma. We keep the same
notation. Let X' be the proper transform of X in %'„, XA S. Let X' be the
normalization of X'. Let Xs be the proper transform of X0 in A". Let Xs be the
proper transform of A'ó in X'. We have a proper, surjective, birational map, p:
X' —» Y which is an isomorphism when restricted to A" — X$. Hence, we have a
proper, surjective, birational map p: X' —» Y which is an isomorphism when
restricted to X' — Xr Let P be a point of P3 on C. As before, let 0 be the complete
local ring of S X P3 at o X P3. Recall that 0 « C[[m0, «„ x, t]] in terms of the basis
of 77°(P3, op (2)) chosen as in Lemma 3.8. F0= q2 — 4qxq2 and its image in 0 is
/0 = f2 + 4u3 where f = u0 — 2xux. Let// and/" denote the images of F¡ and F"
respectively in 0. Then the image of F in 0 is:

/= £2 + 4u3+ t4mfl + t6mft".

The   fiber  of   %'„ - P^   over   Spec 0   is   isomorphic   to   Spec 7?   where   R =
C[[f, «„ x, t}][$/t2m, ux/t2m\ The proper transform of/in R is

h = (yt2mf + t2m(4(ux/t2mf + // +/").

g = {S/t3">)2 + 4(ux/t2m)i +/;+/,".

Let T = R/(fs) and T* = the normalization of T; T* « R[Ç/t3m]/(g). Let

To = [T/«)leduced~C[[x}][ux/t2">];

let
r* = t*/ (t).

T* « r0[f//3'"]/(g0) where g0 = (f//3"1)2 + 4(ux/t2m)3 +f0 + f¿', f0 and f¿' are
the images of// and/" in r0.

Spec r0 maps isomorphically onto the fiber of 24 — 7)0 over Spec <52 ̂  where P
is considered a point of D by identifying C with 7). The equation /ó = 0 (respec-
tively, /0" = 0) is the local equation of the divisor on 24 defined by F0 (respectively,
F0"). The equation (ux/t2m) = 0 is the local equation of 7). Therefore, f¿ =
(ux/t2m)p'(x) and f¿' = p"(x) where /»' and /»" are polynomials whose order of
vanishing at P is less than 5 and 7 respectively. Therefore, the ramification curve of
the double cover Y0 —> 24 equals B + kD0 where k > 0, B n D0 is empty and B is
a three-to-one cover of 7). 7? is linearly equivalent to 37) + n/, where / is a fiber of
24 and n > 0. Since (37) + nl) ■ D0 = 0, n = 0 and 7? is linearly equivalent to 37).
The ramification curve is linearly equivalent to (3 + k)D0 + 12/ where k is an odd,
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positive integer. Let 2/ = 3 + k and 7?0 = jD0 + 61. Now, x(^o) = ^x(24) +
l/2750■ (B0 + Kj.) where 7i2 is a canonical divisor on 24 and is linearly equiva-
lent to -2(7)0 + 3/). (For a proof of this formula see [6, §2]. The proof given there
extends to our case.) Since x(^o) = 2 and x(24) = h 0 = (j' — 2)DQ ■ (jD0 + 61) =
(j - 2)(6 - 4j). Therefore, j = 2 and k = 1. From the local description of B, it is
clear that Y0 has only insignificant limit singularities.    Q.E.D.

4. Double covers of 20. Suppose now that f : X -» S is a family of quartic surfaces
such that A"0 consists of a nonsingular quadric 20 with multiplicity two. Let
G0 = the stabilizer of A'ó in G. If we normalize X after replacing t by ti/2 if
necessary, we obtain a new family whose special fiber is a double cover of 20,
ramified over a curve B. As in the previous section, we modify the family by
applying geometric invariant theory so that B is semistable with respect to the
action of G0. Unfortunately, the double cover may still have significant limit
singularities. These cases are dealt with in the next section where we further modify
these families so that we get families specializing to double covers of 22 with
insignificant limit singularities.

Fix a quadratic form, q, which vanishes on 20. Since G0 is semisimple, we have

Lemma 4.1. There are G0-invariant decompositions

77°(P3, oPj(2)) « C • q © 0, 77°(P3, 0^(4)) œ C ■ q2 © <? • 0 © <D

and G0- linear isomorphisms

0 Z 77°(20, 0^(2)),       $ ^ 77°(20, ^(4)).

By the methods of the previous section, one may show

Lemma 4.2. We may modify a given family of quartics, specializing to 220, such
that the new family is defined by an equation of the form F = q2 + t2m<p, where

(i) (f(G$® C[[r]] and <p0 = lim,^0 <p, * 0,
(ii) the point in |77°(20, o2 (4))| corresponding to <p0 is semistable and belongs to a

minimal orbit.

Proposition 4.3. Suppose that the family of quartics, f : X —> S, is defined by an
equation of the form given in the previous lemma. Let X be the normalization of X.
Then, X0 is a double cover of 20, ramified over a curve B in 20 of bidegree (4, 4)
defined by the equation tp0 = 0.

It remains to describe the minimal orbits in |77°(20, o2 (4))\ss and describe the
geometry of X0. Let H denote 77°(20, o2/4)) and let TT = |H|. Let i: P, X P, -^ P3
be the Segre embedding with 20 as its image. Let G0 = SL2 X SL2. G¿ acts on P3
via the embedding t. Since G¿ is isogenous to the component of G0 containing the
identity, we may determine the stability of curves on 20 by considering the action
of G¿ instead of the action of G0. Let X be a one-parameter subgroup of G¿. It is the
product of two one-parameter subgroups, A, and X2, of SL2. Choose a basis {w0, «,}
so that A, acts on T7°(P,, oP (1)) via the diagonal matrices
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Similarly, choose a basis (u0, t>,} so that A2 acts via the matrices

V    o
o    r' '

We may assume that r > 0 and 0 < r'/ r < 1.
{u0v0, u0vx, uxv0, uxvx] is a basis of T7°(P3, oP(l)). Let x0 = u0v0, x, = u0vx,

x2 = uxv0, x3 = uxvx. Then, q = x0x3 — x,x2. Since, 77°(P,, oP (4)) ®
77°(P,, oP (4)) —> H is an isomorphism, the set

\M0    'Mlü0     ül|o<¡<4;0<;<4

forms a basis of H. In order to determine the minimal orbits, we proceed as in §2.
Let T7A, 77^, TTA, 77f, be the sets analogous to the sets Mx, M?, Mx, Msxs in §2. Let
m = ux/u0 and v = vx/v0. The two propositions below are easy to verify.

Proposition 4.4. A curve B on 20 of bidegree (4, 4) is unstable if and only if B has
an affine equation, f = 0, where f is of one of the following forms.

(i) With weight(t/) = 2 and weighty) = 1,/= u3 + terms of weight > 6,
(ii) / = av4 + buv3 + terms of higher degree.

Proposition 4.5. Let X be a one-parameter subgroup of G¿, diagonalized as above
such that Hx is maximal. Then, we have the following cases where we have
parametrized Hx and Hx by polynomials f and f of the form

2    öy"V:
0</<4
0 <j< 4

1. r'/r = 1/2. Let weight(u) = 2 and weight(u) = 1. / = axu3 + a2u2v2 + a3uv4
+ terms of weight > 6. Either axa3 = 0 and the curve belongs to case 4 or case 5
below or axa3 ¥= 0 and the curve has an isolated singularity at the origin u = v = 0,
consisting of consecutive triple points with the line u = 0 as the tangent.

f = axu3 + a2u2v2 + a3uv4. If axa3 ¥= 0, the curve consists of two skew lines and
two twisted cubics such that it has two isolated, consecutive triple points at ux = t>, =
0 and at u0= v0 = 0.

2. r'/r = 1. / = f4(u, v) + terms of degree > 4 where f4(u, v) is a homogeneous
polynomial of degree 4. Either f4 has multiple factors and belongs to case 5 or the
curve has an isolated quadruple point at the origin with four distinct tangents.

f = f4(u, v). The curve consists of four (some possibly singular) conies, each of
which passes through the points ux = vx =0 and uQ = v0 = 0.

3. r'/r = 0.

/ = u2   y.    b-u'v'
o</<;2
0<y<4

The corresponding curves have a line as a component with multiplicity 2. If a curve
here has consecutive triple points or a quadruple point on the double line, it belongs to
one of the cases below.

t'
0
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/ = w220<y<4 c.vr1. The curves consist of the lines w, = 0 and uQ = 0, each with
multiplicity 2, and four other lines.

4. 0 < r'/r < 1/2. Let weight(w) = 2 and weight(ü) = 1, /= axu3 + a2u2v2 +
terms of weight > 6 = u2g where g consists of terms of weight > 2. The curves have
the line u = 0 as a component with multiplicity 2 and have consecutive triple points or
a quadruple point at the origin.

f = u2v2. The curves are of the form 27?' where B' consists of four distinct lines.
5. 1/2 < r'/r < 1. / = u2f2(u, v) + terms of degree > 4 where f2(u, v) is a

polynomial of degree 2 such that u does not divide f2. The curves have the line u = 0
as a component with multiplicity 2 and have a quadruple point at the origin.

f = u2v2.

The following two lemmas are needed to describe the geometry of stable curves
on 20 of bidegree (4, 4).

Lemma 4.6. Let B be a curve on 20 of bidegree (4, 4).
(i) Suppose that B has consecutive triple points at a point P such that no line in 20

is tangent to B at P. Then, we may choose homogeneous coordinates, x0, x,, x2, x3 in
P3 such that if we let x = x,/x0, y = x2/x0 and z = x3/x0, rAen, the affine
equations of B have the form z + x2 + y2 = 0 (equation <?/20)

y3 + x2g2(y, z) + xg3(y, z) + g4(y, z) = 0

where for 2 < ; < 4, g¡(y, z) is a homogeneous polynomial of degree 4 iny, z.
(ii) The quadratic transform of Spec oBP has a triple point with a single tangent if

and only if in the second equation, we may assume that g2 = 0.

Proof. Let x2 = 0 define the plane containing a conic in 20 which is tangent to
B at P. We may choose coordinates so that z + x2+y2 = 0is the affine equation
of 20. In the affine

Spec C[x,y] ss Spec C[x,y, z]/ (z + x2 + y2) c 20,

B has consecutive triple points at the origin with the line y = 0 as the tangent if
and only if its equation in C[x, y] has the form

/ = y3 + y^^x^) + yp4(x,y) + terms of higher degree = 0

where /»,(x, y) denotes a homogeneous polynomial of degree / in variables x,y. Part
(i) of the lemma now follows easily by lifting / to a polynomial of degree 4 in
C[x,y, z].

To prove (ii), note that

y3 + x2g2(y,z) + xg3(y,z)^g4(y,z)

= y3 - zg2(y, z) + xg3(y, z) + g'4(y, z)    mod(z + x2 + y2).

It is easily seen that the quadratic transform of Spec oB P has a triple point whose
tangent cone consists of a line if and only if y3 — zg2 is of the form (y + azf. If
y3 - zg2 = (y + az)3, then, replacing x2 by x2 - ax3 and then, replacing x0 by
x0 + 2ax2 — a2x3, we get the desired result. (The form XqX-j + x2 + x2 is invariant
under the above coordinate change.)    Q.E.D.
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Lemma 4.7. Let B be a reduced curve on 20 of bidegree (4, 4). If B has consecutive
triple points at a point P such that no line in 20 is tangent to B at P, then, B does not
have another singular point which either consists of consecutive triple points or has
multiplicity > 4.

Proof. Project B from P onto P2. The image of B is a reduced quintic curve, C,
which has a triple point, /», such that B — P «¿ C — /». Suppose that B has another
point P' of multiplicity > 3. Let /»' be the image of P' in C. Let L be the line
joining p and /»'. Then, L must be a simple component of C and C = L u C
where C is a quartic curve not containing L. C must have a double point at/».
Hence, its singularity at /»' must also be a double point and 7. cannot be tangent to
C" at/»'.    Q.E.D.

It is now easy to check

Theorem 4.8. Let tt: Y -^> 20 be a double cover, ramified over a curve B of
bidegree (4, 4). Assume that B is semistable and belongs to a minimal orbit. Let A
denote the singular locus of Y.

A. B is stable if and only if Y is one of the following surfaces:
Type I: à is empty or consists of rational double points.
Type II : (i) A consists of a double point, P, of type Es and some rational double

points; no line in 20 is tangent to B at tt(P).
(ii) A consists of an ordinary nodal curve and some rational double points;

B = 2C u 7) where C is a nonsingular conic and C n D consists of 4 distinct points.
Type III: (i) A consists of a double point, P, of typeT23r and some rational double

points; no line in 20 is tangent to B at tt(P).
(ii) A consists of some rational double points and a strictly quasi-ordinary nodal

curve which either has two double pinch points or has one double pinch point and two
simple pinch points. B = 2C u 7) where C is a nonsingular conic, D is reduced and B
does not have a quadruple point. (Note that a line in 20 cannot be tangent to C.)

Surfaces with significant limit singularities: (i) A consists of a double point, P, of
type Ex2, Ex3, EX4 or J3r and some rational double points; no line in 20 is tangent to B
at tt(P).

(ii) A consists of some rational double points and a nodal curve which either has a
pinch point of type J3o0 and a simple pinch point or has a pinch point of type J4x¡.
B = 2C \J D, C is a nonsingular conic, D is reduced, B does not have a quadruple
point and B n D has a point of multiplicity 3 or 4.

B. B is strictly semistable if and only if Y is one of the following surfaces:
Type II: (i) A consists of two double points of type Es. B has an affine equation of

the form u(u + axv2)(u + a2v2) = 0 where ax and a2 are nonzero and unequal.
(ii) A consists of two double points of type E7 and some rational double points. B has

an affine equation of the form Ux<i<4(a¡u + b¡v) = 0.
(iii) A consists of two ordinary nodal curves. B consists of two skew lines, each with

multiplicity two, and four other distinct lines.
Type III: (i) B has an affine equation of the form (u + v)2(u + av)(bu + v) = 0

where a, b and ab are unequal to 1. A consists of some rational double points and a
quasi-ordinary nodal curve with two double pinch points.
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(ii) B has an affine equation of the form (u + v)2(u + av)2 = 0 where a ¥= 1 and
a =£ 0. A consists of two nodal curves which intersect transversely.

(iii) B = 2T?' where B' consists of four distinct lines. Y is the union of two
nonsingular surfaces, Yx and Y2, and Yx n Y2 consists of four nonsingular rational
curves intersecting transversely such that the dual graph of Yx n Y2 is homeomorphic
to a circle.

Surfaces with significant limit singularities: (i) B has an affine equation of the form
(u + v)3(u + av) = 0 where a =£ 1. A consists of a simple cuspidal curve and possibly
a rational double point.

(ii) B = 47?' where B' is a nonsingular conic.

5. Double covers of 2°. It remains to consider the following cases of the families
of quartics, f : X -^ S. We use the following notation: ttX4 = x,x3, nx5 = x,x2x3,
ttX6 = x3, 7T24 = x\x\. For i = 14, 15, 16, 24, let n, = C • tt¡. Let tt'xs = x,x2x3,
wi'8 = x2x3, n,8 = C • 7r',g © C • -nXi. Let 7T,g denote a nonzero element of n,g.
M = T7°(P3, 0p/4)), M, = M ® C[[/]].

Case 1. A0 is a stable quartic with significant limit singularities. X has an
equation of the form

(x0x3 + x2 + axj)   + x|(x0 + axxx + a2x2 + a3x3) + it + t"Ft = 0

where tt = 2a,7r, ^ 0 and F, G M,.
Case 2. A0 is a strictly semistable, reduced quartic, singular along a nonsingular

curve of degree 2 which is a simple cuspidal curve. X has an equation of the form

(x0x3 + x2 + ax2)2 + x3/, + t"F, = 0

where/, equals either x, + ¿»x2 or x2 and Ft G M,.
Case 3. A0 = 220 such that if X is the normalization of A, then X0 has significant

limit singularities and is a double cover of 20, ramified over a curve B such that
either B is a stable curve or B = 37?' + 7?" or B = 47?' where 7?' is a nonsingular
conic and 7?' n 7?" = two distinct points. X has an equation of the form
(x0x3 + x2 -f- xf)2 + t"F, = 0 where F, G M, such that

x2x0 + it, tt = 2a,w, ¥= 0   if B is stable,
lim F, =
'—° [ xl(xx + bx2) or x2    if B is strictly semistable.

We will prove

Theorem 5.1. Let f : X —> S be a family of quartics belonging to one of the cases
above. Then, there exists a modification g: Y —» 5 such that Y0 has insignificant limit
singularities and is a double cover of 2°.

Lemma 5.2. Let f: A—> S be a family of quartics as above. Then there exists a
modification f: X' —* S such that X¿ = 22°. Moreover, if X' is the normalization of
A", then X¿ is a double cover of 2°, ramified over a curve defined by the equations
q = / = 0 where q = x0x3 + x2 = 0 if the equation of 2° and f is one of the
following types of quartic polynomials :

Type l:/=x24,
Type 2: f = x2x,,
Type 3: / = x^x0 + a,ir„ a, # 0, i <- 14, 15, 16, 18 or 24.
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Proof. By replacing t by an appropriate root of t, we may assume that X is
defined by an equation of the form (q + ax\)2 + t2nF¿ + t2n+kF,' = 0 where n > 0,
k > 144, F/ G M, and F¿ = x2{a0x0 + a,x, + a2x2 + fl3x3} + 2 atit,. Modify the
family under the action of the one-parameter subgroup of G which acts via the
transformations x0—>¡'"'x0, x, —>x,, x2—>rJx2, x3 -» trx3 where the positive in-
tegers r, s are chosen as follows:

if F0 = x2 or x2(x, + bx^, let r = s = 2,
if a0 =£ 0, let m = minf/: aiiTi =£ 0} and let r = 12, s = 2m — 12.

The new family is defined by the equation

(q + at^x2)   + t2n + 2pF¿' + **■♦*+»jr» = 0

where F" G M, and
#  «' 4   1 t;,, A A Aif Fq = x2, then F0 = x2 and /» = 4,

if F0 = x2(x, + bx2), then F0" = x2x, and/» = 3, and
if aQ ¥= 0, then F0" = a0x|x0 + amwm and p = 3m — 24.

To verify this, note that the term of maximum negative weight in F/ with respect to
the action of the subgroup is Xq. t2n+kx4 transforms into /2n+*_48 and check that
2n + k - 48 > 2n + 2/» in all cases. Now, blow up the ideal (q + at^x2, t"+p).
O.E.D.

We have to adopt more terminology. From now on, we will say that a curve on
2° cut out by a quartic surface is a curve of type i, where 1 < / < 3, if the curve
may be defined by the equations q = / = 0 where q = XqX3 + x2 = 0 is the
equation of 2° and/is of type i as in the previous lemma. If f: X —» S is a family of
quartics, we say that it is of type /, 1 < i < 3, if A"0 = 22° and the special fiber of
the normalization of A is a double cover of 2°, ramified over a curve of type /'. We
will indicate the normalization of a variety X by X.

We begin by decomposing M under the action of the stabilizer of 2°. Let
§ = the stabilizer of 2° in G. Let q = x0x3 — xf = 0 be the equation of 2°. Let
A, = the subspace of T7°(P3, oP (1)) consisting of the elements which vanish at the
vertex of 2^. There exist subgroups G„, Gm, Gs of § such that S ss Gu- Gm- Gs [17].
Gu is the unipotent subgroup of § and consists of transformations which act
trivially on A, and take x2 to an element of the form x2 + A where A G A,. The
spaces C • x2 and A, are invariant under Gm and Gs. Let C denote the conic on 2°
defined by the equation x2 = 0. Then, Gm ■ Gs is the stabilizer of C in §. Let L
denote the plane x2 = 0. Note that A, —► H°(L, oL(\)). Let t: P, -» C c L be an
embedding. Via t, we embed PGL(2) as a subgroup Gs of §. The subgroup Gm is
isomorphic to the one-dimensional multiplicative group. It acts trivially on A, and
its action on C ■ x2 determines a character of Gm. Dim Gu = 3 and dim Gs = 3. Let
Gr denote the subgroup Gm- Gs. Gr is reductive and it is, in fact, isomorphic to the
direct product Gm X Gs.

For n > 1, let A„ be the §-invariant subspace of 77°(P3, op (n)) consisting of the
elements which have multiplicity n at the vertex of 2^. Let Aq = C For n > 1, we
have the following Gr-invariant decompositions:

77°(P3, 0p (n)) «    ©   x2"-'A,..
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Gm acts trivially on each A„. By restricting each A„ to L, we get canonical, Gr-linear
isomorphisms, An -h> H°(L, oL(n)), n > 0.

Next, we have Gs -invariant decompositions A„ » q ■ A„_2 © B„ for n > 2, such
that the pull-back via t yields G^-linear isomorphisms B„ —>77°(P„ op(2n)). Let
B, = A, -» 77°(P,, Op (2)). We get Gr-invariant decompositions

A2 « C • q © B2,        A3 sa c • B, © B3,

A4 « C • q2 © ? • B2 © B4

and

M « C • q2 © q ■ (C • x2 © x2 • B, © B2) © C • x4 © x32 • B, © x\ ■ B3 © B4.

If / G B„, let / denote its restriction to C. Similarly, if a G |BJ, let ä denote its
restriction to C.

We are now ready to consider the three types of families. We omit proofs of the
propositions which are analogous to the propositions in §§3 and 4.

Families of Type 1. X is defined by an equation of the form

(q + a',x2)2 + t2nx\ + t2n+1F¡ = 0

where a¡ is a nonunit in C[[/]] and F/ G M,. Let N = C-<72©C-<j,-x2©C-x2t©
x\ ■ B2 © x2 • B3 © B4, and B = x2 • B2 © x2 • B3 © B4.

Lemma 5.3 (Standardization). The family X may be defined by an equation of
the form (q + a,x2)2 + i2"x2 + t2n+1F, = 0 where a, is a nonunit in C[[r]] and
F, G B ® C[[/]].

Proof. We prove this inductively. Suppose that X is defined by an equation of
the form

F<*-'> = (q + a<*-'>x2)2 + i2"{M(*-»x24 + F**"'»} = 0

where ö,(*_1) = at2m + b, such that b, G C[[/]] and t2n+l divides bt, and u¡k~n is a
unit in C[[t]], F/*-'> = 2>>0/;<*"1V such that $*-,) = 0 and for 1 < / < k - 1,
ffk~l) G C • x2 © B. Replace t by a square root of t if necessary. Then this is true
for k = 1. We show that A may be defined by F(k) of the same form such that
F(k) = Fik'l)moàt2n + k.

Let A denote the graded ring C[x0, x,, x2, x3]. Let d be a derivation of A into
itself, d induces an automorphism of A ® C[i]/(r2) over C[r]/(r2) which sends x, to
x, + tdx¡. Thus, d defines a tangent vector t: Spec C[t]/(t2) -* GL(4) at the identity
and hence, a tangent vector |t|: Spec C[r]/(r2) -» G. Let g: S-»GL(4) be a lifting
of t. Let \g\: S —> G denote the corresponding 5-valued point of G. For a given
positive integer/», let g be the composition:

s^sAgl(4)
where pp is the map obtained by extracting a />th root of t. Let \gp\ denote the
5e-valued point of G corresponding to | g |.

Let 2 denote the quadric surface defined by the equation q + ax\ = 0. Let a:
S —> GL(4) be the map induced by the transformation: x2 —> /mx2, and, for / = 0, 1
and 3, x, -^ x¡.
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We will consider three types of transformations:
Type 1. dx2 = A G B, and, for i = 0, 1 and 3, dx¡ = A,x2 such that d(q + ax2)2

= 0. |t| is then a tangent vector along the stabilizer, Stab(2). Let F, = the vector
space spanned by such |t|; dim F, = 3. The lifting g is chosen so that g factors as

S i G
\ />

Stab(2)
Let gp = a ° gp ° a ~ ' if a =£ 0 and gp if a = 0. If a ¥= 0, then gp acts via the

transformation: x2 —> x2 + tp~mh mod tp~m+x, and, for i = 0, 1, 3, x, -» x, +
tp + mb¡x2 mod ^ + m+l. Therefore, gp is defined over S if p > m. The form q +
at2mx\ is invariant under g .

Type 2. <7x2 = 0 so that |t| is a tangent vector along Stab(L). Let T2 = the vector
space spanned by such |t|. Dim T2 = 12 = dim Stab(L). Note that Tx © F2 span
the tangent vector space of G at the identity, g is chosen so that | g\ factors through
Stab(L).

Type 3. dq = dx2 = 0 so that \r\ is tangent to Gs. Let T3 = the space of such |t|.
Dim T3 = 3 = dim Gs. Choose g so that | g\ factors through Gs.

If g: S -» GL(4) is a morphism, we let g* denote the correspnding automorphism
of A ® C[[i]] over C[[/]]. If a G A, let Sa = g*(a) - a mod r2n+*+1.

We are now ready to modify F(*_1). First, we use a transformation of Type 1.
Let p = k + m if fl^O and p = k otherwise. Then, SF**"1* = /2n+*í/(x4) =
4t2nJrkx\dx2 where dx2 G B,. Therefore, there exists a derivation ¿7 of Type 1 such
that  -ôF(k~1)/t2n + k equals the component of fk(k~l) along x\ ■ B,. Let F, =
¿;(f(*-'>).

Next, we apply a transformation of Type 2. Let p = 2n + k. Then, 5FS = S(q2)
= 2t2n+kq dq where dq G C • 9 © x2 • B, © B2. q divides dq if and only if |t| is a
tangent vector along Stab(L) n Stab(2^), that is, along Gr. Therefore, dq = 0 if and
only if It| is a tangent vector along Gs. Since dim T2 — dim Gs = 9, T2 maps onto
C • q © x2 • B, © B2. Therefore, there exists a transformation g' of Type 2 such
that g'*(Ft) is the required form Fw. (Transformations of Type 3 are needed in the
proof of Lemmas 5.9 and 5.15 which are analogous.)    Q.E.D.

Let ß = Symm(B| © B* © BJ). Grade ß by assigning weight 2 to B*, weight 3
to B* and weight 4 to B*. Gs acts on Spec ß and Proj ß.

Lemma 5.4. 7n Lemma 5.3, we may assume that tF, = t2kx\<p, + t3kx2í, + r4fy,
where <p, G B2 ® C[[/]], $,GB3® C[[i]], ^ G B4 ® C[[/]] 5«cA that {<p0, ¿0, ^0} =
lim^ofrjp,, ¿,, t/',} ^= 0 ani/ {<p0, |0, i^q} determines a point in (Proj ß)", belonging to a
minimal orbit.

Corollary 5.5. The family X may be modified so that the new family A" is defined
by an equation of the form

F' = (<? + a,t2kx¡)2 + í2m+4*{x4 -t- x2<p, + x2i, + xp,} = 0

where <p„ |„ >//, are as in Lemma 5.4. It follows that X¿ is a double cover of 2°,
ramified over a curve B which is determined by the equation x4 + x2<p0 + x2£0 + ip0
= 0. B is semistable and belongs to a minimal orbit.
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Proof. Assume that the family A is defined by an equation of the form given in
the previous lemma. Modify the family under the action of the one-parameter
subgroup of Gm which takes x2 to tkx2.   Q.E.D.

It remains to describe the semistable curves on 2^ which are defined by an
equation of the form x4 + xf<p + x2£ + \¡/ = 0. For 2 < / < 4, let pr : Proj ß—*
|B,| be the rational map defined by the canonical projection. If w G Proj ß, let
/»,(to) denote the empty set if/»„(to) is not defined at o¡.

Lemma 5.6. Let to be a point in (Proj Qf, belonging to a minimal orbit, « is stable
if and only if C does not have a point p such that for 2 < I < 4, p has multiplicity > i
in pr(u>). o) is strictly semistable if and only if there exist two distinct points in C such
that each has multiplicity = / in pr(u>) if pr.(o¡) is not empty.

Lemma 5.7. Let B be a curve on 2° defined by an equation of the form f = x4 +
xftp + x2£ + \p = 0 where {tp, £, \(/} determines a point co o/(Proj ß)".

(i) w is strictly semistable if and only if B has a quadruple point. B cannot have a
quadruple point with a single tangent. Suppose to belongs to a minimal orbit. Then, B
has a quadruple point with tangent of multiplicity 3 if and only if there exists g G Gu
such that f8 is of the form x2 + axfx, (mod q).

(ii) Suppose that B is stable. Then, B has consecutive triple points at a point P if
and only if there exists g G Gu which sends x2 to x2 + h where vP(h) = the multiplic-
ity of A at P = 0, such that f8 = x2+ 4x2A + x2tp' + x2£' + \p' where vP(q>') > 2,
vP(i') > 4, vP(4>') > 6. Moreover, B has a triple point which remains a triple point
with a single tangent after one quadratic transformation if and only if B may be
defined by an equation of the form x2(x0 + axxx + a2x2 + a3x3) + 2 aiTii such that
2 aimi *= 0.

Proof, (i) Suppose that u is strictly semistable. Then there exists a point P on C
such that vP(<p) > 2, vP(£,) > 3, vP(4>) > 4 and at least one equality holds. We may
assume that P is the point x, = x2 = x3 = 0. Let x = x,/x0, y = x2/x0 and
z = x3/x0. In the affine Spec C[x, y] « Spec C[x,y, z]/(z + x2) c 2°, B has an
equation of the form y4 + y2x2p(x) + yx3p'(x) + x4/»"(x) = 0 where p, />', />" are
polynomials, at least one of which does not vanish at the origin. Conversely,
suppose that B has a quadruple point at P. We may assume that P has the
coordinates x, = x2 = 0 and x2/x0 = a. In the affine Spec C[x,y], B has an
equation of the form y4 + y2/»^) + yp6(x) + /»8(x) = 0 where /»,(•*) denotes a
polynomial of degree < i. Since the y3-term is missing, B has a quadruple point
with x-coordinate zero if and only if a = 0 and p2i vanishes to the order / at P.
Hence, B is strictly semistable. The rest of the statement is clear.

(ii) Clearly, if fg is of the indicated form, then B has consecutive triple points.
Suppose that B has consecutive triple points at P. We may assume that the
x-coordinate of P is zero. In C[x, y], / = y4 + y*p4(x) + y/»6(x) + pg(x) as above.
Since B is a four-to-one cover of C, the line x = 0 cannot be the tangent at P.
From the form of the equation, it is clear that P cannot have coordinates
x = y = 0 since the tangent line at P must have an equation of the form
y + ax = 0 and they3-term is missing. Choose A G A, such that the conic defined
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by the equation x2 + A = 0 is tangent to B at P. Let g G Gu which sends x2 to
x2 + A. Then, in C[x, y], fg has the formy4 + y3p'2(x) + yty^x) + yp'6(x) + p's(x)
where p[(x) is a polynomial of degree < i and p'2(0) =£ 0. Since B has consecutive
triple points at P, for 2 < / < 4, x2'-2 must divide p'2i. It follows that the
homogeneous form of fg must be as stated above. P remains a triple point with a
single tangent after one quadratic transformation if and only if for 2 < /' < 4, x2' ~ '
divides p'2i. Assume that P is such a point. Then, homogenizing the affine form of
fg appropriately, we get

fg = x|(x0 + a,x, + a2x2 + a3x3) + 2 a¡"¡    (mod q).

Moreover, 2 a,v¡ ¥= 0 since u is stable.    Q.E.D.

Corollary 5.8. Let f: A' —* S be a family of quartics as in Corollary 5.5. FAen,
either X¿ has only insignificant limit singularities or there exists a modification
X" —> S which is a family of quartics of Type 2 or 3.

Proof. X¿ is a double cover of 2°, ramified over a curve B. From the previous
lemma, it is clear that if X¿ has significant limit singularities, then A"' must be
defined by an equation of the form (q + tmF,')2 + t2nF0 + t2n+kF" = 0 where
F/ G 77°(P3, oP/2)) <8> C[[t]], F," G M„ m, n, k are positive integers and either

F0 = ax 2 + x2x,

or

F0 = x¡(x0 + a,x, + a2x2 + a3x3) + £ a,*,

such that 2 aiiri j= 0. Now apply the method used in the proof of Lemma 5.2.
Q.E.D.

Families of Type 2. Let P be the point with coordinates x, = x2 = x3 = 0 and
let Q be the point x0 = x, = x2 = 0. Let G'm be the stabilizer of the divisor P + Q
in Gs. Let G/ = Gm X G'm. G'r acts trivially on x, and XoX3. Let V0 = C and
V, = C • x¿ © C • x3. Let B^, = © 0</<„ x[\n_i. This is a G/-invariant decomposi-
tion of B'n into one-dimensional subspaces. The pull-back via the embedding ¿ of P,
gives us the G^-linear isomorphisms B^ —» T7°(P,, oP (2n)). We also have G/-in-
variant decompositions AM a¿ © 0</<n q'B'n_i and

M as C • q2 © q ■ (C • x2 © x2 • B', © B2)

© C " Xj  © -*2  1 ® *"2 '      2  ® -^2 '      3 ®  4"

Let

N' = C • q2 © C • q ■ x\ © C • x4 © C • x^x, © x\ ■ V2 © x2 • B3 © B4.

Let

B = C ■ x2 © x2 • V2 © x2 * B3 © B4.

Lemma 5.9 (Standardization). The family X may be defined by an equation of
the form (q + a,x2)2 + t2nx\xx + t2n + lFl = 0 where a, is a nonunit in C[[t]\ and
F, G B' ® C[[/]].
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Proof. We proceed inductively as in the proof of Lemma 5.3. Suppose that X is
defined by an element Eik~l) in M, which is of the right form mod t2n + k. First,
pick a transformation gp of Type 1 such that, mod/2"+*+1, g* kills off the
component of F(k~n along C • xfx2 © xfx, • V,. Let F„ = gp*(F(k~})). Next, pick a
transformation g'k of Type 3 so that g'k*(Fif) does not have a component along
x2 • V, modi2"+* + 1. Now apply a transformation of Type 2 as in Lemma 5.3.
Q.E.D.

Let ß' = SymmíV^ © B3* © B4*). Grade ß' by assigning weight 1 to Vf, weight
2 to B3* and weight 3 to B4*. G'm acts on Spec ß' and Proj ß'.

Lemma 5.10. 7n Lemma 5.9, we may assume that tF, = b,x2 + t2kx\<p, + t4kx2i, +
t6% where b, is a nonunit in C[[r]], <p, G V2 ® C[[f]], £, G B3 ® C[[f]], i(/,6BJ«
C[[/]] such that {<p0, |0, \p0} = lim,^0{<p„ £,, \p,} ¥= 0 and {<p0, £0, \p0} determines a
point in (Proj $l')ss, belonging to a minimal orbit.

(Note that xfx, is not stable under G'm. Therefore, the generic {<p„ £„ \p,} must be
stable under G'm since the generic quartic is stable.)

Corollary 5.11. The family X may be modified so that the new family X' is
defined by an equation of the form

F' = (q + a,t4kx2)2 + t2n+6k{btt2kx4 + xfx, + xf<p, + x2£, + i//,} = 0

where <p,, £(, \pt are as in Lemma 5.10. It follows that X0 is a double cover of 2°,
ramified over a curve B which is defined by an equation of the form x2x, -f- x2çp0 +
x2£0 + \p0 = 0. B is semistable and belongs to a minimal orbit.

Let pr: Proj ß'—> V2, pr: Proj ß'—*B3 and pr: Proj ß'—»B4 be the rational
maps defined by the canonical projections.

Lemma 5.12. Let u be a semistable point o/(Proj ß') belonging to a minimal orbit.
Then, w is stable if and only if neither P nor Q is a point of C which, for each i,
2 < i < 4, has multiplicity > i in pr(w). u is strictly semistable if and only if pr (to) is
empty and for i = 3 and 4, both P and Q have multiplicity i in pr(u>) if it is not empty.

Lemma 5.13. Let B be a curve on 2° defined by the equation f = x2x, + x2qp +
x2£ + \p where <p G V2, £ G B3, \p G B4 such that {<p, £, <//} determines u in
(Proj ß')M.

(i) B has a quadruple point if and only if to is strictly semistable. If B has a
quadruple point, it must be the point P or Q. If u is strictly semistable and belongs to
a minimal orbit, then ¡p = 0 and

/= x,(x2 + a,x,)(x2 + a2x,)(x2 + a3x,)

such that 2 a, = 0. Hence, each quadruple point has at least three distinct tangents.
(ii) Suppose that u is stable and B has consecutive triple points at a point P'. Then

P' is distinct from P and Q. If P' is a triple point which remains a triple point with a
single tangent after one quadratic transformation, then there exists g G § such that

fg — x2(x0 + axxx + a2x2 + a3x3) + 2 ^"V    (mod q)

such that 2 aiTTi =£ 0.
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Corollary 5.14. Let X' -» 5 be the family of quartics as in Corollary 5.11. Then,
either X¿ has only insignificant limit singularities or there exists a modification
X" —» S which is a family of quartics of Type 3.

Families of Type 3. Let A -* S be a family of quartics of Type 3. Call X a
family of Type (3-/) if X0 is a double cover whose ramification curve is defined by
the equation xfx0 + a,vt = 0, /' = 14, 15, 16, 18 or 24, a, ^ 0. Let F, Q, G'm, G'r, B'„,
V„ be as in the previous case. We blow up the point P under the action of a
one-parameter subgroup of § such that the singularity at P is replaced by a milder
singularity. (This is done in Lemma 5.16. The modification is actually done in two
steps.) Let

a, = the quadratic monomial in B2 which vanishes to the order / at P, 0 < / < 4,
ßj = the cubic monomial in B3 which vanishes to the order i at P, 0 < i < 6,
y, = the quartic monomial in B4 which vanishes to the order /' at P, 0 < i < 8.
Let B° = C • x0 © C • x3 c B'„ Bf = C • x,x3 © C • x\ c Bj, (note: a3 = x,x3,

a4 = xf). B3 « © C • /?,. and B4 « © C • y¡. Let D = xf • B° © x2 • B3 © B4. For
/' = 7 or 8, let D2, = the subspace of D obtained by leaving out C • y,_,. Let
D,5 = the subspace of D obtained by leaving out C • x2x2x3. Let D24 = the sub-
space of D obtained by leaving out C • xfx,x3. We have three subcases in the case
of families of Type (3-18):

(3-18a)      ttX8 = axstr'XB )     D,8o = D,8fc = the subspace of D obtained by

(3-18b)      7T,8 = axs7TX8 j leaving out C • x2x,xf.

(3-18c)      77,8 = a',g7r',g + ax%-nxi )   D,8c = the subspace of D obtained by

a'lsaxs ¥=0 ] leaving out C • x4.

Lemma 5.15 (Standardization). Let X be a family of Type (3-i), i = 14, 15, 16,
18 or 24. Then X may be defined by an equation of the form (q + a,xf)2 +
t2n{btx4 + xfA, + Ft) = 0 where a,, b, are nonunits in C[[f]],

A, G B° ® C[[t]] such that lim,^0 A, = x0 and
F, G D, ® C[[f]] such that lim,^0 F, = a.w,., a¡ + 0.

Proof. Similar to the proof of Lemma 5.9. Let X be defined by an element
F(*_1) in Mt which is of the right form mod t2n + k. First, apply a transformation gp
of Type 1. If i t* 18 or if /' = 18b, use this to kill off mod t2n+k+\ the component
of /-(*-•) along C • xfx2 © C • xfx0x, © C • xfx2. In Case (3-18a), use gp to kill off,
mod t2n + k+l, the component along C • xfx2 © C • xfxrjX, © C • x2x,xf. In Case
(3-18c), kill off, mod t2n+k+\ the component along C • xfx2 © C • xfxnX, © C • x3.
Let F# = g*(F(k~X)). Next, apply a transformation g'k of Type 3 so that the
component of gp*(Fs) along xf • B', ffi xf • B2 © x2 • B3 © B4 has the right form.
Now apply a transformation of Type 2.    Q.E.D.

Define a grading of D by weights as follows: weight(xfa,) = 6/', weight(x2ß,) =
3/, weight(y,-) = 2i. Then, D sa © n, where II, is the piece of weight i. For /' = 14,
15, 16, 18 and 24, the new definition of n, agrees with the old definition.
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Lemma 5.16. Let X be a family of type (3-Ï), i = 14, 15, 16, 18 or 24. FAen X may
be modified so that the new family X' is defined by an equation of the form as in
Lemma 5.15 except that

lim Ft = F0 = aimi + tt,    F0 G D„       0 * m G © IL,    a, * 0.
r->0 ;<,

Proof. We use the following notation. If i\ is an element in D <8> C[[r]], and
7j = xfa, + x2ß, + y, where a, G B% ® C[[r]], # G B3 ® C[[i]] and y, G B4 ®
C[[/]], then, for any positive integer k,

tk * r¡ = /*xfa, + i2*x2# + /3*y,.

Suppose that the given family of quartics is defined by an equation of the form
(q + <xf)2 + t2n{b¡x4 + xfA,' + F/} = 0 where a'„ b't are nonunits in C[[f]], h¡ G
B° ® C[[í]] such that lim,^0 h't = x0 and F/ G D,. ® C[[r]] such that lim,^ F/ =
a,7T„ a, =£ 0. F/ = S/"*» tj,(0 such that w, = 0, i},.(0) = a,7r, and w, > 0 if j• ¥= i.
Replacing t by its appropriate root, we may assume that, for 0 < / < /', 2(i — j)\mj.
Let m = minJ<i{mJ/2(i — j)}. Let A be the one-parameter subgroup of G which
acts via the transformation x0 —> x0, x, —> tx2mxx, x2 —» x2, x3 —* i24mx3. If tj G n^,
VX m  t2mj , y    rX = (i24m^ +  ^^2 +  (2n ̂ ^4 +  ^  + j ^+2™, „ ^jj   where

A, = A,'x so that lim,^0 A, = x0. Now, m- + 2mj > 2mi. There exists j0 < i such that
ttij + 2mj0 = 2/n/'. Moreover, if/ > /', wy. + 2/n/' > 2w/'. Therefore, 2 tm'+2'n' * t]j(t)
= t2mi * T)(?) such that 7j(0) = a,w, + tt where 0 =£ m G ©y<í n,.. Let F" = F'. F"
may be rewritten as

F" = (t24mq + a'tx2)2 + t2"{b',x4 + x3h, + t2mix2a, + t4mix2ß, + t6miy,}

where {a0, ß0, y0} = lim,^0{a„ ß„ y,} ^ 0 such that xfa0 + x2ß0 + y0 = a,7r,. +
tt. Transform F" now under the action of the one-parameter subgroup A' which
acts via the transformation x0 -^ x0, x, -* x,, x2 -^ /2m'x2, x3 -* x3. Then, F" =
/24mF where F has the required form.    Q.E.D.

It is now easy to check

Corollary 5.17. Let A" -> S be the family of quartics as in Lemma 5.16. FAen,
either X¿ has insignificant limit singularities or there exists a modification X " —» S
which is a family of Type (3-j), j < i.
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