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Motivated by two real-life examples, this article develops a burn-in planning framework with competing

risks. Existing approaches to planning burn-in tests are confined to a single failure mode based on the

assumption that this failure mode is subject to infant mortality. Considering the prevalence of competing

Q1

risks and the high reliability of modern products, our framework differentiates between normal and

infant mortality failure modes and recommends degradation-based burn-in approaches. This framework is

employed to guide the burn-in planning for an electronic device subject to both a degradation-threshold

failure, which is an infant mortality mode and can be modeled by a gamma process with random effect, and

a catastrophic mode, which is normal and can be represented with a conventional reliability model. Three

degradation-based burn-in models are built and the optimal cutoff degradation levels are derived. Their

validity is demonstrated by an electronic device example. We also propose three approaches to deal with

uncertainty due to parameter estimation. Algorithmic details and proofs are provided in supplementary

material online.
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KEY WORDS: Burn-in planning framework; Catastrophic failure; Competing risks; Degradation-

threshold failure.Q2

1. INTRODUCTION

Most products may fail in many different ways, known as20

competing risks. According to the failure mechanism, a failure

mode can be either a degradation-threshold (DT) failure or a

catastrophic failure. A DT failure, also called a soft failure, oc-

curs when a measurable physical degradation reaches a critical

threshold level, which is often specified by industrial standards;25

while a catastrophic failure causes instant product failure. Both

kinds of failure modes may be subject to infant mortality. For

example, the failure rate of a catastrophic failure mode might be

decreasing, indicating that some units will fail very early. Thus,

we consider two different classifications of failure modes: DT30

failure/catastrophic failure and infant mortality failure/normal

failure.

To identify and eliminate units with infant mortality, engi-

neers often resort to burn-in by activating all infant mortality

failure modes during the test for a certain duration. The purpose35

of this study is to design a burn-in test that uses both degradation

and failure data in a way that will maximize profit, or equiv-

alently minimize the expected cost. We use existing statistical

models to describe both reliability and degradation. Burn-in

models combine these statistical models with cost information40

to inform the choice of a burn-in duration and a “scrap” cutoff

level, which together define the burn-in test. This test is then

applied in production to every manufactured unit before it is

shipped.

Although products with competing risks are common in prac-45

tice, current research on burn-in modeling for such products

makes a number of strong assumptions:

• All existing burn-in models pool all failure modes together

and model the overall failure rate. However, it would be

beneficial to differentiate different failure modes, as it im- 50

proves estimation accuracy, and allows a burn-in practi-

tioner to understand the failure mechanism and to justify

the necessity of burn-in.

• These burn-in models implicitly assume that all failure

modes are activated during burn-in. If a normal failure 55

mode can be kept dormant during burn-in, unnecessary

product aging due to burn-in would be mitigated. For ex-

ample, although field use requires full operation of the

whole system, we are often able to partially operate a com-

plex system, say, a scanning electron microscope, during 60

testing. If only parts of the system are prone to bad joints

during assembly, it would be desirable to burn-in the sys-

tem by activating these parts only. Another example is that

some failure modes are possible only in field use, for ex-

ample, an ammeter failure due to lightning. These failure 65

modes are normal. They cannot be activated during burn-

in, but should be taken into account when making burn-in

decisions.

• Most burn-in models deal with systems with binary states,

that is, failed or working, and do not make use of any degra- 70

dation information. Nowadays, many modern products are

so well designed and manufactured that they are highly

reliable. It may take a very long time for a defective unit to

fail even under highly accelerated stresses. Therefore, if a

DT failure mode has infant mortality, degradation-based 75

burn-in that bases the screening decision on the prod-

© 2012 American Statistical Association and

the American Society for Quality
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Table 1. Solder/Cu pad interface fracture lifetime data

Sample ID 1 2 3 4 5 6 7 8 9 10

Lifetime (hr) 13,320 17,424 18,600 20,256 23,496 24,000 25,176 27,408 28,776 29,952

uct’s degradation level during/after burn-in will be more

effective.

1.1 Motivating Examples

A motivating example of this study is from Huang and Askin80

(2003). An electronic device is subject to two independent fail-

ure modes, that is, solder/copper (Cu) pad interface fracture,

which is regarded as a catastrophic failure, and light intensity

degradation, which is a DT failure. The light intensity degra-

dation is measured by the percentage drop from the original85

light intensity. The device fails if the drop exceeds a prespeci-

fied percentage of its original value, or if an interface fracture

occurs. The description of the study indicates that these two fail-

ure modes can be activated separately during testing. Although

Huang and Askin (2003) did not explain how separate activation90

can be achieved, a possible explanation is that the two failure

modes occur in different parts (or modules) of the device, and

it is possible to partially operate the device during the test, acti-

vating these parts separately. To assess these two failure modes,

two different tests were conducted under normal environmental95

stresses, each with 10 units. The first test activates the fracture

failure mode only, with all the 10 units followed to failure; the

second test activates the DT mode only, and each unit is in-

spected every 500 hr until 4000 hr. Data from these two tests are

given in Tables 1 and 2. The degradation data are also displayed100

in Figure 1.

A simple Weibull plot (not shown) suggests a good fit to the

data in Table 1. The estimated shape parameter is greater than

1, indicating that the interface fracture is a normal failure mode.

If we apply the restricted least-squares linear regression to the105

degradation data in Table 2 by fixing the intercept term at 0,

the slopes, which are closely related to the degradation rates,

range from 0.56% to 2.2% per 1000 hr. If we take into account

the slow starters (sample ID 16–20) and use t = 1000 hr as the

origin, there is still obvious heterogeneity in the slopes from a 110

plot of the truncated degradation paths (not shown). In addition,

we find in Section 5.1 that the gamma process with random

effects model (Lawless and Crowder 2004) provides a good fit

to this dataset, indicating heterogeneous degradation rates.

Burn-in should be used to identify units with high degradation 115

rates so as to enhance field reliability. Because these two modes

can be induced individually, we are able to activate the light

intensity degradation without inducing the catastrophic failures

during burn-in. This is desirable as inducing a normal failure

mode incurs unnecessary damage to the product. Later in Sec- 120

tion 5, we demonstrate that a burn-in test lasting 1134 hr with

a scrap threshold of 1.381% degradation leads to a 138% cost

reduction, compared with having no burn-in. This is assuming

that units with more than 20% degradation are considered failed

under the warranty. 125

However, normal failure modes may have to be activated in

some other scenarios. Meeker and Escobar (1998) presented a

GaAs laser example of this kind. Most laser devices undergo

degradation-based burn-in testing before delivery to customers

(Johnson 2006). The degradation of a laser device manifests 130

in an increasing operating current. The device fails when the

degradation exceeds a specified threshold, or when a sudden

failure occurs (Meeker and Escobar 1998, example 13.5). Pos-

sible reasons for the sudden failures include inadvertent shocks

and unobserved sudden changes in the device’s physical state. 135

Because the laser device is usually inexpensive and of a sim-

ple system structure, it is often fully operated during burn-in.

Therefore, these catastrophic failures have to be activated at the

outset of burn-in.

This article considers the planning of burn-in tests of both 140

kinds, namely ones in which burn-in activates a normal failure

mode, such as the GaAs laser example, and ones in which burn-

in can selectively activate different failure modes.

Table 2. Light intensity degradation data (in percentage relative to the original measurement)

Inspection time (hr)

Sample ID 0 500 1000 1500 2000 2500 3000 3500 4000

11 0 2.5 3.3 4.1 5 5.7 6.5 7.3 8.1

12 0 2.1 2.9 3.7 4.4 5.2 6 6.7 7.5

13 0 2 2.7 3.5 4.3 5 5.8 6.5 7.2

14 0 1.7 2.4 3.2 3.9 4.6 5.4 6.1 6.8

15 0 0.4 1 1.7 2.3 2.9 3.5 4.1 4.7

16 0 0 0.6 1.1 1.7 2.3 2.9 3.4 4

17 0 0 0.5 1.1 1.7 2.2 2.8 3.3 3.9

18 0 0 0.3 0.9 1.5 2 2.6 3.1 3.6

19 0 0 0 0.5 1 1.5 2.1 2.6 3.1

20 0 0 0 0.2 0.7 1.2 1.7 2.2 2.7

TECHNOMETRICS, MAY 2012, VOL. 54, NO. 2



DEGRADATION-BASED BURN-IN PLANNING 3

Figure 1. Degradation paths of the 10 test units.

1.2 Related Literature

Traditionally, burn-in is a manufacturing operation intended145

to fail short-lived units (Nelson 1990, chap. 5.5). It is often

conducted under harsh environments that simulate the severest

working conditions, for example, a combination of random vi-

bration, thermal cycling, and shock. According to Kececioglu

and Sun (1997), for most products, burn-in failures cannot be150

identified until follow-up functionality testing. Some detailed

procedures for implementing burn-in for semiconductor man-

ufacturing were provided in Jula and Leachman (2010). Most

burn-in literature focuses on these failure-based cases and de-

velops a variety of burn-in models to help decide on the optimal155

burn-in duration b∗. These burn-in models can be classified as

follows:

• Burn-in models that minimize certain cost structures such

as joint burn-in and maintenance costs, and joint burn-in

and warranty costs, for example, Mi (1996), Wu and Xie160

(2007), Cha and Finkelstein (2010), and Yuan and Kuo

(2010).

• Burn-in models that optimize some performance indices

such as survival probability, mean residual life, and per-

centiles of the residual life, for example, Watson and Wells165

(1961), Block, Savits, and Singh (2002), and Ye, Tang, and

Xie (2011).

These traditional methods are ineffective for highly reliable

products, as an extremely long burn-in duration is required. In

practice, some measurable quality characteristic of a product170

usually degrades over time and causes product failure when

its degradation exceeds some threshold, that is, a DT failure.

The quality characteristic of a defective unit often degrades

faster than a normal one. Therefore, a degradation-based burn-

in test can be adopted, where a unit is scrapped if its degra-175

dation level exceeds some degradation cutoff level during or

right after burn-in. The cutoff level is often much lower than the

failure threshold, making the degradation-based approach much

more effective. All existing degradation-based burn-in models

are aimed at minimizing the misclassification costs, that is, the180

costs of the Type I and Type II errors of misclassification. The

first degradation-based burn-in model dating back to Tseng and

Tang (2001) used a diffusion process to describe the degrada-

tion of light-emitting diode (LED) lamps. Tseng, Tang, and Ku

(2003), Tseng and Peng (2004), and Tsai, Tseng, and Balakrish- 185

nan (2011) extended the analysis by using a transformed Wiener

process, an integrated Wiener process, and a gamma process,

respectively.

However, most burn-in models, whether failure or

degradation-based, commonly assume a single failure mode 190

with infant mortality, notwithstanding the fact that most prod-

ucts fail due to one of a series of failure modes. A good example

of competing risks can be found in Meeker, Escobar, and Hong

(2009), where a newly designed product has 12 failure modes.

Failure mode information can be used to improve the accuracy 195

of both estimation and prediction (Hong and Meeker 2010, p.

150). In fact, there has been considerable research on compet-

ing risks. Suzuki, Nakamoto, and Matsuo (2010) reported two

competing failure modes, that is, internal and surface cracks, in

a load-bending test for brittle materials. Liu and Tang (2010) 200

developed accelerated life test plans for products with indepen-

dent competing risks. Crowder (2001) provided a book-length

treatment on competing risk modeling and estimation.

1.3 Objectives and Outline

The purpose of this work is to develop a burn-in plan- 205

ning framework for products with independent multiple fail-

ure modes. Based on this framework, legitimate burn-in strate-

gies for products such as those described in Section 1.1 can be

scheduled. Because the trauma failure data were not provided

in Meeker and Escobar (1998), we will focus on the electronic 210

device example and build three degradation-based burn-in mod-

els. We also propose three methods to cope with parameter

uncertainties due to estimation.

The rest of the article is organized as follows. Section 2 devel-

ops a general burn-in framework for products with competing 215

risks. Based on this framework, three degradation-based burn-in

models are built in Section 3. The cost functions are established

and the optimal cutoff levels are derived. Section 4 discusses

three methods to deal with statistical uncertainty. In Section 5,

validity of our models is demonstrated by the electronic device 220

example. Section 6 concludes the article and points out topics

for future research.

2. A BURN-IN PLANNING FRAMEWORK UNDER

COMPETING RISKS

Many products are prone to multiple failure modes. We re- 225

strict attention to the case where all the failure modes are due

to independent causes [see Prentice et al. (1978) for a detailed

interpretation of independence]. Behavior of these modes can be

accurately assessed through carefully designed life/degradation

tests (Hong and Meeker 2010). Test information is collected and 230

analyzed to identify sources of infant mortalities. If some DT

failures have infant mortality, degradation-based burn-in should

be considered. During burn-in, all infant mortality modes should

be activated to identify weak units. On the other hand, we shall

try to avoid activating normal failure modes, if possible, to pre- 235

vent unnecessary system deterioration. Based on these analyses,

TECHNOMETRICS, MAY 2012, VOL. 54, NO. 2
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the burn-in planning framework for products with independent

multiple failure modes can be summarized as follows:

• Specify all failure modes and classify them as either DT

failures or catastrophic failures. Use degradation/life tests240

to obtain degradation/failure data. Choose appropriate sta-

tistical models, that is, degradation processes and lifetime

distributions, to fit the data. Alternatively, the statistical

models can be chosen based on previous experience.

• Based on the analysis results of the degradation/life tests245

data, classify these failure modes into the infant mortality

failure class and the normal failure class. Specify all normal

failure modes that can be avoided during burn-in and keep

them dormant. Activate all infant mortality failure modes

during the test.250

• If there is any DT failure mode with infant mortality, con-

sider degradation-based burn-in testing. Otherwise, con-

sider failure-based testing. Specify the objective of burn-in,

for example, minimize a certain cost or maximize a certain

performance index, and build the corresponding burn-in255

model. This burn-in model should take all normal failure

modes into account.

• Parameters in this burn-in model may be directly obtained

from previous studies or expert opinions, or estimated from

results of degradation/life tests. In the latter scenario, if pa-260

rameter uncertainty is large, it should be taken into account

during model optimization.

Remark 1. Although burn-in is intended to identify infant

mortality, burn-in models should incorporate normal failure

modes, even if they are dormant during burn-in. Ignorance of265

the normal failure modes would render inferior burn-in deci-

sions with higher costs.

Remark 2. When the infant mortality class includes more

than one DT failure mode, each mode should be assigned a

cutoff level. If a DT mode is normal, we do not need to monitor270

its degradation during or after burn-in.

Remark 3. If there is more than one infant mortality mode,

it is operationally more convenient to simultaneously activate

them and assign to them a common burn-in time, even if they

can be activated individually.275

Remark 4. To apply the above procedures to the electronic

device example, we first identify the two failure modes (i.e., the

interface fracture and the light intensity degradation) and use

life/degradation tests to quantitatively assess these two modes,

as in Huang and Askin (2003). Next, we use the gamma process280

with random effect to fit the degradation data and the Weibull

distribution to fit the fracture data. Based on the results, we

identify the light intensity degradation as an infant mortality

mode and build the corresponding degradation-based burn-in

model. The model will be developed in the next section.285

3. DEGRADATION-BASED BURN-IN MODELS

Throughout the article, we shall discuss burn-in under nom-

inal use conditions. If testing is conducted under accelerated

stresses, the time scale can be easily transformed into nomi-

nal conditions based on the physics of the product (Escobar290

and Meeker 2006). After preliminaries in Sections 3.1 and 3.2,

three degradation-based burn-in models are developed. The first

burn-in model considers a single DT failure mode with infant

mortality. The second considers additionally a normal failure

mode inactive during burn-in and is applicable to the electronic 295

device. The third considers a DT failure mode with infant mor-

tality and an active normal failure mode during burn-in, which

is applicable to the GaAs laser. This section focuses more on

burn-in modeling. We implicitly assume that all parameters of

the degradation-based burn-in models are known. This is true 300

when information about the failure modes is available from pre-

vious studies or expert knowledge. The assumption of known

parameters will be relaxed in Section 4. The gamma process

with random effects introduced by Lawless and Crowder (2004)

will form the basis of our degradation-based burn-in models. It 305

is introduced in Section 3.1.

3.1 Preliminaries: Gamma Process With Random Effect

Consider a gamma process {Y (t), t ≥ 0} with random ef-

fect θ . Given θ , the process has independent and gamma-

distributed increments, that is, for 0 ≤ u < t, Y(t) – Y(u) follows 310

Gamma(ηt − ηu, θ ) with probability density function (PDF)

cf · (1 − P3(b, τ )) − K · P3(b, τ ), (1)

where ηt = η(t) is a given, monotone increasing and differen-

tiable function of t with η0 = 0. A mathematically tractable

model results when θ ∼ Gamma(k, λ). The unconditional PDF

of Y(t) – Y(u) can then be obtained by integrating θ out of (1), 315

which yields

k[Y (t) − Y (u)]

λ(ηt − ηu)
∼ F2(ηt−ηu),2k, (2)

where Fm,n is the F-distribution with degrees of freedom (m, n).

The random effect θ is unknown but fixed for a unit. Given

the degradation level Y (b) = yb at time b, it can be shown

that the conditional distribution of the random effect θ fol- 320

lows Gamma(ηb + k, λ + yb). This relation implies that given

Y (b) = yb,
(

ηb + k

ηt − ηb

) (

Y (t) − Y (b)

Y (b) + λ

)

∼ F2(ηt−ηb),2ηb+2k. (3)

For more details about this process, see Lawless and Crowder

(2004). 325

3.2 Problem Formulation

Consider a nonrepairable product sold with a preset mission

time, for example, a warranty period, of duration τ . Degra-

dation of its key quality characteristic {Y (t), t ≥ 0} follows

a gamma process with a gamma-distributed random effect θ , 330

θ ∼ Gamma(k, λ); Yf is a fixed degradation threshold for this

process. We assume that this DT mode is subject to infant mor-

tality. In addition to this mode, the product is also prone to a

catastrophic failure with cumulative distribution function (CDF)

G(·) and survival function (SF) Ḡ(·), which is a normal failure 335

mode.

Burn-in is used to identify and eliminate units with high

degradation rates. Functionality of a unit is not monitored during
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burn-in. The screening rule is as follows: After burn-in with

a duration of b, the degradation of a unit is nondestructively340

measured; if the degradation exceeds a predetermined cutoff

level ξb, the unit is scrapped. The per-unit burn-in cost includes

setup cost cs and the burn-in operational cost c0 per time unit

of burn-in. If a unit has failed at the end of the burn-in period

(e.g., due to the catastrophic failure), it is scrapped with cost cp.345

Otherwise, its degradation is measured with measurement cost

cmea. If the degradation exceeds the cutoff level ξb, the unit is

rejected with disposal cost cd (e.g., reworked or sold at a lower

price). An accepted unit will be put into field operation. If it fails

within the mission time τ , some handling and administrative cost350

cf is incurred. Otherwise, a gain of K is generated.

3.3 Degradation-Based Burn-In Model With Single

Failure Mode

To start, we shall build a burn-in model for products with

only a single failure mode, that is, the DT failure. The purpose355

of burn-in is simply to identify units with high degradation rates.

Denote ξ1,b as the cutoff degradation level with burn-in duration

b. Because there is no catastrophic failure, all units will not

fail during burn-in and thus should be measured after the test.

Therefore, the expected burn-in cost can be expressed as360

c0b + (cs + cmea) + cd · Pr(Y (b) ≥ ξ1,b),

where the screening probability can be obtained based on (2) as

Pr(Y (b) ≥ ξ1,b) = 1 − F2ηb,2k

(

kξ1,b

ληb

)

, (4)

where Fm,n(t) is the CDF of the F-distribution with degrees of

freedom (m, n). With probability Pr(Y (b) < ξ1,b), a burnt-in unit

is accepted and put into field operation. The field operation cost

of this unit can be expressed as365

cf − (cf + K) · Pr(Y (b + τ ) ≤ Yf |Y (b) ≤ ξ1,b).

The conditional probability is the probability that this unit

survives the mission time τ , which is given by

Pr(Y (b + τ ) ≤ Yf |Y (b) ≤ ξ1,b) =
1

Pr(Y (b) < ξ1,b)

×

∫ ξ1,b

0

Pr(�Yb ≤ Yf − u|Y (b) = u)fY (b)(u)du, (5)

where �Yb = Y (b + τ ) − Y (b). Based on (3), (5) can be ex-

pressed as370

Pr(Y (b + τ ) ≤ Yf |Y (b) < ξ1,b) =
1

Pr(Y (b) < ξ1,b)

×

∫ ξ1,b

0

F2�ηb,2ηb+2k

((

ηb + k

�ηb

)(

Yf − u

u + λ

))

fY (b) (u) du,

(6)

where �ηb = ηb+τ − ηb. Summing up the mean burn-in cost

and field operation cost, the expected total cost E[C(b, ξ1,b)] for

a unit is given by

E[C(b, ξ1,b)] = c0b + (cs + cmea) + cd · Pr(Y (b) ≥ ξ1,b)

+ Pr(Y (b) < ξ1,b)[cf − (cf + K)

· Pr(Y (b + τ ) ≤ Yf |Y (b) ≤ ξ1,b)]. (7)

The optimal cutoff level ξ ∗
1,b can be obtained by minimizing 375

(7) over ξ1,b with a fixed b. A first derivative test reveals that the

minimum is achieved when ∂
∂ξ1,b

E[C(b, ξ1,b)] = 0. The result is

summarized in Theorem 1. To simplify notation, define

� = (cf − cd )/(cf + K). (8)

Theorem 1. Suppose that degradation path of a product fol- 380

lows a gamma process with random effect and the total cost

function is given by (7). For a fixed burn-in duration b, we have

the following:

(a) If 0 ≤ � ≤ 1, the optimal cutoff level ξ ∗
1,b is

ξ ∗
1,b =

(ηb + k)Yf − �ηbλF−1
2�ηb,2ηb+2k(�)

(ηb + k) + �ηbF
−1
2�ηb,2ηb+2k(�)

, (9)

where F−1
m,n(·) is the percentile function of the F- 385

distribution with degrees of freedom (m, n). In addition,

if η(·) is concave in t, ξ ∗
1,b is increasing in b.

(b) If � < 0, the optimal cutoff degradation level is ξ ∗
1,b =

∞.

(c) If � > 1, the optimal cutoff degradation level is ξ ∗
1,b = 0. 390

The proof of this theorem is given in the supplementary ma-

terial. The condition that η(·) is concave is necessary for ξ ∗
1,b to

be increasing in b. For example, if η(·) adopts an exponential

form, we find that ξ ∗
1,b may not be monotonically increasing in

b. After ξ ∗
1,b is determined, the optimal burn-in duration b∗ can 395

be obtained by minimizing (7) with ξ1,b fixed at ξ ∗
1,b.

It can be seen from Theorem 1 that the optimal cutoff levels

do not depend on the cost parameters of burn-in operation, that

is, c0, cs, and cmea. This is because at the time of making the

screening decision, the burn-in operational cost can be regarded 400

as a sunk cost. It is also interesting to see that � serves as a

normalized risk measure. When � is large (e.g., a large cf and

a small K), ξ ∗
1,b would be small, indicating a stringent criterion

under which more units will be scrapped. Conversely, small �

leads to a looser criterion. 405

3.4 Two Failure Modes With Normal Failures Inactive

During Burn-In

In this section, we consider the scenario where there is a

normal failure mode but only the DT mode is activated during

burn-in. This scenario fits into the electronic device example, 410

as the interface fracture is normal, and can be avoided during

burn-in. Define ξ2,b as the cutoff degradation level with burn-in

duration b. Because the normal mode is inactive during burn-in,

all units will not fail during burn-in and thus should be measured

after the test. The expected burn-in cost is 415

c0b + cs + cmea + cd · Pr(Y (b) ≥ ξ2,b).

If Y (b) < ξ2,b, a burnt-in unit is put into field use. Denote

P2(b, τ ) as the probability that this unit survives the mission

time. It should be noted that the normal failure mode is active

during field use. Therefore, this probability is given by 420

P2(b, τ ) = Pr(Y (b + τ ) ≤ Yf |Y (b) < ξ2,b) · Ḡ(τ ).
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The expected field operation cost is

cf · (1 − P2(b, τ )) − K · P2(b, τ ).

The mean total cost E[C(b, ξ2,b)] per unit can thus be ex-

pressed as425

E[C(b, ξ2,b)] = c0b + cs + cmea + cd · Pr(Y (b) ≥ ξ2,b)

+ Pr(Y (b) < ξ2,b)[cf · (1 − P2(b, τ )) − K · P2(b, τ )]. (10)

The optimal cutoff level ξ ∗
2,b for each burn-in time b can

be obtained by minimizing (10) over ξ2,b with a fixed b. The

result is encapsulated in Theorem 2. Its proof is given in the

supplementary material.430

Theorem 2. Suppose that in addition to the DT failure, there

is a normal failure mode that can be avoided during burn-in.

When the expected cost function is given by (10), we have the

following:

(a) If 0 ≤ � ≤ Ḡ(τ ), the optimal cutoff level with a fixed435

burn-in duration b is

ξ ∗
2,b =

(ηb + k)Yf − �ηbλF−1
2�ηb,2ηb+2k(�/Ḡ(τ ))

(ηb + k) + �ηbF
−1
2�ηb,2ηb+2k(�/Ḡ(τ ))

.

(11)

In addition, if η(t) is concave in t, ξ ∗
2,b is increasing in b.

(b) If � < 0, the optimal cutoff degradation level is ξ ∗
2,b =

∞.440

(c) If � > Ḡ(τ ), the optimal cutoff degradation level is

ξ ∗
2,b = 0.

Similarly, the optimal cutoff level ξ ∗
2,b does not depend on the

burn-in operational cost (excluding the disposal cost cd). When

there is a normal failure mode, ξ ∗
2,b is smaller than ξ ∗

1,b. This445

means that when the product deteriorates due to some other

mechanisms, for example, some normal failure modes, the only

way we can enhance the reliability is to adopt a more stringent

criterion for the infant mortality modes.

3.5 Two Failure Modes With Normal Failures Active450

During Burn-In

We further consider the case where there is a catastrophic

failure mode that is normal but has to be activated during burn-

in. This burn-in model is fit for the GaAs laser example. After

burn-in with duration b, some units would fail due to catas-455

trophic failures. The proportion is G(b) and thus, the expected

scrapping cost is cpG(b). The degradation level of a functioning

unit is measured. With probability Pr(Y (b) ≥ ξ3,b), its degrada-

tion would exceed the cutoff degradation level ξ3,b, and the unit

would be rejected. Otherwise, the unit is accepted and put into460

field use with the expected field operation cost

cf · (1 − P3(b, τ )) − K · P3(b, τ ),

where P3(b, τ ) is the probability of fulfilling the mission:

P3(b, τ ) = Pr(Y (b + τ ) ≤ Yf |Y (b) < ξ3,b) · Ḡ(b + τ )/Ḡ(b).

Therefore, the expected cost function E[C(b, ξ3,b)] is given

by 465

E[C(b, ξ3,b)] = cs + cpG(b) + cmeaḠ(b)

+ cd · Ḡ(b) Pr(Y (b) ≥ ξ3,b)Ḡ(b) × Pr(Y (b) < ξ3,b)

× [cf − (cf + K)P3(b, τ )]. (12)

As in Sections 3.3 and 3.4, we can determine ξ ∗
3,b through

minimizing (12) over ξ3,b with a fixed b. The result is summa-

rized in Theorem 3.

Theorem 3. Suppose that in addition to the DT failure, there 470

is a normal failure mode that has to be activated during burn-

in. When the mean cost function is given by (12), we have the

following:

(a) If 0 ≤ � ≤ Ḡ(b + τ )/Ḡ(b), the optimal cutoff degrada-

tion level is 475

ξ ∗
3,b

=
(ηb + k)Yf − �ηbλF−1

2�ηb,2ηb+2k(� · Ḡ(b)/Ḡ(b + τ ))

(ηb + k) + �ηbF
−1
2�ηb,2ηb+2k(� · Ḡ(b)/Ḡ(b + τ ))

.

(13)

(b) If � < 0, the optimal cutoff degradation level is ξ ∗
3,b =

∞.

(c) If � > Ḡ(b + τ )/Ḡ(b), the optimal cutoff degradation

level is ξ ∗
3,b = 0. 480

The proof is similar to those of Theorems 1 and 2, and thus

is not presented. Both the models in this section and in Section

3.4 can be readily generalized to the cases of multiple normal

failure modes.

4. OPTIMIZATION UNDER PARAMETER 485

UNCERTAINTY

Usually, the process/distribution parameters have to be esti-

mated from testing data (e.g., the electronic device example),

and thus are subject to estimation uncertainties. Denote ϒ as the

vector of parameters to estimate. This section considers three 490

approaches to take this risk into consideration.

4.1 The Plug-In Method

A traditional approach to cope with this issue is to simply

take the maximum likelihood (ML) estimate ϒ̂ and substitute it

into the models in (7), (10), and (12). Optimal burn-in settings 495

can then be determined through optimizing the cost functions

by using Theorems 1–3. This approach is appropriate when

sufficient data are available to ensure small estimation error.

When the uncertainty issue is severe, however, ϒ̂ may take

values significantly different from ϒ, and the solution found 500

by using this approach may be far from optimal. This method

needs modification to take into account parameter uncertainties,

especially when the dataset size is small.

TECHNOMETRICS, MAY 2012, VOL. 54, NO. 2



DEGRADATION-BASED BURN-IN PLANNING 7

4.2 Averaging Over Uncertainty in Parameter Estimates

The three models built in Section 3 rely on the mean costs,505

as both the degradation process and the catastrophic failures are

stochastic. The estimated parameters ϒ̂ are subject to uncertain-

ties and can also be treated as random variables, conditional on

which the cost functions take the forms of (7), (10), and (12),

respectively. In order to obtain the unconditional mean cost, we510

need to take the expectation of the cost functions over these

estimated parameters. Denote Eϒ̂ [C(b, ξi,b)|ϒ̂], i = 1, 2, 3, as

the conditional mean cost per unit. It is noted that Theorems

1–3 are no longer applicable here. It is extremely difficult, if not

impossible, to derive closed-form expressions for the uncondi-515

tional mean cost, as the distribution of ϒ̂ is complicated. We

recommend using the bootstrap to generate N sample estimates,

computing the conditional mean cost for each estimate, and

then averaging over the costs to approximate the unconditional

cost. Note that N = 1000 is used in this study. The simulta-520

neous perturbation stochastic approximation (SPSA) algorithm,

an algorithmic optimization method for functions that cannot

be directly computed, can be used to locate the optimum. The

theory and effectiveness of the SPSA algorithm have been well

established (Spall 2003). Some MATLAB codes are available on525

the SPSA website (www.jhuapl.edu/spsa). A two-dimensional

contour plot is also helpful in visualizing the optimal settings.

4.3 Chance Constraint

The expectation-based method may not be a good choice for

a risk-averse manufacturer, as the realized cost is often higher530

than the expected value. A risk-averse manufacturer may want

to put greater funds in reserve to protect against possible future

losses. A justifiable means is to plan the study such that an

upper bound of the resulting cost would be controllable with

high probability. This method also avoids the overconservatism535

issue faced with the worst-case analysis. In this study, the chance

constraint method essentially minimizes the upper α quantile of

the costs as follows:

minimize
b,ξi,b≥0

y

subject to Pr
ϒ̂

{Eϒ̂ [C(b, ξi,b)|ϒ̂] ≤ y} ≥ 1 − α. (14)

The optimal burn-in setting suggested by (14) gives a 1 –540

α guarantee that the total cost will be less than y∗, the optimal

value of (14). Since the cost function adopts a complex form and

the distribution for ϒ̂ is unknown, this problem cannot be solved

analytically. However, the upper α quantile can be estimated by

the bootstrap, and the optimization can be done by using algo-545

rithms that are derivative free or that use numerical gradients,

for example, the mesh adaptive direct search (MADS) algorithm

(Audet and Dennis 2006). As with the expectation approach, we

use N = 1000 bootstrap samples. A detailed procedure to solve

(14) is given in the supplementary material.550

4.4 Additional Remarks

Calibration of the naı̈ve approach, that is, the plug-in method,

can also be done by asymptotic expansions instead of simulation

(Barndorff-Nielsen and Cox 1996). But due to the complexity,

this method is not discussed here. 555

When parameter uncertainty is large, or when the manufac-

turer is unsure how bad the parameter uncertainty is, the expec-

tation approach is recommended when the manufacturer is risk

neutral, and the chance constraint approach when risk averse. On

the other hand, the plug-in method is applicable when the param- 560

eters are known from other sources (e.g., a previous study), or

when enough data from burn-in and in-operation are collected.

The latter case is appropriate for the electronic device example.

These in-operation data update the ML estimates, whose con-

sistency ensures minor uncertainty with a large dataset size. In 565

addition, the plug-in method is appropriate if the manufacturer

is not concerned about parameter uncertainty, or if it wants a fast

answer. Although we recommend the plug-in approach for the

electronic device example, we consider all the three approaches

in Section 5. 570

5. AN ILLUSTRATIVE EXAMPLE

The burn-in model developed in Section 3.4, with a DT mode

and a catastrophic failure mode that is inactive during burn-in, is

applied to the electronic device example. The optimization ap-

proaches presented in Section 4 are applied to determine the op- 575

timal burn-in settings. Although Huang and Askin (2003) used

a degradation threshold of Yf = 40, we use Yf = 25 throughout

this section for a better illustration of our model. The following

cost profile is adopted:

• burn-in operational cost c0 = $0.01/hr, 580

• burn-in setup cost cs = $0.1,

• measurement cost cmea = $0.1,

• disposal cost cd = –$40,

• warranty period τ = 1.5 years,

• within-warranty failure cost cf = $1000, 585

• profit K = $500.

Here, a negative disposal cost means that the manufacturer is

able to sell a unit at a lower price without any penalty cost if it

deems that the unit’s quality is not high enough. A high cf is used

because a warranty failure incurs not only repair/replacement 590

cost but also reputation losses. For example, Toyota uses a multi-

ple of six times of the repair cost for a field failure to measure the

reputation cost, while the Westinghouse uses a multiple of four

(Balachandran and Radhakrishnan 2005). Before proceeding

to the burn-in model optimization, the distribution/degradation 595

parameters need to be estimated from testing data.

5.1 Data Analysis

Consider the degradation data in Table 2. Not all units start

degradation from time 0, meaning that there are some slow

starters. This may be due to limitations in measurement preci- 600

sion. Because the gamma process always has a positive incre-

ment, when the degradation values are zero, we treat them as

missing data. Figure 1 in Section 1 shows that the degradation

paths are approximately linear when t > 500. In addition, the

degradation rates, indicated by the slopes of these paths, vary 605

from unit to unit. A gamma process with random effect may

be appropriate to fit the data. We assume that η(t) = βt , where
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Table 3. Estimates for the degradation parameters

Parameters β λ k

ML estimate 0.00812 1.3052 9.1778

Standard error (0.0015) (0.8362) (5.1833)

β is a parameter to estimate. The likelihood function has been

derived in Lawless and Crowder (2004), and is briefly described

here.610

Assume that n units are under test. For the ith unit, ti =

{ti:0 = 0, ti:1, . . . , ti:mi
} is the set of checkpoints. Define �Yi:j =

Yi(ti:j ) − Yi(ti:j−1) for j = 1, 2,. . ., mi. The joint density for

�Yi:1, . . . ,�Yi:mi
is

f�Yi:1,...,�Yi:mi
(�yi:1, . . . ,�yi:mi

)

=
λkŴ(η(ti:mi

) + k)

(λ + yi(ti:mi
))η(ti:mi

)+kŴ(k)

mi
∏

j=1

(�yi:j )�ηi:j −1

Ŵ(�ηi:j )
,

where �ηi:j = η(ti:j ) − η(ti:j−1). The log-likelihood function615

can thus be expressed as

l(θ, k, λ) =

n
∑

i=1

log f�Yi:1,...,�Yi:mi
(�yi:1, . . . ,�yi:mi

).

ML estimates of this process are listed in Table 3.

For comparison, the estimated CDF for the time to threshold-

defined failures from the method of Huang and Askin (2003)620

(H-A method), the gamma process with random effect (Gamma

method), and the Kaplan–Meier (KM) estimates are depicted in

Figure 2. To examine the sensitivity of the estimation results to

the threshold, different values of Yf, that is, 25, 30, and 40, are

used. The KM estimation uses pseudo failure times obtained625

by fitting each degradation path by restricted linear regression

and extrapolating to the threshold (Meeker and Escobar 1998,

p. 339). Compared with the H-A method, the estimated CDF

based on the gamma process lies within the 95% pointwise

confidence bound of the KM estimates. Therefore, the gamma630

process presents an attractive alternative to describe the degra-

dation.

Figure 3. Weibull distribution fit to the catastrophic failure data.

Figure 3 displays estimates of time to failure for the catas-

trophic failure mode, using the KM method and the Weibull

model. The Weibull distribution provides a good fit to the trau- 635

matic failure data. The ML estimate (standard error) for the

shape parameter is 4.4012 (1.5176) and the scale parameter is

25,023 (1898.0). Therefore, the SF for the catastrophic failure

time is

Ḡ(t) = exp

[

−

(

t

25, 023

)4.4012
]

. (15)

640

5.2 The Plug-In Approach

Of the two failure modes for this device, the catastrophic

mode can be avoided during burn-in. The cost function (10) can

be applied to identify weak units. We first ignore parameter un-

certainties and apply the plug-in approach in Section 4.1. The 645

optimal cutoff level for each burn-in time can be determined

by (11), after which the optimal burn-in duration can be deter-

mined by simple search methods. The optimal burn-in scheme is

to burn-in a unit for b
∗

= 487 hr with a cutoff level ξ ∗
2,b∗ = 1.076,

leading to the optimal cost of –$268.6. The total cost without 650

Figure 2. Comparison of the gamma process and the H-A method in estimating CDF of the time to threshold-defined failure. From the left

panel to the right, Yf = 25, 30, and 40, respectively.
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Figure 4. The expected total cost obtained by treating the ML es-

timates as the true values. The dashed line is the optimal cutoff level

determined by Theorem 2 and the diamond point is the optimal burn-in

scheme.

burn-in is –$264.8. Burn-in reduces the cost by 1.44%. In addi-

tion, burn-in improves the field reliability. Originally, 10.2% of

the product would fail due to DT mode within τ . This proportion

reduces to 5.50% with burn-in. Figure 4 gives the contour of the

expected total cost with respect to b and ξ2,b. To verify Theorem655

2, Figure 4 also shows the optimal cutoff levels determined by

(11), depicted by the dashed line. From the contour, we can see

that for each fixed b, the cost decreases when ξ2,b moves toward

ξ ∗
2,b. This supports that ξ ∗

2,b is the optimal cutoff level for each

fixed b. In addition, Figure 4 indicates that ξ ∗
2,b is increasing in660

b, which is concordant with Theorem 2 because η(t) is linear

and thus is concave.

Throughout this section we use Yf = 25. However, Huang and

Askin (2003) observed considerable sensitivity of the estimation

to the threshold Yf. We therefore conduct a sensitivity analysis665

to examine the optimal burn-in settings against different values

of Yf. We find that when Yf is set at 20, the optimal burn-

in time increases to 1134 hr while the optimal cutoff level is

1.381, leading to an optimal cost of –$148.0. The total cost

without burn-in is –$62.2. Burn-in reduces the cost by 138%.670

This is because a smaller Yf results in more warranty failures;

a stringent screening criterion is thus needed to mitigate the

risk of DT failures. If Yf = 40, then burn-in is not necessary

because most units will not fail due to the DT mode within τ .

These results of sensitivity analysis justify the purpose of burn-675

in, that is, to screen units that may fail within warranty with

high probability.

Figure 5. The unconditional expected total cost by treating the ML

estimates as random variables. The diamond point is the optimal burn-

in scheme.

Figure 6. The approximate 90% upper quantile of the total cost with

burn-in by using the bootstrap.

5.3 Averaging Over Uncertainty in Parameter Estimates

In view of the fact that the ML estimates themselves are ran-

dom variables, we can average over them to obtain the uncondi- 680

tional expected cost. To use the SPSA algorithm, we follow the

implementation guidance provided by Spall (2003, chap. 7.5).

The optimal burn-in duration is 193 hr with an optimal cutoff

level of 0.685. The associated optimal cost is –$286.9. With-

out burn-in, the unconditional expected cost is –$275.7. Again, 685

products subjected to burn-in enjoy a relative cost reduction

of 4.07%. A contour plot is provided in Figure 5. This figure

suggests that this local optimum is indeed globally optimal.

5.4 Using Chance Constraint

To suggest an optimal burn-in scheme for a risk-averse man- 690

ufacturer, the chance constraint method is employed. We set

α = 0.10 and apply the bootstrap method in conjunction with

the MADS algorithm, as described in the supplementary mate-

rial, to solve (14). The optimal burn-in duration and cutoff level

are 355 and 0.840, respectively. The associated minimal cost is 695

–$143.4. Without burn-in, the cost is –$102.4, which is 40.0%

higher than the optimum. Using the same bootstrap samples, the

contour plot is given in Figure 6. It is noted that the contour is

not very smooth because of the bootstrap approximation (Hall

1997, appendix I). 700

6. CONCLUSIONS

This study developed a general burn-in planning framework

for products with independent competing risks. This framework

suggested identifying all failure modes, classifying them into

the right classes, activating all infant mortality modes during 705

burn-in, and trying to keep the normal modes dormant. In addi-

tion, a degradation-based burn-in approach was recommended

when some DT modes have infant mortality. In view of the

prevalence of multiple failure modes, this framework furnishes

a good guide to burn-in for practitioners. Based on this frame- 710

work, three degradation-based burn-in models were developed,

one of which was applied to the electronic device example. In

addition, three approaches were proposed to account for param-

eter uncertainties.

There are several directions for future research. First, this arti- 715

cle studies burn-in planning under independent competing risks.

The scenario of dependent competing risks deserves further in-

vestigation. Second, we consider the case where degradation
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level is measured only after burn-in, that is, a single inspec-

tion point. When the measurement cost is low and the burn-in720

operational cost c0 is high, it might be more cost effective to con-

sider multiple inspection points, each associated with a cutoff

level.

SUPPLEMENTARY MATERIAL

Supplementary Information: In this document, we provide the725

proofs of Theorems 1 and 2, as well as a detailed description

of the procedure to solve the chance constraint problem (14)

in Section 4.3.
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