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Abstract: C5F10O is a promising insulating medium in the manufacturing of environmentally friendly
gas-insulated switchgears (GISs). The fact that it is not known whether it is compatible with sealing
materials used in GISs limits its application. In this paper, the deterioration behaviors and mechanism
of nitrile butadiene rubber (NBR) after prolonged exposure to C5F10O are studied. The influence of
C5F10O/N2 mixture on the deterioration process of NBR is analyzed through a thermal accelerated
ageing experiment. The interaction mechanism between C5F10O and NBR is considered based on
microscopic detection and density functional theory. Subsequently, the effect of this interaction on the
elasticity of NBR is calculated through molecular dynamics simulations. According to the results, the
polymer chain of NBR can slowly react with C5F10O, leading to deterioration of its surface elasticity
and loss of inside additives, mainly ZnO and CaCO3. This consequently reduces the compression
modulus of NBR. The interaction is related to CF3 radicals formed by the primary decomposition
of C5F10O. The molecular structure of NBR will be changed in the molecular dynamics simulations
due to the addition reaction with CF3 on NBR’s backbone or branched chains, resulting in changes in
Lame constants and a decrease in elastic parameters.

Keywords: C5F10O; nitrile butadiene rubber (NBR); compatibility; deterioration; sealing performance;
molecular dynamics

1. Introduction

SF6 is a widely used insulating medium in gas-insulated switchgears (GISs) because of
its great insulation strength [1]. However, since it is a strong greenhouse gas with a global
warming potential (GWP) of 23,500, the application of SF6 has been restricted in past
decades [2,3]. Gradually reducing or even entirely eliminating the consumption of SF6 in
the power industry has become a consensus approach in lots of countries and regions [4].
Thus, searching for environmentally friendly substitutes for SF6 has been an urgent issue
for the future power industry.

In recent years, perfluoro (3-methyl-2-butanone) C5F10O has been found to be a promis-
ing substitute for SF6 in medium or low voltage switchgears [5]. The GWP of C5F10O is
only 1, while its insulation strength is 1.93 times that of SF6. Series studies on its physical
and chemical properties [6], insulation performance [7,8] and electric and thermal decom-
position characteristics properties [9–11] have been carried out. The results basically prove
the feasibility of using C5F10O mixed with N2, CO2 or dry air as an insulating medium in
environmentally friendly switchgears.

However, compared with SF6, which possesses a simple and symmetrical molecular
structure, C5F10O has poorer chemical stability. It is more likely to interact with various
materials inside the switchgear under the action of electricity or heat [12]. The interaction
can lead to deterioration of various materials in the switchgear, including metal electrodes,
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solid insulation materials and sealing rubber. As an example, in the study on the compati-
bility between C5F10O and copper, after only eight hours of coexistence at 120 ◦C, micro
corrosion marks could be observed on the surface of Cu electrodes, which need to be in
contact with C5F10O throughout the years in a GIS [13]. Meanwhile, long-term exposure to
C5F10O/N2 mixture has been reported to corrode the surface and reduce the tensile strength
of ethylene propylene diene monomer (EPDM) [14]. The degradation of material properties
can significantly impair the performance of GIS, leading to reduced safety and reliability
over prolonged operation [15]. Therefore, clarifying the deterioration behaviors of different
materials with C5F10O is the prerequisite for its large-scale engineering application.

In gas-insulated switchgears, rubber rings are utilized in the sealing groove to maintain
airtightness within the insulating chamber. The sealing rubber will be in direct contact with
C5F10O throughout the equipment’s lifespan, which can extend up to 30 years. [16]. If the
used rubber material is not compatible with C5F10O, its mechanical properties could degrade
over time from prolonged exposure. This degradation could lead to air chamber leakage
and weakened insulation strength, ultimately leading to serious failures. However, current
research on the degradation of sealing materials in C5F10O only identifies certain rubber
types that may be incompatible with C5F10O [17]. The process of rubber degradation and the
underlying mechanism of its interaction with C5F10O remain inadequately understood.

To test the compatibility of sealing material and insulating gas, sealed glass tube,
headspace bottle and high-pressure sealing tube methods were used in previous stud-
ies. [18,19]. Considering the time cost of compatibility experiments, thermal accelerated
aging is usually applied to shorten the test time [20]. These methods have been adopted
to analyze the failure mechanism of various sealing rubbers in O2, SF6, C4F7N and other
gas atmospheres [21,22]. Currently there is no recognized standard for the compatibility
test procedure; thus, the selection of test conditions needs to be formulated according to the
actual working state of the sealing medium.

This paper investigates the degradation behavior of nitrile butadiene rubber (NBR) in
C5F10O, which is commonly used as a sealing material in gas-insulated switchgears. To
figure out the effect of prolonged exposure to C5F10O on the mechanical properties of NBR,
a thermal accelerated aging experiment is conducted. The interaction mechanism between
NBR and C5F10O is analyzed with morphology detection, energy spectrum analysis and
density functional theory (DFT) calculations. Molecular dynamics (MD) simulations are
also employed to explore changes in NBR’s mechanical properties following reactions
with C5F10O. The findings can provide a basis for the selection and maintenance of sealing
materials applied to C5F10O-insulated electrical equipment.

2. Experiment Method
2.1. Thermal Accelerated Ageing Method

Referring to test procedures of rubber materials specified in ISO 188-2011 [23], a ther-
mal accelerated ageing method for NBR in C5F10O mixed gas is designed. In previous
studies, CO2, N2 and air have been usually used as the background gas of C5F10O. While
according to the compatibility of common gases with non-metallic materials [24], N2 has
excellent compatibility with NBR and it does not react with NBR nor cause swelling or
weight loss. Thus, the mixture of C5F10O and N2 is chosen to avoid interference of the
background gas with the experimental results.

In terms of the ageing temperature, the highest temperature rise of GIS shell is limited
to 65 ◦C (with ambient temperature as the reference value), so the ageing temperature in this
experiment is selected as 100 ◦C. This temperature is much lower than the decomposition
temperature of NBR, so it does not change the interaction mechanism, but only exerts the
effect of acceleration. In addition, 100 ◦C is also a suggested ageing condition for rubbers
in ISO 188-2011. As a reference, in the thermal accelerated ageing test carried out by Woo
C et al., the ageing rate of NBR in the air-oven method at 100 ◦C is equivalent to about
53 times that at 25 ◦C [25].
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In the experiment, NBR was placed in an airtight container made of aluminum alloy,
which was filled with 0.2 MPa 5% C5F10O/95% N2 mixed gas, as shown in Figure 1. a filling
pressure of 0.2 MPa is selected to simulate the operating conditions (0.12~0.16 MPa) of real
GIS gas chambers. a mixing ratio of 5% is a commonly chosen ratio in previous studies
as it is capable of satisfying the required level of electrical strength [5,6]. In the control
group, the container is filled with pure N2. The container was later put into a constant
temperature oven for thermal ageing. The ageing process lasted for 28 days, with 7 days
as the experimental interval. The eight groups of samples were independently put into
different containers in the experiment. Then, the changes in the mechanical properties,
surface morphologies and element content of the NBR before and after the thermal ageing
were tested and compared at every experiment interval. In each container, three samples
were placed and tested to ensure the repeatability of the results.
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2.2. Preparation for the NBR Samples

NBR is one of the most commonly used sealing materials for GISs. The sealing rings
apply stress on the sealing interface when being compressed in the sealing gap, so that
the rubber and the sealing interface can be closely fitted to maintain the airtightness of the
equipment. Once the elasticity of the rubber is weakened, the stress on the sealing interface
may not be sufficient to withstand the pressure difference in and outside the equipment,
which may eventually result in the leakage of the GIS. Hence, the compression modulus
is chosen as the indicator of NBR’s sealing performance in this study. The compatibility
of NBR and C5F10O is judged through the compressive modulus before and after the
long-term coexistence in the thermal ageing procedure.

The test sample for the compressive modulus is manufactured according to ISO 7743-
2017: a cylinder with a height of 12.5 mm and a diameter of 29 mm, as shown in Figure 1 [26].
In addition, sheet-like rubber samples with a thickness of 0.8 mm and a side length of
10 mm were also produced for the morphology and energy spectrum analysis after the
compatibility experiment.

The NBR samples tested in this paper are all provided by State Grid Pinggao Group
Co., Ltd., Pingdingsha, China. Thermogravimetric analysis on Mettler-Toledo TGA2/DSC3
is used to determine the specific components contained in NBR. During the thermogravi-
metric analysis, the NBR samples are first heated from room temperature to 600 ◦C at a rate
of 10 ◦C/min in N2 atmosphere, then cooled to 400 ◦C at the same rate and atmosphere,
and finally heated from 400 to 800 ◦C in air atmosphere [27]. The thermogravimetric (TG)
curve and differential thermogravimetric (DTG) curve of NBR are shown in Figure 2.
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The weight loss of NBR is divided into four different stages according to the decom-
position temperature [27]. The main components and contents of the NBR used in this
experiment are listed in Table 1. The most important components of rubber are the carbon
black that constitutes the rubber skeleton and the copolymer of butadiene and acrylonitrile,
accounting for 88.8% of the total weight. Therefore, when exploring the compatibility
mechanism between NBR and C5F10O, key attention should be paid to the interaction
between C5F10O and these two main components.

Table 1. Main components of NBR used in the experiment.

Composition Weight Fraction (%) Temperature (◦C)

Oil 5.8 200~380
Polymer 49.0 390~500

Carbon black 39.8 527~600
CaCO3 0.38 610~637

ZnO/MgO 4.14 >800

3. Deterioration Behaviors of NBR Aged in C5F10O/N2 Mixture

NBR has been widely applied as a sealing medium for SF6-insulated equipment for
many years. a good compatibility between NBR and SF6 has already been proved via rele-
vant standards and research. Therefore, in this study, we mainly explain the compatibility
of NBR and C5F10O by comparing the deterioration behavior of NBR in C5F10O/N2 and
pure N2 atmospheres, without comparing the results to that in the SF6 atmosphere.

3.1. Compressive Modulus

The compressive modulus of the cylindrical samples was tested every 7 days to
study the impact of C5F10O on the mechanical properties of NBR. The compression stress–
strain test was carried out on an INSTRON 7000 universal testing machine made by
Instron, Norwood, America. According to [26], the samples were compressed at a rate of
10 mm/min until the strain reached 25%, then released at the same rate, and this process
was repeated four times. The stress change during the last compression process is recorded
and the compressive modulus was then calculated by the following formula:

Es =
F

Aε
(1)
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where Es is the compressive modulus (MPa), F is the compressive stress (N), A contributes
the cross-sectional area of the sample (mm2). ε is the compressive strain, when calculating
the compressive modulus, ε is usually taken as 10% or 20%.

Figure 3 illustrates the changes in compressive modulus of NBR after thermal acceler-
ation aged in pure N2 and C5F10O/N2 mixture at 100 ◦C. From Figure 3, the compressive
modulus of NBR aged in N2 declined in the first week, but in the second to fourth weeks
of the test the compressive modulus of NBR was basically stable. This is because N2 does
not react with NBR, so the compressive modulus of NBR aged in N2 will not continue to
deteriorate after the movement of the molecular chain at the initial stage.
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On the contrary, the compressive modulus of NBR in the C5F10O/N2 showed a sig-
nificant decrease, and the decline rate showed an acceleration trend with the increase in
ageing time. This result demonstrates that NBR has poor compatibility with C5F10O and
may interact with C5F10O during their long-term coexistence. The interaction will lead to
continuous deterioration in the mechanical performance of NBR. According to the decrease
curve of the compressive modulus, this deterioration is still not saturated within 28 days.

3.2. Surface Morphology and Element Content of NBR

To find out the interaction mechanism between NBR and C5F10O, scanning electron
microscope (SEM) and energy dispersive spectrometer (EDS) were used to investigate the
morphology and element content on the surface of NBR before and after the thermal ageing.
The tests are performed using a Zeiss GeminiSEM 500 microscope made by Carl Zeiss,
Tübingen, Germany, which is equipped with the EDS module of Oxford UltimMax 65 made
by Oxford Instruments PLC, Oxford, England.

Figure 4 shows the surface morphology of the NBR samples after different ageing
conditions. From Figure 4a,b, the surface of NBR aged in N2 remains as smooth as the
original NBR. While Figure 4c shows that there is an obvious change on the surface of NBR
after two weeks’ thermal ageing in C5F10O/N2. In Figure 4c, a large number of protrusions
are densely distributed on the rubber surface. By magnifying the surface of NBR 2000 times,
Figure 4d clearly presented the three forms of the NBR’s surface: I. smooth surface without
foreign matter; II. slightly raised surface wrapping crystals inside; III. rubber with large
protrusions and dendritic or dot-like crystals on the surface.
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The different forms of the surface morphology may be related to the degree of interac-
tion between NBR and C5F10O. To further clarify the deterioration behaviors of the NBR,
EDS was applied to distinguish the element content on the raised surface (area A) and flat
surfaces (area B) of the experimental group illustrated in Figure 4e. The element content
distribution of aged surfaces compared to the untreated NBR surface is given in Figure 5.
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It is apparent in Figure 5 that F atoms that are not initially present in untreated NBR
are detected in both area a and B, which directly confirms that NBR reacted with C5F10O
and F atoms in C5F10O are transferred to the rubber surface during the reaction. Compared
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to the untreated NBR, the aged surface contains more O, Ca, Zn atoms and less C atoms.
Meanwhile, the amount of O, Ca and Zn in area a is significantly larger than that in area B,
and the growth of these elements caused a slight decrease in the proportion of F and C
atoms in area A. This indicates that protrusions appearing on the aged NBR’s surface
contain more ZnO and CaCO3, and proves that the crystals observed in Figure 4d could be
the reinforcing agent inside NBR which migrated to the surface during the thermal ageing.

Combined with the above analysis, the deterioration process of NBR caused by interac-
tion with C5F10O can be divided into three stages according to forms of surface morphology:

I. Preliminary reaction. In the long-term contact with C5F10O, copolymer of butadiene
and acrylonitrile starts to react with C5F10O, resulting in a decrease in the elasticity
and strength on the partial surface. However, the effect is not significant in the initial
stage, so the rubber surface remains smooth.

II. Additive migration. As the surface of NBR continues deteriorating, it is easier for the
reinforcing agent inside the rubber to come out of the less-strength surface during its
immigration urged by heat. This is also why bulges wrapping ZnO or CaCO3 crystals
were found on the NBR surface.

III. Additive precipitation. As the elasticity and hardness of the rubber surface continue to
decrease, more and more additives migrate to the surface of the rubber and then pierce
the weakened surface, forming observable dot-like crystals. After that, the additives
begin to extend on the damaged surface and finally form dendritic crystals on the
protrusions, whose volume is also greatly enlarged. This process further promotes
the deterioration of the rubber’s mechanical performance.

4. Deterioration Mechanism Analysis of NBR Aged in C5F10O/N2 Mixture

To ascertain the reaction on the rubber surface and the mechanical properties change
brought by the reaction, the possible interaction between NBR and C5F10O molecule is
analyzed based on density functional theory. Then, the simulated microstructures of aged
and untreated NBR are constructed in molecular dynamics simulations. Finally, the impact
of the interaction on the mechanical properties of rubber is analyzed.

4.1. Reaction Mechanism of NBR and C5F10O
4.1.1. Primary Decomposition of C5F10O

Existing research has basically revealed the pathways and thermodynamic properties
of C5F10O decomposition reactions. The decomposition of C5F10O will generate natural
molecules and free radicals such as C3F8, CF4, C2F6, CF3CFCOCF3, COF, CF3 and CF2.
However, in the compatibility experiment, the rate and equilibrium constants of these
reactions are limited by the applied temperature of 100 ◦C. Therefore, primary decomposi-
tion reactions of C5F10O with lower energy barrier are more likely to occur. The following
three reactions, R1–R3, have the lowest energy barriers of 61.43 kcal/mol, 64.26 kcal/mol
and 67.40 kcal/mol in the primary decomposition pathways of C5F10O, and hence are the
dominant reactions that may occur in the experiment [9,28,29].

R1 : C5F10O→ CF3CCFCF3•+ CF3CO• (2)

R2 : C5F10O→ CF3CFCOCF•+ CF3• (3)

R3 : C5F10O→ F3CCF(CO)CF3•+ CF3• (4)

The three primary decomposition reactions correspond to the breaking of C-C bonds
marked a, b and c in the C5F10O molecular shown in Figure 6a. Due to higher energy being
required to continue decomposing, F3CCFCF3, CF3CFCOCF3 and F3CCF(CO)CF3 produced
by the primary reactions can hardly decompose into smaller radicals. Nevertheless, the
decomposition of C5F10O by R1, R2 and R3 will all generate CF3. R1 can generate CF3
because CF3CO will subsequently decompose into CF3 and CO by R4 with an energy barrier
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of only 11.2 kcal/moL [30]. Therefore, the main small radical generated in the compatibility
experiment is CF3, which provides the possibility for reactions on the NBR surface.

R4 : CF3CO• → CO + CF3• (5)
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N. The sequence in the repeat unit is acrylonitrile, 1,2-addition butadiene,
1,4-addition butadiene.)

4.1.2. C=C Double Bonds in NBR

Copolymer consisting of NBR is formed via the polymerization of butadiene
(CH2=CH–CH=CH2) and acrylonitrile (CH3=CH–CN). Butadiene can be attached to the
backbone chain by 1,2 or 1,4 addition reactions during the polymerization. Figure 6b
illustrates a typical repeat unit of NBR. When polymerizing into a copolymer chain, each
butadiene molecule will leave a reactive C=C bond on the main chain or branched chain
of NBR, where addition reactions of small radicals are prone to occur. Consequently, the
product CF3• generated by the decomposition of C5F10O can be bonded to the unsaturated
C atoms in the copolymer, causing the deterioration of the rubber.

To verify the possibility of this reaction, we calculated the energy barrier and enthalpy
of the addition reactions based on the density functional theory in the Dmol3 module in
the Material Studio [31]. The B3LYP functional applicable to the C/H/O/F molecular
system is applied to optimize the initial structure of the reactants and products [11]. The
convergence thresholds of the maximum force and the maximum displacement in the
structural optimization are set to 0.004 Ha/a and 0.005A, respectively. Then the enthalpy of
the reactions is calculated on the same theoretical level.

As shown in Figure 7, addition reactions of CF3 bonded to the main and branch chain
of the copolymer molecules are both exothermic reactions without transition states, and the
enthalpies are −107.0 kcal/moL and −109.6 kcal/moL, respectively. The results indicate
that the addition reactions easily occur even at room temperature. Therefore, once CF3 is
produced through the decomposition of C5F10O, it can readily react with the unsaturated
bonds in NBR via addition reactions. Meanwhile, although the primary decomposition
reactions can hardly cause considerable decomposition of C5F10O under the limitation of
the equilibrium constant at 100 ◦C, when coexisting with NBR, CF3 in the decomposition
products will react with NBR and gradually be consumed, making the reaction equilibrium
continue to move forward. Compared to the experimental results in Figure 5, the addition
reactions also explain why F atoms that do not exist in untreated NBR can be found on the
surface of aged NBR in the EDS tests.
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4.2. Simulation of Rubber Mechanical Properties Based on Molecular Dynamics
4.2.1. Model Building

Based on the analysis in Section 4.1, an NBR cell with periodic boundary conditions
is established in this section. The influence of the interactions between C5F10O and NBR
on the mechanical properties of NBR is analyzed through the adjustment of molecular
structure before and after the thermal ageing. The establishment, structural optimization
and mechanical performance calculations of the NBR cells are all carried out under the
Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COM-
PASS) force field [32,33] in Materials Studio. Before calculating the mechanical properties,
the following steps are conducted to ensure that the structure of each cell is fully relaxed
and optimized so as to make it closer to the actual state of the NBR [34,35].

Firstly, the structure of the amorphous cell is optimized to its minimum energy. Then
20 cycles of dynamic annealing from 453K to 298K is performed under the NVT ensemble,
simulating the process of cooling the NBR from the manufacturing temperature to room
temperature. The annealed structure finally undergoes two dynamic relaxations of 500 ps
under the NPT and NVT ensemble, respectively. In the calculation, the Ewald method
is selected for electrostatic interaction, the Atom Based method is selected for Van der
Waals force, the Nose–Hoover thermal bath method is used for temperature control and
the Berendsen method is used for pressure control.

Carbon black and copolymer molecular chains are selected as the two main compo-
nents of the NBR simulation model based on the proportions given in Table 1. According
to [36], when the degree of polymerization of the molecular chain exceeds 10, the calculated
results of its mechanical and chemical properties will be generally consistent with the actual
situation. Thus, there are five copolymer molecular chains in the amorphous cell, where
the degree of polymerization of each molecular chain is set to 20 and the ratio of butadiene
to acrylonitrile is 4:1. The carbon black with a microcrystalline structure is composed of
two layers of C atoms arranged in a regular hexagon manner, with the layer spacing and
the C-C bond length of 334.8 pm and 142 pm. The number of carbon black molecules in
the cell is determined by the mass ratio polymer to carbon black (5:4) measured in the
thermogravimetric test. Figure 8 illustrates the original NBR cell in the simulation.
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4.2.2. Deterioration Mechanism of NBR

By applying small stresses in six directions on the optimized cell, the strain under
different stress can be obtained, and the elastic coefficient matrix of the amorphous can be
calculated accordingly [37]. Based on the isotropy assumption, the elastic coefficient matrix
of NBR is as follows:

C =



2µ + λ λ λ 0 0 0
λ 2µ + λ λ 0 0 0
λ λ 2µ + λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 (6)

where λ and µ are called Lame constants and determine the strain–stress relationship of
the material. The material’s elastic modulus E, shear modulus G and bulk modulus B can
all be calculated via λ and µ:

E = µ
3λ + 2µ

λ + µ
(7)

G = µ (8)

B = λ +
2
3

µ (9)

Since there is no O2 in the closed experimental environment, the possible structural
changes of carbon black in rubber are ignored in the simulation. In order to study the
influence mechanism of the extent of the reaction on the mechanical properties of NBR, the
proportion of C=C double bonds added with CF3 on the molecular chain is set to 0%, 25%,
50% and 75%.

Figure 9 shows the microstructure of the rubber fully relaxed under the four conditions.
The elastic parameters of the four structures are calculated through (7)– (9) and are shown in
Figure 10. The elastic modulus calculated in the simulation corresponds to the compression
modulus presented in Figure 3. Compared to the results of compressive modulus tests,
the calculated elastic modulus is smaller than the compression modulus measured in the
actual test. This is because ZnO, CaCO3 and other reinforcing agents will be added to the
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rubber during the actual manufacturing process, which greatly increases the macroscopic
strength of NBR.

Polymers 2023, 15, x FOR PEER REVIEW 11 of 14 
 

 

be added to the rubber during the actual manufacturing process, which greatly increases 
the macroscopic strength of NBR. 

  

(a) (b) 

  

(c) (d) 

Figure 9. NBR cell with different addition ratios. (a) 0%, (b) 25%, (c) 50%, (d) 75%. 

From Figure 10, when the amount of added C = C double bond reaches 25%, a small 
number of new branches is attached to the carbon chain of the NBR surface, which in-
creases the free volume in the cell and makes it more susceptible to deformation when 
subjected to external forces. Hence the elastic modulus, shear modulus and bulk modulus 
of the aged NBR all decreased significantly compared to the original NBR. This trend is 
consistent with the changes in the compression modulus obtained experimentally. How-
ever, as the proportion of added C = C double bonds continues to increase, these newly 
grafted CF3• on the carbon chain fill the free volume caused by the aforementioned addi-
tion reaction, and the rubber structure becomes denser. Therefore, when the amount of 
added C = C double bonds increases to 50%, the decline in the elasticity parameters is 
reduced. 

 
Figure 10. Elastic parameters of NBR cells. 

When the amount reached 75%, the elastic modulus and shear modulus showed an 
increasing trend. In the compression modulus test, NBR rubber did not show a reverse 
trend of mechanical properties during the continuous ageing process. This is because 
when the surface strength of the NBR weakened at the initial stage of deterioration, the 

E (MPa) G (MPa) B (MPa)
0

1

2

3

 0%      25%
 50%    75%

Figure 9. NBR cell with different addition ratios. (a) 0%, (b) 25%, (c) 50%, (d) 75%.

Polymers 2023, 15, x FOR PEER REVIEW 11 of 14 
 

 

be added to the rubber during the actual manufacturing process, which greatly increases 
the macroscopic strength of NBR. 

  

(a) (b) 

  

(c) (d) 

Figure 9. NBR cell with different addition ratios. (a) 0%, (b) 25%, (c) 50%, (d) 75%. 

From Figure 10, when the amount of added C = C double bond reaches 25%, a small 
number of new branches is attached to the carbon chain of the NBR surface, which in-
creases the free volume in the cell and makes it more susceptible to deformation when 
subjected to external forces. Hence the elastic modulus, shear modulus and bulk modulus 
of the aged NBR all decreased significantly compared to the original NBR. This trend is 
consistent with the changes in the compression modulus obtained experimentally. How-
ever, as the proportion of added C = C double bonds continues to increase, these newly 
grafted CF3• on the carbon chain fill the free volume caused by the aforementioned addi-
tion reaction, and the rubber structure becomes denser. Therefore, when the amount of 
added C = C double bonds increases to 50%, the decline in the elasticity parameters is 
reduced. 

 
Figure 10. Elastic parameters of NBR cells. 

When the amount reached 75%, the elastic modulus and shear modulus showed an 
increasing trend. In the compression modulus test, NBR rubber did not show a reverse 
trend of mechanical properties during the continuous ageing process. This is because 
when the surface strength of the NBR weakened at the initial stage of deterioration, the 

E (MPa) G (MPa) B (MPa)
0

1

2

3

 0%      25%
 50%    75%

Figure 10. Elastic parameters of NBR cells.

From Figure 10, when the amount of added C=C double bond reaches 25%, a small
number of new branches is attached to the carbon chain of the NBR surface, which increases
the free volume in the cell and makes it more susceptible to deformation when subjected
to external forces. Hence the elastic modulus, shear modulus and bulk modulus of the
aged NBR all decreased significantly compared to the original NBR. This trend is consistent
with the changes in the compression modulus obtained experimentally. However, as the
proportion of added C=C double bonds continues to increase, these newly grafted CF3• on
the carbon chain fill the free volume caused by the aforementioned addition reaction, and
the rubber structure becomes denser. Therefore, when the amount of added C=C double
bonds increases to 50%, the decline in the elasticity parameters is reduced.

When the amount reached 75%, the elastic modulus and shear modulus showed an
increasing trend. In the compression modulus test, NBR rubber did not show a reverse
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trend of mechanical properties during the continuous ageing process. This is because
when the surface strength of the NBR weakened at the initial stage of deterioration, the
internal reinforcing agent had already migrated to the rubber surface and further caused
irreversible deterioration of the rubber’s mechanical properties. Consequently, even if the
downward trend of the polymer elastic modulus of the rubber surface can be slowed down
at the end of the addition reaction process, the rubber properties will not recover again.

While this simulation study provides insights into the effects of C5F10O on NBR’s
elastic properties, there are limitations that should be discussed. As listed in Table 1, real
rubber is a complex mixture of organic polymers, additives and other substances. In our
simulation, different additives used to regulate the rubber’s production process were not
included. Although the proportion of additives is much lower, they may still somehow
affect the performance and compatibility of rubber. Therefore, the proposed reaction
mechanism in this study might not fully capture the interaction between NBR and C5F10O,
as the possibility of inorganic additives reacting with C5F10O was not taken into account.
Additionally, due to computational limitations, the size of the constructed polymer model
was not large enough to match the particle size of real additives, which might affect our
understanding of the impact of additives on the system.

5. Conclusions

In this paper, the deterioration behaviors of the sealing material NBR coexisting
with C5F10O/N2 mixture is studied through thermal accelerated ageing experiment. The
deterioration stages of NBR are analyzed based on the obtained compressive modulus,
surface morphology and element content. Potential interactions between C5F10O and NBR
are considered, and the resulting effects on the mechanical properties of NBR are then
investigated via molecular dynamics simulations. The specific conclusions are as follows:

(1) The compressive modulus of NBR aged in C5F10O/N2 mixture is significantly smaller
than that of NBR aged in N2, indicating that C5F10O is incompatible with NBR rubber.
Therefore, when in long-term contact with C5F10O in the electrical equipment, the
sealing performance and the service life of NBR will be weakened.

(2) NBR aged in C5F10O undergoes a three-stage deterioration process based on changes
in its surface morphology and atomic composition: (I) a preliminary reaction between
NBR and C5F10O results in the reduction of surface strength; (II) reinforcing agents
such as ZnO and CaCO3 inside the NBR migrate to the surface, forming bumps that
encase crystals on the rubber surface; (III) with further weakening of the surface
strength, the reinforcing agents penetrate the rubber surface and exhibit branch-like
extensions at the bumps. Each stage is accompanied by a decrease in the mechanical
strength of NBR.

(3) DFT and MD simulations suggest that the C=C double bonds in the molecular chain of
NBR can react with CF3 radicals generated by the primary decomposition of C5F10O.
Then the addition of C=C double bonds and introduction of CF3 groups on the
molecular chain will cause a decrease in the elastic, shear and bulk modulus of NBR.
This results in the internal reinforcing agents precipitating onto the surface of NBR,
thereby further intensifying the irreversible deterioration of its mechanical properties.
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