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DEGRADATION MODELING APPLIED TO RESIDUAL LIFETIME
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Sensor-based degradation signals measure the accumulation of damage
of an engineering system using sensor technology. Degradation signals can
be used to estimate, for example, the distribution of the remaining life of par-
tially degraded systems and/or their components. In this paper we present
a nonparametric degradation modeling framework for making inference on
the evolution of degradation signals that are observed sparsely or over short
intervals of times. Furthermore, an empirical Bayes approach is used to up-
date the stochastic parameters of the degradation model in real-time using
training degradation signals for online monitoring of components operating
in the field. The primary application of this Bayesian framework is updating
the residual lifetime up to a degradation threshold of partially degraded com-
ponents. We validate our degradation modeling approach using a real-world
crack growth data set as well as a case study of simulated degradation signals.

1. Introduction. Most failures of engineering systems result from a gradual
and irreversible accumulation of damage that occurs during a system’s life cycle.
This process is known as degradation [Bogdanoff and Kozin (1985)]. In many ap-
plications, it can be very difficult to assess and observe physical degradation, espe-
cially when real-time observations are required. However, degradation processes
are almost always associated with some manifestations that are much easier to
observe and monitor overtime. Generally, the evolution of these manifestations
can be monitored using sensor technology through a process known as Condition
Monitoring (CM). The observed condition-based signals are known as degradation
signals [Nelson (1990)] and are usually correlated with the underlying physical
degradation process. Some examples of degradation signals include vibration sig-
nals for monitoring excessive wear in rotating machinery, acoustic emissions for
monitoring crack propagation, temperature changes and oil debris for monitoring
engine lubrication and many others.

Degradation modeling attempts to characterize the evolution of degradation sig-
nals. There is a significant number of research works that have focused on degra-
dation models; these include models presented in Lu and Meeker (1993), Padgett
and Tomlinson (2004), Gebraeel et al. (2005), Müller and Zhang (2005), Gebraeel
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FIG. 1. Examples of incomplete degradation signals.

(2006) and Park and Padgett (2006). Many of these models rely on a representa-
tive sample of complete degradation signals. A complete degradation signal is a
continuously observed signal that captures the degradation process of a component
from a brand “New State” to a completely “Failed State.”

Unfortunately, building a database of complete degradation signals can be very
expensive and time consuming in applications, such as monitoring of jet engines,
turbines, power generating units, structures and bridges and many others. For ex-
ample, in applications consisting of relatively static structures such as bridges,
degradation usually takes place very slowly (several tens of years). Since the sys-
tem is relatively static, it suffices to observe the degradation process at intermittent
discrete time points. The result is a sparsely observed degradation signal such as
the signals depicted in Figure 1(a). In contrast, in applications consisting of dy-
namic systems, such as turbines, generators and machines, degradation cannot be
reasonably assessed by sparse measurements. At the same time, continuous ob-
servations of the complete degradation process of such systems are economically
unjustifiable. Usually, the only way to gain a relatively accurate understanding of
the health/performance of a dynamic system is to monitor its performance over a
time interval. In naval maritime applications, power generating units of an aircraft
are removed, tested for a short period of time (during which degradation data can
be acquired) and put back into operation. The result is a collection of fragmented
degradation signals as depicted in Figure 1(b).

In this paper we develop a degradation model that applies to incomplete degra-
dation signals as well as complete degradation signals. An incomplete degradation
signal is defined as a signal that consists of sparse observations of the degradation
process or continuous observations made over short time intervals (fragments).
One challenge in such applications is that the evolution of the degradation signals
cannot be readily assessed to determine the parametric form of the underlying
degradation model. This is because one cannot clearly trace how a degradation
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signal progresses over time from incomplete observations. For example, is there a
well defined parametric model that describes the signals in Figure 1?

To overcome this challenge, the underlying degradation model in this paper is
assumed nonparametric. Most degradation models used to characterize the evo-
lution of sensor-based degradation signals are parametric models. A common
approach is to model the degradation signals using a parametric (linear) model
with random coefficients [Lu and Meeker (1993); Gebraeel et al. (2005); Gebraeel
(2006)]. Other modeling approaches assume that the degradation signal follows a
Brownian motion process [Doksum and Hoyland (1992); Pettit and Young (1999)]
or a Gaussian process with known covariance structure [Padgett and Tomlinson
(2004); Park and Padgett (2006)]. In contrast, we assume that the mean and co-
variance functions of the degradation process are unknown and they are estimated
based on an assembly of training incomplete degradation signals. The mean func-
tion is estimated using standard nonparametric regression methods such as local
smoothing [Fan and Yao (2003)]. The covariance function is decomposed using the
Karhunen–Loève decomposition [Karhunen (1947); Loève (1945)] and estimated
using the Functional Principal Component Analysis (FPCA) method introduced
by Yao, Müller and Wang (2005).

Under the nonparametric modeling framework, one condition for accurate es-
timation of the mean and covariance functions is that the degradation process
is densely observed throughout its support. However, in applications where the
degradation signals are incompletely sampled, not all degradation signals are ob-
served up to the point of failure; in addition, only a few components will survive up
to the maximum time point of the degradation process support. Consequently, the
degradation process is commonly under-sampled close to the upper bound of its
support. To overcome this difficulty, we introduce a nonuniform sampling proce-
dure for collecting incomplete degradation signals, which ensures relatively dense
coverage throughout the sampling time domain.

One important application of degradation modeling is predicting the lifetime of
components operating in the field. For real-time monitoring, an empirical Bayes
approach is introduced to update the stochastic parameters of the degradation
model. In this paper we focus on estimation of the distribution of the residual
life up to a degradation threshold for partially degraded components using training
degradation signals which are sparsely or completely observed. Other applications
of the degradation modeling and the Bayesian updating procedure are estimation
of the lifetime at a specified degradation level and estimation of the degradation
level at a specified lifetime.

We evaluate the performance of our methodology using both a crack growth
data set and simulated degradation signals. In these empirical studies we compare
parametric to nonparametric degradation modeling, assess the estimation accuracy
of the remaining lifetime for complete and incomplete signals, and contrast uni-
form vs. nonuniform sampling procedures for acquiring ensembles of incomplete
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degradation signals. In both studies there is not a significant decrease in the accu-
racy of the residual life estimation when using ensembles of incomplete instead of
complete signals. We also highlight the robustness of our approach by comparing
it with misspecified parametric models, which are common when the underlying
degradation process is complicated and sparsely observed. Last, we show in the
simulation study that using a nonuniform sampling procedure that ensures dense
observation of the sampling time domain reduces the estimation error. Based on
these empirical studies, we conclude that the nonparametric approach introduced
in this paper is efficient in characterizing the underlying degradation process and
it is more robust to model misspecification than parametric approaches, which is
particularly important when the training signals are incompletely observed (sparse
or fragmented).

The remainder of the paper is organized as follows. Section 2 discusses the de-
velopment of our degradation modeling framework. The empirical Bayes approach
for updating the degradation distribution of a partially degraded component is in-
troduced in Section 3. The derivation of the remaining lifetime distribution under
the empirical Bayes approach is presented in Section 4. In Section 5 we introduce
an experimental design for sampling incomplete degradation signals. We discuss
performance results of our methodology using real-world and simulated degrada-
tion signals in Section 6 and 7, respectively.

2. Sensor-based degradation modeling. We denote the observed degrada-
tion signals Si(tij ), for j = 1, . . . ,mi (mi is the number of observation time points
for signal i) and i = 1, . . . , n (n is the number of signals) where {tij }j=1,...,mi

are
the observation time points in a bounded time domain [0,M] for signal i. Note
that M will always be finite since any industrial application has a finite time of
failure. We model the distribution of the signals Si(t) by borrowing information
across multiple degradation signals. We decompose the degradation signal as

Si(t) = μ(t) + Xi(t) + σεi(t),(2.1)

where μ(t) is the underlying trend of the degradation process and is assumed to be
fixed but unknown, and Xi(t) represents the random deviation from the underlying
degradation trend. We also assume Xi(t) and εi(t) are independent.

The model in (2.1) is a general decomposition for functional data with various
modeling alternatives and assumptions for the model components: μ(t), Xi(t),
and εi(t). In this paper we discuss one such modeling alternative which applies to
sparse and fragmented signals as well as to complete signals and it applies under
the assumption that the observation time points {tij }j=1,...,mi

are fixed but not nec-
essarily equally spaced and the assumption that the error terms εi(t) are indepen-
dent and identically distributed. Deviations from these assumptions may require
some modifications to the modeling approach discussed in this paper.

In our modeling approach, the degradation signal Si(t) follows a stochastic
process with mean μ(t) and stochastic deviations Xi(t) with mean zero and co-
variance cov(t, t ′). The mean function μ(t) and the covariance surface cov(t, t ′)
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are both assumed to be nonparametric, that is, no prespecified assumption on their
shape. This generalized assumption encompasses the particular cases developed
earlier by Gebraeel et al. (2005) and Gebraeel (2006), which assume a linear trend,
μ(t) = α + βt where α ∼ N(0, δα) and β ∼ N(0, δβ), and parametric covariance
structure cov(t, t ′) = δα + δβtt ′.

The following steps discuss how we estimate the mean function and the covari-
ance surface of our degradation model.

Step 1: We use nonparametric methods to estimate the mean μ(t). In this paper
we use local quadratic smoothing [Fan and Yao (2003)] to allow estimation of the
mean function under general settings including complete and incomplete (sparse
and fragmented) signals. The bandwidth parameter, which controls the smoothing
level, is selected using the leave-one-curve-out cross-validation method [Rice and
Silverman (1991)]. Alternative estimation methods include decomposition of the
mean function using a basis of functions (e.g., splines, Fourier, wavelets) and es-
timate the coefficients using parametric methods. These alternative methods will
apply under various signal behaviors (e.g., smooth vs. with sharp changes, uni-
formly vs. nonuniformly sampled).

Step 2: The covariance surface is estimated using the demeaned data, Si(t) −
μ̂(t), where μ̂(t) is the local quadratic smoothing estimate of μ(t). Using the
Karhunen–Loéve decomposition [Karhunen (1947); Loève (1945)], the covari-
ance, cov(t, t ′) = Cov(Si(t), Si(t

′)), can be expressed as follows:

cov(t, t ′) =
∞∑

k=1

λkφk(t)φk(t
′), t, t ′ ∈ [0,M],(2.2)

where φk(t) for k = 1,2, . . . are the associated eigenfunctions with support [0,M]
and λ1 ≥ λ2 ≥ · · · are the ordered eigenvalues. Based on this decomposition, the
deviations from the underlying degradation trend Xi(t) are decomposed using the
following expression:

Xi(tij ) =
∞∑

k=1

ξikφk(tij ),(2.3)

where ξik called scores are uncorrelated random effects with mean zero and vari-
ance E(ξ2

ik) = λk . The decomposition in equation (2.3) is an infinite sum. Gener-
ally, only a small number of eigenvalues are commonly significantly nonzero. For
the eigenvalues which are approximately zero, the corresponding scores will also
be approximately zero. Consequently, we use a truncated version of this decompo-
sition. Therefore, expression (2.3) can be approximated as follows:

Xi(tij ) =
K∑

k=1

ξikφk(tij ),(2.4)

where K is the number of significantly nonzero eigenvalues. We select K to mini-
mize the modified Akaike criterion defined by Yao, Müller and Wang (2005).
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In the statistical literature this method has been coined Functional Principal
Component Analysis (FPCA). The key reference for FPCA is Ramsay and Silver-
man [(1997), Chapter 8]. Another important reference is Yao, Müller and Wang
(2005), in which the authors derived theoretical results for model parameter con-
sistency and asymptotic (n large) distribution results under the assumption that the
scores follow a normal distribution.

An alternative method for estimating the covariance function of the process
Xi(t) is decomposing the covariance function as in equation (2.2) where the basis
of functions {φk, k = 1,2, . . .} is fixed [James, Hastie and Sugar (2000)]. However,
this approach doesn’t allow dimensionality reduction in the same way FPCA does
and it is not theoretically founded.

3. Degradation model updating. Next, we consider a component operating
in the field called fielded component. Assume that we have observed its degrada-
tion signal at a vector of time t = (t1, . . . , tm∗); therefore, S(t) denotes the observed
signal of the testing component, m∗ represents the number of observations and
t∗ = tm∗ denotes the latest observation time. In this section we introduce an Em-
pirical Bayes approach which allows real-time updating of the distribution of the
degradation process for partially degraded components given the observed signal
S(t) and the prior distribution of the scores ξik for k = 1,2, . . . . The prior distri-
bution of the scores is estimated empirically from a set of historical degradation
signals.

Proposition 1 illustrates the updating procedure assuming that the prior distribu-
tion of the scores is normal and assuming that the mean function μ(t) and the basis
of functions φk(t), k = 1, . . . ,K , are fixed. The proof of this proposition follows
from the theory of Bayesian linear models.

PROPOSITION 1. Assume that S(t) follows

S(t) = μ(t) +
K∑

k=1

ξkφk(t) + ε(t),

where the prior distribution of ξk is N(0, λk) with ξ1, . . . , ξK uncorrelated; ε(t)

are independent of ξk for k = 1, . . . ,K ; the distribution of ε(t) is N(0, σ 2) with
σ 2 fixed. It follows that the posterior distribution of the scores is

(ξ∗
1 , . . . , ξ∗

K)′ ∼ N(Cd,C),

where

C =
(

1

σ 2 P(t)′P(t) + 
−1
)−1

and d = 1

σ 2 P(t)′
(
S(t) − μ(t)

)
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with

S(t) = (S(t1), . . . , S(tm∗))′, μ(t) = (μ(t1), . . . ,μ(tm∗))′,
(3.1)


 = diag(λ1, . . . , λK), P (t) =
⎛
⎝ φ1(t1) . . . φK(t1)

. . . . . . . . .

φ1(tm∗) . . . φK(tm∗)

⎞
⎠ .

In Proposition 1 the prior distribution of the scores is specified by the variance
parameters λk , k = 1, . . . ,K , which are estimated using the degradation model
in Section 2 and based on a set of incomplete or complete training degradation
signals. Specifically, we first apply Functional Principal Component Analysis on
the historical degradation signals which will further provide estimates for the vari-
ance parameters λk , k = 1, . . . ,K , and the eigenfunctions φk , k = 1, . . . ,K . Based
on these estimates, we obtain the posterior distributions of the updated scores
ξ∗

1 , . . . , ξ∗
K since the matrix C and the vector d are fully determined by the eigen-

values λk , k = 1, . . . ,K , and the eigenfunctions φk , k = 1, . . . ,K . The expectation
of the posterior scores is nonzero and, therefore, we denote the posterior mean
function μ∗(t) = μ(t) + ∑K

k=1 E(ξ∗
k )φk(t).

Following Proposition 1, the expectation of the posterior distribution follows
the same formula as the conditional expectation estimator in Yao, Müller and
Wang (2005), equation (4). Generally, this similarity applies under the empirical
Bayesian prior derived from FPCA. On the other hand, the sampling distribution
of the conditional expectation estimator in Yao, Müller and Wang (2005) is dif-
ferent from the posterior distribution of ξ∗

k , k = 1, . . . ,K , since their variances are
not equal. Moreover, the conditional expectation estimator and its mean estimation
error in Yao, Müller and Wang (2005) are conditional on the training observations,
whereas the posterior distribution in Proposition 1 is conditional on the observa-
tions of a new component.

The advantage of this Bayesian framework is that it unifies the conditional ex-
pectation estimation and prediction into a procedure which allows updating the
distribution of the degradation process for a new component. We can therefore use
the posterior distribution of the scores for a partially degraded signal to estimate
the distribution of various statistical summaries, including the lifetime at a speci-
fied degradation level and estimation of the degradation level at a specified time.
In the next section we discuss one specific application to this updating framework:
residual life estimation.

4. Remaining life distribution. In this paper we focus our attention on en-
gineering applications where a soft-failure of a system occurs once its underlying
degradation process reaches a predetermined critical threshold. This critical thresh-
old is commonly used to initiate maintenance activities such as repair and/or com-
ponent replacement well in advance of catastrophic failure. Consequently, degra-
dation data can still be observed beyond the critical threshold. In this section we
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describe how our degradation modeling framework is applied to estimate the dis-
tribution of remaining life up to a degradation threshold of partially degraded sys-
tems.

In the remainder of this section, S∗(·) will denote the underlying degradation
process of a partially degraded system. Based on the degradation process S∗(·),
the failure time of a system is defined as

T = inf
t∈[0,M]{S

∗(t) ≥ D}.(4.1)

One has to bear in mind that T may not exist if the threshold D is set too high,
that is, the component may fail before its degradation signal reaches the threshold.
The selection of the failure threshold D is an important problem, however, this
aspect is beyond the scope of this paper. In this work, we assume that T exists,
and the threshold D is known a priori. This is a reasonable assumption because in
many industrial applications failure/alarm thresholds are usually based on subjec-
tive engineering judgement or well-accepted standards, such as the International
Standards Organization (ISO) (e.g., the ISO 2372 is used for defining acceptable
vibration threshold levels for different machine classifications). A second assump-
tion is that the failure time T is smaller than a maximum failure time M . This
assumption is also reasonable, as in practice a component may be replaced after a
given period of time even if it did not fail.

The distribution of the residual life (RLD) of a partially degraded component at
a fixed time t∗ ∈ [0,M] is estimated assuming that the degradation process S∗(·) of
the component follows a posterior distribution based on Proposition 1. We estimate
the distribution of the residual life (RLD) using

R(y|t∗) = P
(
T − t∗ ≤ y|S∗(t) ∼ Gaussian(μ∗(t),Cov∗(t, t ′)), t∗ ≤ T ≤ M

)
,

where μ∗(t) and Cov∗(t, t ′) are the posterior mean and covariance functions of the
degradation process S∗(·). The derivations of μ∗(t) and Cov∗(t, t ′) are based on
the results of Proposition 1. We note here that the distribution of the RLD above
is not conditional on the observed signal of the partially degraded component but
on the posterior distribution of its degradation process; since the degradation is
only partially observed and most often sparsely sampled, conditioning on the pos-
terior distribution will generally provide a more accurate RLD estimator since we
incorporate the additional information in the training degradation signals.

Furthermore, we estimate RLD under two assumptions:

A.1 The new component has not failed up to the last observation time point t∗,
that is, the failure time becomes

T = inf
t∈[0,M]{S

∗(t) ≥ D} = inf
t∈[t∗,M]{S

∗(t) ≥ D} := T ∗.

A.2 We assume the probability that the degradation process S∗(t) crosses back the
threshold D after the failure time T ∗ is negligible, that is, P(S∗(T ∗ + y) <
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D) ≈ 0 for all y > 0. This implies, if we condition on y ≥ T ∗ − t∗ > 0, which
is the same as conditioning on T ∗ ≤ t∗+y, P(S∗(t∗+y) < D|T ∗ ≤ t∗+y) ≈
0. This further implies

P
(
S∗(t∗ + y) ≥ D

) = P
(
S∗(t∗ + y) ≥ D|T ∗ ≤ t∗ + y

)
P(T ∗ ≤ t∗ + y)

≈ P(T ∗ ≤ t∗ + y).

Under these two assumptions, the RLD becomes

R(y|t∗) = (by A.1) P
(
T ∗ − t∗ ≤ y|S∗(t)

) ≈ (by A.2) P
(
S∗(t∗ + y) ≥ D|S∗(t)

)
.

The approximation in assumption A.2 is similar to the approximation in the paper
by Lu and Meeker (1993) which assumes that the probability of a negative random
slope in the linear model is negligible. One particular case for the assumption A.2
to hold is that the signal is monotone. However, monotonicity is not a necessary
condition. Assumption A.2 also holds for nonmonotone signals—an example of
such a signal is in Figure 2.

Proposition 2 below describes the updating procedure for RLD of a new com-
ponent given the posterior distribution of its degradation process S∗(·) updated up
to time t∗. The proof follows directly as a consequence of Proposition 1.

PROPOSITION 2. For a new partially degraded component with its degrada-
tion process S∗(·) updated up to time t∗, the residual life distribution is given as

FIG. 2. Example of a signal for which assumption A.2 holds.
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follows:

P
(
T − t∗ ≤ y|S∗(·), T ≥ t∗

) = �Z(g∗(y|t∗)) − �Z(g∗(0|t∗))
1 − �Z(g∗(0|t∗)) ,(4.2)

where �Z represents the standard normal cumulative distribution function and
g∗(y|t∗) = μ∗(t∗+y)−D√

V ∗(t∗+y)
with

μ∗(t∗ + y) = μ(t∗ + y) + (Cd)′p(t∗ + y),

V ∗(t∗ + y) =
K∑

k1=1

K∑
k2=1

[Ck1,k2φk1(t
∗ + y)φk2(t

∗ + y)].

In the above equations, p(t∗ + y) = (φ1(t
∗ + y), . . . , φK(t∗ + y))′, and Ck1,k2

refers to the (k1, k2) element of the matrix C.
One advantage of obtaining the distribution rather than simply a point estimate

is that we can also derive a confidence interval for the remaining lifetime up to a
degradation threshold D. Following the derivation in Proposition 2, a 1 − α confi-
dence interval for RLD is [L,U ] such that

P
(
L ≤ T − t∗ ≤ U |S∗(·), T ≥ t∗

) = 1 − α.

Since we have one equation with two unknowns, the lower—L and the upper—
U tails are commonly equally weighted, and, therefore,

�Z(g∗(U |t∗)) − �Z(g∗(0|t∗))
1 − �Z(g∗(0|t∗)) = 1 − α

2

and
�Z(g∗(L|t∗)) − �Z(g∗(0|t∗))

1 − �Z(g∗(0|t∗)) = α

2
.

However, we cannot obtain exact solutions for L and U because we do not have a
closed-form expression for the inverse of the cumulative density function of T − t∗.
For example, the first relationship is equivalent to finding U from g∗(U |t∗) = zα1

where zα1 is the 1−α1 quantile of the normal distribution. Using this equation, we
would like to obtain U such that

μ∗(t∗ + U) − D√
V ∗(t∗ + U)

= zα1,

which is a nonlinear function of U and its solution does not have a close form
expression. We therefore resort to parametric bootstrap [Efron and Tibshirani
(1993); Davison and Hinkley (1997)] to sample from the distribution of T − t∗
which will give us a set of realizations from this distribution—T1, T2, . . . , TB . Us-
ing these realizations from the distribution of T − t∗, we estimate a quantile boot-
strap confidence interval.

The confidence interval estimation procedure is as follows. For b = 1, . . . ,B:
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1. Sample ξb = (ξb
1 , . . . , ξb

K) from the multivariate normal distribution of the pos-
terior scores provided in Proposition 1.

2. Obtain a simulated signal

Sb(t) = μ(t) +
K∑

k=1

ξb
k φk(t),

where ξb
k , k = 1, . . . ,K , are the scores sampled at Step 1.

3. Take Tb = inft∈[0,M]{Sb(t) ≥ D}.
Using the sampled values T1, T2, . . . , TB , we compute the empirical α/2 and
(1 − α/2) quantiles, Tα/2 and T1−α/2, respectively. We estimate the upper and
lower bound of the confidence interval by L̂ = Tα/2 and Û = T1−α/2. It follows
that [L̂, Û ] is an approximate 1 − α quantile bootstrap confidence interval for the
residual life time of the fielded component.

An additional approach to the (parametric) bootstrap method described above
is to (re)sample the signal data resulting in multiple bootstrap samples. For each
bootstrap sample, estimate the residual lifetime using the approach discussed in
this paper; therefore, we obtain a set of realization from the distribution of T − t∗.
In contrast to the bootstrap method described above, this alternative bootstrap ap-
proach requires estimating the FPCA model for each bootstrap sample which is
computationally expensive.

5. Sampling scheme. The nonparametric degradation modeling framework
introduced in this paper applies to both complete as well as incomplete degradation
signals. For applications involving incomplete degradation signals, it is important
to develop a sampling plan that ensures accurate estimation of the mean function
and the covariance surface. Yao, Müller and Wang (2005) provide theoretical re-
sults on the estimation of the covariance surface using FPCA under large n but
small mi for i = 1, . . . , n. In other words, for these results to hold, the observation
time points {tij }j=1,...,mi ,i=1,...,n need to cover the time domain, [0,M], densely.

Using the traditional uniform sampling technique, the number of observations
per time interval decreases as more signals fail, leading to an unbalanced num-
ber of observations per time interval—more observations at the beginning of the
observation time domain but fewer observations at the end of the time domain. Fur-
ther, this unbalanced design will result in decreasing estimation accuracy (higher
variances) of the mean and covariance estimates at later time points. In order to
balance the number of observations per time interval throughout the time domain
[0,M], we propose an experimental design using nonuniform sampling. The pro-
posed technique ensures relatively dense coverage of the sampling time domain,
[0,M], where M represents the last observation time of the longest possible degra-
dation signal for a given application.

We note here that the sampling technique requires input of M at the beginning
of the experiment although M is unknown. It is often the case that, in practice,
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an experimenter will set a timeline at the beginning of the experiment which will
specify a limit of how long the experiment will be run (e.g., one year vs. one
month). This upper limit will specify M . Generally, starting with a lower initial
value for M will allow the experimenter to sample densely enough while having
the option to update the sampling technique (update M) if not all training signals
have reached the failure threshold by the initial value for M .

The following steps outline a sampling procedure for obtaining sparsely ob-
served and fragmented degradation signals:

Step 1: We begin by performing nonuniform sampling of the time domain
[0,M], thus obtaining a sequence of time points, 0 = t1 < t2 < · · · < tm−1 < tm =
M , for large m. Since only a few components will survive up to the maximum time
point, M , we increase the sampling frequency at later time points in order to cover
the sampling time domain at the extreme point, M . Consequently, we sample expo-
nentially, that is, the time interval between two consecutive sampling time points
decreases exponentially over time (the decreasing rate is implicitly determined by
the value of M and the number of sampling time points).

Step 2: This step provides a potential sampling timetable (or monitoring/
observation schedule) for sparsely observed and fragmented degradation signals.
We begin by selecting n components. For each component, we select its sampling
time points from the set t1, . . . , tm without any prior knowledge about their degra-
dation process and lifetime. Next we define two settings:

Setting 1: This setting is used to obtain sparsely observed degradation sig-
nals. For component i, we randomly sample mi time points from the set of to-
tal time points {t1, . . . , tm}. This results in a set of sparse sampling time points,
{ti1, . . . , timi

} for this component.
Setting 2: This setting is used to obtain fragmented degradation signals. Recall

that fragmented signals are obtained by continuously monitoring a component over
a short time interval, hence the term “fragment.” For component i, we select two
or more time points B1,B2, . . . from the set of total time points {t1, . . . , tm}. These
points represent the beginning times of the signal fragments or sampling intervals.
The duration of the sampling interval will depend on the type of application, the
availability of monitoring/testing equipment and the associated costs/economics.
Consequently, the end time points, E1,E2, . . . , will vary from one experiment to
another. In other words, for component i, we may have two or more time intervals:
[Bi,1,Ei,1], [Bi,2,Ei,2] . . . .

Step 3: Finally, we observe the degradation signal for the selected components
at the selected time points according to the type of incomplete signals, sparse or
fragmented, and obtain the set of sampled signals Si(tij ) for i = 1, . . . , n and j =
1, . . . ,mi .

It is important to stress that we select the sampling time points in Step 2 before
observing the degradation signals. Since we do not observe the failure time be-
fore selecting the time points, we cannot ensure that the degradation signal will be
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FIG. 3. Nonuniform sampling: Sampling time points vs. observation time points.

observed for all selected sampling time points. This is because some components
may fail before the latest selected time point. Consequently, the observation time
points are a subset of the sampling time points and will be less densely sampled
close to M since the missing observations (the difference set between sampling
and observation time points) will increase in density closer to the upper bound
M . In Figure 3 we compare the sampling time points selected at Step 2 to the
observation time points for three components. In this example the sampling time
points are nonuniformly selected, whereas the observation time points are approx-
imately uniform since for the first two components, we do not observe at the latest
times—only the third component fails after its latest sampling time.

Two parameters that are used for tuning the sampling plan are as follows: the
total number of sampling time points mtotal = ∑n

i=1 mi and the total number of
components n. The more sparsely the signals are observed (mtotal is small), the
more signals we need to observe (n needs to be large). Selecting n and mtotal
optimally is important to ensure accurate modeling of the degradation process at a
feasible cost. The larger the number of components n and/or the larger the number
of time points mtotal are the higher the costs associated with monitoring and testing.
Note that selection of n and mtotal will vary according to the type of application.

6. Case study: Crack growth data. In this section we study crack growth
data that can be found in various domains of engineering applications, such as in-
frastructure (bridges, steel structures), maritime (hulls of oil tankers), aeronautical
(aircraft fuselage), energy (vanes of gas turbines), etc. We consider a situation in
which crack growth data can be observed from identical units (say, several ship
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hulls, or turbines) up to a predetermined time period, denoted by M in this pa-
per. A constant threshold, D, is a critical crack length representing a soft failure
when maintenance and repair should be performed. Within this context, we assume
that catastrophic failure, that is, hard failure, may occur at a relatively larger crack
length.

The data set used in our case study was first published in Virkler, Hillberry and
Goel (1979), and has been previously analyzed in other journal articles [Kotulski
(1998); Cross, Makeev and Armanios (2006) and the references therein]. The spec-
imens in the test were 2.54-mm-thick and 152.4-mm-wide center cracked sheets
of 2024-T3 aluminum. The crack propagation signals of these specimens were
recorded under identical experimental conditions. In this data set, the crack length
was measured in millimeters and the observation time was measured by the cumu-
lative load cycles. More details about this data set can be found in Virkler, Hillberry
and Goel (1979). In this study, we set the soft failure threshold to D = 27 mm. We
provide additional results for another soft threshold in the supplemental material
[Zhou, Serban and Gebraeel (2010)]. To be consistent with the methodology in this
study, the observations are censored at common value M = 230,000 cycles. A rep-
resentative example of sparsely sampled degradation signals is in Figure 4(a).

6.1. Results and analysis. We report the prediction accuracy of the remaining
life for varying time points t∗ defining the latest observation time of a partially
degraded component. We consider the following degradation percentiles: 10% (the
signal has been observed up to time t∗, which equals to 10% of the lifetime), 20%,
. . . , 80% and 90%. For each crack, we predict the updated residual lifetime at each
of the nine percentiles using the degradation signal observed up to that respective
percentile. The number of signals in this study is 59. We randomly select 50 of the
total signals as training signals for estimating the model components, and the rest
are validation signals for evaluating the performance of our model in predicting
residual life. For each validation signal, we use the following error criteria to assess
the prediction accuracy:

error = |Estimated Life − Actual Life|
Actual Life

.(6.1)

We replicate the above procedure for 100 times, and report the distribution of the
errors across the 100 simulations using a set of boxplots, each boxplot correspond-
ing to a degradation percentile for the testing components and providing the ab-
solute prediction errors for that percentile.

We first discuss the performance of our nonparametric model for complete,
sparse and fragmented degradation signals. In each complete degradation signal,
we have about 50 observations per signal. To obtain a sparsely observed degrada-
tion signal, we randomly sample m = 6 observations from each complete signal.
We use two intervals per signal to obtain fragmented degradation signals. The
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FIG. 4. The prediction error of residual life prediction for the crack growth data set.
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results are illustrated in Figure 4(b)–(d). The results indicate that our nonparamet-
ric model performs well for complete as well as incomplete degradation signals,
and the performance is better when the incomplete degradation signals are sparse
rather than fragmented. Although we have only approximately 10% observations
of complete degradation signals under the sparse sampling scenario, the prediction
errors do not increase significantly. This observation is important in practice; un-
der budget limitations, one may resort to sparse or fragmented degradation signals
without significant loss of predictive capability.

We also demonstrate the benefits of our proposed nonparametric degradation
model by comparing it with parametric models as benchmarks. Since the degra-
dation signals have a nonlinear trend with a curvature similar to the exponential
function, we transform the degradation signals using the natural logarithm in order
to linearize the trend and then apply a linear random effects model (henceforth,
denoted by “log-linear”). Since under the log-transform model, the residual life
predictions are inaccurate compared to the nonparametric approach, we consider
a double logarithm transformation of the degradation data (henceforth, denoted by
“log–log-linear”). The results of the sparse scenario using the parametric models
“log-linear” and “log–log-linear” are reported in Figure 4(e)–(f), respectively. We
find that both parametric models provide less accurate predictions of the residual
life than our nonparametric model. This is due to the inaccuracy of the parametric
models in capturing the crack propagation trend.

We provide one example in Figure 5 to illustrate the source of the bias of the
“log-linear” model. In this figure the x-axis represents the degradation time and
the y-axis represents the crack length, but in the log scale. We have one complete,
sparse and fragmented degradation signal in Figure 5(a)–(c), respectively. If the
“log-linear” model is the true underlying parametric model, we should see a linear
trend in all three plots. This seems to be true in the sparse or fragmented cases [see
Figure 5(b)–(c)]. However, for Figure 5(a) showing a complete signal, we note that
the degradation trend is still nonlinear; the log-transformation does not linearize
the signal (the same applies for the “log–log” transformation). Therefore, the “log-
linear” model does not accurately capture the crack propagation trend throughout
the unit’s lifetime. This example shows the potential difficulty of identifying a
reasonable parametric model for sparse and fragmented degradation signals and, in
turn, demonstrates the robustness of our proposed nonparametric model to model
misspecification.

7. Simulation study. In this section we simulate nonlinear degradation sig-
nals from three different models to demonstrate the benefits of using our proposed
nonparametric degradation modeling approach. We evaluate our approach in terms
of the prediction accuracy of estimating the residual life for complete, sparse and
fragmented degradation signals, contrast uniform and nonuniform sampling pro-
cedures for acquiring the ensembles of incomplete degradation signals, and also
investigate the robustness of our model to violations of its model assumptions.
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FIG. 5. Examples of the crack data under the log scale.

7.1. Simulation models. The degradation signals are simulated from three dif-
ferent models, and all of them are special cases of the general model (2.1). More
specifically:

• In Model 1, we choose μ(t) = 30t2, Xi(t) = ξ1φ1(t), where ξ1 ∼ N(0, 45
4 ),

φ1(t) = √
5t2, 0 ≤ t ≤ 1, and σ = 1.

• In Model 2, we choose μ(t) = 30t2, Xi(t) = ξ1φ1(t) + ξ2φ2(t), where ξ1 ∼
N(0,32), φ1(t) = 2t , and ξ2 ∼ N(0, (3

2)2), φ2(t) = √
80t2 − 3

4

√
80t , 0 ≤ t ≤ 1.

(The coefficients of the eigenfunctions are chosen so that they form an ortho-
normal functional basis for 0 ≤ t ≤ 1.)

• In Model 3, we choose μ(t) = 30t2 − 2 sin(4πt), Xi(t) = ξ1φ1(t) + ξ2φ2(t),
where ξ1 ∼ N(0,32), φ1(t) = 2t , and ξ2 ∼ N(0, (3

2)2), φ2(t) = √
80t2− 3

4

√
80t ,

0 ≤ t ≤ 1.
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We simulate from Model 1 because its residual life distribution can be easily
derived from training signals and updated using validation signals using the pro-
cedure in Gebraeel et al. (2005). The derived residual life distribution can then be
utilized as a benchmark to assess the performance of our nonparametric approach.

Across all the models, the failure threshold is set to D = 10. We generate
n = 100 “training” signals and n = 100 “validation” signals from each model.
For a complete signal, we have 51 observations made at an equally spaced grid
c0, . . . , c50 on [0,1] with c0 = 0, c50 = 1. A sparse or fragmented signal is then
sampled from a complete signal such that we observe about 6 observations per
signal. The stopping time for each training signal (the last point at which a sig-
nal is observed) is generated from Uniform distribution [Uniform(0.7,1)]—our
simulation results are insensitive to the selection of the stopping time distribution.

We run simulations for 100 times. For each simulation, we compute the predic-
tion errors at the following degradation percentiles: 10%, 20%, . . . , 70%, 80% and
90% of the simulated degradation signals.

7.1.1. Results and analysis of Model 1. In Figure 6(b)–(d), we present the
boxplots of the prediction errors when using the nonparametric degradation model
in this paper for complete, fragmented and sparse degradation signals. For the
sparse scenario, we compare the prediction accuracy of using the true parametric
model [see Figure 6(e)] and our nonparametric model when signals are uniformly
sampled [see Figure 6(f)] or nonuniformly sampled [see Figure 6(d)]. We assess
the robustness to model assumptions by simulating signals from the model with
ξ1 following a Gamma or Student t distribution [see Figure 6(g)–(h)]. We also
compute the prediction errors under different error distributions [see Figure 6(i)].

The first observation is that there is insignificant difference in the prediction er-
rors between the true parametric model and the nonparametric degradation model.
The differences are larger for high degradation percentiles. Since the difference in
the prediction errors increases with additional data, we observe for a new compo-
nent, we infer that this small inefficiency arises due to a decreased accuracy in the
estimation of the empirical prior distribution at the later time points.

The second important observation is that the nonuniform sampling technique
proposed in Section 5 enhances the prediction accuracy of the residual life. In Ta-
ble 1 we list the median prediction errors based on nonuniform sampling and uni-
form sampling techniques. The first row of this table represents the time percentile
of the degradation signals used for predicting the residual life. It is apparent that
the nonuniform sampling technique provides smaller prediction errors, especially
at high time percentiles. This is because nonuniform sampling ensures dense cov-
erage of observations over the whole time domain, including the region near max-
imum observation time (M), and hence provides more accurate estimate of the
mean and covariance functions of the model, especially at higher time percentiles.

Last, we assess the robustness to departures from our model assumptions: nor-
mality of the scores and normality of the errors. In Figure 6(g)–(h), we compare
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FIG. 6. The prediction error of the residual life estimate for Model 1.
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FIG. 6. (Continued).

the prediction errors when the scores follow Gamma and Student t distribution. We
also present the results when the errors follow Student t distribution in Figure 6(i).
The prediction errors for all these different settings are similar. This robustness
property of our degradation modeling is inherited from the robustness of the FPCA
method [Yao, Müller and Wang (2005)].

TABLE 1
Prediction errors based on sparse degradation signals that are uniformly or nonuniformly sampled

Time percentiles 20% 30% 40% 50% 60% 70% 80% 90%

Uniform 10.08 9.75 9.01 8.17 6.91 5.77 4.79 3.95
Nonuniform 10.08 9.75 8.97 7.89 6.50 5.28 4.23 3.11
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FIG. 7. Confidence interval estimation: the coverage rate (a) and mean length (b). In each plot the
left and the right bars correspond to the sparse and complete scenarios, respectively.

We also evaluate the accuracy of the confidence interval estimates introduced
in Section 4. In Figure 7 we present the coverage rate level and the mean of the
confidence interval length at the degradation lifetime percentiles 50%, 60%, 70%,
80% and 90%. The confidence interval level is 1 − α = 0.9. The coverage rate
is higher for complete signals than for sparse signals throughout all percentiles,
but the difference is insignificant. The coverage rate for both complete and sparse
signals is approximately equal to the confidence level 1 − α = 0.9. Moreover, the
mean length decreases for higher percentiles, implying that the accuracy of the
residual life estimate increases as the latest observation time point t∗ is closer to
the failure time.

7.1.2. Results and analysis of Model 2. In the following analysis we still use
Model 1 as the assumed parametric model and its derived residual life distrib-
ution as the benchmark. This assumed parametric model correctly captures the
mean degradation trend of Model 2 but not the underlying covariance structure
of the degradation process. It is worth mentioning that most existing parametric
approaches focus on identification of the functional form for the underlying degra-
dation trend, ignoring the underlying covariance structure.

The results in Figure 8 indicate that our nonparametric model is more accurate
than the assumed parametric model in predicting the residual life. This is because
our proposed nonparametric approach, which is FPCA-based, cannot only estimate
the mean trend accurately but also capture the dominant modes of the covariance
structure correctly. In contrast, parametric models are not flexible enough to accu-
rately capture the underlying covariance structure.

We also compute the prediction error results for cases when the observed degra-
dation signals are complete, fragmented or sparse, and also when the scores and
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FIG. 8. The prediction error of the residual life estimate for Model 2.

errors follow different distributions. Detailed results can be found in the supple-
mentary materials [Zhou, Serban and Gebraeel (2010)].

7.1.3. Results and analysis of Model 3. We discuss this in the supplementary
materials [Zhou, Serban and Gebraeel (2010)].

8. Discussions. In this paper we propose an Empirical Bayesian method for
predicting the degradation of a partially degraded component or system. Specif-
ically, we assume that the degradation process has unknown mean and covari-
ance, which can be estimated through a nonparametric approach using a histori-
cal database of degradation signals used to estimate the prior distribution of the
degradation process. These training degradation signals may be completely or in-
completely observed, that is, may be in the form of sparsely observed signals or
fragmented signals.
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Our degradation modeling and monitoring approach relies on a series of as-
sumptions:

• The degradation signals follow a Gaussian process.
• The time points at which the training signals have been observed cover the time

domain [0,M] cumulatively.
• The degradation signal of the new component does not cross back the thresh-

old D.

From our simulation results, departures from the Gaussian assumption will in-
significantly alter the residual life estimates when a large number of training sig-
nals are observed, as discussed in Section 7. This property is inherited from the
robustness of the FPCA approach used in estimating the empirical prior distribu-
tion.

Under sparse sampling, the selection of the observation times of the training
degradation signals impacts the accuracy of the degradation prior modeling. For
example, if the degradation signals are uniformly but sparsely sampled, the degra-
dation process will not be adequately observed at the later extreme time point M ,
since few components will survive up to this time point. Consequently, uniform
sampling compromises the accuracy of the mean and covariance estimates of the
prior degradation process, which, in turn, compromises the accuracy of the resid-
ual life estimate. In the simulation study we show that the accuracy of the residual
life estimates is low for the traditional uniform sampling as compared to the ac-
curacy of the estimates under nonuniform sampling. Thus, the second assumption
is ensured under nonuniform sampling but not uniform sparse sampling (see Sec-
tion 5).

The third assumption in our modeling approach relies on that the experimenter
will shut off or replace the component shortly after it degraded beyond the failure
threshold D.

In this paper we have applied the nonparametric approach to crack growth data
with a wide applicability, for example, in infrastructure (bridges, steel structures),
maritime (hulls of oil tankers), aeronautical (aircraft fuselage), energy (vanes of
gas turbines) and others. This case study demonstrates the accuracy of the nonpara-
metric approach introduced in this paper as compared to random effects parametric
models which impose constrains on the shape of the trend μ(t) and the covariance
C(t, t ′). Other potential applications are relevant to LED data that could be found
in Yu and Tseng (1998), Liao and Tseng (2006) and Tseng and Peng (2007).
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SUPPLEMENTARY MATERIAL

Additional results (DOI: 10.1214/10-AOAS448SUPP; .pdf). In this supple-
mental file we provide some additional results of the crack growth data study and
the simulation study.
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