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Degradation of Modulation and Noise
Characteristics of Semiconductor Lasers After
Propagation in Optical Fiber Due to a Phase

Shift Induced by Stimulated Brillouin Scattering
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Abstract—Here we demonstrate theoretically that stimulated
Brillouin scattering (SBS) can induce a phase shift of the optical
carrier relative to its sidebands due to the waveguiding effect
of the optical fiber on the acoustic wave. This causes conversion
of frequency modulation to intensity modulation, which results
in an increase in the relative intensity noise and degradation
of the modulation response of directly modulated lasers after
propagation in an optical fiber, in agreement with our exper-
imental observations. Suppression of SBS can be achieved at
low frequencies and high modulation powers due to the laser
adiabatic chirp.

Index Terms—Brillouin scattering, laser noise, optical fiber
communication, optical fiber measurement, optical modulation,
optical propagation in nonlinear media, semiconductor lasers.

I. INTRODUCTION

FIBER nonlinearities may significantly degrade the per-
formance of high-speed lightwave systems using high-

power laser sources [1]. In particular, it has been shown
through signal-to-noise ratio (SNR) and bit-error rate (BER)
measurements that the onset of stimulated Brillouin scattering
(SBS) can be a major impairment in directly modulated fiber-
optic systems [2], [3].

Previous studies emphasized degradations resulting from
power saturation [4], spontaneous Brillouin scattering noise
[5], and the effect of the backward-propagating signal on the
laser source [1]. Here, we provide experimental evidence of
an SBS-induced phase shift of the optical carrier relative to its
sidebands that leads to distortion of the modulation response
(MR) and an increase in relative intensity noise (RIN) at low
frequencies due to conversion of laser frequency modulation
(FM), i.e., laser chirp, to intensity modulation (IM). This phase
shift is explained theoretically by taking into consideration the
guided nature of the acoustic waves in optical fibers.
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In an optical fiber, the acoustooptic interaction between
sound and optical waves differs from the Brillouin scattering in
a bulk medium [6]. In a fiber, a large number of (longitudinal)
acoustic modes are excited by the light, which are the eigen-
modes of the cylindrical structure rather than plane waves, and
this leads to a relaxation of the wavevector selection rule. As a
consequence, spontaneous Brillouin scattering in the forward
direction was observed and was called guided acoustic wave
Brillouin scattering [6]. It has been recently found that this
effect can contribute to timing jitter in soliton transmission
systems [7] and affect propagation of NRZ pulse trains [8].

Here, we show that the guided nature of the acoustic waves
in optical fibers can also affect backward SBS, inducing a
phase shift of the optical waves. In order that a significant
acoustooptic interaction occurs, not only do the propagation
constants have to be phase matched, but there also has to
be a significant overlap between the transverse profiles of
acoustic and optical modes. The latter condition is satisfied
for modes with phase velocity close to but greater than the
longitudinal sound velocity . However, if the phase velocity
is less than , the acoustic mode becomes a surface wave with
maximum amplitude near the surface of the cylinder and will
be hardly excited by the optical wave. It will be shown that this
results in a slight asymmetry in the Brillouin gain spectrum,
which can be observed in precise measurements of Brillouin
gain spectra (see, e.g., [9, Fig. 4(a)]), and a phase shift of
the optical waves affected by SBS, in agreement with our
experimental results. If most of the optical power is contained
in the carrier and the modulation frequency is larger than the
Brillouin gain bandwidth, only the carrier undergoes SBS and
thus suffers an additional phase shift relative to its sidebands.
As a consequence, conversion of FM to IM occurs, which is
experimentally observed in measurements of MR and RIN.

This paper is structured as follows. Section II describes
the experimental setup that was used to measure the RIN
and MR. In Section III, the effect of fiber nonlinearities on
MR is studied. We show experimental evidence that SBS
induces a phase change in the optical carrier with respect
to the sidebands that leads to an increase of the MR at
low frequencies due to FM-to-IM conversion. Section IV
presents the effect of SBS on RIN. The SBS-induced phase
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Fig. 1. Experimental setup.L: variable optical attenuator; OMM: optical multimeter; PD: photodetector; NA: network analyzer; ESA: electrical
spectrum analyzer.

change causes an increase in RIN at low frequencies by
conversion of phase noise to intensity noise. In addition, it
is shown that SBS causes excess noise at frequencies around
harmonics of the acoustic wave frequency for both forward and
backward propagating waves. Section V contains a theory of
the acoustooptic interaction, including the waveguiding effect
of the optical fiber on the acoustic wave. It is shown that
SBS induces a phase shift of the optical carrier relative to its
sidebands, which satisfactorily explains the measured increase
in RIN and MR at low frequencies. Finally, in Section VI, the
main conclusions are outlined.

II. EXPERIMENTAL SET-UP

The diagram of the experimental setup is shown in Fig. 1.
The optical source was a high-power MQW-DFB laser (OR-
TEL Corporation) operating at 1.55m. This laser was biased
at 300 mA, yielding an output power at the laser pigtail of
14.4 dBm, and had a threshold of 18 mA. The laser was
directly modulated with the signal from a network analyzer
(NA) using a microwave probe. The laser light was attenuated
and launched into an 85/15% fiber directional coupler. The
85% port was connected onto a spool of standard telecom-
munications fiber (from 25 to 75 km), the output signal was
photodetected and then the MR and RIN were measured with
a NA and an electrical spectrum analyzer (ESA), respectively.
Angled connectors were used to minimize reflections.

Measurements of MR and RIN before and after propagation
in dispersive fiber, with the signal output attenuated to avoid
nonlinear effects, were used to determine laser parameters [10],
[11], such as resonance frequency GHz, damping
factor GHz, linewidth enhancement factor ,
photon lifetime ps, carrier lifetime
ns, linewidth 0.5 MHz, and the fiber dispersion parameter

ps /km.
The amount of optical power launched into the fiber was

controlled with a variable optical attenuator, and measurements
of RIN and MR were performed at several optical powers and
modulation powers for the forward and backward propagating
fields.

III. EFFECT OFSBS ON MODULATION RESPONSE

Semiconductor lasers exhibit chirp, i.e., the frequency of the
optical field is modulated whenever the intensity is modulated.
Thus, the complex electric field amplitude at the output of
a semiconductor laser directly modulated with a modulation

frequency can be expressed in the form

c.c.

c.c. (1)

where and are the IM and FM indices, respectively.
The ratio , where

is the dephasing angle between the laser frequency
and intensity modulation, will be referred to in what follows
as the phase-to-intensity (modulation index) ratio (PIR), which
for light produced by a semiconductor laser is a function of
the modulation frequency . In the case of direct modulation
of the laser with modulation current , the PIR can be
expressed as

PIR (2)

where is the linewidth enhancement factor and is
related to several laser parameters and contributes to a quasi-
adiabatic chirp [10].

Due to group velocity dispersion, linear propagation in dis-
persive optical fiber produces a phase change of the sidebands
relative to the optical carrier, which results in partial conver-
sion of FM into IM, which is photodetected at the fiber output
[11], [12]. At low modulation frequencies, the dispersion is
very small and the change in MR after propagation is simply
given by the fiber loss. However, our experimental results
show that, as the optical power launched in the fiber increases,
some optical power is backreflected by SBS, and, surprisingly,
correlated with this power loss, the MR at low frequencies
increases. We attribute this increase to a phase change in the
optical carrier induced by SBS. At high, this small nonlinear
phase change can be neglected compared to that resulting from
dispersion. However, at low , it becomes dominant and, as
a consequence, the large adiabatic chirp that semiconductor
lasers present at low is converted into intensity modulation.
The origin of this phase change will be explained in Section V.

Let be the dephasing between the optical carrier
and the optical sideband at due to both fiber dispersion and
fiber nonlinearity, that is,

(3)
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Fig. 2. Change in modulation responsejH(
; z)j2 for 50 km of fiber,�28
dBm modulation power, and several launched powers into the fiber. Dashed
line is measuredjH(
; z)j2 in the absence of nonlinear effects. Solid line
is theory.

Then, the detected photocurrent at a small-signal modulation
frequency at the fiber output is related to that at
the laser output by

PIR (4)

The electrical transfer function is normalized by the
loss in the fiber, where and are the power loss
suffered by the optical carrier and the sideband, respectively,
due to both fiber attenuation and SBS.

Since the spectrum of the Brillouin gain is very narrow
( 15 MHz, as shown in Section IV), it can be assumed that
for the modulation range considered here, MHz, no
cross interactions between the optical carrier and sidebands
contribute to the SBS gain. In addition, in the small-signal
regime, only two modulation sidebands need be taken into
account. Since most of the optical power is contained in the
carrier, we can assume that the sidebands only suffer linear
fiber loss, whereas part of the power in the carrier is lost to
SBS. Thus, we set

(5)

(6)

Fig. 2 shows for a small modulation power and
several optical input powers. At low modulation frequencies,
the laser chirp is dominated by the quasi-adiabatic term and
varies as . A negative results in part of this chirp
converted into IM, and increases with decreasing

as . At high , and using the normalization explained
above, approaches its linear regime value.

Since the modulation power is very small ( %),
the small-signal approximation is valid and (4)–(6) can be used
to determine the nonlinear phase change. The PIR was
measured by first attenuating the power launched in the fiber
so that the linear theory holds using the method developed

in [10]. We see that the theory above accounts well for the
experimental results. Fig. 3 shows the measured together
with the backscattered and forward output powers as a function
of the optical input power. The dotted line is the predicted
using the theory in Section V.

At higher modulation powers, but low enough so that
is less than 2%, even though the small-signal theory would still
be valid in the linear regime, it fails to predict the measured
MR after propagation in fiber at high optical powers. As the
modulation power is raised, the optical bandwidth increases
due to a larger laser chirp, and the SBS is reduced. The
consequence of this is twofold. First, since the FM index
is a function of , the detected dc photocurrent fluctuates
as varies. Second, the MR at sufficiently low and high
modulation power returns to that in the linear regime.

Here we present a large-signal model that explains the
observed phenomena. As the laser chirp increases, the optical
power is distributed among an increasing number of FM
sidebands with weights such as

(7)

(8)

where are Bessel functions and we used the fact that
is small. Thus, after propagation in fiber, the coefficients
are given by

(9)

The detected dc photocurrent can be obtained as

(10)

where is the photodiode responsivity, and the photocur-
rent at is given by

(11)

Fig. 4 shows the measured and received
power for several modulation powers. In normalizing

, we have assumed for convenience, since
is difficult to measure, that the modulation sidebands
only suffer linear fiber loss, i.e., we set

. This is not a valid assump-
tion at large modulation powers and low, i.e., for large
laser chirp. In fact, when , most of the optical
power is contained in the first sideband, which is then partly
backscattered by SBS, and . As a consequence
of the normalization we used, becomes negative
(in decibels). As the bandwidth of the signal increases, the
SBS is reduced, and the received power rises. The ripple in

and received power at low frequencies is due to the
oscillatory behavior of the Bessel functions. On the contrary,
the structure observed in the received power at GHz
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Fig. 3. Left axis: forward (solid) and backscattered (dashed) optical powers for 50 km of fiber. Right axis: nonlinear phase change (solid is experimental,
dotted is theoretical prediction as described in text).

is due to the frequency response of the microwave probe
employed to modulate the laser.

The large-signal theory described above was used to explain
the experimental data and is represented in Fig. 4 with a solid
trace. To determine and , we neglect, as
we did in the small-signal case, cross interaction between
sidebands. Then, we can assume that the power loss and
phase change in each FM sideband can be extracted from
the previous data in Fig. 3, for the given power in the FM
band. Good agreement has been found between this simple
model and the measurement. The main discrepancy occurs
when becomes negative in decibels, which our
model underestimates. This is attributed to the assumption of
no cross interaction.

The inset in Fig. 4 shows in an extended fre-
quency range for both linear and nonlinear regimes. It is
observed that at high, and with the normalization in (4)–(6),
both curves coincide. Thus, the effect of self-phase-modulation
(SPM) that was recently reported in [13] does not appear in
our data, which indicates that SBS manifests itself at lower
optical powers than SPM.

IV. EFFECT OFSBS ON RELATIVE INTENSITY NOISE

The presence of SBS alters the RIN in two ways. First,
excess noise appears around 0 Hz and around harmonics
of the acoustic wave frequency for both backward and for-
ward propagating fields [14]. Second, we show here that the
SBS-induced phase change in the optical carrier results in
conversion of part of the FM noise into IM noise, which causes
additional excess noise at low frequencies.

The FM-to-IM conversion of laser noise can be treated in a
way similar to the case of MR in Section III. The PIR due to

photon fluctuations, which are generated by a Langevin noise
source , is given by

PIR (12)

As decreases, the PIR increases, and a small phase change
of the optical carrier can result in a strong enhancement of
the noise. This is observed in Fig. 5, where the RIN is plotted
for several launched powers in the fiber. Equations (4)–(6)
together with (12) can be used to determine , which is
shown in the inset. The slight discrepancy between experiment
and theory is attributed to the simple model used to describe
the RIN, which does not include the effect of side modes
[15] and FM-to-IM noise conversion due to double Rayleigh
scattering [16]. These two effects are independent of the
launched power and explain why does not equal exactly
zero at small launched powers. The excess noise induced by
SBS near 0 Hz reported in [14] would affect frequencies below
the ones here considered and does not need to be included in
the analysis.

The RIN spectrum of the forward (backward) wave exhibits
excess noise around harmonics of due to mixing upon
detection of the incident (Stokes) wave with small reflections
of the Stokes (incident) wave caused by Rayleigh scattering
[14]. When the laser is modulated at a frequency, SBS
induces additional excess noise at frequencies ,
with and integers. Fig. 6 displays the measured RIN
of the forward and backward fields after propagation in 75
km of fiber for frequencies around 0 Hz and . The power
launched into the fiber was 13 dBm and the laser was directly
modulated at 300 MHz with several modulation powers. As
can be observed in Fig. 6(a), the excess noise due to FM-
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(a)

(b)

Fig. 4. (a) Change in modulation responsejH(
; z)j2. (b) Received power
as function of modulation frequency for 50 km of fiber, 18 mW of launched
optical power, and several modulation powers. Dashed line: measured data
in the absence of nonlinear effects. Solid line: theory. The inset in (a)
showsjH(
; z)j2 in an extended frequency range for 18-mW optical power
(triangles) and linear regime (solid) with 0-dBm modulation power.

to-IM conversion also appears at harmonics of the modulation
frequency . As discussed in Section III, for sufficiently high
modulation power and low modulation frequency, the input
optical power is distributed in many sidebands, and the SBS,
and consequently the excess noise, is suppressed.

The RIN spectrum of the backward Stokes wave at 0 Hz
[Fig. 6(c)] can be used to determine the spectrum of the
Brillouin gain [17] and gives a rough estimate of the Brillouin
bandwidth to be around 15 MHz. The measured RIN level of
the Stokes wave was approximately80 dB/Hz (irrespective
of fiber length and launched power), which can be related to
the strength of the Langevin noise source that describes the
thermal excitation of acoustic waves [18]. Residual excess
noise at harmonics of the modulation frequency is due to

Fig. 5. RIN for 25 km of fiber and several launched powers into the fiber.
Dashed line: RIN in the absence of nonlinear effects. Solid line is theory. The
inset shows the nonlinear phase change as a function of launched power.

SBS backscattering of the incident field sidebands rather than
beating of the small reflection of the incident field with itself.

The excess noise of the Stokes wave around[Fig. 6(d)]
can be well explained as originating from mixing of the Stokes
wave with a small reflection of the modulated incident wave
caused by Rayleigh scattering. Thus, the complex electric field
amplitude of the backward propagating wave at the fiber input,

, can be expressed approximately as:

(13)

where is the backreflected Stokes power at the fiber input,
is the integrated power of the forward propagating field

along the fiber, and is the field reflection coefficient due
to Rayleigh scattering. The RIN power (RINP) at
can be determined experimentally by integrating the RIN over
the spectral width of the spike (or by normalizing the RIN by
the value at 0 Hz). From (13), we find that the RINP of the
backward propagating field, RINP, is proportional to ,
that is:

RINP (14)

Fig. 7 shows the factor determined from the exper-
imentally measured RINP and (14). The value of was
estimated by assuming an exponential decay of the forward
propagating field. By comparing this with from (8)
(dotted line in Fig. 7), we obtain dB, which
agrees well with the value expected for Rayleigh scattering.

V. EXPLANATION OF SBS-INDUCED PHASE CHANGE

In this section, it will be theoretically demonstrated that
due to waveguiding of the acoustic wave in the optical fiber,
the Brillouin gain is complex. The imaginary part of this
gain shifts the phase of the carrier relative to the modulation
sidebands when these do not undergo SBS.
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(a) (b)

(c) (d)

Fig. 6. RIN of (a), (b) forward and (c), (d), backward propagating waves after 50 km of fiber at (a), (c), low frequencies and (b), (d) around
B . The laser
light was directly modulated at 300 MHz with modulation powers (MP)�20 dBm (circles) and�10 dBm (triangles).

The theory of the acoustooptic interaction in an isotropic
free cylinder is more fully developed in Appendix I. There
we show that, in the case of backward Brillouin scattering,
the acoustic wave can be well described by a material density
fluctuation that satisfies the wave equation driven through
electrostriction by the electric field , that is,

(15)

where is the longitudinal sound velocity, is the damping
factor, and quantifies the strength of the electrostrictive
effect. This acoustic wave originates a nonlinear polarization

given by

(16)

where is the material density.
In the absence of electric field, only a discrete set of acoustic

modes can propagate in the fiber. Neglecting the

damping factor, these modes satisfy

(17)

Here the operator is the Laplacian acting on the trans-
verse coordinates, and are the eigenvalues or longitudinal
propagation constants of the acoustic modes.

Only acoustic modes with no azimuthal variation will excite
a polarization in a single-mode fiber. These are usually referred
to as dilatational or longitudinal acoustic modes [19], [20] and
are given by

(18)

where is the radius of the acoustic guide, which is
usually the fiber cladding radius, and the eigenfunctions are
normalized such that (see Appendix II). The
value of the transverse propagation constant of the longitudinal
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Fig. 7. Factorj
Rj2jcnj2 derived from the measured RIN power of the
backward propagating field at the fiber input at
B + n
 as a function of
modulation frequency
=2� for two different MP’s after 75 km of fiber. The
dashed line is obtained withj
Rj2 = �35:5 dB and jcnj2 as determined
from the laser chirp and modulation power.

acoustic modes follows from application of boundary
conditions. If we assume that the cylindrical surface is free of
traction, i.e., , the Pochhammer frequency equation
[20] is derived, from which and
can be calculated. When the particle vibrates in a longitudinal
mode, radial and axial motions are coupled, and, contrary to
what has been previously stated [7], [8], the eigenfunctions
(18), even though they form a complete set, are not orthogonal.

Let us assume harmonically varying forward and backward
propagating optical waves, that is,

c.c. (19)

where is the transverse distribution of the fundamental
mode in a single-mode optical fiber andand are unit vec-
tors in the directions of the forward and backward propagating
fields, respectively. Here, we neglect fiber birefringence (see
Appendix I for a discussion on birefringence induced by the
acoustic wave) and assume linearly polarized electric fields,
both along the same direction. The beating of these two fields
gives rises to an acoustic wave at frequency
and with wavevector , where is
the optical wavelength and is the fiber modal index. Since
the radius of the acoustic guide is much larger than the
acoustic wavelength , a large number of acoustic
modes are excited. The acoustic modes form a complete set
and. therefore, the acoustic wave can be expressed as a linear
combination of the such as

c.c. (20)

Inserting the expansion for the acoustic wave (20) into the den-
sity wave (15) and using (17), we can obtain the coefficients

in a “least-squared” sense by solving the following
system of linear differential equations:

(21)

In writing (21), we have neglected derivatives of the electric
field envelope amplitudes and , second derivatives of ,
and transverse derivatives of the electric field against longi-
tudinal derivatives, and we have assumed that the modulation
frequency of the acoustic wave envelope is much smaller than

. Analytical expressions for the inner products in (21) have
been found and are included in Appendix II (these integrals
appeared in a similar context in [7] and [8] and were evaluated
numerically). In practice, only modes with will
contribute significantly to the mode expansion (20), and only
a reduced number of coefficients is needed to perfectly
describe the acoustic wave.

The evolution of the electric field envelope amplitudes can
be found by substituting the electric field expansion (19) and
the nonlinear polarization (16) into the optical wave equation.
We obtain

(22)

(23)

(24)

where is the fiber group
velocity, is the fiber dispersion parameter, andis the fiber
loss. The electric field is normalized to (see
Appendix II), so that the power in each optical field is given
by .

From (22), we find that the real part of is the power
Brillouin gain, whereas the imaginary part of is the origin
of a phase modulation of the optical field. In steady state, the
pump wave undergoes a phase change given by

(25)

To a first approximation, we can neglect spatial derivatives
of and can set for . In the steady state,
the coefficients are thus given by

(26)

Under this approximation, we find

(27)
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Fig. 8. Dispersion map of longitudinal acoustic modes forvl=vt = 1:6032.
For 
l=kn � vl, the group velocity of the mode tends to the longitudinal
sound velocityvl from above, whereas when
l=kn < vl the mode becomes
a surface wave and the group velocity approaches the transverse sound velocity
vt.

where , , and
are the

approximate acoustic wave frequency, width, and maximum
gain of the Brillouin spectrum in the absence of waveguiding
effects, i.e., for .

As stated above, the dispersion map for the acoustic modes,
i.e., the variation of the longitudinal propagation constant of
the acoustic modes with the frequency , can be obtained
by solving the Pochhammer frequency equation [20]. Here
we only consider modes with real , since modes with
imaginary will attenuate very rapidly. On the contrary,
the transverse propagation constantscan be real or purely
imaginary, depending on whether the phase velocity
is greater or smaller than the longitudinal sound velocity.
The latter case corresponds to surface waves, which have
maximum amplitudes near the surface of the cylinder. These
surface waves will be hardly excited, since the optical mode
is concentrated near the core region. Similarly, when the
magnitude of is large, the transverse profile of the acoustic
mode becomes highly oscillatory and the overlap integral
between the optical field and the acoustic mode is very small.
Thus, only modes with and will interact
significantly with the optical field.

Numerical calculations have been performed to obtain the
Brillouin gain for standard single-mode fiber with

m and at optical wavelength m. The dispersion
map in the region is shown in Fig. 8
for . The normalized overlap integral between
the electric field and the acoustic modes, ,
is plotted in Fig. 9 for several normalized frequencies. The
asymmetry is due to the presence of surface waves.

If the effect of waveguiding of the acoustic wave is ignored,
the imaginary part of the Brillouin gain at the frequency at
which the real part reaches its maximum value is given by

(28)

Fig. 9. Normalized overlap integral between the optical and acoustic modes
(�=!�)aclhE

2

0
; �ni as a function of the (arbitrary) mode numbern for three

different values of the normalized frequency!lacl=vl. The asymmetry is due
to the low overlapping between the optical mode and the surface waves.

Fig. 10. Real and imaginary parts of the normalized gaingBAe�=gB0 as
a function of frequency forvl=vt = 1:6032.

Since , this is very small. However, when (24) is
used, due to the low coupling to the surface waves,
becomes slightly asymmetric, and is no longer
negligible. Fig. 10 shows the real and imaginary parts of

, where is the fiber core effective area,
for MHz. If waveguiding effects are neglected,

, whereas here we obtain
. Using

mW km and , where
is the backscattered power and is the fiber

effective length, in (25), the dotted trace in Fig. 3 is obtained
for the nonlinear phase shift. Thus, it can be concluded that
this effect has the correct sign and magnitude to produce the
nonlinear phase change experimentally measured. Moreover,
the slight asymmetry in the has been observed in our
RIN measurements in Section IV, as well as in more precise
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measurements of the gain spectrum found in the literature
(see, e.g., [9, Fig. 4(a)]).

The gain spectrum depends on fiber type [9], [14] and, from
the above discussion, we expect that the induced phase shift
will also exhibit a dependence. Experimental verification of
the effect of the fiber type on induced phase shift will be the
subject of future investigation.

VI. CONCLUSIONS

The effect of SBS on MR and RIN was studied. It was
shown experimentally that an SBS-induced phase change
of the optical carrier can contribute to degradation of the
performance of lightwave communication systems through an
increase in the RIN and reduced linearity of the MR at low
frequencies. This phase change was theoretically explained by
including the waveguiding effect of the optical fiber on the
acoustic wave. In addition, excess noise at harmonics of the
acoustic frequency has been measured.

APPENDIX I
THEORY OF THE ACOUSTOOPTICINTERACTION

A solid can become strained when placed in an electric field.
In isotropic materials such as glass, the linear effect vanishes,
and quadratic effects have to be considered. On the other hand,
certain materials develop an electric moment under stress and,
as a consequence, the dielectric constant is a function of the
strain. In this case, the linear effect does not vanish and is the
first-order effect. Physically, reversing the sign of the strain
changes the state of the solid from tension to compression
and so, in general, modifies the dielectric constant, whereas
reversing the sign of the electric field does not change the
physical situation, and the refractive index and strain should
remain essentially unaltered.

The acoustic field variables that characterize particle motion
and deformation in a vibrating material medium are the particle
displacement vector , the strain tensor , and the
elastic restoring force or stress tensor . These three field
variables are related by the equation of motion [19], [20]

(29)

as well as the strain-displacement relation

(30)

and the elastic constitutive equation or Hooke’s law, which,
for a nonpiezoelectric material (such as an isotropic material),
is given by

(31)

Here, is the material density, is the elastic stiffness tensor,
is the viscosity tensor, which accounts for the existence of

dissipative or frictional forces [21], is the electrostriction
tensor, which describes the stress resulting from the electric
field , and the operator takes the symmetric part of the
displacement gradient, i.e.,

The change in optical dielectric constant tensorinduced by
the acoustic wave is given by

(32)

where is the strainoptic tensor. It can be shown that the
tensors and are proportional [22].

The form of the tensors that describe the acoustooptic
interaction can be derived from considerations of the symmetry
of the medium. In an isotropic material such as glass,is
described by just one parameter, which, under suitable axes,
is the value in the diagonal. On the other hand, the fourth
rank tensors , and have all the same form, and each of
them can be reduced to just two constants. For the stiffness
tensor, these are the Lam´e’s constants and . By substituting
these tensors into (31) and (32), simplified expressions for the
acoustic equation of motion (29) and the nonlinear polarization

are obtained as

(33)

(34)

where and are the squared
longitudinal and transverse sound velocities, respectively.

The electrostriction constants are given by [22]

(35)

where and are the strain-optic
coefficients for fused quartz, andis the refractive index.

The problem described by (33) and (34) is quite involved
but can be greatly simplified by neglecting transversal versus
longitudinal variations of the material displacement and the
electric field, which is a valid approximation for the case of
backward Brillouin scattering considered here in a single-mode
optical fiber. As shown below, in this case, it is sufficient
to consider the effect of , neglecting the contribution of

, and we can express the equation of motion in terms
of the material density variation, which, in analogy with
hydrodynamics, is defined as

(36)

Substituting into (33) and (34), the acoustic wave equation
for the material density fluctuation (15) is derived, where

and .
Now we outline the procedure in the general case, when the

contribution of is included. In order to determine which
acoustic modes are excited by the electric field, we have to
evaluate and . The terms oscillating at
are given as shown in (37) and (38), at the bottom of the
next page, where the three vector components are directed
along , , and . Thus, the electric field will excite acoustic
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modes with no azimuthal variation and modes varying
sinusoidally as .

Next we analyze the nonlinear polarization (34) to determine
which acoustic modes can excite the fundamental fiber mode.
The necessary condition is that and have no
azimuthal variation. For , this is only satisfied for modes

. Let’s examine now as

(39)

From (39), it can be concluded that modes in combination
with factors in (39) with no azimuthal variation and modes
in combination with factors in (39) varying as will excite
the fundamental fiber mode.

The approximation in Section V is justified from (39) since
the only terms from that contribute to are propor-
tional to transverse variations of the material displacement.
Similarly, only transverse derivatives of the electric field
appear in the expression for in (38).

The material displacement in the presence of excitation can
be expanded in terms of the eigenmodes as we did in (20),
and we can write

c.c. (40)

A similar approach to that in Section V can be followed to
determine the coefficients of this expansion.

Equations (34) and (39) show that, even though the material
is isotropic, due to the acoustooptic interaction it becomes
anisotropic and birefringent.

APPENDIX II
SOME USEFUL INTEGRALS

The inner product used in this paper is defined as

(41)

Using

if

if

(42)

we find (43), shown at the bottom of the page. If we use a
Gaussian approximation for the fundamental fiber mode with
mode beam waist , ,
where is normalized so that equals the power
carried by mode, i.e., , we find

(44)
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