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Abstract: In the past few decades, the railway infrastructure has been widely expanded in urban and rural areas, making it the most
complex  matrix  of  rail  transport  networks.  Safe  and  comfortable  travel  on  railways  has  always  been  a  common  goal  for
transportation engineers and researchers, and requires railways in excellent condition and well-organized maintenance practices.
Degradation of rail tracks is a main concern for railway organizations as it affects the railway’s behaviour and its parameters, such as
track geometry, speed, traffic and loads. Therefore, the prediction of the degradation of rail  tracks is very important in order to
optimise maintenance needs, reduce maintenance and operational costs of railways, and improve rail track conditions.

This  paper  provides  a  comprehensive  review  of  rail  degradation  prediction  models,  their  parameters,  and  the  strengths  and
weaknesses of each model. A comprehensive discussion of existing research and a comparison of different models of degradation of
rail  tracks is  also provided. Finally,  this review presents concluding remarks on the limitations of existing studies and provides
recommendations for further research and appraisal practices.
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1. INTRODUCTION

Public transport consists of extensive networks and a wide variety of transport services. As a strategy to tackle the
growing demand for transport service providers in the past tried expanding the existing networks and kept expanding
them till they meet those demands. However, this has become an option, which is not viable due to lack of land space
and economical restrictions. Instead of that they have focused on intelligently managing and maintaining their current
networks  to  the  optimum  levels.  They  have  also  focused  on  maintenance  planning,  which  covers  a  wide  range  of
transport engineering asset-management systems, optimisation planning and maintenance decision-making. One of the
main recent concerns in rail public transport is the degradation of rail tracks. Although the degradation of rail tracks is
generally slow, it may lead to high-risk failures with enormous financial maintenance costs. Therefore, the prediction of
rail track degradation is a very important process in order to optimise maintenance needs, reduce costs, and improves
track conditions (i.e. the quality of materials) in relation to different degradation components, such as track load, time,
speed of vehicles and other parameters.

This study reviews the existing literature on the prediction of degradation of rail tracks. The emphasis is on studies
published in relationship to recent degradation activities of rail tracks on light rail (i.e. tram) and heavy rail (i.e. train)
routes. The main focus is of this review is to understand the behaviour of each predicted degradation model, taking into
account the variables and factors. It is hoped that this study will improve the prediction of degradation modelling to
optimise maintenance practices and minimise track imperfections.

This paper is structured as follows. Section 2 presents an overview of railway track structure and track degradation
modelling, highlighting the contributing factors. It also includes a classification scheme for rail degradation models, and
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discusses  in  detail  the  development  of  each  degradation  model  and  its  variables.  Section  3  summarises  the  main
findings of the literature review, including a discussion of the limitations of existing studies. Section 4 provides some
concluding remarks and recommendations for future research.

2. REVIEW OF RAIL TRACK DEGRADATION MODELS

The core of this paper is the review of rail track degradation models in the literature. To understand the dynamic
behaviour of degradation, it is first important to provide an overview of the railway track structure and factors affecting
track degradation modelling. This section of the literature review briefly introduces the structure of railways, followed
by an outline of rail degradation modelling and associated factors.

2.1. Overview of Railway Track Structure

A railway is a track where the vehicle moves along two parallel rails. These rails support the wheels of the vehicles
including the locomotives and wagons. The structure of a railway is divided into two sections:

Superstructure (top rail track),
Substructure (below the rail track).

The  superstructure  consists  of  the  rails,  the  fastening  system,  rail  pads  and  sleepers,  whereas  the  substructure
consists of the ballast, sub-ballast and the subgrade [1].

Traditional ballasted tracks and concrete slab tracks (ballast-less track) are the most common types of rail tracks [2].
On traditional ballasted tracks, the rails are set on wooden or concrete sleepers. The sleepers lie on a sheet of ballast that
distributes  the  loading  to  the  subgrade.  Top  ballast  is  situated  between  the  sleepers  and  on  the  shoulders  to  retain
longitudinal and lateral stability [3]. Ballast cleaning and renewal is also part of the maintenance routine. Basically,
cleaning the ballast is achieved by a specific cleaning machine. It is required when the ballast becomes so fouled that it
cannot fulfil its functions. If cleaning does not succeed, renewal is required and the ballast is completely replaced. Fig.
(1) shows the structural components of a typical railway track.

Fig. (1). Cross-section of a Typical Railway Track [1].

2.2. Track Degradation Modelling

Rail degradation is a failure process, which leads to a rail defect (fault). Various studies on rail degradation have
been performed by a number of researchers over the years [4 - 8]. There is a need to reduce rail degradation and predict
rail failure in order to develop an effective rail maintenance strategy. A number of factors contribute to the degradation
of rail tracks, including the condition of assets (i.e. sleepers, fastenings and ballast) [9], age of rails and axle load [2,
10], speed [10], traffic density [11, 12], traffic type, rail-wheel interaction [10], Million Gross Tonnes (MGTs) [2], track
curvature [3, 10], rail size, rail profile, and rail track construction [2], rail track elevation, rail track super-elevation and
rail welding [10], and rail lubrication [13].

2.3. A Classification Scheme of Rail Degradation Models

In degradation modelling, the condition of rail tracks is predicted at some future point when maintenance may need
to be implemented. Different degradation models have been developed by previous researchers [14 ,15 - 20] based on
the influencing factors and different characteristics of railroad tracks, such as rail type, size, and profile.
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Accordingly, rail degradation models can be classified into four general approaches, as shown in Fig. (2) below.

Fig. (2). Classification of rail degradation models.

2.3.1. Mechanistic Models

The  mechanistic  approach  involves  establishing,  by  theory  or  testing,  the  mechanical  properties  of  rail  track
structure. It includes the calculation of forces and stresses in order to assess the degradation variation of the rail [4].

Different studies have been applied using the mechanistic approach to predict the degradation of rail tracks. These
studies can be categorized into two main categories as follows:

Models based on Japanese studies [21 - 24]
Models based on Austrian studies analysing the development of track quality from a passenger’s point of view
[3, 24, 25].

Japanese railway companies established the relationship of the settlement of railway ballast and cyclic loading (train
speed)  [23].  The  following  typical  equation  is  frequently  used  to  measure  the  track  deformation  (y)  of  heavy-haul
narrow gauge and high standard gauge tracks:

(1)

Where, x represents the repeated number of loadings or tonnage carried by the track, α is the vertical acceleration
required to initiate slip which can be measured using spring-loaded plates of the ballast material on a vibrating table, β
is a coefficient proportional to the sleeper pressure and peak acceleration experienced by the ballast characteristics and
the presence of water, and γ is a constant dependent on the initial packing of the ballast material.

Sato (1995) found that traffic, time, track condition and humidity are the variables which have most influence on
rail track degradation. However, this model may be hard or impossible to use in some cases, as the sections of the rail
change along the rail  route (i.e.  straights,  curves,  crossovers) and measurements of all  the variables are required to
develop a mechanistic model.

On the other hand, a study of settlement based on the mechanistic approach has been developed in Austria using a
quality index, which denotes acceleration in the vehicle caused by track irregularities [3]. This index comprises both
horizontal and vertical deviations in tracks with a shortage of super-elevation and speed. The following equation for
track quality shows the exponential behaviour of the track quality index over time:

(2)
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Where, Q is the track quality index, Q is the initial track quality, and b is a constant.

The exponential structure of the Austrian degradation model shows that an increase in the roughness of the track
results in more dynamic forces on the rail track. These forces cause deformation of the track geometry, which in turn,
increases the variations of the train/track interaction forces and speeds up the track degradation process.

Overall, mechanistic models reflect the actual physical interactions within materials or variables affecting the rail
track  structure  that  cause  degradation.  Following  these  types  of  models  can  be  challenging,  intensive  and  time
consuming, as materials are not homogenous and the variables of rail track components may be difficult to measure or
are  poorly  understood  throughout  the  model  network.  In  the  literature  review,  few  recent  studies  were  found  on
mechanistic models, and the lack of recent mechanistic studies shows a clear need for further research. Table 1 shows a
summary of the variables of mechanistic models, and their strengths and weaknesses.
Table 1. Comparison of different track deterioration models.

Approach Variables Strengths Weaknesses

Mechanistic

• Track settlement,
• Track deformation,
• Track geometry (e.g.
gauge),
• Track Quality Index (TQI).

• Based on laboratory experiment
data sources,
• Clearly address track settlement
and degradation,
• Suitable for maintenance of a
particular section of rail track.

• Challenging, intensive, time consuming.
• Measurement of the affecting variables of
rail structure may be difficult or poorly
understood.
• Materials of rail structure are not
homogenous.
• Difficulties in applying the model for
different sections of rail track.

Statistical
(Empirical)

Deterministic

• Traffic volume,
• Dynamic axle,
• Speed,
• Accumulated tonnage
(MGT),
• Axle loads.

• Work well for large data sets.

• Potential to miss important degradation
factors during application,
• It does not account for uncertainty (i.e.
input parameters and model geometry are not
well known).

Probabilistic

• Speed restrictions or line
closure,
• Track Quality Index (TQI),
• Standard deviation of
longitudinal level defects
(SDLL) and horizontal
alignment defects (SDHA),
• Number of cracks missed by
USI per year,
• Rail breakage.

• Reasonable procedure and
realistic findings,
• Ability to deal with large numbers
of datasets to achieve more
accurate results.

• Not common due to lack of historical data,
• Difficulties in predicting probability of
track deterioration,
• Bayesian models rely on Markov models
especially when high numerical dimensions
occur.

Stochastic
• Time,
• Degradation rate of
longitudinal level.

• Ability to deal with large numbers
of datasets to achieve more
accurate results,

• No evidence to validate the claim of an
exponential deterioration pattern.

Mechanical-empirical

• Track Quality Index (TQI),
• Traffic parameters,
• Maintenance parameters
(EMGT),
• Degradation Coefficient
[58],
• Time.

• Applicable to different track
segments (e.g. curves, turnouts,
straight lines),
• Applicable to more accurate and
less costly future maintenance
procedures.

• Showing a higher rate of deterioration of
lines in bridges, curve-bridges and turnouts in
comparison with other model types.

Artificial
Intelligence

Artificial Neural
Networks (ANNs)

• Number of layers,
• Nodes,
• Type of the network and
functions.

• Calibrating model with an
optimization algorithm,
• Optimising parameters of model.

• Presence of many effective factors resulting
in more errors,
• Validation of membership functions.

Neuro-Fuzzy
• Fuzzy sets,
• Fuzzy membership
functions.

• Finding fuzzy rules from
numerical data,
• Considering human imprecise
perception,
• Categorising variables into
different categories

• Complexity in abstracting fuzzy rules,
• Connections of a proposition may be
imprecise,
• Difficulty in calibrating model parameters.

2.3.2. Statistical (Empirical) Models

Statistical models have been widely applied in rail degradation prediction. They are based on observations of the rail
track structure and the influencing factors, such as traffic, track components and maintenance variables. Hence, these
models try to simulate real-life conditions with mathematical equations to predict the future behavior of rail track and
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its degradation. Statistical models can be classified into three sub-types: deterministic, probabilistic and stochastic (see
Fig. 2).

2.3.2.1. Deterministic Models

Deterministic  models  are  usually  applied  to  phenomena  where  relationships  between  components  of  the  rail
structure are identified. Linear and exponential forms of deterministic models were the first attempt in rail degradation
modelling, due to their simplicity in mathematical expressions and ability to show a direct relationship between the
input and output variables [26]. Using a mathematical or statistical expression, deterministic models can identify the
relationship between the factors affecting rail degradation and the condition of the track. Hence, these models predict
the condition of the rail and its degradation deterministically by ignoring random errors in prediction.

Deterministic models require different data parameters, including train speed, geometry and the operations of the
rail (i.e. axle weight, line speed and traffic volume) [27] and accumulated tonnage (MGT) [2, 15, 28]. By using data on
rail conditions, the deterministic approach provides a general pattern of the statistical distribution of the rail and the
affecting parameters.

Deterministic models following a linear relationship are commonly used [2, 15, 29], even though some studies have
found a non-linear relationship based on other forms of the model such as polynomial [30], exponential [31] and multi-
stage linear [14].

The  Office  for  Research  and  Experiments  (ORE)  of  the  International  Union  of  Railways  (UIC2)  studied  the
fundamentals of the degradation mechanism of rail tracks in the 1980s [32]. A deterministic ORE model was proposed
to estimate rail degradation according to various studies [33 - 36]. Accordingly, traffic volume, dynamic axle and speed
are the important variables/parameters influencing rail track degradation. The structure of the ORE deterministic model
is as follows:

(3)

Where, e is the degradation directly after tamping, h is a constant, T is the traffic volume, Q is the dynamic axle, v is
the speed, and α, β, and γ are parameters estimated from experimental data.

Basically,  the  deterministic  approach  uses  railway  track  geometry  data  to  contribute  to  the  understanding  and
management of the long-lasting deterministic model. However, although this model may work well for large datasets,
the rate of degradation may vary, which may affect the asset management of the track. Moreover, this type of model
does not account for uncertainty. In other words, the parameters governing the equations are assumed to be known and
the solutions are hence unique. Therefore, even if the methodology of the deterministic models is understandable and
simple, it is difficult to trust the results of these models because the input parameters and the model geometry are not
well defined. In addition, these studies potentially miss an important degradation factor during application. Therefore,
more research is needed for further analysis (a detailed summary is shown in Table 1).

2.3.2.2. Probabilistic Models

Various  probabilistic  models  have  been  proposed,  although  it  is  difficult  to  analyse  the  probability  of  track
degradation due to a number of factors, such as the environment, the structural materials and the construction quality.
Probabilistic models can be grouped into three classifications (Fig. 3).

Continuous Probability Distributions

Continuous probability distribution models are usually applied in certain states and within a known elapsed time
since the last maintenance activity. A study by Jernbaneverket (JBV), the Norwegian National Rail Administration, was
carried out  using a probability distribution model  [37].  This  study calculates the risks and costs  of  rail  defects  and
outlines the issues of rail failure by using the inspection and maintenance strategies followed by the railway company
[37]. It was found that time, speed and rail route location are the variables, which most affect rail degradation using the
continuous probability distribution model.

Following equation presents the model, which evaluates the probability of rail breakage of detecting a crack.

e =  e0  +  h T α ( 2 Q ) β v γ 
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(4)

Where, E[D(τ, τ’, tw)] is the expected number of derailments per year, fI is the yearly frequency of crack initiations,
Q (τ, τ′, tw) is the number of cracks missed by USI per year and τ, τ’, tw are different variables directly related to rail
derailment, including time, speed and route of the railway.

Another  continuous probability  distribution model  was proposed by Zio et  al.  [39],  defining the progression of
defects according to the Norwegian National Rail  Administration (Jernbaneverket,  JBV). A probability distribution
model  was  applied  within  a  multi-state  perspective.  In  other  words,  each  rail  track  section  is  analysed  in  different
discrete states, depending on the rail track degradation and its conditions. Fig. (3) shows a state diagram of the defects
using this degradation model. There are 6 sections in this diagram; the rail track condition hj in each section j (j = 1, 2,
…, n) is  discretised in δ + 1 = 6 levels.  Level  5 corresponds to a section with zero defects (i.e.  perfect  condition).
However,  the  degradation  levels  hj  (hj=  1,  2,  3,  4)  correspond  to  gradual  critical  rail  conditions.  Level  hj  =  0
corresponds to rail breakage (i.e. complete failure). The downward and upward arrows in the diagram correspond to the
stochastic transitions of defect growth and repair, respectively, as shown in Fig. (3) [39].

Overall, the purpose of the probability distribution model is to inform realistic and reasonable decision-making on
inspection  and  maintenance  optimisation  practices  in  the  railway  industry.  The  study  of  this  model  found  that  the
growth of defects depends on the expected times of failure, which sort the defect as ‘high risk’ or ‘low risk’. Failure
also depends on the speed at which trains pass over the track. Although there have been a number of recent continuous
probability distribution studies, this model is recommended for use in a certain state and within a known time frame.

Fig. (3). Model of defect growth [39].

Hierarchical Bayesian Models

Hierarchical Bayesian Models (HBMs) are flexible statistical models that provide a general prediction of railway
track  geometry  degradation.  HBMs  allow  the  assessment  of  the  relationship  between  different  components  of
consecutive rail track sections, including the deterioration rates and the initial qualities parameters. For example, a study
of an HBM was developed for the main Portuguese railway line Lisbon-Oporto, assessing two main quality parameters
in relation to the degradation of rail track geometry, which are the Standard Deviation of Longitudinal Level defects
(SDLL) and the Standard Deviation of Horizontal Alignment defects (SDHA) [40]. This model adopts the parameters as
random variables that  can be uncertainly calculated by a prior distribution [40].  This prior distribution P(θ) is  then
combined with the traditional likelihood p(y|θ) to obtain the posterior distribution of the parameters of interest [40]. The
posterior distribution P(θ|y) of the parameters θ given the observed data y can be calculated according to Bayes' rule as
presented in the following equation:

 

E [D (, ’, tw)] = fI Q (τ, τ′, tw) x Pr [rail breakage/crack undetected by Ultrasonic Inspection [38] ] x Pr 

[undetected breakage  rail breakage] x Pr [derailment undetected breakage]          
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(5)

Where, θ is the initial quality parameter, y is a random variable, the value or probability distribution of which is
known, P(θ | y) is posterior distribution of θ given y which relates to θ via a model, P(y | θ) is the likelihood to observe
y given unknown θ or the sampling distribution of D given known θ, and P(θ) is the prior probability of θ.

It was found that the calculation of the prior distribution is a vital step in every Bayesian model study. Nevertheless,
every  case  using  this  model  shows  that  the  joint  posterior  distribution  p(θ|y)  has  a  rational  high  dimension  and
combination through numerical methods must rely on Markov Chain Monte Carlo (MCMC) methods, which are built
such that their stationary distribution is the desired posterior distribution [40 - 42].

Using HBMs on a sample of operation and maintenance data indicated that they present a worse fit of the quality
indicator SDHA compared to the quality indicator SDLL. Horizontal alignment defects also appear to be less predictable
[40]. This literature review found that Bayesian model case studies are limited in the published research. They also rely
on Markov models, especially when high numerical dimensions occur. Other studies have also developed Bayesian
models, including those of [41 - 45].

Markov Models

Markov models are statistical models that assess the infrastructure of rail tracks at various condition levels over
time. They also analyse the hazard degradation rate while assessing the uncertainty of rail track degradation. The main
task of developing a Markov model is to calculate the transition probability from the sampling data. Some calibration
techniques are usually used to calibrate the data and calculate the transition probability matrix. Hence, these techniques
can be divided into state-based Markov models and time-based Markov models. State-based models are the main focus
in this literature as they are commonly used in previous rail degradation prediction studies. For instance, Shafahi and
Hakhamaneshi  [36]  developed  a  state-based  Markov  model  computing  the  Track  Quality  Index  (TQI)  in  a  range
between 0 and 100 (mapped onto 5 states) based on different parameters including track unevenness, twist, alignment
and gauge measurements. The structure of the model is based on a transition matrix showing the probabilities of various
states of rail tracks at any time, n, as follows:

(6)

Where, X(n) is the track state at time n, p{X(n) = j} is the probability that a track is in state j at time n.

Shafahi and Hakhamaneshi [36] found that the Markov model appears to be superior to conventional regression
models, such as the ORE model (refer to Section 2.3.2.1). Although further studies and enhancement of the model are
desired, the use of the Markov model on Iranian railways has been shown to be a reasonable method for the allocation
of maintenance funds [36].

Lyngby et al. [3] also analysed a 50-state Markov model on Norwegian railway tracks. This study considered the
twist on each section of the track up to 50mm, with the intention of assessing the failure rates over the railway line.
Moreover, this model analysed the deterioration rates depending on the geometry of the track section, whether it was
straight, curved or transition. It also analysed the frequency optimisation between track geometrical sections [3].

Another stated-based Markov model was proposed by Prescott and Andrews [46], who studied the degradation,
inspection  and  maintenance  of  a  single  one-eighth  of  a  mile  section  of  UK railway  track.  The  model  analyses  the
changing deterioration rate and maintenance of the rail track section. It also studies the effects of changing the level of
rail  geometry  degradation,  starting  from  the  good  condition  of  the  rail  until  it  reaches  the  critical  value  at  which
maintenance is required.

Overall,  probabilistic  models  are  not  common,  due  to  the  lack  of  historical  data  and  research  related  to  the
geometrical quality of rail tracks. This might be due to the difficulty of predicting the probability of rail degradation.
There are also limitations of Markov models, as they are effectively applied to small rail track sections and based on
certain states. Moreover, the transitions between states using Markov modelling might face a problem as they must
occur at constant rates [3]. This, in turn, restricts the details of the model analysis (as shown in Table 1).

P(θ|y) = P(y | θ)×P(θ)∫P(y | θ) P(θ)dθ 

p(n) = (p{X(n)=1}, p{X(n)=2}, …, p{X(n)=5}) 
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2.3.2.3. Stochastic Models

Stochastic models are mainly statistical models based on historical records and data [47]. They aim to understand
the  distribution  of  time  to  degradation  events  and  predict  their  performance.  These  models  are  based  on  what  has
actually happened and account for variability through the use of probability, although they do not deliver insight into
the underlying physics [47].

Various research studies have developed stochastic models for rail degradation prediction. Rail characteristics (i.e.
rail type, sleeper type), time and rail geometry (including tamping activities) are the main variables used in stochastic
modelling. Yousefikia et al. [24] proposed a review of stochastic models based on their data analysis of rail tracks along
tram routes in Melbourne, Australia.  From this study’s viewpoint,  the rail  track is considered to be regular when it
carries out its function under operating conditions for a certain period of time; if this is not the case, the rail track fails
[24]. Hence, the failure progress can be identified in several ways. The gamma process is the most common model used
for  failure  progression  and  continuous  time  stochastic  processes.  Refer  to  [48]  for  further  details  on  systems  with
gamma deterioration activity.

Lyngby et al. [3] also analysed Markov and stochastic degradation models. They stated that rail track geometry
could be displayed in a better way as a stochastic model due to the observed variability [3].  Other rail  degradation
prediction and maintenance planning studies have used stochastic modelling in their research, including [49 - 54].

A study carried out by Guler et al. [15] analysed a rail geometry deterioration model. This study focuses on the
effects of track characteristics, environmental conditions, and maintenance and renewal policies on the deterioration of
track parameters  measured by recording vehicles.  The study determined that  natural  disasters  such as flooding and
falling rocks increase the rate of geometry deterioration, whereas snow and landslides have no effect [15]. This study
also concluded that the expansion of curvature or gradient or line speed increase the rate of geometry deterioration. This
indicates  that  sleeper  type  and  rail  type  (Continuously  Welded  Rail  (CWR)  or  jointed  rail)  have  an  influence  on
geometry deterioration, with CWRs deteriorating at a slower rate [15]. However, the study found that an increase in the
annual tonnage reduced the deterioration rates. Therefore, this invalidates the model, as it is known that the increase of
the annual tonnage increases deterioration rates.

Quiroga  and  Schnieder  [43]  proposed  a  stochastic  degradation  model  following  a  heuristic-based  method  for
scheduling tamping intervention, and then developed it into a Monte Carlo simulation for track ageing and restoration.
The model is based on 20 years of rail track measurement data collected from the French railway operator SNCF [43].
This model does not take into account data taken in the first three months after an intervention because it assumes that
all rail tracks face bedding-in [43]. Hence, only data sets where the time period between tamps was at least one full year
were used to raise the precision of the model [55]. However, this assumption reduces the application of this model for
the  UK  network  and  a  number  of  geometry  deterioration  practices.  The  model  hypothesis  of  this  study  has  two
assumptions:

The degradation value NLinitn is achieved after the nth tamping intervention. It is defined as a log-normally
distributed stochastic variable:

(7)

Where, μ is the mean value, and σ2 is the variance.

The evolution of the degradation value between two tamping activities. It is defined by an exponential function
of the form:

(8)

Where, t is the time, tn  is the time at which the last tamping activity took place, bn  is a log normally distributed
stochastic variable of equation bn ~ LN (μb (n), σb

2 (n)), and εn(t) is a normally distributed variable with mean value 0 of
equation: εn(t) ~ N(0,σε

2.

Although it  is assumed in this model that the track undergoes exponential deterioration, there is no evidence to

N Linitn ~  LN (μ N Linit (n), σ NLinit2  (n))

NLinit  n e b n ( t – t n ) +  ε (t)
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validate the claim of an exponential deterioration pattern. Therefore, the plots of the SNCF rail network sections shown
in the results do not indicate that the track geometry undergoes an exponential deterioration pattern [43].

In  addition,  Andrews  [47]  developed  a  Petri  net  stochastic  model  to  analyse  the  degradation,  inspection,
maintenance and renewal of  rail  track sections.  This  model  studies the efficiency of  the asset  management process
employed and predicts the state of the track geometry. Statistical distributions of times to given levels of geometry
deterioration are applied, taking into account the effects of maintenance on the rate of deterioration. However, a better
understanding of the degradation process needs to be established. Subsequently, this could support the development of
accurate models based on historical data such as the effects of maintenance data [27].

Vale and Lurdes [56] developed a stochastic model of geometrical track degradation using the Portuguese railway
Northern Line as a case study. Statistical and probabilistic analyses were achieved for different vehicle speed groups,
showing that the rate of degradation of the standard deviation of the longitudinal level is similar for both rails. The
degradation rate of longitudinal level has an asymmetric distribution with heavy tailedness shown as:

(9)

Where,  γ  is  the skewness of  a random variable X, μ is  the third moment about the mean,  and σ is  the standard
deviation of the variable.

In  this  case,  the  Dagum  distribution,  usually  adopted  for  representing  income  distribution,  fitted  very  well  the
geometrical track degradation activity of the Portuguese railway Northern Line in terms of the longitudinal level [56].
The Dagum distribution represents the model in the analysis of three parameters of function F(x), defined as:

(10)

Where, α, β and k are positive parameters, parameter β is a scale parameter while α and k are shape parameters.

In general, stochastic models are widely used in deterioration prediction studies. However, these models require
more understanding of the application used and more explanation of it (see Table 1 for a summary of details). In turn,
this can increase the accuracy of these models and their application.

2.3.3. Mechanical-Empirical Models

Mechanical and empirical models are a combination of mechanical and statistical models. These models are based
on an understanding of the behaviour of a system’s components, coupled with direct observations, measurements and
extensive data records.  These models  have been used around the globe in order  to develop degradation models  for
railway tracks.

For example, Sadeghi and Askarinejad [57] conducted comprehensive research to improve current track degradation
modelling techniques by utilizing thorough field investigation. For the research they followed a mechanical empirical
approach and as a part of it they collected a comprehensive volume of rail track field data, which they analysed over a
period of two years on a strip of approximately 100 km of railway line in central Iran [57]. In the research, the main
parameters that affect the rate of track degradation are grouped into three categories: track quality indices (TQIs), traffic
parameters, and maintenance parameters.

Under the traffic parameters the researchers used Equivalent Million Gross Tons (EMGTs) passing the track in a
time period (T) at average running speed (v). During major maintenance they considered operations time (T) as a key
maintenance parameter. In this study, for the Track Quality Index (TQI), the researchers used the track geometry index
(TGI) and the Track Structure Index (TSI). These two indices are not independent variables. In fact, the TGI indicates
the geometric conditions of the rail track, such as profile, twist, gauge and alignment, which may directly influence the
riding comfort of the track, while TSI represents the mechanistic conditions of the track, such as the condition of the
rails, sleepers, fastening systems, sub-grade and even the drainage system.

Some mathematical expressions were developed in this research for modelling the correlation between the main
effective parameters and the rail track degradation coefficient [58]. They used data gained from observing the rail track
over a period of one year. Therefore, the proposed equations demonstrate the change in DC over time. The equation was
further developed into a rail  degradation model by combining the constructed correlations between the degradation

γ =  μ 3σ 3

F(x)  =  [1 + (xβ)−α]−k , x  0
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coefficient and rail track quality, loading and maintenance conditions [57].

The degradation model is displayed in two equations in the paper. These two equations are based on the data from
observations of track geometry decay over time and on visual inspections of the mechanistic conditions of the elements
of the rail track, as shown below:

(11)

(12)

Where, TGI1 is the Present Track Geometry Index, TGI2 is the Future Track Geometry Index, TSI1 is the Present
Track  Structure  Index,  TSI2  is  the  Future  Track  Structure  Index  and  T  is  time.  The  researchers  also  developed  an
equation representing the correlation between the TGI2 and TSI2 due to the limitations of carrying out both inspections.
The equation is as follows:

(13)

Where, η1 to η4 are factors representing the influence of train speed (v), EMGT and time (T). Obtaining a linear
correlation between the ratios of TGI2/TGI2 and influencing parameters, the following expressions are obtained for η1
to η4:

(14)

(15)

(16)

(17)

Where, κ1 to κ8 are constant coefficients.

In  their  research  they  were  careful  to  develop  separate  degradation  models  for  curves,  turnouts,  straight-line
sections, tunnel lines and bridge lines, because of the variation in the behaviour of the rail track at different sections.

Ahac and Lakušić [38] used a similar approach in their study of tram rail track maintenance planning using gauge
degradation  modelling.  This  study  was  carried  out  in  Croatia  at  the  University  of  Zagreb.  The  researchers  used  a
mechanical-empirical  model  in  order  to  determine  the  rate  of  degradation  through  statistical  regression  analysis.
Regression defines the degradation speed of the dependent variable (track quality) and the independent variable (the
period of track exploitation). Indirect elastic rail fastening and stiffer direct elastic rail fastening were the two types of
rail track systems observed during the study [38].

The  results  produced  by  the  proposed  model  indicated  that  the  correlation  between  the  rate  of  rail  track  gauge
degradation during exploitation and the stiffness of its fastening system can be described by dividing the results into
three groups as follows:

Values of rail track exploitation intensity to approximately 35million gross tons (MGTs),
After increase in exploitation intensity above 35 MGT,
For values of the rail track exploitation intensity above 45 MGT.

For  values  near  35  MGT  of  rail  track  exploitation  intensity,  models  for  both  observed  systems  estimate  equal
regression coefficients with very high determination coefficients (0.95 ≤ R2 ≤ 0.98). It was concluded that in the initial
stages of rail track exploitation, the effect of fastening system stiffness on the rate of gauge degradation is negligible
[38].

After an increase in exploitation intensity above 35 MGT, the gauge degradation speed significantly decreases on
tracks with direct elastic fastening systems on tracks with direct elastic systems, while reduction in gauge degradation
rate occurs at above 45 MGT of exploitation intensity. Finally, for values of rail track exploitation intensity above 45
MGT, the proposed models do not provide an accurate prediction of gauge degradation behaviour.

TGI2TGI1 = α4exp (β1V + β2EMGT + β3TGI1)[λ1T4 + λ2T3 + λ3T2 + λ4T + 1]
TSI2TSI1 = α4′ exp (β1′ V + β2′ EMGT + β3′ TSI1)[λ1′ T4 + λ2′ T3 + λ3′ T2 + λ4′ T + 1]

TSI2 = η1η2η3η4TGI2

η1 = κ1V + κ3η2 = κ3EMGT + κ4η3 = κ5TGI1 + κ6 η4 = κ7T + κ8
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In brief, modelling results show that the period of notable gauge degradation during rail track exploitation is shorter
in the case of the indirect elastic fastening system with lower stiffness. Therefore, to optimise rail track maintenance
procedures and extend the life cycle of rail tracks, it would be desirable to adjust the rail track geometry quality control
and maintenance cycles according to rail track stiffness. In addition, when selecting structural elements for new rail
tracks, preference should be given to indirect elastic rail fastenings.

According to the authors, the research was limited by the availability and form of the input data on the rail tracks,
which were needed for the creation of the database on which the modelling was based [38]. This may have caused a
lack of accuracy of the prediction models. Therefore, increasing the accuracy of models requires further monitoring of
rail tracks (Table 1).

2.3.4. Artificial Intelligence Models

Artificial  Intelligence  (AI)  models  are  a  modern  type  of  approach  used  around  the  world  in  order  to  predict
degradation in civil engineering. They are on the verge of becoming popular among researchers who work on railway
track degradation modelling in the modern era. Although these models are relatively new to civil engineering research,
they have been utilized in other disciplines of engineering, such as mechanical engineering. These types of models are
well recognized for the high accuracy of predictions they provide.

AI models use the majority of their data to train the model. In most occasions, the model developers use 70% of the
data for training their models while the rest of the 30% uses for testing. This makes a strong positive impact on the
accuracy that they produce in the results provided by AI models.

According to the literature on rail track degradation prediction, we can categorise AI models into two subcategories:
Artificial Neural Networks (ANNs) and neuro-fuzzy models. ANNs are based on the knowledge of biological neural
networks. They can be utilized to estimate functions that depend on a large number of inputs and unknowns. These
models are generally presented as a system of interconnected neurons. They are there for carrying messages between
each other.  These connections have a weighting that can be adjusted based on experience, making neural networks
adaptive to inputs and capable of learning. The basic structure of a neural network consists of at least three layers, the
input layer, the hidden layer and the output layer. Once the data are fed into the input layer the neurons carry the data
into the hidden layer to process it and then finally they move to the output layer to produce results. Neuro-fuzzy models
are a combination of ANNs and fuzzy logic. These hybrid intelligent systems combine the power of the human-like
reasoning style of fuzzy systems with the learning and connectionist structure of neural networks. Both of these model
types produce results with high accuracy compared to other models such as mechanical and statistical models.

Shafahi and Hakhamaneshi [36] presented studies including a comparison of four models. The four models included
one  mechanistic  model  suggested  by  the  Office  for  Research  and  Experiment  [32]  of  the  International  Union  of
Railways and three new models: the Markov chain model, ANN and Neuro-fuzzy models. This particular study was
conducted at Sharif University of Technology in Tehran. The ORE model was used as a guide in order to compare the
results of the new models and the ORE model which was customized with some changes to make it suitable for this
study [36]. In the study, the rail track’s state was defined in terms of the Combined Track Record index (CTR) rating
out of 100, where the best possible rail track condition was 100 and the states were defined as five intervals of CTR.
The data used in the study were obtained from the Iranian railway network [36]. Refer to Table 1 for a summary of AI
models.

2.3.4.1. Artificial Neural Networks (ANNs)

Shafahi et al. [55] assumed that the rail track started its life at a time where it was in perfect condition and was then
subjected to a sequence of duty cycles that caused its condition to deteriorate. It was also assumed that the duty cycle of
the rail track was one year. CTR was also used to define the rail track condition. The following factors were used as
effective parameters of rail track degradation in the study:

CTR index of a year, the previous year, and two and three years before, which was classified from 1 to 5 [55].
Traffic volume was divided into two groups: light and heavy.
Maximum allowable speed was classified into 5 classes as follows: maximum speed less than 60 km/h class 1;
60-80 km/h class 2; 80-100 km/h class 3; 100-120 km/h class 4; and more than 120km/h class 5.
Geographical location was classified into three classes: plain, hilly, and mountainous.
The maximum gradient of the block was classified into five classes as follows: maximum gradient from 0% -



Degradation Prediction of Rail Tracks The Open Transportation Journal, 2018, Volume 12   99

0.5% gradient class 1; 0.5% - 1% gradient class 2; 1% - 1.5% gradient class 3; 1.5% - 2% gradient class 4; and
2% -3% gradient class 5.
Minimum radius of curves in the blockwas classified into 7 classes as follows: maximum radius of curves less
than 250 m radius class 1; 250 - 400m class 2; 400 – 750m class 3; 750-1000m class 4; 1000 – 2000m class 5;
2000 – 4000m class 6; and radii larger than 4000m class 7.

The following steps were undertaken to build the structure of the ANN model:

Step 1: The topology of the network was created with the inclusion of parameters such as number of layers and
nodes of the network, type of network, initial and activation functions.

Step 2: On the basis of the training process in the network, the weighted parameters were corrected and the data on
every situation as training data were shown to the network many times.

Step 3: The neural network was examined using known data so that probable errors could be corrected.

A network with 3 layers and 5 neurons in the internal layer was selected as the optimal network. Then the data were
randomly directed into two sets: the training set which included 82% of the data, and the test set with 18% of the data.
Shafahi et al. [55] showed a comparison of the model predictions and the observed data for one of the sample data sets
used. The predictions of the ANN indicated that the following year CTR indices were at the level of the CTR of the
previous year or one level lower. Therefore, it was concluded that there was 67% correctness of neural network results
using correct sample sets, while there was 33% correctness within one level wrong [55].

Another study carried out in Turkey by Guler [59] indicated excellent results by using an ANN model to predict rail
track degradation. This study was a case study for Turkish state railways. The researcher conducted a thorough field
investigation over a period of 2 years. The observed track length for this study was approximately 180 km. The dataset
was  collected  based  on  different  variables,  including  track  structure,  traffic  characteristics,  track  layout  and
environmental  factors.  The  author  developed  separate  ANN  models  for  the  main  track  geometry  parameters,  and
performed sensitivity analysis to calculate the importance of each predictor in determining the neural networks.

The neural network was developed using SPSS software and used 70% of the total data from 2009 to 2011 was used
as  the  training  data  and  the  remaining  30%  for  testing.  ANN  models  produced  strong  relationships  between  the
deterioration rate and the variables. The R2 given as twist=0.727, gauge=0.795, alignment=0.765, cross level= 0.831
and longitudinal levelling =0.742

These results again indicate that ANN could be used as a better alternative for rail track degradation prediction than
other models.

2.3.4.2. Neuro-Fuzzy Models

Shafahi et al. [55], developed the ANN model in an effort to compare the accuracy of it by comparing the results
produced through that model to few other different models. This study showed that there was 73% correctness of neural
network results using correct data sets, while there was 27% correctness with one level wrong [55]. When comparing
the results of these two AI models, it was clear that the neuro-fuzzy model showed results 6% better than the ANN
model [55].

Neuro-fuzzy  models  are  becoming  as  popular  as  ANN  models  among  researchers  and  look  promising  for
degradation modelling in the future for a number of reasons. The main reason is that they show high accuracy compared
to other approaches. The major drawbacks of these models are the lack of literature since they are relatively new to
degradation prediction. In addition, it is hard to understand the structure of the models and how they work. They lack
the transparency of other models, such as statistical or mechanical models. This discourages researchers from using
them in their studies (Table 1).

Based on the literature review, it  is  possible to conclude that all  existing degradation models have a number of
strengths and weaknesses. The selection of the most suitable degradation model depends on the research area and the
data  sets  provided  to  researchers.  Table  1  below  shows  a  brief  outline  of  the  strengths  and  weaknesses  of  each
degradation model discussed in the review. It also shows the variables used in each model to help with decision-making
on the most appropriate degradation model for any particular research.
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3. LIMITATIONS OF EXISTING STUDIES

This literature review shows that there is  great variation in rail  degradation models.  A number of strengths and
weaknesses were found for each type. In mechanistic models, various parameters are used, including track settlement,
track deformation, heavy haul narrow gauge, high standard gauge and track quality index. These models have a number
of strengths, being based on laboratory experimental data. They clearly address track settlement and degradation. In
addition, mechanistic models are suitable for the maintenance of a particular section of the track, as we can divide the
track into sections, which may give more accurate results. However, sections of the track may vary along the rail (i.e.
turnouts,  straight  lines,  curves).  Hence,  mechanistic  models  may  be  hard  or  impossible  to  apply.  Furthermore,  we
conclude that these models’ networks are ineffective and inconvenient in many research case studies. The review shows
that  older  studies  were  found  using  these  models,  whilst  recent  research  studies  using  these  models  are  very  rare.
Therefore, further research and focus of new trains systems and models is needed for the detection of track damages.
For example, SkyTran is one of the latest transportation systems that need to be regularly supervised and checked for
any damaged tracks along the rails to prevent fatal crashes. Wiseman [60] suggested a safety mechanistic tool for a
continuous inspection of SkyTran tracks by using a digital camera producing JPEG pictures. An automatic analysis of
this inspection can indicate whether the tracks are damaged and accordingly repairing the track segment if needed.

In relation to the statistical (empirical) approach, our review classifies this approach into three model types. The first
type  is  the  deterministic  approach,  which  concentrates  on  the  following  parameters:  traffic  volume,  accumulated
tonnage (MGT), axle loads (in metric tons), dynamic axle and speed. Deterministic models work well for large data
sets, and are attractive for track degradation modelling. However, certain weaknesses discourage their use. The rate of
degradation  of  deterministic  models  varies  between track  sections;  it  does  not  apply  in  the  same way on  used  and
maintained tracks, even if they are operated under the same loads. Deterministic models also suffer from the potential to
have missed an important factor in the causality of degradation, which in turn invalidates them.

The  second  type  of  statistical  models  is  the  probabilistic  approach,  which  includes  continuous  probability
distribution  models,  Bayesian  models  and  Markov  models.  In  our  review,  different  variables  were  the  keys  to
probabilistic  model  studies,  as  follows:

Speed restrictions (spd) or line closure (cls),
Track quality index (TQI),
Standard deviation of longitudinal level defects (SDLL) and standard deviation of horizontal alignment defects
(SDHA),
Number of cracks missed by USI per year,
Rail breakage.

Based on these variables, a number of strengths and weaknesses exist in relation to each type of probabilistic model.
First,  we  conclude  that  continuous  probability  distributions  follow a  reasonable  procedure  and  offer  more  realistic
findings.  However,  as  mentioned earlier,  these  models  are  recommended for  a  certain  state  and within  a  particular
timeframe. Second, Markov models deal with large numbers of observational datasets in order to achieve more accurate
results. Despite this, there are limitations of Markov models, such as the restriction of analysis details. In other words,
this model type is limited to small track models, and the transitions between asset states must occur at a constant rate. In
addition,  although Bayesian  model  research  studies  are  limited,  they  rely  on  Markov models  when high numerical
dimensions occur. Overall, our review shows that probabilistic models for rail track degradation are not common, due to
the lack of historical data related to the geometrical quality of tracks for research purposes. We also do not ignore the
difficulty that researchers may face in predicting the probability of track deterioration.

The  third  type  of  statistical  models  is  stochastic  modelling,  which  varies  according  to  the  time  and  the  rate  of
degradation of the longitudinal level. Stochastic models are widely used in degradation prediction studies. They also
deal with large numbers of observational datasets to achieve more accurate results. However, these models may need
more explanation and understanding of the process. Therefore, we suggest further research and case studies should be
applied using these models.

In mechanical-empirical models, track quality index, traffic parameters, maintenance parameters (i.e. Equivalent
Million Gross Tons (EMGTs)), degradation coefficient and time are the main variables used. The mechanical-empirical
approach provides model development for different track segments, such as curves, turnouts, straight lines, tunnel lines
and  bridge  lines.  However,  the  deterioration  of  lines  in  bridges,  curve-bridges  and  turnouts  shows a  higher  rate  in
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comparison with other types; therefore, this model requires more attention, especially in maintenance and inspection
scheduling [61]. Although few research papers were found on this model type, it is still applied in different case studies
to result in reduced costs of future maintenance practices.

Finally, AI models including ANNs and neuro-fuzzy models depend on different variables, such as the number of
layers and nodes, the type of network and fuzzy parameters. These models are the most modern models in deterioration
studies. However, few research papers were found using them, as they are new in this field of research.

CONCLUSION

The aim of this paper has been to provide transport agencies, transport appraisal practitioners, and academics with
relevant information about the state-of-the-art of different degradation models used in railways. Transport agencies may
find it particularly relevant when revising their guidelines for transport appraisal.

Overall, this literature review is a status report on various types of degradation models for urban rail tracks and their
influence  in  maintenance  decision-making.  It  provides  relevant  sources  of  information  on  degradation  models,
highlighting their parameters in order to compare their strengths and weaknesses. This will help in making decisions
about the most appropriate degradation models for use in future research studies.

Based on Table 1 summarising the different degradation models, we consider that stochastic models may be the
most  suitable  type  for  the  majority  of  case  studies.  The  strengths  of  these  models  outweigh  their  weaknesses.  In
addition, the strengths of these models outweigh the strengths of other models. However, it should be noted that there
are some gaps in existing studies. Therefore, we wish to highlight several promising areas for future research. First, it
would be interesting to study factors influencing rail track degradation. The majority of studies briefly mention factors
affecting rail  degradation without focusing in depth on them. It  would also be interesting to develop a degradation
model based on these factors. Another important topic we need to consider is a further study on stochastic models.
These models need further explanation of their application for a better understanding of them. Limited research has
been conducted on the maintenance of rail tracks after the application of degradation modelling. Hence, we suggest
further studies in this area to improve the maintenance stage after degradation occurs. This may also improve research
into optimising the planned maintenance of rail systems. Since there are now several years of data on the degradation of
rail tracks, comparisons with survey work can start to be done to fill the knowledge gaps revealed by this review.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] H.M. Hawari, "Minimising track degradation through managing vehicle/track interaction", In: Queensland University of Technology, 2007.

[2] C. Esveld, Modern railway track., MRT-productions Zaltbommel: The Netherlands, 2001.

[3] N. Lyngby, P. Hokstad, and J. Vatn, RAMS management of railway tracks.Handbook of performability engineering., Springer, 2008, pp.
1123-1145.
[http://dx.doi.org/10.1007/978-1-84800-131-2_68]

[4] Y-J. Zhang, M.H. Murray, and L. Ferreira, "Modelling rail track performance: An integrated approach", Transp. J., pp. 187-194, 2000.

[5] A. Zarembski, G. Grisson, and H. Lees, "Assessing the risk of track buckling", Railw. Track Struct., vol. 101, no. 2, 2005.

[6] Q. He, H. Li, D. Bhattacharjya, D.P. Parikh, and A. Hampapur, "Track geometry defect rectification based on track deterioration modelling
and derailment risk assessment", J. Oper. Res. Soc., vol. 66, no. 3, pp. 392-404, 2015.
[http://dx.doi.org/10.1057/jors.2014.7]

[7] S. Jovanovic, H. Guler, and B. Coko, "Track degradation analysis in the scope of railway infrastructure maintenance management systems",
Gradevinar, vol. 67, no. 3, pp. 247-257, 2015.

[8] A.A.  Iman  Soleimanmeigouni,  "Track  geometry  degradation  and  maintenance  modelling:  A  review",  Proceedings  of  the  Institution  of
Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016

http://dx.doi.org/10.1007/978-1-84800-131-2_68
http://dx.doi.org/10.1057/jors.2014.7


102   The Open Transportation Journal, 2018, Volume 12 Elkhoury et al.

[9] B. Lichtberger, Track Compendium, Eurailpress Tetzlaff-Hestra GmbH – CO, 2005

[10] R. Fröhling, "Wheel/rail interface management in heavy haul railway operations—applying science and technology", Veh. Syst. Dyn., vol. 45,
no. 7-8, pp. 649-677, 2007.
[http://dx.doi.org/10.1080/00423110701413797]

[11] P. Corshammar, "Perfect track," ISBN 91-631-8150-9, 2005.

[12] D. Larsson, "A study of the track degradation process related to changes in railway traffic", Licentiate Thesis, Division of Operation and
Maintenance Engineering, Luleå University of Technology, Luleå, Sweden, 2004.

[13] L. Wilson, Optimization of rail/wheel lubrication, Doctoral Thesis, Queensland University of Technology, Brisbane, Australia, 2006.

[14] H.  Chang,  R.  Liu,  and  W.  Wang,  "Multistage  linear  prediction  model  of  track  quality  index",  Traffic  and  Transportation  Studies,  pp.
1183-1192, 2010.
[http://dx.doi.org/10.1061/41123(383)112]

[15] H. Guler, S. Jovanovic, and G. Evren, "Modelling railway track geometry deterioration", Proceedings of the Institution of Civil Engineers-
Transport, vol. 164, no. 2, pp. 65-75, 2011.
[http://dx.doi.org/10.1680/tran.2011.164.2.65]

[16] A.H. Lovett, C.P. Barkan, and C.T. Dick, "An integrated model for the evaluation and planning of railroad track maintenance", Urbana, vol.
51, p. 61801, 2013.

[17] P. Xu, R-K. Liu, F. Wang, F-T. Wang, and Q-X. Sun, "Railroad track deterioration characteristics based track measurement data mining",
Mathematical Problems in Engineering, pp. 1-7, 2013.

[18] Bai L L. R., and Q. Sun, "Classification-learning-based framework for predicting railway track irregularities", In: Proc IMechE, Part F: J Rail
and Rapid Transit, 2014.

[19] R. Santos, P. Fonseca Teixeira, and A. Pais Antunes, "Planning and scheduling efficient heavy rail track maintenance through a decision rules
model", Res. Transp. Econ., vol. 54, pp. 20-32, 2015.
[http://dx.doi.org/10.1016/j.retrec.2015.10.022]

[20] Y. K. Al-Douri, P. Tretten, and R. Karim, "Improvement of railway performance: A study of Swedish railway infrastructure", J. Mod. Trans.,
vol. 24, no. 1, pp. 22-37, 2016.
[http://dx.doi.org/10.1007/s40534-015-0092-0]

[21] Y. Satoh, "Experiment on ballast settlement due to repeated loading", Railway Tech Res Report, 1959.

[22] Y. Satoh, A. Onishi, and S. Tanaka, "Experiment on grading of crushed stone ballast", Railway Tech Res Rep, 1961.

[23] Y. Sato, "Japanese studies on deterioration of ballasted track", Vehicle system dynamics, vol. 24, no. 1, pp. 197-208, 1995.

[24] M. Yousefikia, S. Moridpour, S. Setunge, and E. Mazloumi, Modeling degradation of tracks for maintenance planning on a tram line, 2014.
[http://dx.doi.org/10.12720/jtle.2.2.86-91]

[25] R. Hummitszch, Calculation Schemes for MDZ and “Modified Standard Deviation”., Technical University of Graz, 2005.

[26] M.S. Hasan, Deterioration prediction of concrete bridge components using artificial intelligence and stochastic methods., RMIT University,
2015.

[27] M. Audley, and J.D. Andrews, "The effects of tamping on railway track geometry degradation", Proc. Inst. Mech. Eng., F J. Rail Rapid
Transit, vol. 227, no. 4, pp. 376-391, 2013.
[http://dx.doi.org/10.1177/0954409713480439]

[28] W-J. Zwanenburg, Modelling degradation processes of switches & crossings for maintenance & renewal planning on the Swiss railway
network, 2009.

[29] R. Liu, P. Xu, and F. Wang, "Research on a short-range prediction model for track irregularity over small track lengths", J. Transp. Eng., vol.
136, pp. 1085-1091, 2010.
[http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000192]

[30] S.  Jovanovic,  "Railway  track  quality  assessment  and  related  decision  making",  IEEE  International  Conference  on  Systems,  Man  and
Cybernetics, 2004
[http://dx.doi.org/10.1109/ICSMC.2004.1400992]

[31] P. Veit, "Track quality-luxury or necessity", In: Railway Technical Review Special: Maintenance and Renewal, 2007.

[32] T.  Dahlberg,  "Some railroad  settlement  models-a  critical  review",  Proc.  Inst.  Mech.  Eng.,  F  J.  Rail  Rapid  Transit,  vol.  215,  no.  4,  pp.
289-300, 2001.
[http://dx.doi.org/10.1243/0954409011531585]

[33] J. Corbin, and W. Kaufman, Classifying track by power spectral density, 1975.

[34] P. Subramanian, and O. Kumar, Power spectral density for track irregularities, 1978.

[35] D. ORE Question, Dynamic vehicle/track interaction phenomena from the point of view of track mainenance, 1998.

[36] Y. Shafahi, and R. Hakhamaneshi, "Application of a maintenance management model for Iranian railways based on the Markov chain and

http://dx.doi.org/10.1080/00423110701413797
http://dx.doi.org/10.1061/41123(383)112
http://dx.doi.org/10.1680/tran.2011.164.2.65
http://dx.doi.org/10.1016/j.retrec.2015.10.022
http://dx.doi.org/10.1007/s40534-015-0092-0
http://dx.doi.org/10.12720/jtle.2.2.86-91
http://dx.doi.org/10.1177/0954409713480439
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000192
http://dx.doi.org/10.1109/ICSMC.2004.1400992
http://dx.doi.org/10.1243/0954409011531585


Degradation Prediction of Rail Tracks The Open Transportation Journal, 2018, Volume 12   103

probabilistic dynamic programming", International Journal of Science and Technology. Transaction A: Civil Engineering, vol. 16, no. 1, pp.
87-97, 2009.

[37] L. Podofillini, E. Zio, and J. Vatn, "Risk-informed optimisation of railway tracks inspection and maintenance procedures", Reliab. Eng. Syst.
Saf., vol. 91, no. 1, pp. 20-35, 2006.
[http://dx.doi.org/10.1016/j.ress.2004.11.009]

[38] M. Ahac, and S. Lakušić, "Tram track maintenance-planning by gauge degradation modelling", Transport, vol. 30, no. 4, pp. 430-436, 2015.
[http://dx.doi.org/10.3846/16484142.2015.1116464]

[39] E. Zio, M. Marella,  and L. Podofillini,  Importance measures-based prioritization for improving the performance of multi-state systems:
Application to the railway industry, 2007.
[http://dx.doi.org/10.1016/j.ress.2006.07.010]

[40] A.R. Andrade, and P.F. Teixeira, "Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models", Reliab.
Eng. Syst. Saf., vol. 142, pp. 169-183, 2015.
[http://dx.doi.org/10.1016/j.ress.2015.05.009]

[41] J. Bernardo, Bayesian statistics. Updated and abridged version of the Chapter ‘Bayesian statistics’ published in Probability and Statistics (R.
Viertl, Ed.) of the Encyclopedia of Life Support Systems (EOLSS)

[42] I. Ntzoufras, Bayesian modeling in WinBugs., John Wiley & Sons, Inc: Hoboken, 2009.
[http://dx.doi.org/10.1002/9780470434567]

[43] L.M.  Quiroga,  and E.  Schnieder,  "Monte  Carlo  simulation of  railway track geometry  deterioration  and restoration",  Proceedings  of  the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, vol. 226, no. 3, pp. 274-282, 2011.

[44] A.R. Andrade, and P.F. Teixeira, "A Bayesian model to assess rail track geometry degradation through its life-cycle", Res. Transp. Econ., vol.
36, no. 1, pp. 1-8, 2012.
[http://dx.doi.org/10.1016/j.retrec.2012.03.011]

[45] A.R. Andrade, and P.F. Teixeira, "Hierarchical Bayesian modeling of rail track geometry degradation", Proc. Inst. Mech. Eng., F J. Rail
Rapid Transit, vol. 24, p. 2013, 2013.

[46] D. Prescott, and J. Andrews, "Modelling maintenance in railway infrastructure management", Reliability and Maintainability Symposium
(RAMS), , 2013pp. 1-6

[47] J. Andrews, "A modelling approach to railway track asset management", Proceedings of the Institution of Mechanical Engineers, Part F:
Journal of Rail and Rapid Transit, 2012

[48] C. Meier-Hirmer, G. Riboulet, F. Sourget, and M. Roussignol, "Maintenance optimization for a system with a gamma deterioration process
and intervention delay: Application to track maintenance", Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk
and Reliability, vol. 223, no. 3, pp. 189-198, 2009.

[49] R.G. Mishalani, and S.M. Madanat, "Computation of infrastructure transition probabilities using stochastic duration models", J. Infrastruct.
Syst., vol. 8, no. 4, pp. 139-148, 2002.
[http://dx.doi.org/10.1061/(ASCE)1076-0342(2002)8:4(139)]

[50] R. Ahmad, and S. Kamaruddin, "An overview of time-based and condition-based maintenance in industrial application", Comput. Ind. Eng.,
vol. 63, no. 1, pp. 135-149, 2012.
[http://dx.doi.org/10.1016/j.cie.2012.02.002]

[51] J-A. Zakeri, and S. Shahriari, "Developing a deterioration probabilistic model for rail wear", IJTTE Int. J. Traffic Transp. Eng., vol. 1, no. 2,
pp. 13-18, 2012.

[52] C. Vale, and I.M. Ribeiro, "Railway condition-based maintenance model with stochastic deterioration", J. Civ. Eng. Manag., vol. 20, no. 5,
pp. 686-692, 2014.
[http://dx.doi.org/10.3846/13923730.2013.802711]

[53] J. Andrews, D. Prescott, and F. De Rozières, A stochastic model for railway track asset management, .
[http://dx.doi.org/10.1016/j.ress.2014.04.021]

[54] Z.S. Ye, and M. Xie, "Stochastic modelling and analysis of degradation for highly reliable products", Appl. Stochastic Models Data Anal., vol.
31, no. 1, pp. 16-32, 2015.
[http://dx.doi.org/10.1002/asmb.2063]

[55] Y. Shafahi, P. Masoudi, and R. Hakhamaneshi, Track Degradation Prediction Models., Using Markov Chain, Artificial Neural and Neuro-
Fuzzy Network, 2008.

[56] C. Vale, and S.M. Lurdes, "Stochastic model for the geometrical rail track degradation process in the Portuguese railway Northern Line",
Reliab. Eng. Syst. Saf., vol. 116, pp. 91-98, 2013.
[http://dx.doi.org/10.1016/j.ress.2013.02.010]

[57] J. Sadeghi, and H. Askarinejad, "Development of improved railway track degradation models", Maintenance, Management, Life-Cycle Design
and Performance, vol. 6, no. 6, pp. 675-688, 2010.

[58] T. Raicharoen, C. Lursinsap, and P. Sanguanbhokai, "Application of critical support vector machine to time series prediction", Proceedings of
the 2003 International Symposium on, vol. 5, IEEE., pp. V-V, 2003.

http://dx.doi.org/10.1016/j.ress.2004.11.009
http://dx.doi.org/10.3846/16484142.2015.1116464
http://dx.doi.org/10.1016/j.ress.2006.07.010
http://dx.doi.org/10.1016/j.ress.2015.05.009
http://dx.doi.org/10.1002/9780470434567
http://dx.doi.org/10.1016/j.retrec.2012.03.011
http://dx.doi.org/10.1061/(ASCE)1076-0342(2002)8:4(139)
http://dx.doi.org/10.1016/j.cie.2012.02.002
http://dx.doi.org/10.3846/13923730.2013.802711
http://dx.doi.org/10.1016/j.ress.2014.04.021
http://dx.doi.org/10.1002/asmb.2063
http://dx.doi.org/10.1016/j.ress.2013.02.010


104   The Open Transportation Journal, 2018, Volume 12 Elkhoury et al.

[http://dx.doi.org/10.1109/ISCAS.2003.1206419]

[59] H. Guler, "Prediction of railway track geometry deterioration using artificial neural networks: A case study for Turkish state railways", Struct.
Infrastruct. Eng., no. 10, pp. 614-626, 2014.
[http://dx.doi.org/10.1080/15732479.2012.757791]

[60] Y. Wiseman, "Safety Mechanism for SkyTran Tracks", International Journal of Control and Automation, vol. 10, no. 7, pp. 51-60, 2017.
[http://dx.doi.org/10.14257/ijca.2017.10.7.05]

[61] S. Moridpour, "Rail Track Degradation Modelling and Maintenacne Decision Making; A Review of the Literature",

© 2018 Elkhoury et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a
copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

http://dx.doi.org/10.1109/ISCAS.2003.1206419
http://dx.doi.org/10.1080/15732479.2012.757791
http://dx.doi.org/10.14257/ijca.2017.10.7.05
https://creativecommons.org/licenses/by/4.0/legalcode

	Degradation Prediction of Rail Tracks: A Review of the Existing Literature 
	1. INTRODUCTION
	2. REVIEW OF RAIL TRACK DEGRADATION MODELS
	2.1. Overview of Railway Track Structure
	2.2. Track Degradation Modelling
	2.3. A Classification Scheme of Rail Degradation Models
	2.3.1. Mechanistic Models
	2.3.2. Statistical (Empirical) Models
	2.3.3. Mechanical-Empirical Models
	2.3.4. Artificial Intelligence Models


	3. LIMITATIONS OF EXISTING STUDIES
	CONCLUSION
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES


