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Correlations among the degrees of vertices in random graphs often occur when clustering is present.
In this paper we define a joint-degree correlation function for vertices in the giant component of
clustered configuration model networks which are comprised of clique subgraphs. We use this model
to investigate, in detail, the organisation among nearest-neighbour subgraphs for random graphs
as a function of subgraph topology as well as clustering. We find an expression for the average
joint degree of a neighbour in the giant component at the critical point for these networks. Finally,
we introduce a novel edge-disjoint clique decomposition algorithm and investigate the correlations
between the subgraphs of empirical networks.

I. INTRODUCTION

A network is a collection of vertices and edges [1]. The
nature of the local connectivity among the vertices of a
graph has a profound influence on the structural charac-
teristics of the entire network. Common structural prop-
erties include: the clustering [2], which is the tendency for
triples of vertices to be organised into triangles; subgraph
composition [3], which considers the organisation of the
edges into recognized motifs; nearest-neighbour degree
correlation (NNDC) [4], which is the tendency for simi-
lar degree vertices to connect to one another or not; long-
range degree correlations (LRDC) [5], which are nonlocal
degree correlations beyond the nearest-neighbourhood;
the component structure [6], the core-periphery struc-
ture, path lengths, communities, fractality and various
scale phenomena. In turn, the structural characteristics
determine the stability and the governing dynamics of
processes occurring over the graph as well as its response
to random or targeted attack. Understanding the con-
nective microstructure of complex systems is therefore
of crucial importance to a wide range of disciplines in-
cluding biology, social science and physics as well as to a
broad range of applications including network formation,
modelling the properties of empirical networks and the
observed response to processes such as epidemic spread-
ing, synchronization, percolation or information propa-
gation over networks. It is well known [7–9] that the
structural characteristics of the giant component (GCC)
of a random uncorrelated graph can be vastly different
from the properties of the whole network. In particular,
the GCC exhibits a negative NNDC unless the network
is singly connected.

The configuration model is a method that allows the
construction of uncorrelated random graphs with a pre-
scribed distribution of degrees. Recent work has drawn
attention to the generalised configuration model (GCM)
which allows the construction of networks that are com-
posed of independent subgraphs. The central object of
the GCM is a joint degree distribution that describes the
number of roles that a vertex plays within each subgraph
on average [10–12]. The generating function formulation

is an analytical technique that can be used to describe
the expectation values for the properties of the ensemble
of graphs that can be constructed using the GCM from
a given joint degree sequence.

The GCM incorporates networks with higher-order
clustering, typical of the mixing patterns in many hu-
man contact networks, as well as multilayer, modular
and multiplex systems. In such empirical networks,
clustering that follows a heavy tail degree distribution
leads to highly clustered networks whereby the vertices
can be members of several triangles among the nearest-
neighbour contacts. In such cases, it is common that the
triangles share one or more edges and thus, higher-order
subgraphs, such as cliques, are more accurate represen-
tations of the local environment of the vertices. Organi-
sation among cliques of different sizes plays a significant
and non-trivial role in spreading processes, particularly of
epidemics, over the network. Since many diseases spread
through vertex-vertex interactions, effective control of an
epidemic must take advantage of the understanding of
the local environment of high-degree vertices in tight-knit
cliques.

Clustering in complex networks has been studied previ-
ously using generating functions [10–24]. Newman found
that the presence of clustering in Poisson networks led to
a reduction in the critical mean degree required for the
formation of a GCC as well as its size. Miller showed
that this effect is due to the assortative correlations
within the Poisson model and that for networks with the
same degree correlations, clustering increases the criti-
cal point. Hasegawa and Mizutaka [22] considered the
NNDC among the GCC of clustered networks comprised
of ordinary edges and triangles. It was found that the
GCC can be assortative or dissasortative depending on
the details of the clustering; however, dissasortative cor-
relations reappeared upon a characteristic renormalisa-
tion of the triangles into single supervertices. Thus, the
GCC of random uncorrelated networks displays dissasor-
tative NNDC by nature.

In this paper, we address how two vertices of given joint
degrees are expected to connect to one another. More
formally, we study NNDC in the GCC of random clus-
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tered graphs that have been constructed according to the
GCM prescription to include higher-order subgraphs. We
examine the tendency for organisation among the sub-
graphs and investigate whether vertices with high sub-
graph degree connect preferentially to other high sub-
graph degree vertices or not. We then examine the prop-
erties of empirical networks by introducing a novel clique
cover and compare our cover to other recent advances in
the literature [25].

II. BACKGROUND

In this section, we review the generating function for-
mulation for higher-order subgraphs [10–12, 14, 26] and
the method of construction of GCM networks. We re-
serve bold characters for vector quantities.

The degree distribution pk is the probability that a
randomly chosen vertex in the network has degree k. A
common assumption is that the edges are locally tree-like;
short range cycles and connections among the nearest
neighbours are prohibited. The tree-like assumption has
proven very successful at describing many network prop-
erties [27]; however, the properties of random clustered
networks require a generalisation to the degree of a ver-
tex, beyond simple tree edges, to incorporate the effects
of triangles and other higher-order motifs. The result-
ing model was developed independently by Newman [26]
and Miller [14] for networks with triangles and later ex-
tended to all network motifs by Karrer and Newman [10].
The models assume that overall degree of a vertex can
be partitioned into sub-degrees that correspond to the
involvement of a vertex in pre-defined subgraphs. For in-
stance, the generalised degree, kτ = (k⊥, k∆, k�, . . . ), of
a vertex that has six tree-like edges and is also a member
of one triangle, two squares and three pentagons would
be kτ = (6, 1, 2, 3). The probability that a randomly
chosen vertex has a particular generalised degree is given
by a joint degree distribution pkτ . The ordinary degree
distribution is recovered from

pk =
∞∑

k⊥=0

· · ·
∞∑

kγ=0

pk⊥,...,kγ δk,
∑
λτkτ∈τ (1)

where τ is a vector of subgraph topologies
{⊥,4,�,D, · · · , γ}, up to some terminating motif
topology represented by γ, kτ is the degree of shape
τ ∈ τ , λτ is the number of edges a vertex has in
shape τ , pkτ = pk⊥,...,kγ is the dim(τ ) joint probability
distribution of degrees and δi,j is the Kronecker delta.
For instance, a vertex that is part of a two tree-like
edges, a triangle and a square will have the following
joint degree sequence (k⊥, k4, k�) = (2, 1, 1), while its
overall degree is k = 6. A network is described by its
joint probability distribution of each vertex playing a
certain role in a given subgraph a particular number
of times [10] for all permissible combinations of joint
degrees. The joint degree distribution can be generated

using

G0(z) =

∞∑
k⊥=0

· · ·
∞∑

kγ=0

pk⊥,...,kγz
k⊥
⊥ · · · z

kγ
γ (2)

where z = {z⊥, z4, z�, . . . , zγ}. In the ordinary generat-
ing function model, the excess degree distribution qk de-
fines the probability that a randomly chosen edge leads to
a vertex of degree k+1. In the generalised model we must
define an excess degree distribution for each topology in
τ ; since, traversing an edge of a particular topology does
not, in general, lead to vertices with equivalent joint de-
grees. The joint excess degree distribution for an edge of
topology τ is

qτ (kτ ) = (kτ + 1)pkτ\{τ},kτ+1/〈kτ 〉 (3)

where the notation s\{s} excludes element s from set s.
Each joint excess degree distribution is generated as

G1,τ (z) =

∞∑
k⊥

· · ·
∞∑
kγ

qkτ z
kτ−1
τ

∏
ν 6=τ

zkνν (4)

and is also seen to be the partial derivative of Eq. 2 with
respect to zτ divided by the expected number of τ -motifs

G1,τ (z) =
1

〈kτ 〉
∂G0

∂zτ
(5)

which can also be written as

G1,τ (z) =
G

′τ
0 (z)

G
′τ
0 (1)

(6)

where G
′τ
0 is the first derivative of G0(z) with respect to

zτ and 〈kτ 〉 = G
′τ
0 (1) is the average τ -degree for a vertex

in the network.
The global clustering coefficient C of a network with

V vertices is defined as

C =
3N∆

N3
(7)

where N∆ is the number of triangles in the network and
N3 is the number of connected triples. The number of
triangles involving vertices with a given joint degree kτ
is

N∆,kτ = V pk⊥,...,kγ (k∆ + · · ·+ µγkγ) (8)

where µτ is the number of triangles that a vertex belongs
to as a member of a τ -motif. For instance, µ∆ = 1 while
a vertex in 4-clique has belongs to 3 triangles. The total
number of triangles in the network is found by summing
over the joint degree

N∆ =

∞∑
k⊥=0

· · ·
∞∑

kγ=0

N∆,kτ (9)
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The number of connected triples is given by [26]

N3 = V
∑
k

(
k

2

)
pk (10)

We can use the generating function formulation to de-
termine the probability that a vertex selected at random
belongs to the GCC. Let uτ be the probability that a
vertex reached by the traversal of an edge of topology
τ does not lead to the GCC. Similarly, the probability
that the entire subgraph does not connect the vertex to
the GCC is umττ where mτ is the number of edges a ver-
tex has in each independent subgraph of topology τ . For
instance, a vertex has 3 edges in a given 4-clique. The
probability that the neighbour fails to attach to the GCC
is given by a self-consistent expression uτ = G1,τ (umτ

τ )
where umτ

τ = {u⊥, u2
∆, . . . , u

mγ
γ }. The size of the largest

percolating cluster S can then be calculated as

S = 1−G0(umτ
τ ) (11)

Introducing H(x) as the generating function for the GCC
as

H(x) =
G0(x)−G0(x · umτ

τ )

1−G0(umτ
τ )

(12)

where v ·w is the scalar product viwi. The overall degree
distribution of the GCC is given by

pGCC
k =

1

k!

∂k

∂xk
H(xmτ )

∣∣∣∣
x=1

(13)

where x = (x, x2, . . . , xmγ ). The networks that we use in
this paper are constructed according to the GCM which
we now detail [28–31]. For each vertex in a collection of
vertices, a joint degree is chosen from a distribution of
joint degrees to create a joint degree sequence. Not all
joint degree sequences are valid or graphic [23]. There is
a constraint on the permissible sequence of joint degrees
generated such that the sum of the number of motifs of
each kind is divisible by the number of vertices in each
basis motif. For instance, the number of triangles in the
joint degree sequence must be divisible by 3 and so on.
This ensures that when the vertices are chosen at random
and connected, there are precisely the correct number of
edges to construct each motif. This constraint does not
impact the number of each motif in the network; however.

Once the vertices have been assigned their stub de-
grees, they are connected at random to form the ap-
propriate subgraphs according to their joint degree se-
quence through a stub-matching process. The probabil-
ity of accidental formation of short range loops or motifs
that share edges (non-edge disjoint motifs) becomes van-
ishingly small in the limit that the networks are large.
Upon renormalising each motif to its characteristic scale
based on neighbouring vertex count, we recover the tree-
like property of the original configuration model.

Focal	vertex

1st neighbors

FIG. 1. A focal vertex in a 2- and 3-clique random graph
with n⊥,⊥,1 = n⊥,∆,0 = n∆,⊥,0 = n∆,⊥,2 = 1 and n⊥,⊥,2 =
n⊥,∆,1 = n∆,∆,1 = 2.

III. THEORETICAL

Consider an arbitrary set of edge topologies includ-
ing ordinary edges, triangles, squares, 4-cliques, pen-
tagons and so on, denoted by ~τ = {⊥,∆,�, . . . , γ},
where γ is the topology of the final element. In the
following, we reserve τ and ν as indices over elements
of τ . We define the number of subgraphs that a ver-
tex plays a role in for each topology τ ∈ τ by vector
kτ ,l = {k⊥, k∆, . . . , kγ} with l = 0, 1 representing the
focal vertex and nearest-neighbour joint sequences, re-
spectively. We reserve kν,l ∈ kτ ,l as an index for the
number of subgraphs of topology ν around a given ver-
tex in layer l; we drop the l label where obvious. The
joint probability distribution for choosing this vertex at
random is then denoted as pkτ,l . The number of edges
that a given vertex has within each motif is defined by
mτ ; for instance a vertex contributes two edges to each
triangle it connects to and hence m∆ = 2.

We define nτ,ν,kν to be the number of vertices with
kν subgraphs of topology ν that we reach by following
an edge of topology τ from the focal vertex to a nearest
neighbour. There are dim (τ

2
) of these expressions. Let

a particular configuration of type ν following τ edges be
nτ,ν such that

nτ,ν = {nτ,ν,1, nτ,ν,2, . . . } (14)

For instance, for a focal vertex that belongs to a GCM
graph comprising of vertices with both 2- and 3-cliques
such that τ = {⊥,∆}, the configuration of 3-cliques ob-
tained by following 2-cliques to a neighbour is

n⊥,∆ = {n⊥,∆,1, n⊥,∆,2, . . . , n⊥,∆,k∆,max} (15)

where k∆,max is the maximum number of triangles a sin-
gle vertex belongs to, see Fig 1.

Then, we define the set of all configurations of the
neighbours following τ edges to be nτ = {nτ,⊥, nτ,∆, . . . }.
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For instance, returning to the mixed 2- and 3-clique
example, we can also count the number of 2-cliques
the neighbour has instead of enumerating the 3-cliques.
Therefore, for this example we have

n⊥ = {n⊥,⊥, n⊥,∆} (16)

Finally, the set of all configurations of neighbour motif
membership is denoted by n = {n⊥, n∆, . . . }, which ac-
counts for each edge-type we could have followed to reach
the neighbour vertices.

The number of vertices reached by following all of the
τ edges is

Nτ =
∑
kτ=1

nτ,τ,kτ =
∑
ν=0

nτ,ν,kν τ 6= ν (17)

For instance, for the focal vertex in Fig 1, we have∑
k⊥=1

n⊥,⊥,k⊥ =
∑
k∆=0

n⊥,∆,k∆
= 3 (18)

and ∑
k∆=1

n∆,∆,k∆ =
∑
k⊥=0

n∆,⊥,k⊥ = 2 (19)

The total number of vertices 1-layer out from the focal
vertex is the sum of all vertices reached by traversing
each edge topology

N =
∑
τ∈τ

Nτ (20)

and hence, for the focal vertex in Fig 1, the total number
of direct neighbours is given by N = 5.

Let P (n | N) be the probability that the nearest-
neighbour configuration is given by set n and that the
total number of vertices in the first layer is N . This is
given by

P (n | N) =
∏
τ

(∏
ν 6=τ

∏
kν=0

Nτ
nτ,ν,kν !

q
nτ,ν,kν
τ,ν,kν

) ∏
kτ=1

Nτ
nτ,τ,kτ !

q
nτ,τ,kτ
τ,τ,kτ

(21)

where qτ,ν,k is the probability of traversing an edge of topology τ to a vertex with kν independent subgraphs of
topology ν. We also have the understanding that each term of the product over ν 6= τ has its own index kν starting
from zero; we have pulled out τ from this expression since, by definition, there must be at least one τ -edge present to
follow it to a nearest neighbour vertex and so the index starts at 1. The probability P (GCC | n) that the component
is the GCC for a particular configuration n is given by

P (GCC | n,N) = 1−
∏
τ

(∏
ν 6=τ

∏
kν=0

[
umνkνν

]nτ,ν,kν) ∏
kτ=1

[umτ (kτ−1)
τ ]nτ,τ,kτ (22)

where we have introduced uτ as the probability that a vertex at the end of a randomly chosen edge of topology τ fails
to connect to the GCC. The probability that the configuration is n, that the component is the GCC given that there
are N nearest-neighbours is found from Bayes’ theorem as

P (n,GCC | N) = P (GCC | n,N)P (n | N) (23)

Let P (N | kτ ,0) be the probability of there being N vertices in the 1st layer given that the joint degree of the focal
vertex is kτ ,0 and that the component is the GCC. We can use this to find the probability P (n,GCC | kτ ,0) that the
nearest-neighbour configuration is n given the joint degree of a vertex in the GCC is kτ ,0 as

P (n,GCC | kτ ,0) =
∑
N

P (N | kτ ,0)P (n,GCC | N) (24)

where the summation is over all combinations of Nτ such that∑
N

=
∑
N⊥

∑
N∆

· · · (25)

We find

P (n,GCC | kτ ,0) =
∑
N

P (N | kτ ,0)
∏
τ

∏
ν 6=τ

∏
kν=0

Nτ
nτ,ν,kν !

q
nτ,ν,kν
τ,ν,kν

 ∏
kτ=1

Nτ
nτ,τ,kτ !

q
nτ,τ,kτ
τ,τ,kτ

×

1−
∏
η

∏
ϕ6=η

∏
kν=0

[
umϕkνϕ

]nη,ϕ,kν ∏
kτ=1

[umη(kτ−1)
η ]nη,η,kτ

 τ, ν, η, ϕ ∈ τ (26)
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We now generate this probability by summing over all permissible configurations of the nearest-neighbour joint degrees
to obtain

F̃GCC(X | kτ ,0) =
∑
n

P (n,GCC | kτ ,0)
∏
τ

∏
ν 6=τ

∏
kν=0

X
nτ,ν,kν
τ,ν,kν

 ∏
kτ=1

X
nτ,τ,kτ
τ,τ,kτ

(27)

where ∑
n

=
∑
n⊥,⊥

∑
n⊥,∆

· · ·
∑
n∆,⊥

∑
n∆,∆

· · · (28)

We simplify the expression by substituting Eq 26, swapping the order of the summations and collecting terms in like
powers to obtain

F̃GCC(X | kτ ,0) =
∑
n

∑
N

P (N | kτ ,0)
∏
τ

∏
ν 6=τ

∏
kν=0

Nτ
nτ,ν,kν !

q
nτ,ν,kν
τ,ν,kν

 ∏
kτ=1

Nτ
nτ,τ,kτ !

q
nτ,τ,kτ
τ,τ,kτ

×

1−
∏
η

∏
ϕ6=η

∏
kν=0

[umϕkνϕ ]nη,ϕ,kν

 ∏
kτ=1

[umη(kτ−1)
η ]nη,η,kτ

∏
τ

∏
ν 6=τ

∏
kν=0

X
nτ,ν,kν
τ,ν,kν

 ∏
kτ=1

X
nτ,τ,kτ
τ,τ,kτ

(29)

to find

F̃GCC(X | kτ ,0) =
∑
n

∑
N

P (N | kτ ,0)
∏
τ

∏
ν 6=τ

∏
kν=0

Nτ
nτ,ν,kν !

(qτ,ν,kνXτ,ν,kν )nτ,ν,kν

 ∏
kτ=1

Nτ
nτ,τ,kτ !

(qτ,τ,kτXτ,τ,kτ )nτ,τ,kτ

×

1−
∏
η

∏
ϕ6=η

∏
kν=0

[
umϕkνϕ

]nη,ϕ,kν ∏
kτ=1

[umη(kτ−1)
η ]nη,η,kτ

 (30)

The multinomial theorem can now be applied to each of the terms in the product to obtain

F̃GCC(X | kτ ,0) =
∑
N

P (N | kτ ,0)
∏
τ

∏
ν 6=τ

∑
kν=0

qτ,ν,kνXτ,ν,kν

 ∑
kτ=1

qτ,τ,kτXτ,τ,kτ

Nτ

−
∑
N

P (N | kτ ,0)
∏
τ

∏
ν 6=τ

∑
kν=0

qτ,ν,kνu
mνkν
ν Xτ,ν,kν

 ∑
kτ=1

qτ,τ,kτu
mτ (kτ−1)
τ Xτ,τ,kτ

Nτ (31)

The probability that an edge of topology τ can be followed to reach a vertex with kν subgraphs of topology ν is given
by qτ,ν,kν . The probability that an edge of topology τ can be traversed to reach a vertex with kν motifs of topology ν
for all ν ∈ τ is the joint excess degree distribution, qτ,kτ,l . This can be constructed from the separable distributions
such that

qτ,kτ,l =
∏
ν

qτ,ν,kν,l (32)

With this we can write

F̃GCC(X | kτ ,0) =
∑
N

P (N | kτ ,0)
∏
τ

∏
ν 6=τ

∑
kτ=1

∑
kν=0

qτ,kτ ,1Xτ,ν,kνXτ,τ,kτ

Nτ

−
∑
N

P (N | kτ ,0)
∏
τ

∏
ν 6=τ

∑
kτ=1

∑
kν=0

qτ,kτ ,1u
mνkν
ν umτ (kτ−1)

τ Xτ,ν,kνXτ,τ,kτ

Nτ (33)
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The probability that there are N nearest-neighbour vertices given the joint degree of the focal vertex is kτ ,0 is simply
a particular term from the G0(Z) generating function. Inserting this definition into our expression we arrive at the
generating function that describes the distribution of nearest-neighbours given a particular joint degree of the focal
vertex as

F̂GCC(X | kτ ,0) = pkτ,0
∏
τ

∏
ν 6=τ

∑
kτ=1

∑
kν=0

qτ,kτ,1Xτ,ν,kνXτ,τ,kτ

mτkτ,0

− pkτ,0
∏
τ

∏
ν 6=τ

∑
kτ=1

∑
kν=0

qτ,kτ ,1u
mνkν
ν umτ (kτ−1)

τ Xτ,ν,kνXτ,τ,kτ

mτkτ,0 (34)

The expectation number of nearest-neighbours with a given joint degree is found from the expectation value of
F̂GCC(X = Z | kτ ,0). We then find

F̂ ′GCC =
∑
τ∈τ

mτpkτ,0kτ,0qτ,kτ,1

(
1− umτ (kτ,0+kτ,1−1)−1

τ

∏
ν∈τ\τ

umν(kν,0+kν,1)
ν

)
(35)

where the derivative is evaluated at Zkτ,1 = 1 (see Appendix A for a complete derivation using the tree-triangle
model). The bracket is one minus the probability that the none of the edges to the second layer lead to the GCC;
whilst the prefactor describes the probability of following kτ,0 τ -motifs, each of which has mτ edges to follow to reach
a vertex whose joint degree is given by qτ,kτ,1 . The exponent of uτ is the number of neighbouring vertices that can
be reached by following edges belonging to τ -subgraphs incident to two vertices at the end of an edge in a τ motif.
This is the total number of τ edges minus the mτ that belong to the focal edge’s motif minus the focal edge itself.

mτ (kτ,0 + kτ,1 − 2) +mτ − 1 = mτ (kτ,0 + kτ,1 − 1)− 1 (36)

In a similar way, we can find the generating function FGCC(X) for the probability distribution that a randomly chosen
vertex has a nearest neighbour configuration given by n and belongs to the GCC as

FGCC(X) =
∑
kτ,0

F̂GCC(X | kτ ,0) (37)

=
∑
kτ,0

pkτ,0
∏
τ

∏
ν 6=τ

∑
kτ=1

∑
kν=0

qτ,kτ,1Xτ,ν,kνXτ,τ,kτ

mτkτ,0

−
∑
kτ,0

pkτ,0
∏
τ

∏
ν 6=τ

∑
kτ=1

∑
kν=0

qτ,kτ ,1u
mνkν
ν umτ (kτ−1)

τ Xτ,ν,kνXτ,τ,kτ

mτkτ,0 (38)

which is simply G0(Z). The expectation number for the of nearest-neighbours from a random focal vertex in the
GCC is given by

F ′GCC =
∑
τ∈τ

mτ 〈kτ 〉[1− umτωττ ] (39)

where ωτ represents the number of vertices in the motif. We can use the quotient of these expectation values to define
a symmetric joint-probability distribution PGCC(kτ ,0,kτ ,1) = F̂ ′GCC/F

′
GCC that two nearest-neighbours in the GCC

have joint degrees kτ ,0 and kτ ,1 as

PGCC(kτ ,0,kτ ,1) =
∑
τ∈τ

mτpkτ,0kτ,0qτ,kτ,1

(
1− umτ (kτ,0+kτ,1−1)−1

τ

∏
ν∈τ\τ

umν(kν,0+kν,1)
ν

)
/
∑
τ∈τ

mτ 〈kτ 〉[1− umτωττ ] (40)

where PGCC(kτ ,0,kτ ,1) = PGCC(k⊥,0, . . . , kγ,0, k⊥,1, . . . , kγ,1). This equation is a central result and can be used to
compute many interesting properties of the correlation structure within configuration model networks. At any time,
we can compress the information contained within PGCC(kτ ,0,kτ ,1) to find PGCC(k0, k1) which is the probability that
a focal vertex with overall degree k0 attaches to a neighbour whose overall degree is k1.

P overall
GCC (k0, k1) =

∑
τ

∑
kτ

PGCC(kτ ,0,kτ ,1)δk0,koverall
0

δk1,koverall
0

(41)
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FIG. 2. The probability P (kτ,0, kτ,1) for Poisson random graphs comprising of a single motif topology, 2-cliques (A), 3-cliques
(B) and 4-cliques (C), respectively, as a function of kτ,0 for several kτ,1. The overall mean degree is fixed at 〈k〉 = 2.5 for
networks with N = 60000 vertices. Scatter points are the average of 100 repetitions of Monte Carlo simulation while the lines
are the theoretical predictions from Eq 47. The legend is the same for each plot.

where koverall
0 =

∑
τ

∑
kτ,0

mτkτ,0 and koverall
1 =

∑
τ

∑
kτ,1

mτkτ,1 are the overall degrees of the focal and neighbour

vertices. However, this degree lumping procedure overlooks the fine structure among the correlations as many joint
degrees can contribute to a given overall degree. Indeed it is precisely this structure which acts as a fingerprint of a
network ensemble.

Let us introduce the conditional probability PGCC(kτ ,1 | kτ ,0) that the nearest neighbour has joint degree kτ ,1
given that the focal vertex has joint degree kτ ,0 in the GCC. Applying Bayes’ theorem to our discrete multivariate
joint probability we have

PGCC(k⊥,1, . . . , kγ,1 | k⊥,0, . . . , kγ,0) =
PGCC(k⊥,0, . . . , kγ,0 | k⊥,1, . . . , kγ,1)PGCC(k⊥,1, . . . , kγ,1)∑

k⊥,1,...,kγ,1

PGCC(k⊥,0, . . . , kγ,0 | k⊥,1, . . . , kγ,1)PGCC(k⊥,1, . . . , kγ,1)
(42)

Which simplifies to

PGCC(kτ ,1 | kτ ,0) =
PGCC(kτ ,0,kτ ,1)∑

kτ,1

PGCC(kτ ,0,kτ ,1)
(43)

Inserting Eq 40 we find

PGCC(kτ ,1 | kτ ,0) =

∑
τ∈τ

mτpkτ,0kτ,0qτ,kτ,1

(
1− umτ (kτ,0+kτ,1−1)−1

τ
∏

ν∈τ\τ
u
mν(kν,0+kν,1)
ν

)
∑
τ∈τ

∑
kτ,1

mτpkτ,0kτ,0qτ,kτ,1

(
1− umτ (kτ,0+kτ,1−1)−1

τ
∏

ν∈τ\τ
u
mν(kν,0+kν,1)
ν

) (44)

We can use PGCC(kτ ,1 | kτ ,0) to find multivariate
conditional expectation values for a given focal vertex
joint degree, generalising [32] for the GCM. The expec-
tation value for vector X given vector Y is a vector
E [X | Y ] = (E [X1 | Y ], . . . , E [Xn | Y ])T whose elements
are the expected values of each of the variables defined
as

E [Xi | Y = y] =
∑

x1,...,xn

xiPGCC(x1, . . . , xn | Y = y)

(45)

For instance, the average joint degree of a neighbour to
a focal vertex whose joint degree is kτ,0 is the vector
(E [k⊥,1 | kτ,0], . . . , E [kγ,1 | kτ,0])T whose elements are

E [kτ,1 | kτ ,0] =
∑
kτ,1

kτ,1P (kτ ,1 | kτ ,0) (46)

We examine this expression in Appendix A for the tree-
triangle model.



8

(1,
 0)

(2,
 0)

(0,
 1)

(3,
 0)

(1,
 1)

(4,
 0)

(2,
 1)

(0,
 2)

k , 0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
P(

k
,0

,(
1,

0)
)

A
( k , k ) = (1.25, 0.625) (Theoretical)
( k , k ) = (1.5, 0.5) (Theoretical)
( k , k ) = (0.5, 1.0) (Theoretical)
( k , k ) = (1.25, 0.625) (Experimental)
( k , k ) = (1.5, 0.5) (Experimental)
( k , k ) = (0.5, 1.0) (Experimental)

(1,
 0)

(2,
 0)

(0,
 1)

(3,
 0)

(1,
 1)

(4,
 0)

(2,
 1)

(0,
 2)

k , 0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P(
k

,0
,(

2,
0)

)

B

(1,
 0)

(2,
 0)

(0,
 1)

(3,
 0)

(1,
 1)

(4,
 0)

(2,
 1)

(0,
 2)

k , 0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P(
k

,0
,(

0,
1)

)

C

(1,
 0)

(2,
 0)

(0,
 1)

(3,
 0)

(1,
 1)

(4,
 0)

(2,
 1)

(0,
 2)

k , 0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P(
k

,0
,(

3,
0)

)

D

(1,
 0)

(2,
 0)

(0,
 1)

(3,
 0)

(1,
 1)

(4,
 0)

(2,
 1)

(0,
 2)

k , 0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P(
k

,0
,(

1,
1)

)

E

(1,
 0)

(2,
 0)

(0,
 1)

(3,
 0)

(1,
 1)

(4,
 0)

(2,
 1)

(0,
 2)

k , 0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
P(

k
,0

,(
4,

0)
)

F

(1,
 0)

(2,
 0)

(0,
 1)

(3,
 0)

(1,
 1)

(4,
 0)

(2,
 1)

(0,
 2)

k , 0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P(
k

,0
,(

2,
1)

)

G

(1,
 0)

(2,
 0)

(0,
 1)

(3,
 0)

(1,
 1)

(4,
 0)

(2,
 1)

(0,
 2)

k , 0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P(
k

,0
,(

0,
2)

)

H

FIG. 3. The probability PGCC(s0, t0, s1, t1) for Poisson random graphs comprising of mixed 2-clique and 3-clique topologies for
three different clustering regimes. In each plot, the joint degrees of the focal vertex up to overall degree k = 4 are plotted on
the horizontal axis for a given (s1, t1) neighbour. Scatter points are the average of 250 repetitions of Monte Carlo simulation
on networks with 2 × 105 vertices; whilst lines are the analytical results of Eq 40. The legend is the same as tile (A) for all
plots.

IV. DISCUSSION

In this paper we have introduced a theoretical model,
based on generating functions, to investigate the NNDC
in the GCC of random clustered graphs, constructed ac-
cording to the GCM, comprising of higher-order clique
clusters. We now examine a series of pertinent examples
of this model.

A. Single topology

In the special case that the network consists of a sin-
gle homogeneous subgraph (a homogeneous subgraph
is one where all vertices are degree-equivalent), then
PGCC(kτ,0, kτ,1) from Eq 40 is given by

PGCC =
(1− umτ (kτ,0+kτ,1−1)−1

τ )

1− umτωττ
qτ,kτ,0qτ,kτ,1 (47)

and similarly from Eq 44 we have the related conditional
probability

PGCC(kτ,1 | kτ,0) =
(1− umτ (kτ,0+kτ,1−1)−1

τ )

1− umτkτ,0τ

qτ,kτ,1 (48)

which reproduces the results of [7, 8] for the nearest-
neighbour distributions on the GCC of tree-like networks
when τ = ⊥. We examine the NNDCs for single-topology

networks with Poisson distribution participation in mo-
tifs with fixed overall mean degree 〈k〉 = 2.5 in Fig 2.
The networks are composed of discrete clique topologies;
specifically 2, 3 and 4-cliques in Fig 2 A, B and C, re-
spectively. The markers are the averaged results of Monte
Carlo simulation while the lines are the theoretical pre-
dictions of Eq 47; both are in excellent agreement. In
each case, PGCC(kτ,0, kτ,1) is plotted as a function of in-
creasing kτ,0 for several kτ,1 values. We note that for
each clique size PGCC(1, 1) = 0; since, this combination
cannot exist in the GCC. For networks comprised of a
single topology, the average degree of a neighbour can be
found from Eq 46 as

E [kτ,1 | kτ,0] =

∑
kτ,1

kτ,1qτ,kτ,1(1− umτ (kτ,0+kτ,1−1)−1
τ )

1− umτkτ,0τ
(49)

which is in agreement with [33] for tree-like topologies.

B. Tree-triangle model

We now examine how clustering influences the degree
correlations in the GCC of the mixed topology tree-
triangle model. The theoretical details of this model are
derived in Appendix A. Fixing the first moment of the
model to 〈k〉 = 2.5 the limiting cases of 〈k⊥〉 = 0 and
〈k∆〉 = 0 are presented in Fig 2 and we now examine i)
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an even neighbour distribution by setting 〈k⊥〉 = 1.25
and 〈k∆〉 = 0.625; ii) a weakly clustered regime with
〈k⊥〉 = 1.5 and 〈k∆〉 = 0.5 and finally iii) a strong clus-
tering regime with 〈k⊥〉 = 0.5 and 〈k∆〉 = 1.0 in Fig
3. The joint degree of the horizontal axis is ordered by
increasing overall degree. When a given overall degree
can be formed in multiple ways, such as k = 2 from
(2, 0) or (0, 1), the degenerate cases are ordered by in-
creasing local clustering coefficient. Each tile in Fig 3
A-H plots a given neighbour joint degree (as a function
of the focal vertex joint degree) for the three cluster-
ing regimes. We observe some encouraging results from
these plots: firstly, as with the results of experiments
with single-topology networks (Fig 2), the probabilities
PGCC(1, 0, 1, 0) and PGCC(0, 1, 0, 1) are both zero for the
vertices in the GCC (see Fig 3 A). We also notice that
PGCC(s0, t0, s1, t1) takes zero values for impossible com-
binations, such as neighbours whose edges are of a sin-
gle, yet opposite, topology to one another. Further, the
probabilities are symmetric such that PGCC(kτ ,0, kτ ,1) =
PGCC(kτ ,1, kτ ,0) which is an expected result for undi-
rected random graphs. Among the non-zero combina-
tions we observe that some peaks, particularly among
focal vertices with non-zero degrees in both topologies,
are aligned across all series; for example PGCC(1, 1, 1, 1)
in E. Conversely, other peaks such as PGCC(2, 0, 2, 1) in
G peak in the weak and even regimes, yet trough in the
strong clustered regime.

We also observe, across all tiles in Fig 3 that the
correlations among the weak (blue squares) and even-

neighbour (orange circles) regimes are generally of higher
magnitude across all focal vertices than the strongly clus-
tered regime (green triangles). In other words, the net-
works with strong clustering exhibit NNDC that have
smaller magnitudes with the exception of tiles C and H,
which consider neighbouring vertices that only have tri-
angle motifs.

In tile F we notice that vertices with a high tree-like
degree do not tend to connect with neighbours with tri-
angles, especially in the strong clustering regime.

Collectively, these results give insight into how the net-
work is held together at the microscopic level and how
the presence of clustering alters this structure. This could
prove useful for creating synthetic networks or for a bet-
ter understanding of network resilience under targeted
attack.

C. The effect of clique size on NNDC

In this section, we examine the effect of increasing the
clique size on the NNDC of mixed topology GCM net-
works. To achieve this, we extend the calculations per-
formed in appendix A from the 2- and 3-clique model
to a binary model composed of 2- and m-cliques, whose
topology we denote by σ. For this model, the NNDC for
a focal vertex with s0 ordinary edges and c0 edge-disjoint
m-cliques in the GCC of a GCM network can be obtained
from

PGCC(s0, c0, s
′, c′) =

ps0c0s0q⊥,(s′,c′)

[
1− us0+s′−2

⊥ u
mσ(c0+c′)
σ

]
+mσc0ps0c0qσ,(s′,c′)

[
1− us0+s′

⊥ u
mσ(c0+c′−1)−1
σ

]
〈s〉(1− u2

⊥) +mσ〈c〉(1− uωσσ )
(50)

The results of this expression are shown in Fig 4, where
the overall neighbour degree is plotted against the over-
all degree of the focal vertex for several increasing clique
sizes. The scatter points are the results of Monte Carlo
simulation of networks with 100000 vertices, whilst the
plotted lines are the theoretical results of the model; both
show excellent agreement with one another. The net-
works are constructed according to the GCM algorithm
before the GCC is selected from the possibly discon-
nected graph. The motifs counts at each vertex are drawn
from Poisson distributions with averages chosen such that
the first moment of the distribution of overall degrees is
fixed at 〈k〉 = 6 across all experiments whilst the average
2-clique count is held fixed at 〈k⊥〉 = 1.25 and the average
clique count 〈kσ〉 is the solution of 〈k〉 = 〈k⊥〉+mσ〈kσ〉.
From Fig 4 we observe that the average neighbour de-
gree of networks with larger cliques increases. For cliques
larger than 2-cliques, oscillations in the average neigh-
bour degree appear at low focal vertex degree. The am-

plitude of the oscillations increases with clique size. In
each case, the oscillations dampen to a fixed value in the
limit of large focal vertex degree.

D. Emergence of correlations

At criticality, as the GCC emerges, we have that
uτ → 1; the probability of not belonging to the GCC
is near unity. In this case, the multivariate limit of Eq 40
does not exist. However, in the case that the network is
composed of cliques of various sizes which are each inde-
pendently Poisson distributed at each vertex such that

pkτ,l = qτ,kτ,l =
∏
τ∈τ

e−〈kτ 〉
〈kτ 〉kτ,l
kτ,l!

∀τ ∈ τ (51)

we have that uτ = umτ ,∀τ [10]. In this instance Eq 40 is
a univariate distribution and we can use L’Hôpital’s rule
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FIG. 4. The average overall degree of a neighbour for increas-
ing focal vertex degree for binary-topology networks compris-
ing 2-cliques and higher-order cliques. Scatter points are the
average of 1000 repetitions of Monte Carlo simulation whilst
the plotted lines are the result Eq 50, collected by overall de-
gree according to Eq 41. The networks are created from the
GCM algorithm with Poisson marginal distributions of each
motif topology and overall average degree fixed at 〈k〉 = 6
with 〈k⊥〉 = 1.25 across all experiments.

to determine the expected limit to be

lim
u→1

PGCC(kτ,0, kτ,1) =

∑
τ
mτpkτ,0kτ,0Λτqτ,kτ,1∑

τ
m2
τωτ 〈kτ 〉

(52)

where

Λτ = mτ (kτ,0 + kτ,1 − 1)− 1 +
∑
ν 6=τ

mν(kν,0 + kν,1) (53)

The critical point can be found by linearising uτ =
G1,τ (umτ

τ ) in a small perturbation ε around uτ = 1− ετ
[11]. To leading order in the small parameter ετ we have
ε = Aε with ε = [ε⊥, ε∆, . . . ]

T. The GCC forms at the
point when the determinant det |A − I| vanishes, where
A = [∂G/∂uτ ], G = [G1,τ , G1,∆, . . . , G1,γ ] and identity
matrix I. With mixed topology networks a GCC can
form in many different ways. For instance, the GCC of
a random graph model with two topologies can form by
three distinct mechanisms: a GCC can emerge solely in
either of the topologies or global connectivity can occur
through a mixture of the binary topologies.

As we approach the critical point from below, we in-
troduce a characteristic scale κτ [34] associated to the
joint degrees of the focal vertex and a neighbour given
by uτ = e−1/κτ . Inserting this expression into Eq 40 for
finite κτ in each topology, the correlations fall exponen-
tially with increasing κτ and hence PGCC(kτ,0, kτ,1) tends

to the uncorrelated value of∑
τ∈τ

mτpkτ,0kτ,0qτ,kτ,1/
∑
τ∈τ

mτ 〈kτ 〉 (54)

Therefore, when the joint degree exceeds the characteris-
tic scale, the GCC is uncorrelated. It is clear that as uτ
approaches unity the scale diverges κτ → ∞ and hence,
the GCC always exhibits degree correlations. In addition,
approaching the critical point, the average joint degree
(Eq 49) falls exponentially with increasing degree along
each topology for fixed κτ .

E [kτ,1 | kτ,0] =

∑
kτ,1

kτ,1qτ,kτ,1(1− e−φ)

1− e−mτkτ,0/κτ
(55)

where φ = mτ (kτ,0 + kτ,1− 1)− 1/κτ . Thus, the correla-
tions which are present at the critical point are negative
in nature. It might happen, however, given the number of
ways that the GCC of a mixed motif random graph model
can emerge, that the characteristic scales of all topologies
don’t diverge at the critical point. For instance, consider
a doubly Poisson distributed tree-triangle model with a
critical average tree degree, but a sub-critical average tri-
angle degree. A GCC will form among the tree edges, but
the probability of those vertices involved only in trian-
gles, (0, t) for t = 1, 2, 3, . . . , connecting to this GCC is
small; since, their connection requires them to connect
to mixed-topology vertices, which in turn connect to the
GCC. Thus, we might find that the negative degree cor-
relation structure among the triangles has not yet formed
despite there being a non-zero density of triangles in the
GCC.

E. Empirical networks

We now examine the correlation properties of the GCC
of the ensemble representation of empirical networks us-
ing our joint degree model. Random graphs are elements
of an ensemble G of graphs with V vertices and E edges;
each member occurring with probability P (G) [7]. The
average value of a property of graph G, Z(G), (such as
its degree distribution or average degree) can be averaged
over the entire ensemble

〈Z〉 =
∑
G∈G

Z(G)P (G) (56)

The generating function formulation describes the prop-
erties of the ensemble. Empirical networks g are partic-
ular realisations of members of G. The properties of a
particular realisation are given by

P (Z) =
∑
G∈G

δ(Z − Z(G))P (G) (57)

If P (Z) is well represented by the ensemble average then
the generating function formulation can be used to de-
scribe the properties of g. To study the NNDC in the
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GCC of g using generating functions, we must repre-
sent the largest component of an empirical network by
a joint degree sequence of subgraphs. Whilst the choice
of subgraphs is arbitrary [12], we only include cliques in
the topology representation due to the vast literature on
clique finding algorithms and the simplicity of calculating
their properties. The clique decomposition of the GCC of
g whose cliques have order less than or equal to ω can be
performed in many different ways; and the resulting joint
degree sequence can exhibit significantly different prop-
erties in terms of the number of subgraphs present their
clustering, and other properties. Given that the method
to create the joint degree distribution is not unique, and
that the ensemble properties of each particular decompo-
sition are often dissimilar, we now examine three clique
decompositions and compare their properties.

The trivial decomposition is to simply cover g with 2-
cliques; we refer to this as the single-edge-decomposition
(SED). The degree sequence can then be used to cre-
ate realisations using the ordinary configuration model.
Another simple cover is the minimal cover of maximal
cliques. However, it is very likely that the edges of the
cliques will not be disjoint, i.e. a single edge will be a
member of more than one clique. Whilst this could be
an accurate representation of a vertex’s local environ-
ment, the construction process for random graphs using
the GCM will not work. Thus, we must impose that the
cover is edge-disjoint.

One proposed method of clique decomposition is de-
fined heuristically as follows [25]: we obtain the set C
of all maximal cliques from the network; each maximal
n-clique ci ∈ C, n ∈ {1, . . . , ω} is scored according to
the fraction of edges it shares with other members of C.
The largest clique within the set of lowest score cliques
are included in the representation and C is recalculated.
The process is repeated until the edges of the substrate
network are expended. Such a covering is known as a
edge-disjoint edge clique cover (EECC), see Fig 5 for de-
tails.

We propose a novel alternative clique cover as follows:
the set C of all cliques present in the network (includ-
ing those induced from subgraphs of larger cliques) is
obtained from the empirical network. The set is or-
dered such that the largest cliques have the highest prece-
dence. The subset of cliques within C that have equal
size ∀n ∈ {1, . . . , ω} are then scored in a similar fashion
to the EECC algorithm and the cliques with the low-
est score (and therefore the least number of overlapping
edges with other motifs) are given highest precedence.
The order of cliques with equivalent size and score is
then randomised, thus the cover is stochastic. The largest
cliques are drawn from C and placed on the network if
their edges do not overlap other with cliques that have
already been placed in the network. The list is iterated
until all edges belong to an independent clique. This
method draws non-maximal joint degree sequences; how-
ever, higher-order cliques are preferentially preserved, we
describe it as an edge disjoint motif preserving edge clique

MOTIF	DECOMPOSITION

NON-MAXIMAL

MAXIMAL

SUBSTRATE

FIG. 5. The clique decomposition of a substrate network (left)
can be performed in multiple ways. Two examples are shown
(right). The shaded faces are higher-order cliques whilst the
green edges are 2-cliques. The clustering of the resulting joint
degree distributions (and their random graph ensembles) are
significantly altered depending on how the decomposition is
performed. The maximal representation has 6 cliques in total
whilst the non-maximal representation has 8 cliques. When
only maximal representations are extracted the decomposi-
tion is a EECC.

cover (MPCC), see Fig 6. In the particular case that
the set of maximal cliques are edge disjoint, the distri-
bution obtained from both the EECC and MPCC motif
decomposition algorithms are in agreement with one an-
other. It should be mentioned that both covers are not
unique when two cliques of a given size and score can
be chosen. Within the MPCC, we resolve these degen-
eracies by retaining the cliques associated with higher
degree vertices. In our implementation of the EECC,
we choose cliques from the set of degenerate cliques at
random. Once a suitable cover has been formed for the
network, its joint-degree sequence can be extracted. This
sequence is then used to create an ensemble of GCM net-
works. As a concrete example of this method we extract
the joint degree sequences, using the SED, EECC and
the MPCC, of the GCC of the network science author-
ship network [35] and use the GCM algorithm to con-
struct random graph ensembles. Plotted in Fig 8 are
the experimental results from the original network (red
crosses), the SED (green squares), the EECC (pink tri-
angles) and the results from the MPCC algorithm (light
blue circles) as well as their average (dark blue circles).
The average neighbour degree, k1 obtained from the SED
shows poor accuracy when compared to the experimen-
tal results. Instead of the detailed NNDC structure over
the range of focal vertex degrees, the neighbour degrees
tend to fluctuate around k1 = 8. In contrast, the MPCC
exhibits a rich correlation structure whose average fol-
lows the trends of the experimental data. Additionally,
the average neighbour degree for the high-degree vertices
is well represented; however, this is at the expense of
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SUBSTRATE
MPCC
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FIG. 6. The results of the to clique decomposition algorithms
(MPCC) and (EECC) for a particular substrate graph. The
MPCC favours the formation of large subgraphs, leading to
9 cliques (a single 4-clique and 8 2-cliques) whilst the EECC
leads to 6 cliques (4 3-cliques and 2 2-cliques). The joint
degree sequence obtained from the MPCC network creates a
non-maximal random ensemble of GCM networks.

the lower degree information, where the representation is
less accurate. The EECC shows fair agreement across the
range of focal vertex degrees, outperforming the MPCC
at low degrees; however, the MPCC represents the em-
pirical network correlations for the high-degree vertices
with greater accuracy than the EECC. The EECC rep-
resentation of the high-degree sites is in agreement with
the SED, indicating that these cliques are destroyed dur-
ing the covering process. We notice from the variance of
the MPCC that the NNDC of the empirical network is
dense within the set of ensemble representations.

V. CONCLUSION

In this paper we have introduced a robust analyti-
cal framework to study the NNDC between vertices in
the GCC of random graphs constructed according to the
GCM. We have used our method to investigate the cor-
relation properties of synthetic clustered GCM graphs in
detail and found they exhibit organisation among their
subgraphs. We studied the behaviour of the NNDC as
the size of the substrate motif increases, along with the
clustering for a fixed first moment of the overall average
degree. We found that the NNDC among networks com-
posed from larger cliques tend to be larger in magnitude
for low degree vertices due to the constraint on the first
moment of the overall degree.

Investigating the tree-triangle model in detail, we
found that the joint degrees are negatively correlated
along each topology as found for tree-like topologies in
other studies [4, 7, 8].

The magnitude and the patterns of NNDC were found

to vary significantly with the clustering coefficient of the

FIG. 7. A member of the MPCC random graph ensemble
of the GCC of the network science authorship network with
higher-order cliques (larger than 3-cliques) coloured for clar-
ity. Specifically, the 4-cliques are magenta, 5-cliques are light
green, 6-cliques are orange, 7-cliques are blue, 8-cliques are
yellow and the 9-clique is cyan. Unlike random graphs con-
structed using the EECC method, larger cliques are preferen-
tially retained in the ensemble.

network ensemble. The correlations among neighbours
of mixed topology focal vertices in tree-triangle networks
with larger clustering coefficients were smaller in mag-
nitude, in general, with respect to the single-topology
vertices.

We then investigated the role of clique size for GCM
graphs and observed oscillations in the average overall
neighbour degrees as a function of focal vertex degree.
We found that the average neighbour degree in the GCC
increases for networks composed of larger cliques.

Lastly, we studied the correlation structure of the ran-
dom graph ensemble of an empirical network. To do
this, we introduced a novel clique decomposition algo-
rithm and compared it to other heuristics in the litera-
ture. We found that the manner in which the network
is decomposed into motifs greatly effects the correlation
substructure of the ensemble representation.

This work increases our understanding of the NNDC of
clustered networks comprised of higher-order clique mo-
tifs; however, we have not addressed the long range cor-
relation structure or defined an assortativity coefficient
for these graphs, which we leave for future work.
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FIG. 8. The ensemble expectation value of the overall degree
of a neighbour as a function of focal vertex degree for clique
covers of the network science authorship network. Plotted
are the experimental results (red crosses), the average EECC
(pink triangles), the average MPCC (dark blue circles) and its
variance (light blue circles) for each realisation. Each simula-
tion was performed 1000 times. The SED (green squares)
doesn’t capture the correlation structure for this network.
The MPCC accurately captures the correlation structure of
the high-degree vertices due to retaining the larger motifs that
a vertex belongs to; however, the low (mid) degree sites are
generally under (over) predicted. Conversely, the EECC per-
forms well for the low and mid-degree vertices, but tends to
the SED for the high-degree sites.
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Appendix A: Results within the tree-triangle model

In this section we derive the expectation values for the tree-triangle model. For this model the generating function
for the number of nearest-neighbours given the joint degree of the focal vertex is kτ ,0 = (s0, t0) is given by unpacking
Eq 34 for τ = {⊥,∆}. We obtain

F̂GCC(x,y, s0, t0) = ps0,t0f
s0
⊥ f

2t0
∆ − ps0,t0g

s0
⊥ g

2t0
∆ (A1)

where fτ =
∑
s

∑
t qτ,(s,t)zst, g⊥ =

∑
s

∑
t q⊥,(s,t)u

s−1
⊥ u2t

∆xsyt and
∑
s

∑
t q∆,(s,t)u

s
⊥u

2(t−1)
∆ xsyt. The evaluation of the

expectation values for the nearest-neighbours to a vertex of joint degree (s0, t0) in the tree-triangle model is given by
the following derivative

F̂ ′GCC =
dF̂GCC

dzs′t′

∣∣∣∣
zs′t′=1

(A2)

We evaluate this as follows

dF̂GCC

dzs′t′

∣∣∣∣
zs′t′=1

=
d

dzs′t′

∣∣∣∣
zs′t′=1

ps0t0f
s0
⊥ f

2t0
∆ − d

dzs′t′

∣∣∣∣
zs′t′=1

ps0t0g
s0
⊥ g

2t0
∆ (A3)

= ps0t0

(
s0f

s0−1
⊥

df⊥
dzs′t′

f2t0
∆ + 2t0f

s0
⊥ f

2(t0−1)
∆ f∆

df∆

dzs′t′

)
− ps0t0

(
s0g

s0−1
⊥

dg⊥
dzs′t′

g2t0
∆ + 2t0g

s0
⊥ g

2(t0−1)
∆ g∆

dg∆

dzs′t′

)
(A4)
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At zs′t′ = 1 we have fτ (1) = 1, gτ (1) = G1,τ (u⊥, u
2
∆) and also

dfτ
dzs′t′

∣∣∣∣
zs′t′=1

=
d

dzs′t′

∑
s

∑
t

qτ,(s,t)zst (A5)

= qτ,(s′,t′) (A6)

and

dg⊥
dzs′t′

∣∣∣∣
zs′t′=1

=
d

dzs′t′

∑
s

∑
t

q⊥,(s,t)u
s−1
⊥ u2t

∆zst (A7)

= q⊥,(s′,t′)u
s′−1
⊥ u2t′

∆ (A8)

dg∆

dzs′t′

∣∣∣∣
zs′t′=1

=
d

dzs′t′

∑
s

∑
t

q∆,(s,t)u
s
⊥u

2(t−1)
∆ zst (A9)

= q∆,(s′,t′)u
s′

⊥u
2(t′−1)
∆ (A10)

Thus, we find

dF̂GCC

dzs′t′

∣∣∣∣
zs′t′=1

= ps0t0

(
s0q⊥,(s′,t′) + 2t0q∆,(s′,t′)

)
− ps0t0

(
s0u

s0−1
⊥ q⊥,(s′,t′)u

s′−1
⊥ u2t′

∆ u2t0
∆

+ 2t0u
s0
⊥ u

2(t0−1)
∆ u∆q∆,(s′,t′)u

s′

⊥u
2(t′−1)
∆

)
(A11)

The evaluation of the expectation values for the nearest-neighbours to the average vertex in the tree-triangle model
is given by the following derivative

F ′GCC =
∑
s′

∑
t′

dFGCC

dzs′t′

∣∣∣∣
zs′t′=1

(A12)

where FGCC is given by unpacking Eq 38 for τ = {⊥,∆} to find

FGCC(x,y) =
∑
s

∑
t

ps,tf
s
⊥f

2t
∆ −

∑
s

∑
t

ps,tg
s
⊥g

2t
∆ (A13)

To evaluate this consider the following derivative

dFGCC

dzs′t′
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zs′t′=1
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d

dzs′t′
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zs′t′=1
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t

pst

{
sfs−1
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(A16)

When evaluated at z(s′,t′) = 1 we have that fτ (1) = 1 and so the first bracket simplifies significantly. The second

bracket is more involved; however, using the self-consistent expressions for u⊥ = G1,⊥(u⊥, u
2
∆) and u∆ = G1,∆(u⊥, u

2
∆)

we can write g⊥(1) = u⊥ and g∆(1) = u∆ to obtain
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∆
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(A17)
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We now sum over (s′, t′) to obtain∑
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(A18)

The probability distributions are normalised and hence have the following property
∑
s

∑
t qτ,(s,t) = 1, so the first

bracket reduces trivially to the sum of the average degrees of each edge topology. The second bracket also reduces;
dealing first with the double summation over dashed variables we find∑

s′

∑
t′

dFGCC

dzs′t′

∣∣∣∣
zs′t′=1

=
∑
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∑
t
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before observing that ∑
s

∑
t

pstsx
s−1yt = 〈s〉G1,⊥(x, y) (A20)∑

s

∑
t

psttx
syt−1 = 〈t〉G1,∆(x, y) (A21)

to arrive at ∑
s′

∑
t′

dFGCC
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Substituting the self-consistent relationships for u⊥ and u∆ we finalise the expression as∑
s′

∑
t′

dFGCC

dzs′t′
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= 〈s〉
(
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⊥
)

+ 2〈t〉
(
1− u3

∆

)
(A23)

In the case that there are no triangles present in the model, then u∆ = 1 and 〈t〉 = 0; the expression reduces to∑
s′

dFGCC

dzs′
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zs′=1

= 〈s〉
(
1− u2

⊥
)

(A24)

which is the result of [33] in the case that l = 1. In the opposite case, when there are no ordinary edges, we find∑
t′

dFGCC

dzt′

∣∣∣∣
zt′=1

= 2〈t〉
(
1− u3

∆

)
(A25)

The probability P (kτ,0, kτ,1) = P ((s0, t0), (s′, t′)) is given by the quotient of Eqs A11 and A23 where we find

P ((s0, t0), (s′, t′)) =
dF̂GCC

dzs′t′
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(A26)

The conditional probability that a neighbour has joint degree (s′, t′) given a focal vertex of joint degree (s0, t0) is

P (s′, t′ | s0, t0) =
ps0t0s0q⊥,(s′,t′)[1− us0+s′−2

⊥ u
2(t0+t′)
∆ ] + 2ps0t0t0q∆,(s′,t′)[1− us0+s′

⊥ u
2(t0+t′−2)+1
∆ ]

ps0t0(s0 + 2t0)[1− us0⊥ u
2t0
∆ ]

(A27)
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𝑙 = 0

𝑙 = 1

𝑙 = 2

FIG. 9. An example of the degree correlation model in the tree-triangle model; 3-cliques are shaded orange whilst 2-cliques are
coloured green. The joint degree of the focal vertex in layer l = 0 is kτ ,0 = (2, 2). We can follow edges of topology ⊥ or ∆ to
the first neighbours. The distribution of the joint degrees of vertices in layer l = 2 depends on the topology of the path that
we choose to reach it. Note, we do not traverse edges between triangles that lead to vertices in the same layer.

Using Eq 46 we find the average joint degree of a neighbour to a (s0, t0) vertex as

E [kτ ,1 | kτ ,0] =

∑
s′,t′

s′P (s′, t′ | s0, t0),
∑
s′,t′

t′P (s′, t′ | s0, t0)

T

(A28)


