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DEGREE DISTANCE OF UNICYCLIC GRAPHS

Zhibin Du and Bo Zhou∗

Abstract

The degree distance of a connected graph G with vertex set V (G) is defined
as

D′(G) =
∑

u∈V (G)

dG(u)DG(u),

where dG(u) denotes the degree of vertex u and DG(u) denotes the sum of
distances between u and all vertices of G. We determine the maximum degree
distance of n-vertex unicyclic graphs with given maximum degree, and the
first seven maximum degree distances of n-vertex unicyclic graphs for n ≥ 6.

1 Introduction

Let G be a simple connected graph with vertex set V (G). For u, v ∈ V (G), let
dG(u, v) be the distance between u and v in G. For u ∈ V (G), let dG(u) be the
degree of u in G, and let DG(u) be the sum of distances between u and all vertices
of G, i.e., DG(u) =

∑
v∈V (G)

dG(u, v). The degree distance of G is defined as [1, 2]

D′(G) =
∑

u∈V (G)

dG(u)DG(u).

In 1989, Schultz [3] (see also [4]) put forward a “molecular topological index”,
MTI(G), of a connected graph G, which turns out to be [2]

MTI(G) = D′(G) + Zg(G),

where Zg(G) is equal to the sum of squares of the vertex degrees of G, which is
known as the (first) Zagreb index [5–7]. In chemical literature [2], the Schultz’s
molecular topological index and the degree distance are also named the Schultz
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index and the true Schultz index, respectively. Properties for molecular topological
index may be found in, e.g., [8–11].

Recall that the Wiener index of a connected graph G is defined as [12, 13]

W (G) =
1
2

∑

u∈V (G)

DG(u).

Gutman [2] showed that if G is an n-vertex tree, then D′(G) = 4W (G)− n(n− 1).
Thus, the study of the degree distance for trees is equivalent to the study of the
Wiener index, which may be found in [12, 14].

An n-vertex connected graph is said to be unicyclic if it possesses n edges for
n ≥ 3 and bicyclic if it possesses n+1 edges for n ≥ 4. I. Tomescu [15] showed that
the star is the unique graph with the minimum degree distance in the class of n-
vertex connected graphs. A.I. Tomescu [16] characterized the unicyclic and bicyclic
graphs with the minimum degree distances. I. Tomescu [17] deduced properties of
the graphs with the minimum degree distance in the class of n-vertex connected
graphs with m ≥ n − 1 edges, which were determined recently by Bucicovschi
and Cioabǎ [18]. Hou and Chang [19] characterized the unicyclic graphs with the
maximum degree distance. The authors [20] determined the bicyclic graphs of
exactly two cycles with the maximum degree distance. Dankelmann et al. [21] gave
asymptotically sharp upper bounds for the degree distance.

In this paper, we determine the maximum degree distance of n-vertex unicyclic
graphs with given maximum degree ∆, where 3 ≤ ∆ ≤ n− 2, the first seven maxi-
mum degree distances of n-vertex unicyclic graphs for n ≥ 6, and the corresponding
graphs whose degree distances achieve these values.

2 Preliminaries

Let Pn and Sn be respectively the path and the star on n ≥ 1 vertices, and Cn the
cycle on n ≥ 3 vertices.
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Fig. 1. The graphs G1 and G2 in Lemma 1.

Lemma 1. [2] Let Q1 and Q2 be vertex–disjoint connected graphs with at least two
vertices, and u ∈ V (Q1) and v ∈ V (Q2). Let G1 be the graph obtained from Q1 and
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Q2 by joining u and v by a path of length r ≥ 1, and G2 the graph obtained from
Q1 and Q2 by identifying u and v, which is denoted by w, and attaching a path Pr

to w; see Fig. 1. Then D′(G1) > D′(G2).

For a connected graph G, let V1(G) = {x ∈ V (G) : dG(x) 6= 2}. Then

D′(G) =
∑

x∈V (G)

2DG(x) +
∑

x∈V1(G)

(dG(x)− 2)DG(x)

= 4W (G) +
∑

x∈V1(G)

(dG(x)− 2)DG(x).

Thus, if G and H are connected graphs, then

D′(H)−D′(G) = 4[W (H)−W (G)]

+
∑

x∈V1(H)

(dH(x)− 2)DH(x)−
∑

x∈V1(G)

(dG(x)− 2)DG(x),

which will be used frequently to compare the degree distances of two related graphs.
For a subset M of the edge set of the graph G, G − M denotes the graph

obtained from G by deleting the edges in M , and for a subset M∗ of the edge set
of the complement of G, G+M∗ denotes the graph obtained from G by adding the
edges in M∗.

Let Cm(T1, T2, . . . , Tm) be the unicyclic graph with cycle Cm = v1v2 . . . vmv1

such that the deletion of all edges on Cm results in m vertex–disjoint trees T1, T2, . . . ,
Tm with vi ∈ V (Ti) for i = 1, 2, . . . , m. If Ti with 1 ≤ i ≤ m is trivial, then we
write Cm(T1, . . . , Ti−1, Ti, Ti+1, . . . , Tm) as Cm(T1, . . . , Ti−1,−, Ti+1, . . . , Tm).

Lemma 2. For integers i and j with 2 ≤ i < j ≤ m, let Gai,aj = Cm(T1, T2, . . . , Tm),
where Tr is the path Par+1 with an end vertex vr for 2 ≤ r ≤ m, and all trees Tl

with l 6= i, j and 1 ≤ l ≤ m are fixed. If ai, aj ≥ 1, then

D′(Gai,aj ) < max{D′(Gai+aj ,0), D′(G0,ai+aj )}.

Proof. Let G = Gai,aj and G1 = Gai+aj ,0. Denote by v the neighbor of vj outside
Cm in G. Let v∗k be the pendent vertex of G of the path attached to vk if ak ≥ 1,
where 2 ≤ k ≤ m. Obviously, G1 = G−{vvj}+ {vv∗i }. Let Z be the set of vertices
in the path from v to v∗j in G. Let W be the set of vertices in the path from vi

to v∗i in G. Let n = |V (G)|. Let G2 = G − {vvj} + {vvi}, a1 = |V (T1)| − 1 and
d(x, y) = dG(x, y) for x, y ∈ V (G). We have

W (G1)−W (G2)

=
∑
x∈Z
y∈W

[dG1(x, y)− dG2(x, y)] +
∑
x∈Z

y∈V (G)\(Z∪W )

[dG1(x, y)− dG2(x, y)]

= 0 +
∑
x∈Z

y∈V (G)\(Z∪W )

[dG1(x, y)− dG2(x, y)]
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=
∑
x∈Z

y∈V (G)\(Z∪W )

ai = aiaj(n− ai − aj − 1),

W (G2)−W (G)

=
∑
x∈Z

y∈V (Cm)

[dG2(x, y)− d(x, y)] +
∑
x∈Z

y∈V (G)\(Z∪V (Cm))

[dG2(x, y)− d(x, y)]

= 0 +
∑
x∈Z

y∈V (G)\(Z∪V (Cm))

[dG2(x, y)− d(x, y)]

=
∑

x∈Z

∑
1≤k≤m

k 6=j

ak [d(vk, vi)− d(vk, vj)]

= aj

∑
1≤k≤m

k 6=j

ak [d(vk, vi)− d(vk, vj)] ,

and then

W (G1)−W (G) = [W (G1)−W (G2)] + [W (G2)−W (G)]

= aiaj(n− ai − aj − 1) + aj

∑
1≤k≤m

k 6=j

ak [d(vk, vi)− d(vk, vj)] .

Note that V1(G1) = (V1(G1) ∩ V (T1))∪
(
∪ 2≤k≤m

ak≥1,k 6=i,j
{vk, v∗k}

)
∪{vi, v

∗
j } and V1(G) =

(V1(G) ∩ V (T1))∪
(
∪ 2≤k≤m

ak≥1
{vk, v∗k}

)
. For x ∈ V (Tk) with 1 ≤ k ≤ m and k 6= i, j,

we have DG1(x)−DG(x) = DG1(vk)−DG(vk). Setting k = 1, we have
∑

x∈V1(G1)∩V (T1)

(dG1(x)− 2)DG1(x)−
∑

x∈V1(G)∩V (T1)

(dG(x)− 2)DG(x)

=
∑

x∈V (T1)

(dG(x)− 2) [DG1(x)−DG(x)]

= [DG1(v1)−DG(v1)]


 ∑

x∈V (T1)

(dT1(x)− 2) + 2


 = 0.

For k 6= 1, i, j and ak ≥ 1, we have
∑

x∈{vk,v∗k}
(dG1(x)− 2)DG1(x)−

∑

x∈{vk,v∗k}
(dG(x)− 2)DG(x)

= (3− 2)[DG1(vk)−DG(vk)] + (1− 2)[DG1(v
∗
k)−DG(v∗k)] = 0.

Note that
∑

x∈{vi,v∗j }
(dG1(x)− 2)DG1(x)−

∑

x∈{vi,vj ,v∗i ,v∗j }
(dG(x)− 2)DG(x)
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= (3− 2)
[
DG1(vi)−DG(vi)] + (1− 2)[DG1(v

∗
j )−DG(v∗j )

]

−(1− 2)DG(v∗i )− (3− 2)DG(vj)
=

[
DG1(vi)−DG1(v

∗
j )

]
+ [DG(v∗i )−DG(vi)] +

[
DG(v∗j )−DG(vj)

]

= −(ai + aj)(n− ai − aj − 1) + ai(n− ai − 1) + aj(n− aj − 1) = 2aiaj .

Thus
∑

x∈V1(G1)

(dG1(x)− 2)DG1(x)−
∑

x∈V1(G)

(dG(x)− 2)DG(x) = 2aiaj .

It follows that

D′ (Gai+aj ,0

)−D′ (Gai,aj

)

= 4aiaj(n− ai − aj)− 2aiaj + 4aj

∑
1≤k≤m

k 6=j

ak [d(vk, vi)− d(vk, vj)] .

If D′(Gai+aj ,0) ≤ D′(Gai,aj ), then

4
∑

1≤k≤m
k 6=j

ak [d(vk, vj)− d(vk, vi)] ≥ 4ai(n− ai − aj)− 2ai,

and thus

D′(G0,ai+aj )−D′(Gai,aj )

= 4aiaj(n− ai − aj)− 2aiaj + 4ai

∑
1≤k≤m

k 6=i

ak [d(vk, vj)− d(vk, vi)]

= 4aiaj(n− ai − aj)− 2aiaj − 4ai(ai + aj)d(vi, vj)

+ai · 4
∑

1≤k≤m
k 6=j

ak [d(vk, vj)− d(vk, vi)]

≥ 4aiaj(n− ai − aj)− 2aiaj − 4ai(ai + aj)d(vi, vj)
+ai[4ai(n− ai − aj)− 2ai]

= 2ai(ai + aj)[2(n− ai − aj)− 2d(vi, vj)− 1]

≥ 2ai(ai + aj)
(
2m− 2 · m

2
− 1

)

= 2ai(ai + aj)(m− 1) > 0.

Now the result follows.

For n ≥ m ≥ 3, let Un,m = Cm(Pn−m+1,−, . . . ,−), where v1 is an end vertex
of the path Pn−m+1. Recall that W (Ps) = s3−s

6 and W (Cs) = s
2b s2

4 c. By direct
calculation, we have

W (Un,m) =
n3

6
+

(⌊
m2

4

⌋
− m2

2
+

m

2
− 1

6

)
n
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−m

2

⌊
m2

4

⌋
+

m3

3
− m2

2
+

m

6
, (1)

DUn,m

(
vbm

2 c+1

)
=

⌊
m2

4

⌋
+

1
2
(n−m)

(
n−m + 1 + 2

⌊m

2

⌋)
. (2)

Lemma 3. For integers i and m with 2 ≤ i ≤ bm
2 c+ 1 and m ≥ 3, let Gi(a, m) =

Cm(T1, T2, . . . , Tm), where Ti is the path Pa+1 with an end vertex vi, Tj = P1 for
2 ≤ j ≤ m with j 6= i, and T1 is a fixed tree. Let G(a,m) = Gbm

2 c+1(a,m). For fixed
k = a + m ≥ 4, D′(Gi(a,m)) < max{D′(G(k− 3, 3)), D′(G(k− 4, 4))} if m > 4, or
m = 4 and i = 2.

Proof. Let v∗i be the pendent vertex of the path attached to vi in Gi(a,m) if a ≥ 1.
We first prove that D′(Gi(a, m)) ≤ D′(G(a,m)). If |V (T1)| = 1 or a = 0,

then Gi(a,m) is (isomorphic to) G(a,m). Suppose that |V (T1)| ≥ 2 and a ≥ 1.
Suppose that Gi(a,m) 6= G(a,m), i.e., i < bm

2 c + 1. Let G1 = Gi(a,m). Let

G2 = G1 − {viv} +
{

vbm
2 c+1v

}
, where v is the neighbor of vi outside Cm in G1.

Obviously, G2 = G(a,m). It is easily seen that V1(G1) = (V1(G1) ∩ V (T1))∪{vi, v
∗
i }

and V1(G2) = (V1(G2) ∩ V (T1))∪
{

vbm
2 c+1, v

∗
i

}
. Note that for x ∈ V (T1), DG2(x)−

DG1(x) = DG2(v1)−DG1(v1), and thus
∑

x∈V1(G2)∩V (T1)

(dG2(x)− 2)DG2(x)−
∑

x∈V1(G1)∩V (T1)

(dG1(x)− 2)DG1(x) = 0.

We have

D′(G(a,m))−D′(Gi(a, m))
= 4[W (G2)−W (G1)] + (1− 2)[DG2(v

∗
i )−DG1(v

∗
i )]

+(3− 2)DG2

(
vbm

2 c+1

)
− (3− 2)DG1(vi)

= 4[W (G2)−W (G1)] + [DG1(v
∗
i )−DG1(vi)] +

[
DG2

(
vbm

2 c+1

)
−DG2(v

∗
i )

]

= 4
(⌊m

2

⌋
+ 1− i

)
a(|V (T1)| − 1) + a(n− a− 1)− a(n− a− 1)

= 4
(⌊m

2

⌋
+ 1− i

)
a(|V (T1)| − 1) > 0,

and thus D′(G(a,m)) > D′(Gi(a,m)). It follows that D′(Gi(a,m)) ≤ D′(G(a,m))
with equality if and only if Gi(a,m) = G(a,m). Thus, the result for m = 4 and
i = 2 follows.

To prove the result for m > 4, we need only to show that

D′(G(a,m)) < max{D′(G(k − 3, 3)), D′(G(k − 4, 4))}

for a ≥ 0. Note that Um+a,m is a subgraph of G(a,m).
Suppose that m ≥ 5. Let G3 = G(a + 2,m− 2). Let A1 = V (Um+a,m−2) \ {v1},

A2 = V (Um+a,m) \ {v1} and A3 = V (T1) \ {v1}. First suppose that a ≥ 1. For
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y ∈ V (T1), dG3(v1, y) = dG2(v1, y), and then
∑

x∈A1,y∈A3

dG3(x, y)−
∑

x∈A2,y∈A3

dG2(x, y)

=
∑

x∈A1,y∈A3

[dG3(x, v1) + dG3(v1, y)]−
∑

x∈A2,y∈A3

[dG2(x, v1) + dG2(v1, y)]

=


 ∑

x∈A1,y∈A3

dG3(x, v1)−
∑

x∈A2,y∈A3

dG2(x, v1)




+


 ∑

x∈A1,y∈A3

dG3(v1, y)−
∑

x∈A2,y∈A3

dG2(v1, y)




= (|V (T1)| − 1)

[ ∑

x∈A1

dG3(x, v1)−
∑

x∈A2

dG3(x, v1)

]

+(m + a− 1)
∑

y∈A3

[dG3(v1, y)− dG2(v1, y)]

= (|V (T1)| − 1)[DUm+a,m−2(v1)−DUm+a,m(v1)].

Let n = a + m + |V (T1)| − 1. Using Eqs. (1) and (2),

W (G3)−W (G2)

=


W (Um+a,m−2) + W (T1) +

∑

x∈A1,y∈A3

dG3(x, y)




−

W (Um+a,m) + W (T1) +

∑

x∈A2,y∈A3

dG2(x, y)




= [W (Um+a,m−2)−W (Um+a,m)] + (|V (T1)| − 1)[DUm+a,m−2(v1)−DUm+a,m(v1)]

=
m2

2
+

(
a− 2

⌊m

2

⌋
− n +

1
2

)
m +

⌊
m2

4

⌋
+ 2

⌊m

2

⌋
(n− a) + (a + 2)(n− a− 2).

Note that V1(G3) = (V1(G3) ∩ V (T1)) ∪
{

vbm
2 c, v

∗
bm

2 c
}

. Then

D′(G(a + 2, m− 2))−D′(G(a,m))

= 4[W (G3)−W (G2)] + (3− 2)
[
DG3

(
vbm

2 c
)
−DG2

(
vbm

2 c+1

)]

+(1− 2)
[
DG3

(
v∗bm

2 c
)
−DG2

(
v∗bm

2 c+1

)]

= 4[W (G3)−W (G2)] +
[
DG3

(
vbm

2 c
)
−DG3

(
v∗bm

2 c
)]

+
[
DG2

(
v∗bm

2 c+1

)
−DG2

(
vbm

2 c+1

)]

= 4[W (G3)−W (G2)]− (a + 2)(n− a− 3) + a(n− a− 1)
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=
{ −m2 + 2m− 4a2 + 4(n− 3)a + 6n− 10 if m is even,
−m2 + 6m− 4a2 + 4(n− 2)a + 2n− 11 if m is odd.

If a = 0, then by similar calculation, the last expressions for D′(G(a + 2,m− 2))−
D′(G(a,m)) also hold.

Suppose that m is even. Let f(m) = −m2 + 2m − 4a2 + 4(n − 3)a + 6n − 10.
Then

f(6) = (4a + 6)n− 4a2 − 12a− 34
≥ (4a + 6)(a + 6)− 4a2 − 12a− 34 = 18a + 2 > 0.

Let r1 and r2 be the two roots of f(m) = 0, where r1 ≤ r2. It is easily seen that
r1 < 6 < r2. Thus, when 6 ≤ m ≤ r2, f(m) ≥ 0, and when m > r2, f(m) < 0.
Suppose that k is even. Then m ≤ k. If r2 ≥ k, then D′(G(k − 4, 4)) is maximum,
while if r2 < k, then D′(G(k−4, 4)) or D′(G(0, k)) is maximum. Let G4 = G(k−4, 4)
and G5 = G(0, k). By similar calculation of D′(G(a + 2,m− 2))−D′(G(a,m)), we
have

D′(G(k − 4, 4))−D′(G(0, k))
= 4[W (G4)−W (G5)] + [(3− 2)DG4(v3) + (1− 2)DG4(v

∗
3)]

= 4
[
− 5

24
k3 +

(
n

4
+

3
2

)
k2 −

(
3
2
n +

25
6

)
k + 2n + 6

]

−(k − 4)(n− k + 3)

= n(k2 − 7k + 12)− 5
6
k3 + 7k2 − 71

3
k + 36

≥ k(k2 − 7k + 12)− 5
6
k3 + 7k2 − 71

3
k + 36

=
k3

6
− 35

3
k + 36 > 0,

and thus D′(G(k − 4, 4)) > D′(G(0, k)). Suppose that k is odd. Then m ≤ k − 1.
Similarly, we have D′(G(k − 4, 4)) or D′(G(1, k − 1)) is maximum. By similar
calculation, D′(G(k − 4, 4)) > D′(G(1, k − 1)). Thus, whether k is even or odd, we
have D′(G(a,m)) < D′(G(k − 4, 4)) for m > 4.

If m is odd, then by similar arguments as above, D′(G(a, m)) < D′(G(k− 3, 3))
for m > 4. The result follows easily.

Lemma 4. For any unicyclic graph H with u ∈ V (H), let H(a1, a2, . . . , at) be the
graph obtained from H by attaching t ≥ 2 paths Pa1 , Pa2 , . . . , Pat to u, where
a1 ≥ a2 ≥ · · · ≥ at ≥ 1. For fixed k = a1 + a2 + · · · + at, D′(H(a1, a2, . . . , at))
≤ D′(H(k − t + 1, 1, . . . , 1)) with equality if and only if a1 = k − t + 1 and ai = 1
for i = 2, . . . , t.

Proof. Suppose that G = H(a1, a2, . . . , at) is a graph with the maximum degree
distance satisfying the given condition. Suppose that there is some i such that ai ≥ 2
for 2 ≤ i ≤ t in G. For fixed as with s 6= i − 1, i, and fixed unicyclic graph H, we
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write G = H(ai−1, ai). Denote by v1 and v2 the pendent vertices of the path Pai−1

and Pai
, respectively, and v3 the neighbor of v2 in G. Let G1 = G−{v2v3}+{v1v2}.

Obviously G1 = H(ai−1 + 1, ai− 1). Let G2 = G−{v2v3}+ {uv2} and n = |V (G)|.
Then

W (G1)−W (G) = [DG1(v2)−DG2(v2)] + [DG2(v2)−DG(v2)]
= ai−1(n− ai−1 − 2)− (ai − 1)(n− ai − 1)
= (ai−1 − ai + 1)(n− ai−1 − ai − 1).

Let Q be the (unicyclic) graph obtained from G by deleting the vertices of the paths
Pai−1 and Pai . For x ∈ V (Q), DG1(x)−DG(x) = DG1(u)−DG(u), we have

∑

x∈V1(G1)∩V (Q)

(dG1(x)− 2)DG1(x)−
∑

x∈V1(G)∩V (Q)

(dG(x)− 2)DG(x)

= [DG1(u)−DG(u)]


 ∑

x∈V (Q)

(dQ(x)− 2) + 2


 = 2[DG1(u)−DG(u)].

It follows that

D′(H(ai−1 + 1, ai − 1))−D′(G)
= 4[W (G1)−W (G)] + 2[DG1(u)−DG(u)]

+(1− 2)[DG1(v2)−DG(v2)] + (1− 2)DG1(v3)− (1− 2)DG(v1)
= 4[W (G1)−W (G)] + [DG1(u)−DG1(v2)] + [DG1(u)−DG1(v3)]

+[DG(v2)−DG(u)] + [DG(v1)−DG(u)]
= 4[W (G1)−W (G)]− (ai−1 + 1)(n− ai−1 − 2)− (ai − 1)(n− ai)

+ai(n− ai − 1) + ai−1(n− ai−1 − 1)
= 4(ai−1 − ai + 1)(n− ai−1 − ai − 1) + 2(ai−1 − ai + 1) > 0,

and thus D′(H(ai−1 + 1, ai − 1)) > D′(G), a contradiction. Hence ai = 1 for
i = 2, . . . , t, and the result follows.

For a ≥ 1, b ≥ 0 and m = 3, 4, let Un,m(a, b) be the graph obtained by attaching
n−a−b−m pendent vertices and a path Pa to v1 ∈ V (H), where H = C3(−,−, Pb+1)
for m = 3, H = C4(−,−, Pb+1,−) for m = 4, and v3 is an end vertex of Pb+1.

Lemma 5. For a ≥ 1, b ≥ 0 and m = 3, 4, let s = a + b ≥ 2 and k = n − s −m.
Then for m = 3, or m = 4 and k = 0, 1,

D′(Un,m(a, b)) ≤ D′(Un,m(s, 0))

with equality if and only if Un,m(a, b) = Un,m(s, 0), and for m = 4 and k ≥ 2,

D′(Un,m(a, b)) ≤ D′(Un,m(1, s− 1))

with equality if and only if Un,m(a, b) = Un,m(1, s− 1).
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Proof. For Un,m(a, b), let u1 be the pendent vertex of the path attached to v1,
let u2 be the pendent vertex of the path attached to v3 if b ≥ 1, and let u be a
pendent vertex adjacent to v1 if k ≥ 1. Let G1 = Un,m(a, b). For a ≥ 2, let G2 =
G1 −{u1w}+ {u1u2}, G3 = G1 −{u1w}+ {u1v1} and G4 = G1 −{u1w}+ {u1v3},
where w is the neighbor of u1 in G1. Obviously G2 = Un,m(a− 1, b + 1). Then

W (G2)−W (G1)
= [DG2(u1)−DG4(u1)] + [DG4(u1)−DG3(u1)] + [DG3(u1)−DG1(u1)]

= b(a + k + m− 2) +
⌊m

2

⌋
(k + a− 1− b)− (a− 1)(k + m− 1 + b)

= (1− a + b)
(

k +
⌊

m− 1
2

⌋)
+ k

⌊m

2

⌋
.

Suppose that a ≥ 2. Note that DG2(u) −DG1(u) = DG2(v1) −DG1(v1). If b ≥ 1,
then

D′(Un,m(a− 1, b + 1))−D′(Un,m(a, b))
= 4[W (G2)−W (G1)] + (k + 3− 2)[DG2(v1)−DG1(v1)]

+k · (1− 2)[DG2(u)−DG1(u)] + (1− 2)[DG2(u1)−DG1(u1)]
+(3− 2) [DG2 (v3)−DG1 (v3)] + (1− 2)DG2(w)− (1− 2)DG1(u2)

= 4[W (G2)−W (G1)] + [DG2(v1)−DG2(w)] + [DG2 (v3)−DG2(u1)]
+[DG1(u1)−DG1(v1)] + [DG1(u2)−DG1 (v3)]

= 4[W (G2)−W (G1)]− (a− 1)(n− a)− (b + 1)(n− b− 2)
+a(n− a− 1) + b(n− b− 1)

= 4
[
(1− a + b)

(
k +

⌊
m− 1

2

⌋
+

1
2

)
+ k

⌊m

2

⌋]

=

{
4

[
(1− a + b)(k + 3

2 ) + k
]

if m = 3,

4
[
(1− a + b)(k + 3

2 ) + 2k
]

if m = 4.

If b = 0, then by similar calculation, the last expressions for D′(Un,m(a−1, b+1))−
D′(Un,m(a, b)) also hold.

Suppose that m = 3. Then D′(Un,3(a − 1, b + 1)) ≥ D′(Un,3(a, b)) if and only
if a − b ≤ 4k+3

2k+3 , implying that D′(Un,3(s, 0)) or D′(Un,3(1, s − 1)) is maximum. If
m = 4, then similarly we have D′(Un,4(s, 0)) or D′(Un,4(1, s − 1)) is maximum.
Note that

D′(Un,m(1, s− 1))−D′(Un,m(s, 0))

=
s∑

i=2

[D′(Un,m(i− 1, s− i + 1))−D′(Un,m(i, s− i))]

=

{
−6(s− 1) if m = 3,

4(s− 1)
(
k − 3

2

)
if m = 4.

Then the result follows.



Degree distance of unicyclic graphs 105

3 The maximum degree distance of unicyclic
graphs of given maximum degree

Stevanović [14] determined the unique n-vertex tree of given maximum degree with
the maximum Wiener index. By the relation between the Wiener index and the
degree distance for trees [2], this tree is also the unique n-vertex tree of given
maximum degree with the maximum degree distance. In this section, we determine
the maximum degree distance of n-vertex unicyclic graphs of given maximum degree,
and the corresponding graphs whose degree distances achieve this value.

A pendent path at a vertex v of a graph G is a path in G connecting vertex v
and some pendent vertex such that all internal vertices (if exist) in this path have
degree two and the degree of v is at least three.

Suppose that ∆ ≥ 3. Let U1
n,∆ = Un,3(n−∆, 0) if ∆ ≤ n−1, U2

n,∆ = Un,4(1, n−
∆ − 2) if ∆ ≤ n − 2, and U3

n,∆ the unicyclic graph obtained by joining a triangle
and the center of S∆ by a path of length n−∆− 2 if ∆ ≤ n− 3.

Let k = n− a− b−m. It was shown in [22] that

W (Un,m(a, b))

=
(
a + b +

m

2

)⌊
m2

4

⌋
+

(
a + 1

3

)
+

(
b + 1

3

)

+m

[(
a + 1

2

)
+

(
b + 1

2

)]
+

1
2
ab

(
2

⌊m

2

⌋
+ a + b + 2

)

+k

[⌊
m2

4

⌋
+ m +

1
2
a(a + 3) +

1
2
b
(
2

⌊m

2

⌋
+ b + 3

)]
+ k(k − 1),

from which we have the expressions for W (U1
n,∆) = W (Un,3(n−∆, 0)), W (U2

n,∆) =
W (Un,4(1, n−∆− 2)) and W (U3

n,∆) = W (U1
n,∆+1) + (∆− 2)(n−∆− 2).

In U1
n,∆, note that v1 is the vertex with degree ∆, let u be a pendent vertex

adjacent to v1 for ∆ ≥ 4, and u1 the pendent vertex of the path attached to v1.
Then

D′(U1
n,∆) = 4W (U1

n,∆) + (∆− 2)DU1
n,∆

(v1) + (∆− 3) · (1− 2)DU1
n,∆

(u)

+(1− 2)DU1
n,∆

(u1)

= 4W (U1
n,∆) + (∆− 3)

[
DU1

n,∆
(v1)−DU1

n,∆
(u)

]

+
[
DU1

n,∆
(v1)−DU1

n,∆
(u1)

]

= 4W (U1
n,∆)− (∆− 3) · (n− 2)− (n−∆)(∆− 1)

=
2
3
n3 −

(
2∆2 − 4∆ +

2
3

)
n +

4
3
∆3 −∆2 − 7

3
∆− 6.

By similar calculation, we have

D′(U2
n,∆) =

2
3
n3 −

(
2∆2 − 4∆ +

35
3

)
n +

4
3
∆3 −∆2 +

29
3

∆ + 10,
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D′(U3
n,∆) =

2
3
n3 −

(
2∆2 − 6∆ +

32
3

)
n +

4
3
∆3 − 3∆2 − 1

3
∆ + 16.

Let U(n,∆) be the set of n-vertex unicyclic graphs with maximum degree ∆,
where 2 ≤ ∆ ≤ n− 1. Obviously, U(n, 2) = {Cn} and U(n, n− 1) = {U1

n,n−1}.
Theorem 1. Among the graphs in U(n,∆) with 3 ≤ ∆ ≤ n− 2,

(i) if ∆ = 3, 4, 5, then U1
n,∆ is the unique graph with the maximum degree distance,

(ii) if ∆ = n − 2, then U1
n,n−2 for n = 5, 6, 7, U1

n,n−2 and U2
n,n−2 for n = 8, and

U2
n,n−2 for n ≥ 9 are the unique graphs with the maximum degree distance,

(iii) if 6 ≤ ∆ ≤ n− 3, then U1
n,∆ for 9 ≤ n ≤ 14, U1

n,∆ with ∆ < n+1−√n2−18n+45
2

or n+1+
√

n2−18n+45
2 < ∆ < 11n−16

12 , U1
n,∆ and U3

n,∆ with ∆ = n+1±√n2−18n+45
2 ,

U3
n,∆ with n+1−√n2−18n+45

2 < ∆ < n+1+
√

n2−18n+45
2 , U1

n,∆ and U2
n,∆ with

∆ = 11n−16
12 , and U2

n,∆ with ∆ > 11n−16
12 for 15 ≤ n ≤ 36, U1

n,∆ with

∆ < n+1−√n2−18n+45
2 , U1

n,∆ and U3
n,∆ with ∆ = n+1−√n2−18n+45

2 , U3
n,∆

with n+1−√n2−18n+45
2 < ∆ < n−5+

√
n2−8n+37
2 , U2

n,∆ and U3
n,∆ with ∆ =

n−5+
√

n2−8n+37
2 , and U2

n,∆ with ∆ > n−5+
√

n2−8n+37
2 for n ≥ 37 are the

unique graphs with the maximum degree distance,

and the expressions for D′(U1
n,∆), D′(U2

n,∆) and D′(U3
n,∆) are given by

D′(U1
n,∆) =

2
3
n3 −

(
2∆2 − 4∆ +

2
3

)
n +

4
3
∆3 −∆2 − 7

3
∆− 6,

D′(U2
n,∆) =

2
3
n3 −

(
2∆2 − 4∆ +

35
3

)
n +

4
3
∆3 −∆2 +

29
3

∆ + 10,

D′(U3
n,∆) =

2
3
n3 −

(
2∆2 − 6∆ +

32
3

)
n +

4
3
∆3 − 3∆2 − 1

3
∆ + 16 .

Proof. Let G be a graph with the maximum degree distance in U(n, ∆). Let C be
the unique cycle, and v a vertex of degree ∆ in G. Since ∆ ≥ 3, we have G 6= Cn.
Case 1. v lies on C.

By Lemma 1, the vertices outside C are of degree one or two, and the vertices
on C different from v are of degree two or three. By Lemma 2, there is at most
one vertex on C different from v with degree three. Thus, G is a graph obtained by
attaching ∆−2 paths to v and attaching at most one path to a vertex on C different
from v. By Lemmas 3 and 4, we know that the cycle length of C is three or four,
and among the pendent paths at v in G, there is at most one path with length at
least two. If the cycle length of C is three, then by Lemma 5, we have G = U1

n,∆.
If the cycle length of C is four, then by Lemma 5, we have G = Un,4(n−∆− 1, 0)
with ∆ = 3, 4, and G = U2

n,∆ with ∆ ≥ 5. Note that

D′(U1
n,∆)−D′(Un,4(n−∆− 1, 0)) =

{
5n− 22 > 0 if ∆ = 3,

9n− 52 > 0 if ∆ = 4.
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Thus, G = U1
n,∆ if ∆ = 3, 4, and G = U1

n,∆ or U2
n,∆ if ∆ ≥ 5.

Case 2. v lies outside C.
In this case ∆ ≤ n− 3. Suppose that u is the vertex on C that is nearest to v.

By Lemma 1, the vertices outside C different from v are of degree one or two, and
the vertices on C are of degree two or three. By Lemma 2, there is at most one
vertex on C different from u with degree three. By Lemma 4, among the pendent
paths at v in G, there is at most one path with length at least two.

Denote by G∗ the graph obtained from G by deleting the vertices of the subtree
attached to u. Suppose that G∗ 6= C3. By Lemma 3, G∗ is either Uk,3, or Uk,4 for
which the two vertices on C4 of degree three are non-adjacent, where 4 ≤ k ≤ n−∆.
We write G = G(k, 3) if G∗ = Uk,3, and G = G(k, 4) if G∗ = Uk,4. Denote by
u1 the vertex on C3 with degree three different from u, u2 the pendent vertex
of the path attached to u1, and u3 the neighbor of u outside C3 in G(k, 3). Let
G1 = G(k, 3)−{uu3}+{u2u3} ∈ U(n,∆). We will show that D′(G1) > D′(G), i.e.,
D′(G1) > D′(G(k, 3)) and D′(G1) > D′(G(k, 4)).

First suppose that G = G(k, 3). Let Q be the subtree attached to u. For
x ∈ V (Q), we have DG1(x)−DG(x) = DG1(u3)−DG(u3), and thus

∑

x∈V1(G1)∩V (Q)

(dG1(x)− 2)DG1(x)−
∑

x∈V1(G)∩V (Q)

(dG(x)− 2)DG(x)

= [DG1(u3)−DG(u3)]


 ∑

x∈V (Q)

(dQ(x)− 2) + 1


 = −[DG1(u3)−DG(u3)].

Let G2 = G(k, 3)− {uu3}+ {u1u3}. Note that

W (G1)−W (G) = [W (G1)−W (G2)] + [W (G2)−W (G)]
= 2(k − 3)(n− k)− (k − 3)(n− k) = (k − 3)(n− k).

Then

D′(G1)−D′(G)
= 4[W (G1)−W (G)]− [DG1(u3)−DG(u3)] + (3− 2)[DG1(u1)−DG(u1)]

−(1− 2)DG(u2)− (3− 2)DG(u)
= 4[W (G1)−W (G)] + [DG1(u1)−DG1(u3)] + [DG(u3)−DG(u)]

+[DG(u2)−DG(u1)]
= 4(k − 3)(n− k) + (k − 2)(n− k − 3) + (2k − n) + (k − 3)(n− k + 2)
= 6(k − 3)(n− k) > 0,

and thus D′(G1) > D′(G(k, 3)).
Now we consider G = G(k, 4). Using Eqs. (1) and (2), and by similar calculation

of D′(G(a + 2,m− 2))−D′(G(a, m)) as in the proof of Lemma 3, we have

D′(G(k, 3))−D′(G(k, 4)) = 6k − n− 22,
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and thus

D′(G1)−D′(G(k, 4)) = [D′(G1)−D′(G(k, 3))] + [D′(G(k, 3))−D′(G(k, 4))]
= 6(k − 3)(n− k) + 6k − n− 22.

If k = 4 or n ≤ 6k − 22, then D′(G1) > D′(G(k, 4)), and if k ≥ 5 and n > 6k − 22,
then

D′(G1)−D′(G(k, 4)) = [6(k − 3)− 1]n− 6k(k − 4)− 22
> [6(k − 3)− 1](6k − 22)− 6k(k − 4)− 22
= 6(k − 3)(5k − 22) > 0,

and thus D′(G1) > D′(G(k, 4)).
It follows that D′(G1) > D′(G), a contradiction. Thus G∗ = C3.
Suppose that G 6= U3

n,∆. Denote by w the pendent vertex of the longest pendent
path at v, and w1 the neighbor of w. Then dG(v, w) ≥ 2. Let t = dG(v, w1) ≥ 1.
Note that n −∆ − t ≥ 3. Denote by x1, x2, . . . , x∆−2 the pendent neighbors of v.
Consider G3 = G− {vx1, . . . , vx∆−2}+ {w1x1, . . . , w1x∆−2} ∈ U(n, ∆). Note that

DG3(w1)−DG(v) = [DG3(w1)−DG(w1)] + [DG(w1)−DG(v)]
= −t(∆− 2) + t(n− t− 3) = t(n−∆− t− 1).

Then

D′(G3)−D′(G)
= 4[W (G3)−W (G)] + (3− 2)[DG3(u)−DG(u)] + (1− 2)[DG3(w)−DG(w)]

+(∆− 2) · (1− 2)[DG3(x1)−DG(x1)] + (∆− 2)[DG3(w1)−DG(v)]
= 4 · t(∆− 2)(n−∆− t− 1) + t(∆− 2) + t(∆− 2)

−(∆− 2) · t(n−∆− t− 1) + (∆− 2) · t(n−∆− t− 1)
= 2t(∆− 2)[2(n−∆− t− 1) + 1] > 0,

and thus D′(G3) > D′(G), a contradiction. It follows that G = U3
n,∆ with ∆ ≤ n−3.

Combining Cases 1 and 2, we have G = U1
n,∆ or U3

n,∆ if ∆ = 3, 4, G = U1
n,∆ or

U2
n,∆ if ∆ = n− 2, and G = U1

n,∆, U2
n,∆, or U3

n,∆ if 5 ≤ ∆ ≤ n− 3. Note that

D′(U2
n,∆)−D′(U1

n,∆) = 12
(

∆− 11n− 16
12

)
,

D′(U2
n,∆)−D′(U3

n,∆) = 2
[
∆2 − (n− 5)∆− n

2
− 3

]

= 2

(
∆− n− 5−√n2 − 8n + 37

2

)

·
(

∆− n− 5 +
√

n2 − 8n + 37
2

)
,
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D′(U1
n,∆)−D′(U3

n,∆) = 2[∆2 − (n + 1)∆ + 5n− 11].

Now the results for ∆ = 3, 4, 5, n − 2 follow by direct calculation, proving (i) and
(ii). Suppose that 6 ≤ ∆ ≤ n − 3. For 9 ≤ n ≤ 14, we have D′(U1

n,∆) > D′(U3
n,∆)

because the discriminant of the quadratic equation ∆2− (n +1)∆+5n− 11 = 0 on
∆ is n2 − 18n + 45 < 0, and for n ≥ 15, we have

D′(U1
n,∆)−D′(U3

n,∆) = 2

(
∆− n + 1−√n2 − 18n + 45

2

)

·
(

∆− n + 1 +
√

n2 − 18n + 45
2

)
.

If 9 ≤ n ≤ 14, then D′(U1
n,∆) > D′(U3

n,∆),

D′(U2
n,∆)−D′(U1

n,∆) = 12
(

∆− 11n− 16
12

)

≤ 12
(

n− 3− 11n− 16
12

)
= n− 20 < 0,

and thus D′(U1
n,∆) > max

{
D′(U2

n,∆), D′(U3
n,∆)

}
. If 15 ≤ n ≤ 36, then

n− 5−√n2 − 8n + 37
2

<
n + 1−√n2 − 18n + 45

2

<
n + 1 +

√
n2 − 18n + 45
2

<
n− 5 +

√
n2 − 8n + 37
2

<
11n− 16

12
,

and thus

D′(U1
n,∆) > D′(U2

n,∆) > D′(U3
n,∆) if ∆ < n−5−√n2−8n+37

2 ,

D′(U1
n,∆) > D′(U2

n,∆) = D′(U3
n,∆) if ∆ = n−5−√n2−8n+37

2 ,

D′(U1
n,∆) > D′(U3

n,∆) > D′(U2
n,∆) if n−5−√n2−8n+37

2 < ∆ < n+1−√n2−18n+45
2 ,

D′(U1
n,∆) = D′(U3

n,∆) > D′(U2
n,∆) if ∆ = n+1−√n2−18n+45

2 ,

D′(U3
n,∆) > D′(U1

n,∆) > D′(U2
n,∆) if n+1−√n2−18n+45

2 < ∆ < n+1+
√

n2−18n+45
2 ,

D′(U1
n,∆) = D′(U3

n,∆) > D′(U2
n,∆) if ∆ = n+1+

√
n2−18n+45
2 ,

D′(U1
n,∆) > D′(U3

n,∆) > D′(U2
n,∆) if n+1+

√
n2−18n+45
2 < ∆ < n−5+

√
n2−8n+37
2 ,

D′(U1
n,∆) > D′(U2

n,∆) = D′(U3
n,∆) if ∆ = n−5+

√
n2−8n+37
2 ,

D′(U1
n,∆) > D′(U2

n,∆) > D′(U3
n,∆) if n−5+

√
n2−8n+37
2 < ∆ < 11n−16

12 ,

D′(U1
n,∆) = D′(U2

n,∆) > D′(U3
n,∆) if ∆ = 11n−16

12 ,

D′(U2
n,∆) > D′(U1

n,∆) > D′(U3
n,∆) if ∆ > 11n−16

12 .
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If n ≥ 37, then

n− 5−√n2 − 8n + 37
2

<
n + 1−√n2 − 18n + 45

2

<
11n− 16

12
<

n− 5 +
√

n2 − 8n + 37
2

<
n + 1 +

√
n2 − 18n + 45
2

,

and thus

D′(U1
n,∆) > D′(U2

n,∆) > D′(U3
n,∆) if ∆ < n−5−√n2−8n+37

2 ,

D′(U1
n,∆) > D′(U2

n,∆) = D′(U3
n,∆) if ∆ = n−5−√n2−8n+37

2 ,

D′(U1
n,∆) > D′(U3

n,∆) > D′(U2
n,∆) if n−5−√n2−8n+37

2 < ∆ < n+1−√n2−18n+45
2 ,

D′(U1
n,∆) = D′(U3

n,∆) > D′(U2
n,∆) if ∆ = n+1−√n2−18n+45

2 ,

D′(U3
n,∆) > D′(U1

n,∆) > D′(U2
n,∆) if n+1−√n2−18n+45

2 < ∆ < 11n−16
12 ,

D′(U3
n,∆) > D′(U1

n,∆) = D′(U2
n,∆) if ∆ = 11n−16

12 ,

D′(U3
n,∆) > D′(U2

n,∆) > D′(U1
n,∆) if 11n−16

12 < ∆ < n−5+
√

n2−8n+37
2 ,

D′(U2
n,∆) = D′(U3

n,∆) > D′(U1
n,∆) if ∆ = n−5+

√
n2−8n+37
2 ,

D′(U2
n,∆) > D′(U1

n,∆) > D′(U3
n,∆) if n−5+

√
n2−8n+37
2 < ∆ < n+1+

√
n2−18n+45
2 ,

D′(U2
n,∆) > D′(U1

n,∆) = D′(U3
n,∆) if ∆ = n+1+

√
n2−18n+45
2 ,

D′(U2
n,∆) > D′(U1

n,∆) > D′(U3
n,∆) if ∆ > n+1+

√
n2−18n+45
2 .

Now (iii) follows.

4 The first seven maximum degree distances of
unicyclic graphs

In this section, we consider the first seven maximum degree distances of n-vertex
unicyclic graphs and characterize the graphs whose degree distances achieve these
values. First we give some lemmas.

Let T s
n be the tree obtained from the path Pn−1 = u0u1 . . . un−2 by attaching a

pendent vertex to us, where 1 ≤ s ≤ n− 2.
In the following, if the symbol G = Cm(T1, T2, . . . , Tm) is used, then we require

dG(vi) = 3 when Ti = Pr with r ≥ 2, and vi = ur−2 when Ti = T s
r with r ≥ 3.

Lemma 6. For fixed trees T2, . . . , Tm, let G(T ) = Cm(T, T2, . . . , Tm) with |V (T )| =
k ≥ 1, and H = Cm(−, T2, . . . , Tm). If k ≥ 4, then G(Pk), G(T 1

k ) and G(T 2
k ) are

respectively the unique graphs with the first, the second and the third maximum
degree distances, and if k ≥ 5, then G(T k−2

k ) is the unique graph with the fourth
maximum degree distance for |V (H)| = 3, while G(T 3

k ) is the unique graph with the
fourth maximum degree distance for |V (H)| ≥ 4.
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Proof. Let G = G(T ). If T 6= Pk, then by Lemma 1, we have D′(G) < D′(G(Pk)).
Thus, G(Pk) is the unique graph with the maximum degree distance. Suppose
that T 6= Pk. Then either dG(v1) ≥ 4, or dG(v1) = 3 and some vertex in T
different from v1 has degree at least three. If dG(v1) ≥ 4, then by Lemmas 1 and 4,
D′(G) ≤ D′(G(T k−2

k )) with equality if and only if G = G(T k−2
k ).

Suppose that dG(v1) = 3 and some vertex in T different from v1 has degree at
least three. Let t be the maximum degree of T , and x a maximum degree vertex.
Then t ≥ 3 and x 6= v1.

Suppose first that t ≥ 4, or t = 3 and there are at least two vertices of T
with degree three. Let G0 be a graph with the maximum degree distance. If
t ≥ 5, then by Lemma 1, we may get a graph with t = 4 with larger degree
distance, a contradiction. Thus, t = 3, 4. If t = 3, then by Lemmas 1 and 4,
D′(G0) < D′(G(T i1

k )) for some i1 with 3 ≤ i1 ≤ k − 3. Suppose that t = 4. By
Lemma 1, all vertices of T different from x are of degree one or two. If there is
a pendent path at x of length at least two, then by Lemmas 1 and 4, we have
D′(G0) < D′(G(T i2

k )) for some i2 with 3 ≤ i2 ≤ k − 3. Suppose that all the three
pendent paths at x are of length one in G0. Denote by x1, x2 and x3 the pendent
neighbors of x in G0. Let G1 = G0 − {xx1}+ {x1x2}. Obviously G1 = G(T 2

k ). For
x ∈ V (H), DG1(x)−DG0(x) = DG1(v1)−DG0(v1), and thus

∑

x∈V1(G1)∩V (H)

(dG1(x)− 2)DG1(x)−
∑

x∈V1(G0)∩V (H)

(dG0(x)− 2)DG0(x)

= [DG1(v1)−DG0(v1)]


 ∑

x∈V (H)

(dH(x)− 2) + 1


 = DG1(v1)−DG0(v1).

Note that V1(G0) = (V1(G0)∩V (H))∪{x, x1, x2, x3}, V1(G1) = (V1(G1)∩V (H))∪
{x, x1, x3}, and thus

D′(G(T 2
k ))−D′(G0)

= 4[W (G1)−W (G0)] + [DG1(v1)−DG0(v1)] + (1− 2)[DG1(x1)−DG0(x1)]
+(1− 2)[DG1(x3)−DG0(x3)] + (3− 2)DG1(x)
−(4− 2)DG0(x)− (1− 2)DG0(x2)

= 4[W (G1)−W (G0)] + [DG1(v1)−DG0(v1)]− [DG1(x1)−DG0(x1)]
−[DG1(x3)−DG0(x3)] + [DG1(x)−DG0(x)] + [DG0(x2)−DG0(x)]

= 4(n− 3) + 1− (n− 3)− 1 + 1 + (n− 2) = 4n− 10.

On the other hand, by similar calculation of D′(G3) − D′(G) as in the proof of
Theorem 1, we have D′(G(T 3

k ))−D′(G(T 2
k )) = −4n + 26. Then

D′(G(T 3
k ))−D′(G0) = [D′(G(T 3

k ))−D′(G(T 2
k ))]+ [D′(G(T 2

k ))−D′(G0)] = 16 > 0,

and thus D′(G(T 3
k )) > D′(G0) ≥ D′(G).

Next suppose that t = 3 and there is exactly one vertex, say y, with maximum
degree three in T . Denote by a and b the lengths of the two pendent paths at y,
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where a ≥ b. If b ≥ 2, then by Lemma 4, D′(G) < D′(G(T i3
k )) for some i3 with

3 ≤ i3 ≤ k − 3. If b = 1, then G = G(T i4
k ) for some i4 with 1 ≤ i4 ≤ k − 3.

Now we have shown that D′(G) < max{D′(G(T i
k)) : 3 ≤ i ≤ k−2} or G = G(T i

k)
with 1 ≤ i ≤ k − 2.

Let n = |V (H)| + k − 1. By similar calculation of D′(G3) − D′(G) as in the
proof of Theorem 1, D′(G(T 1

k ))−D′(G(T 2
k )) = 4n− 18 > 0, and for 3 ≤ i ≤ k − 2,

D′(G(T 2
k ))−D′(G(T i

k)) = 4(i− 2)n− 4i2 − 6i + 28
≥ 4(i− 2)(i + 4)− 4i2 − 6i + 28 = 2(i− 2) > 0.

Thus
max{D′(G(T i

k)) : 3 ≤ i ≤ k − 2} < D′(G(T 2
k )) < D′(G(T 1

k )),

implying that G(T 1
k ) and G(T 2

k ) are respectively the unique graphs with the second
and the third maximum degree distances, and the fourth maximum degree distance
is only possibly achieved by G(T i

k) with 3 ≤ i ≤ k − 2. Note that D′(G(T 2
k )) −

D′(G(T 3
k )) = 4n− 26. For 3 < i ≤ k − 3,

D′(G(T 3
k ))−D′(G(T i

k)) = [D′(G(T 2
k ))−D′(G(T i

k))]
−[D′(G(T 2

k ))−D′(G(T 3
k ))]

= 4(i− 3)n− 4i2 − 6i + 54
≥ 4(i− 3)(i + 5)− 4i2 − 6i + 54 = 2(i− 3) > 0,

and thus D′(G(T 3
k )) > D′(G(T i

k)). On the other hand, it is easily seen that

D′(G(T 3
k ))−D′(G(T k−2

k )) = 2(k − 5)(2|V (H)| − 7),

which is negative if |V (H)| = 3 and positive if |V (H)| ≥ 4. The result follows.

Let C3(T ) = C3(T,−,−), C3(T1, T2) = C3(T1, T2,−), C4(T ) = C4(T,−,−,−),
C1

4 (T1, T2) = C4(T1,−, T2,−) and C2
4 (T1, T2) = C4(T1, T2,−,−).

Let U1(n) be the set of n-vertex unicyclic graphs of the form C3(T ), and U2(n)
the set of n-vertex unicyclic graphs of the form C3(T1, T2, T3), where at least two
of T1, T2, T3 are not P1.

Lemma 7. Among the graphs in U1(n),

(a) C3(Pn−2), C3(T 1
n−2), C3(T 2

n−2) for n ≥ 6, and C3(Tn−4
n−2 ) for n ≥ 7 are re-

spectively the unique graphs with the first, the second, the third, and the fourth
maximum degree distances, which are equal to 2

3n3− 20
3 n+14, 2

3n3− 32
3 n+24,

2
3n3 − 44

3 n + 42, and 2
3n3 − 50

3 n + 54, respectively;

(b) C3(T 3
n−2) for n = 8, 12 is the unique graph with the fifth maximum degree

distance, which is equal to 2
3n3 − 56

3 n + 68.

Proof. (a) follows from Lemma 6. We consider (b). Suppose that n = 8, 12. Let Qn

be the graph obtained by attaching two paths P2 and Pn−5 to a vertex of a triangle.
Let G be a graph in U1(n) different from the graphs with the first four maximum
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degree distances. Note that dG(v1) ≥ 3, and dG(v2), dG(v3) = 2. If dG(v1) = 3, then
by the arguments in the proof of Lemma 6, D′(G) ≤ D′(C3(T 3

n−2)) with equality
if and only if G = C3(T 3

n−2). If dG(v1) ≥ 4, then by Lemma 1 and the inequality
D′(H(ai−1 + 1, ai − 1)) > D′(G) in the proof of Lemma 4, D′(G) ≤ D′(Qn). Note
that D′(C3(T 3

n−2))−D′(Qn) = 8n− 46 > 0. Then (b) follows.

Lemma 8. Among the graphs in U2(n),

(a) C3(Pn−3, P2) for n ≥ 6 is the unique graph with the maximum degree distance,
which is equal to 2

3n3 − 38
3 n + 38;

(b) C3(P2, P2, P2) for n = 6 is the unique graph with the second maximum degree
distance, which is equal to 96, C3(Pn−4, P3) for 7 ≤ n ≤ 12 is the unique graph
with the second maximum degree distance, which is equal to 2

3n3 − 56
3 n + 74,

C3(Pn−4, P3) and C3(T 1
n−3, P2) for n = 13 are the unique graphs with the

second maximum degree distance, which is equal to 2
3n3 − 56

3 n + 74 = 2
3n3 −

50
3 n + 48, and C3(T 1

n−3, P2) for n ≥ 14 is the unique graph with the second
maximum degree distance, which is equal to 2

3n3 − 50
3 n + 48;

(c) C3(T 1
n−3, P2) for n = 7, 8 is the unique graph with the third maximum degree

distance, which is equal to 2
3n3 − 50

3 n + 48.

Proof. Let G = C3(T1, T2, T3) ∈ U2(n) with |V (T1)| ≥ |V (T2)| ≥ |V (T3)|. If n = 6,
then G = C3(P2, P2, P2), C3(P3, P2), or C3(T 1

3 , P2), and thus the result for n = 6
follows by direct calculation. In the following suppose that n ≥ 7.

If |V (T3)| ≥ 2, then by Lemmas 1, 2 and using the equation on D′(Un,m(a−1, b+
1))−D′(Un,m(a, b)) in the proof of Lemma 5 with k = 0, D′(G) < D′(C3(Pn−4, P3)).

Suppose that |V (T3)| = 1. If |V (T2)| = 2 and G 6= C3(Pn−3, P2), then by
Lemma 6,

D′(G) ≤ D′(C3(T 1
n−3, P2)) < D′(C3(Pn−3, P2))

with equality if and only if G = C3(T 1
n−3, P2). If |V (T2)| ≥ 3, then by Lemma

1 and using the equation on D′(Un,m(a − 1, b + 1)) − D′(Un,m(a, b)) in the proof
of Lemma 5 with k = 0, D′(G) ≤ D′(C3(Pn−4, P3)) with equality if and only if
G = C3(Pn−4, P3).

Using the equation on D′(Un,m(a − 1, b + 1)) − D′(Un,m(a, b)) in the proof
of Lemma 5 with k = 0, we have D′(C3(Pn−4, P3)) < D′(C3(Pn−3, P2)). Thus,
C3(Pn−3, P2) is the unique graph with the maximum degree distance, and (a) fol-
lows.

Note that the second maximum degree distance is only possibly achieved by
C3(T 1

n−3, P2) or C3(Pn−4, P3). It is easily seen that

D′(C3(T 1
n−3, P2))−D′(C3(Pn−4, P3)) = 2(n− 13).

Then (b) follows easily.
Now we consider (c). Suppose that n = 7, 8. Let G 6= C3(Pn−3, P2), C3(Pn−4, P3).

By Lemmas 1 and 6, for n = 7,

D′(G) ≤ max{D′(C3(P3, P2, P2)), D′(C3(T 1
3 , P3)), D′(C3(T 1

4 , P2))}
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= D′(C3(T 1
4 , P2)) = 160

with equality if and only if G = C3(T 1
4 , P2), and for n = 8,

D′(G) ≤ max{D′(C3(P3, P3, P2)), D′(C3(P4, P2, P2)), D′(C3(T 1
3 , P4)),

D′(C3(T 1
4 , P3)), D′(C3(T 1

5 , P2))}
= D′(C3(T 1

5 , P2)) = 256

with equality if and only if G = C3(T 1
5 , P2). Then (c) follows.

Let U3(n) be the set of n-vertex unicyclic graphs of the form C4(T ), and U4(n)
the set of n-vertex unicyclic graphs of the form C4(T1, T2, T3, T4), where at least
two of T1, T2, T3, T4 are not P1. By Lemma 6, we have Lemma 9 directly.

Lemma 9. Among the graphs in U3(n), C4(Pn−3), C4(T 1
n−3) for n ≥ 6, and

C4(T 2
n−3) for n ≥ 7 are respectively the unique graphs with the maximum, the sec-

ond, and the third maximum degree distances, which are equal to 2
3n3 − 35

3 n + 36,
2
3n3 − 47

3 n + 46, and 2
3n3 − 59

3 n + 64, respectively.

Lemma 10. Among the graphs in U4(n),

(a) C1
4 (Pn−4, P2) for n ≥ 6 is the unique graph with the maximum degree distance,

which is equal to 2
3n3 − 53

3 n + 66;

(b) C2
4 (Pn−4, P2) for n = 6, 7 or n ≥ 12 is the unique graph with the second

maximum degree distance, which is equal to 2
3n3− 65

3 n+86, C1
4 (Pn−5, P3) for

8 ≤ n ≤ 10 is the unique graph with the second maximum degree distance,
which is equal to 2

3n3 − 71
3 n + 108, and C2

4 (Pn−4, P2) and C1
4 (Pn−5, P3) for

n = 11 are the unique graphs with the second maximum degree distance, which
is equal to 2

3n3 − 65
3 n + 86 = 2

3n3 − 71
3 n + 108.

Proof. Let G = C4(T1, T2, T3, T4) ∈ U4(n). If n = 6, then G = C1
4 (P2, P2) or

C2
4 (P2, P2). If n = 7, then G = C1

4 (P3, P2), C2
4 (P3, P2), C1

4 (T 1
3 , P2), C2

4 (T 1
3 , P2), or

C4(P2, P2, P2,−). Thus, the results for n = 6, 7 follow by direct calculation. In the
following suppose that n ≥ 8.

If there are at least three of T1, T2, T3, T4 that are not P1, then by Lemmas 1,
2, 3 and using the equation on D′(Un,m(a− 1, b + 1))−D′(Un,m(a, b)) in the proof
of Lemma 5 with k = 0, we have D′(G) < D′(C1

4 (Pn−5, P3)).
Suppose that there are exactly two of T1, T2, T3, T4 that are not P1. Suppose

without loss of generality that dG(v1) ≥ 3. Suppose that dG(v2) or dG(v4) ≥ 3. By
symmetry, we may assume that dG(v2) ≥ 3 and |V (T1)| ≥ |V (T2)|. If |V (T2)| = 2,
then by Lemma 1, we have D′(G) ≤ D′(C2

4 (Pn−4, P2)) with equality if and only if
G = C2

4 (Pn−4, P2). If |V (T2)| ≥ 3, then by Lemmas 1, 3 and using the equation
on D′(Un,m(a − 1, b + 1)) − D′(Un,m(a, b)) in the proof of Lemma 5 with k = 0,
we have D′(G) < D′(C1

4 (Pn−5, P3)). Suppose that dG(v3) ≥ 3. Assume that
|V (T1)| ≥ |V (T3)|. If |V (T3)| = 2 and G 6= C1

4 (Pn−4, P2), then by Lemma 6,

D′(G) ≤ D′(C1
4 (T 1

n−4, P2)) < D′(C1
4 (Pn−4, P2)).
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If |V (T3)| ≥ 3, then by Lemma 1 and using the equation on D′(Un,m(a − 1, b +
1)) − D′(Un,m(a, b)) in the proof of Lemma 5 with k = 0, we have D′(G) ≤
D′(C1

4 (Pn−5, P3)) with equality if and only if G = C1
4 (Pn−5, P3).

By the equation on D′(Un,m(a − 1, b + 1)) − D′(Un,m(a, b)) with k = 0 in
the proof of Lemma 5, D′(C1

4 (Pn−5, P3)) < D′(C1
4 (Pn−4, P2)), and by Lemma 3,

D′(C2
4 (Pn−4, P2)) < D′(C1

4 (Pn−4, P2)), implying that C1
4 (Pn−4, P2) is the unique

graph with the maximum degree distance, and then (a) follows.
Note that D′(C2

4 (Pn−4, P2))−D′(C1
4 (T 1

n−4, P2)) = 10 > 0. Thus the second max-
imum degree distance is only possibly achieved by C2

4 (Pn−4, P2) or C1
4 (Pn−5, P3).

It is easily seen that

D′(C2
4 (Pn−4, P2))−D′(C1

4 (Pn−5, P3)) = 2(n− 11).

Then (b) follows easily.

Let Hn = Cn−1(P2,−, . . . ,−) for n ≥ 4.

Lemma 11. Suppose that G is an n-vertex unicyclic graph with cycle length r ≥ 5
and n ≥ 7. Then D′(G) < D′(C3(Pn−4, P3)).

Proof. If r = n − 1, then G = Hn, and if r = n, then G = Cn. It is easily
checked that D′(Cn) = 2n

⌊
n2

4

⌋
and D′(Hn) = 2(n+1)

⌊
(n−1)2

4

⌋
+3n− 2, and thus

max{D′(Cn), D′(Hn)} < D′(C3(Pn−4, P3)).
Suppose that r ≤ n − 2. Let G be a graph with the maximum degree distance

satisfying the given condition, and Cr its unique cycle. By Lemmas 1 and 2, G =
Un,r = Cr(Pn−r+1,−, . . . ,−). Setting a = 0, m = r, and T1 = Pn−r+1 in Lemma
3, we have D′(G) < max{D′(C3(Pn−r+1, Pr−2)), D′(C1

4 (Pn−r+1, Pr−3))}. By the
equation on D′(Un,m(a − 1, b + 1)) − D′(Un,m(a, b)) with k = 0 in the proof of
Lemma 5, D′(C3(Pn−r+1, Pr−2)) ≤ D′(C3(Pn−4, P3)) and D′(C1

4 (Pn−r+1, Pr−3)) ≤
D′(C1

4 (Pn−5, P3)). Now by the equation D′(G(k, 3)) − D′(G(k, 4)) = 6k − n − 22
in the proof of Theorem 1 with k = n − 2, D′(C1

4 (Pn−5, P3)) < D′(C3(Pn−4, P3)).
Then D′(G) < D′(C3(Pn−4, P3)), as desired.

There are five 5-vertex unicyclic graphs, for which by direct checking, the degree
distances are ordered as:

D′(C3(T 1
3 )) < D′(C3(P2, P2)) < D′(C5) < D′(H5) < D′(C3(P3)).

Theorem 2. The degree distances of n-vertex unicyclic graphs with n ≥ 6 may be
ordered by the following inequalities, where G is an n-vertex unicyclic graph different
from any other graph in the inequalities :
(i) for n = 6,

D′(G) < D′(C3(T 2
4 )) = 98

< D′(C2
4 (P2, P2)) = D′(H6) = 100

< D′(C3(T 1
4 )) = D′(C1

4 (P2, P2)) = 104
< D′(C3(P3, P2)) = 106 < D′(C6) = 108
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< D′(C4(P3)) = 110 < D′(C3(P4)) = 118;

(ii) for n = 7,

D′(G) < D′(C3(T 3
5 )) = 166

< D′(C7) = D′(C3(T 2
5 )) = 168

< D′(C1
4 (P3, P2)) = 171 < D′(C3(P3, P3)) = 172

< D′(C3(P4, P2)) = D′(C3(T 1
5 )) = 178

< D′(C4(P4)) = 183 < D′(C3(P5)) = 196;

(iii) for n = 8,

D′(G) < D′(C1
4 (P3, P3)) = D′(C3(T 3

6 )) = 260
< D′(C3(T 4

6 )) = D′(C4(T 1
5 )) = 262

< D′(C3(P4, P3)) = D′(C3(T 2
6 ))

= D′(C1
4 (P4, P2)) = 266

< D′(C3(P5, P2)) = 278 < D′(C3(T 1
6 )) = 280

< D′(C4(P5)) = 284 < D′(C3(P6)) = 302;

(iv) for n = 9,

D′(G) < D′(C3(P5, P3)) = 392 < D′(C1
4 (P5, P2)) = 393

< D′(C3(T 2
7 )) = 396 < D′(C3(P6, P2)) = 410

< D′(C3(T 1
7 )) = 414 < D′(C4(P6)) = 417

< D′(C3(P7)) = 440;

(v) for n = 10,

D′(G) < D′(C3(T 6
8 )) = D′(C3(P6, P3)) = 554

< D′(C4(T 1
7 )) = D′(C1

4 (P6, P2)) = 556
< D′(C3(T 2

8 )) = 562 < D′(C3(P7, P2)) = 578
< D′(C3(T 1

8 )) = 584 < D′(C4(P7)) = 586
< D′(C3(P8)) = 614;

(vi) for n = 11,

D′(G) < D′(C1
4 (P7, P2)) = 759 < D′(C4(T 1

8 )) = 761
< D′(C3(T 2

9 )) = 768 < D′(C3(P8, P2)) = 786
< D′(C3(T 1

9 )) = 794 < D′(C4(P8)) = 795
< D′(C3(P9)) = 828;

(vii) for n = 12,

D′(G) < D′(C3(P8, P3)) = 1002
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< D′(C3(T 8
10)) = D′(C1

4 (P8, P2)) = 1006
< D′(C4(T 1

9 )) = 1010 < D′(C3(T 2
10)) = 1018

< D′(C3(P9, P2)) = 1038
< D′(C3(T 1

10)) = D′(C4(P9)) = 1048
< D′(C3(P10)) = 1086;

(viii) for n ≥ 13,

D′(G) < D′(C3(Tn−4
n−2 )) =

2
3
n3 − 50

3
n + 54

< D′(C4(T 1
n−3)) =

2
3
n3 − 47

3
n + 46

< D′(C3(T 2
n−2)) =

2
3
n3 − 44

3
n + 42

< D′(C3(Pn−3, P2)) =
2
3
n3 − 38

3
n + 38

< D′(C4(Pn−3)) =
2
3
n3 − 35

3
n + 36

< D′(C3(T 1
n−2)) =

2
3
n3 − 32

3
n + 24

< D′(C3(Pn−2)) =
2
3
n3 − 20

3
n + 14.

Proof. Let G be an n-vertex unicyclic graph, where n ≥ 6. If the cycle length of
G is three, then G ∈ U1(n) ∪ U2(n), and if the cycle length of G is four, then
G ∈ U3(n) ∪ U4(n). The graphs with cycle length three or four with the first
several large degree distances are determined in Lemmas 7–10, which (especially for
n = 6, 7, . . . , 12) are shown in Table 1.

Suppose that n = 6. Note that D′(C6) = 108 and D′(H6) = 100. If G 6= C6,

H6, then G ∈
4⋃

i=1

Ui(6). Note that U4(6) = {C1
4 (P2, P2), C2

4 (P2, P2)}. From Table

1, the first four maximum degree distances of graphs in U1(6)∪U2(6) are 118, 106,
104, 98, while the first four maximum degree distances of graphs in U3(6) ∪ U4(6)
are 110, 104, 100, 96. Then (i) follows from Table 1.

Suppose that n = 7. Note that D′(C7) = 168. If the cycle length of G is at
least five and G 6= C7, then by Lemmas 1, 2 and direct calculation, D′(G) < 166.
From Table 1, the first five maximum degree distances of graphs in U1(7) ∪ U2(7)
are 196, 178, 172, 168, 166, while the first four maximum degree distances of graphs
in U3(7) ∪ U4(7) are 183, 171, 165, 163. Then (ii) follows from Table 1.

Suppose that n = 8. If the cycle length of G is at least five, then by Lemmas 1,
2 and direct calculation, D′(G) < 260. From Table 1, the first six maximum degree
distances of graphs in U1(8)∪U2(8) are 302, 280, 278, 266, 262, 260, while the first
four maximum degree distances of graphs in U3(8) ∪ U4(8) are 284, 266, 262, 260.
Then (iii) follows from Table 1.

Suppose in the following that n ≥ 9. If the cycle length of G is at least five,
then by Lemma 11, D′(G) < D′(C3(Pn−4, P3)). To prove the results for n ≥ 9,



118 Zhibin Du and Bo Zhou

Table 1: Graphs and their degree distances in Lemmas 7–10.

graph
degree distances

n 6 7 8 9 10 11 12

C3(Pn−2)
2
3
n3 − 20

3
n + 14 118 196 302 440 614 828 1086

C3(T
1
n−2)

2
3
n3 − 32

3
n + 24 104 178 280 414 584 794 1048

C3(T
2
n−2)

2
3
n3 − 44

3
n + 42 98 168 266 396 562 768 1018

C3(T
n−4
n−2 ) 2

3
n3 − 50

3
n + 54 166 262 390 554 758 1006

C3(T
3
n−2)

2
3
n3 − 56

3
n + 68 260 996

C3(Pn−3, P2)
2
3
n3 − 38

3
n + 38 106 178 278 410 578 786 1038

C3(P2, P2, P2) 96

C3(Pn−4, P3)
2
3
n3 − 56

3
n + 74 172 266 392 554 756 1002

C3(T
1
n−3, P2)

2
3
n3 − 50

3
n + 48 160 256

C4(Pn−3)
2
3
n3 − 35

3
n + 36 110 183 284 417 586 795 1048

C4(T
1
n−3)

2
3
n3 − 47

3
n + 46 96 165 262 391 556 761 1010

C4(T
2
n−3)

2
3
n3 − 59

3
n + 64 155 248 373 534 735 980

C1
4 (Pn−4, P2)

2
3
n3 − 53

3
n + 66 104 171 266 393 556 759 1006

C1
4 (Pn−5, P3)

2
3
n3 − 71

3
n + 108 260 381 538 735

C2
4 (Pn−4, P2)

2
3
n3 − 65

3
n + 86 100 163 735 978

we need only to consider the graphs in
4⋃

i=1

Ui(n) with the degree distances at least

D′(C3(Pn−4, P3)).
Suppose that n = 9. From Table 1, the first five maximum degree distances of

graphs in U1(9) ∪ U2(9) are 440, 414, 410, 396, 392, while the first four maximum
degree distances of graphs in U3(9)∪U4(9) are 417, 393, 391, 381. Then (iv) follows
from Table 1.

Suppose that n = 10. From Table 1, the first five maximum degree distances of
graphs in U1(10)∪U2(10) are 614, 584, 578, 562, 554, while the first three maximum
degree distances of graphs in U3(10) ∪ U4(10) are 586, 556, 538. Then (v) follows
from Table 1.

Suppose that n = 11. From Table 1, the first five maximum degree distances of
graphs in U1(11)∪U2(11) are 828, 794, 786, 768, 758, while the first three maximum
degree distances of graphs in U3(11) ∪ U4(11) are 795, 761, 759. Then (vi) follows
from Table 1.

Suppose that n = 12. From Table 1, the first six maximum degree distances of
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graphs in U1(12) ∪ U2(12) are 1086, 1048, 1038, 1018, 1006, 1002, while the first
four maximum degree distances of graphs in U3(12) ∪U4(12) are 1048, 1010, 1006,
980. Then (vii) follows from Table 1.

Suppose that n ≥ 13. By Lemmas 7 and 8, C3(Pn−2), C3(T 1
n−2), C3(Pn−3, P2),

C3(T 2
n−2) and C3(Tn−4

n−2 ) are respectively the graphs in U1(n)∪U2(n) with the first
five maximum degree distances, which are equal to 2

3n3− 20
3 n+14, 2

3n3− 32
3 n+24,

2
3n3− 38

3 n+38, 2
3n3− 44

3 n+42 and 2
3n3− 50

3 n+54, respectively. By Lemmas 9 and 10,
C4(Pn−3), C4(T 1

n−3) and C1
4 (Pn−4, P2) are respectively the graphs in U3(n)∪U4(n)

with the first three maximum degree distances, which are equal to 2
3n3 − 35

3 n + 36,
2
3n3 − 47

3 n + 46 and 2
3n3 − 53

3 n + 66, respectively. Note that

2
3
n3 − 20

3
n + 14 >

2
3
n3 − 32

3
n + 24

>
2
3
n3 − 35

3
n + 36 >

2
3
n3 − 38

3
n + 38 >

2
3
n3 − 44

3
n + 42

>
2
3
n3 − 47

3
n + 46 >

2
3
n3 − 50

3
n + 54 >

2
3
n3 − 53

3
n + 66.

Then (viii) follows.
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index , J. Chem. Inf. Comput. Sci. 30 (1990), 160–163.
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