DEGREE DISTANCE OF UNICYCLIC GRAPHS

Zhibin Du and Bo Zhou*

Abstract

The degree distance of a connected graph G with vertex set $V(G)$ is defined as $$
D^{\prime}(G)=\sum_{u \in V(G)} d_{G}(u) D_{G}(u),
$$

where $d_{G}(u)$ denotes the degree of vertex u and $D_{G}(u)$ denotes the sum of distances between u and all vertices of G. We determine the maximum degree distance of n-vertex unicyclic graphs with given maximum degree, and the first seven maximum degree distances of n-vertex unicyclic graphs for $n \geq 6$.

1 Introduction

Let G be a simple connected graph with vertex set $V(G)$. For $u, v \in V(G)$, let $d_{G}(u, v)$ be the distance between u and v in G. For $u \in V(G)$, let $d_{G}(u)$ be the degree of u in G, and let $D_{G}(u)$ be the sum of distances between u and all vertices of G, i.e., $D_{G}(u)=\sum_{v \in V(G)} d_{G}(u, v)$. The degree distance of G is defined as [1, 2]

$$
D^{\prime}(G)=\sum_{u \in V(G)} d_{G}(u) D_{G}(u)
$$

In 1989, Schultz [3] (see also [4]) put forward a "molecular topological index", $\operatorname{MTI}(G)$, of a connected graph G, which turns out to be [2]

$$
M T I(G)=D^{\prime}(G)+Z g(G)
$$

where $Z g(G)$ is equal to the sum of squares of the vertex degrees of G, which is known as the (first) Zagreb index [5-7]. In chemical literature [2], the Schultz's molecular topological index and the degree distance are also named the Schultz

[^0]index and the true Schultz index, respectively. Properties for molecular topological index may be found in, e.g., [8-11].

Recall that the Wiener index of a connected graph G is defined as $[12,13]$

$$
W(G)=\frac{1}{2} \sum_{u \in V(G)} D_{G}(u)
$$

Gutman [2] showed that if G is an n-vertex tree, then $D^{\prime}(G)=4 W(G)-n(n-1)$. Thus, the study of the degree distance for trees is equivalent to the study of the Wiener index, which may be found in $[12,14]$.

An n-vertex connected graph is said to be unicyclic if it possesses n edges for $n \geq 3$ and bicyclic if it possesses $n+1$ edges for $n \geq 4$. I. Tomescu [15] showed that the star is the unique graph with the minimum degree distance in the class of n vertex connected graphs. A.I. Tomescu [16] characterized the unicyclic and bicyclic graphs with the minimum degree distances. I. Tomescu [17] deduced properties of the graphs with the minimum degree distance in the class of n-vertex connected graphs with $m \geq n-1$ edges, which were determined recently by Bucicovschi and Cioabǎ [18]. Hou and Chang [19] characterized the unicyclic graphs with the maximum degree distance. The authors [20] determined the bicyclic graphs of exactly two cycles with the maximum degree distance. Dankelmann et al. [21] gave asymptotically sharp upper bounds for the degree distance.

In this paper, we determine the maximum degree distance of n-vertex unicyclic graphs with given maximum degree Δ, where $3 \leq \Delta \leq n-2$, the first seven maximum degree distances of n-vertex unicyclic graphs for $n \geq 6$, and the corresponding graphs whose degree distances achieve these values.

2 Preliminaries

Let P_{n} and S_{n} be respectively the path and the star on $n \geq 1$ vertices, and C_{n} the cycle on $n \geq 3$ vertices.

G_{1}

G_{2}

Fig. 1. The graphs G_{1} and G_{2} in Lemma 1.
Lemma 1. [2] Let Q_{1} and Q_{2} be vertex-disjoint connected graphs with at least two vertices, and $u \in V\left(Q_{1}\right)$ and $v \in V\left(Q_{2}\right)$. Let G_{1} be the graph obtained from Q_{1} and
Q_{2} by joining u and v by a path of length $r \geq 1$, and G_{2} the graph obtained from Q_{1} and Q_{2} by identifying u and v, which is denoted by w, and attaching a path P_{r} to w; see Fig. 1. Then $D^{\prime}\left(G_{1}\right)>D^{\prime}\left(G_{2}\right)$.

For a connected graph G, let $V_{1}(G)=\left\{x \in V(G): d_{G}(x) \neq 2\right\}$. Then

$$
\begin{aligned}
D^{\prime}(G) & =\sum_{x \in V(G)} 2 D_{G}(x)+\sum_{x \in V_{1}(G)}\left(d_{G}(x)-2\right) D_{G}(x) \\
& =4 W(G)+\sum_{x \in V_{1}(G)}\left(d_{G}(x)-2\right) D_{G}(x) .
\end{aligned}
$$

Thus, if G and H are connected graphs, then

$$
\begin{aligned}
D^{\prime}(H)-D^{\prime}(G)= & 4[W(H)-W(G)] \\
& +\sum_{x \in V_{1}(H)}\left(d_{H}(x)-2\right) D_{H}(x)-\sum_{x \in V_{1}(G)}\left(d_{G}(x)-2\right) D_{G}(x)
\end{aligned}
$$

which will be used frequently to compare the degree distances of two related graphs.
For a subset M of the edge set of the graph $G, G-M$ denotes the graph obtained from G by deleting the edges in M, and for a subset M^{*} of the edge set of the complement of $G, G+M^{*}$ denotes the graph obtained from G by adding the edges in M^{*}.

Let $C_{m}\left(T_{1}, T_{2}, \ldots, T_{m}\right)$ be the unicyclic graph with cycle $C_{m}=v_{1} v_{2} \ldots v_{m} v_{1}$ such that the deletion of all edges on C_{m} results in m vertex-disjoint trees T_{1}, T_{2}, \ldots, T_{m} with $v_{i} \in V\left(T_{i}\right)$ for $i=1,2, \ldots, m$. If T_{i} with $1 \leq i \leq m$ is trivial, then we write $C_{m}\left(T_{1}, \ldots, T_{i-1}, T_{i}, T_{i+1}, \ldots, T_{m}\right)$ as $C_{m}\left(T_{1}, \ldots, T_{i-1},-, T_{i+1}, \ldots, T_{m}\right)$.

Lemma 2. For integers i and j with $2 \leq i<j \leq m$, let $G_{a_{i}, a_{j}}=C_{m}\left(T_{1}, T_{2}, \ldots, T_{m}\right)$, where T_{r} is the path $P_{a_{r}+1}$ with an end vertex v_{r} for $2 \leq r \leq m$, and all trees T_{l} with $l \neq i, j$ and $1 \leq l \leq m$ are fixed. If $a_{i}, a_{j} \geq 1$, then

$$
D^{\prime}\left(G_{a_{i}, a_{j}}\right)<\max \left\{D^{\prime}\left(G_{a_{i}+a_{j}, 0}\right), D^{\prime}\left(G_{0, a_{i}+a_{j}}\right)\right\} .
$$

Proof. Let $G=G_{a_{i}, a_{j}}$ and $G_{1}=G_{a_{i}+a_{j}, 0}$. Denote by v the neighbor of v_{j} outside C_{m} in G. Let v_{k}^{*} be the pendent vertex of G of the path attached to v_{k} if $a_{k} \geq 1$, where $2 \leq k \leq m$. Obviously, $G_{1}=G-\left\{v v_{j}\right\}+\left\{v v_{i}^{*}\right\}$. Let Z be the set of vertices in the path from v to v_{j}^{*} in G. Let W be the set of vertices in the path from v_{i} to v_{i}^{*} in G. Let $n=|V(G)|$. Let $G_{2}=G-\left\{v v_{j}\right\}+\left\{v v_{i}\right\}, a_{1}=\left|V\left(T_{1}\right)\right|-1$ and $d(x, y)=d_{G}(x, y)$ for $x, y \in V(G)$. We have

$$
\begin{aligned}
& =\sum_{\substack{x \in Z \\
y \in W}}^{W\left(G_{1}\right)-W\left(G_{2}\right)}\left[d_{G_{1}}(x, y)-d_{G_{2}}(x, y)\right]+\sum_{\substack{x \in Z \\
y \in V(G) \backslash(z \cup W)}}\left[d_{G_{1}}(x, y)-d_{G_{2}}(x, y)\right] \\
= & 0+\sum_{\substack{x \in Z \\
y \in V(G \backslash \backslash(z \cup W)}}\left[d_{G_{1}}(x, y)-d_{G_{2}}(x, y)\right]
\end{aligned}
$$

$$
=\sum_{\substack{x \in Z \\ y \in V(G) \backslash(Z \cup W)}} a_{i}=a_{i} a_{j}\left(n-a_{i}-a_{j}-1\right),
$$

$$
\begin{aligned}
& =\sum_{\substack{x \in Z \\
y \in V\left(C_{m}\right)}}^{W\left(G_{2}\right)-W(G)}\left[d_{G_{2}}(x, y)-d(x, y)\right]+\sum_{\substack{x \in Z \\
y \in V(G) \backslash\left(Z U V\left(C_{m}\right)\right)}}\left[d_{G_{2}}(x, y)-d(x, y)\right] \\
= & 0+\sum_{\substack{x \in Z \\
y \in V}}\left[d_{G_{2}}(x, y)-d(x, y)\right] \\
= & \sum_{x \in Z} \sum_{\substack { 1 \leq k \leq m \\
\begin{subarray}{c}{1 \leq k) \backslash\left(Z U V\left(C_{m}\right)\right) \\
k \neq j{ 1 \leq k \leq m \\
\begin{subarray} { c } { 1 \leq k) \backslash (Z U V (C _ { m })) \\
k \neq j } }\end{subarray}} a_{k}\left[d\left(v_{k}, v_{i}\right)-d\left(v_{k}, v_{j}\right)\right] \\
= & a_{j} \sum_{\substack{1 \leq k \leq m \\
k \neq j}} a_{k}\left[d\left(v_{k}, v_{i}\right)-d\left(v_{k}, v_{j}\right)\right],
\end{aligned}
$$

and then

$$
\begin{aligned}
W\left(G_{1}\right)-W(G) & =\left[W\left(G_{1}\right)-W\left(G_{2}\right)\right]+\left[W\left(G_{2}\right)-W(G)\right] \\
& =a_{i} a_{j}\left(n-a_{i}-a_{j}-1\right)+a_{j} \sum_{\substack{1 \leq k \leq m \\
k \neq j}} a_{k}\left[d\left(v_{k}, v_{i}\right)-d\left(v_{k}, v_{j}\right)\right] .
\end{aligned}
$$

Note that $V_{1}\left(G_{1}\right)=\left(V_{1}\left(G_{1}\right) \cap V\left(T_{1}\right)\right) \cup\left(\cup_{\substack{2 \leq k \leq m \\ a_{k} \geq 1, k \neq i, j}}\left\{v_{k}, v_{k}^{*}\right\}\right) \cup\left\{v_{i}, v_{j}^{*}\right\}$ and $V_{1}(G)=$ $\left(V_{1}(G) \cap V\left(T_{1}\right)\right) \cup\left(\cup_{\substack{2 \leq k \leq m \\ a_{k} \leq 1}}\left\{v_{k}, v_{k}^{*}\right\}\right)$. For $x \in V\left(T_{k}\right)$ with $1 \leq k \leq m$ and $k \neq i, j$, we have $D_{G_{1}}(x)-D_{G}(x)=D_{G_{1}}\left(v_{k}\right)-D_{G}\left(v_{k}\right)$. Setting $k=1$, we have

$$
\begin{aligned}
& \sum_{x \in V_{1}\left(G_{1}\right) \cap V\left(T_{1}\right)}\left(d_{G_{1}}(x)-2\right) D_{G_{1}}(x)-\sum_{x \in V_{1}(G) \cap V\left(T_{1}\right)}\left(d_{G}(x)-2\right) D_{G}(x) \\
= & \sum_{x \in V\left(T_{1}\right)}\left(d_{G}(x)-2\right)\left[D_{G_{1}}(x)-D_{G}(x)\right] \\
= & {\left[D_{G_{1}}\left(v_{1}\right)-D_{G}\left(v_{1}\right)\right]\left[\sum_{x \in V\left(T_{1}\right)}\left(d_{T_{1}}(x)-2\right)+2\right]=0 . }
\end{aligned}
$$

For $k \neq 1, i, j$ and $a_{k} \geq 1$, we have

$$
\begin{aligned}
& \sum_{x \in\left\{v_{k}, v_{k}^{*}\right\}}\left(d_{G_{1}}(x)-2\right) D_{G_{1}}(x)-\sum_{x \in\left\{v_{k}, v_{k}^{*}\right\}}\left(d_{G}(x)-2\right) D_{G}(x) \\
= & (3-2)\left[D_{G_{1}}\left(v_{k}\right)-D_{G}\left(v_{k}\right)\right]+(1-2)\left[D_{G_{1}}\left(v_{k}^{*}\right)-D_{G}\left(v_{k}^{*}\right)\right]=0 .
\end{aligned}
$$

Note that

$$
\sum_{x \in\left\{v_{i}, v_{j}^{*}\right\}}\left(d_{G_{1}}(x)-2\right) D_{G_{1}}(x)-\sum_{x \in\left\{v_{i}, v_{j}, v_{i}^{*}, v_{j}^{*}\right\}}\left(d_{G}(x)-2\right) D_{G}(x)
$$

$$
\begin{aligned}
= & (3-2)\left[D_{G_{1}}\left(v_{i}\right)-D_{G}\left(v_{i}\right)\right]+(1-2)\left[D_{G_{1}}\left(v_{j}^{*}\right)-D_{G}\left(v_{j}^{*}\right)\right] \\
& -(1-2) D_{G}\left(v_{i}^{*}\right)-(3-2) D_{G}\left(v_{j}\right) \\
= & {\left[D_{G_{1}}\left(v_{i}\right)-D_{G_{1}}\left(v_{j}^{*}\right)\right]+\left[D_{G}\left(v_{i}^{*}\right)-D_{G}\left(v_{i}\right)\right]+\left[D_{G}\left(v_{j}^{*}\right)-D_{G}\left(v_{j}\right)\right] } \\
= & -\left(a_{i}+a_{j}\right)\left(n-a_{i}-a_{j}-1\right)+a_{i}\left(n-a_{i}-1\right)+a_{j}\left(n-a_{j}-1\right)=2 a_{i} a_{j} .
\end{aligned}
$$

Thus

$$
\sum_{x \in V_{1}\left(G_{1}\right)}\left(d_{G_{1}}(x)-2\right) D_{G_{1}}(x)-\sum_{x \in V_{1}(G)}\left(d_{G}(x)-2\right) D_{G}(x)=2 a_{i} a_{j} .
$$

It follows that

$$
\begin{aligned}
& D^{\prime}\left(G_{a_{i}+a_{j}, 0}\right)-D^{\prime}\left(G_{a_{i}, a_{j}}\right) \\
= & 4 a_{i} a_{j}\left(n-a_{i}-a_{j}\right)-2 a_{i} a_{j}+4 a_{j} \sum_{\substack{1 \leq k \leq m \\
k \neq j}} a_{k}\left[d\left(v_{k}, v_{i}\right)-d\left(v_{k}, v_{j}\right)\right] .
\end{aligned}
$$

If $D^{\prime}\left(G_{a_{i}+a_{j}, 0}\right) \leq D^{\prime}\left(G_{a_{i}, a_{j}}\right)$, then

$$
4 \sum_{\substack{1 \leq k \leq m \\ k \neq j}} a_{k}\left[d\left(v_{k}, v_{j}\right)-d\left(v_{k}, v_{i}\right)\right] \geq 4 a_{i}\left(n-a_{i}-a_{j}\right)-2 a_{i},
$$

and thus

$$
\begin{aligned}
& D^{\prime}\left(G_{0, a_{i}+a_{j}}\right)-D^{\prime}\left(G_{a_{i}, a_{j}}\right) \\
= & 4 a_{i} a_{j}\left(n-a_{i}-a_{j}\right)-2 a_{i} a_{j}+4 a_{i} \sum_{\substack{1 \leq k \leq m \\
k \neq i}} a_{k}\left[d\left(v_{k}, v_{j}\right)-d\left(v_{k}, v_{i}\right)\right] \\
= & 4 a_{i} a_{j}\left(n-a_{i}-a_{j}\right)-2 a_{i} a_{j}-4 a_{i}\left(a_{i}+a_{j}\right) d\left(v_{i}, v_{j}\right) \\
& +a_{i} \cdot 4 \sum_{\substack{1 \leq k \leq m \\
k \neq j}} a_{k}\left[d\left(v_{k}, v_{j}\right)-d\left(v_{k}, v_{i}\right)\right] \\
\geq & 4 a_{i} a_{j}\left(n-a_{i}-a_{j}\right)-2 a_{i} a_{j}-4 a_{i}\left(a_{i}+a_{j}\right) d\left(v_{i}, v_{j}\right) \\
& +a_{i}\left[4 a_{i}\left(n-a_{i}-a_{j}\right)-2 a_{i}\right] \\
= & 2 a_{i}\left(a_{i}+a_{j}\right)\left[2\left(n-a_{i}-a_{j}\right)-2 d\left(v_{i}, v_{j}\right)-1\right] \\
\geq & 2 a_{i}\left(a_{i}+a_{j}\right)\left(2 m-2 \cdot \frac{m}{2}-1\right) \\
= & 2 a_{i}\left(a_{i}+a_{j}\right)(m-1)>0 .
\end{aligned}
$$

Now the result follows.
For $n \geq m \geq 3$, let $U_{n, m}=C_{m}\left(P_{n-m+1},-, \ldots,-\right)$, where v_{1} is an end vertex of the path P_{n-m+1}. Recall that $W\left(P_{s}\right)=\frac{s^{3}-s}{6}$ and $W\left(C_{s}\right)=\frac{s}{2}\left\lfloor\frac{s^{2}}{4}\right\rfloor$. By direct calculation, we have

$$
W\left(U_{n, m}\right)=\frac{n^{3}}{6}+\left(\left\lfloor\frac{m^{2}}{4}\right\rfloor-\frac{m^{2}}{2}+\frac{m}{2}-\frac{1}{6}\right) n
$$

$$
\begin{gather*}
-\frac{m}{2}\left\lfloor\frac{m^{2}}{4}\right\rfloor+\frac{m^{3}}{3}-\frac{m^{2}}{2}+\frac{m}{6} \tag{1}\\
D_{U_{n, m}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor+1}\right)= \tag{2}\\
\left\lfloor\frac{m^{2}}{4}\right\rfloor+\frac{1}{2}(n-m)\left(n-m+1+2\left\lfloor\frac{m}{2}\right\rfloor\right)
\end{gather*}
$$

Lemma 3. For integers i and m with $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor+1$ and $m \geq 3$, let $G_{i}(a, m)=$ $C_{m}\left(T_{1}, T_{2}, \ldots, T_{m}\right)$, where T_{i} is the path P_{a+1} with an end vertex $v_{i}, T_{j}=P_{1}$ for $2 \leq j \leq m$ with $j \neq i$, and T_{1} is a fixed tree. Let $G(a, m)=G_{\left\lfloor\frac{m}{2}\right\rfloor+1}(a, m)$. For fixed $k=a+m \geq 4, D^{\prime}\left(G_{i}(a, m)\right)<\max \left\{D^{\prime}(G(k-3,3)), D^{\prime}(G(k-4,4))\right\}$ if $m>4$, or $m=4$ and $i=2$.

Proof. Let v_{i}^{*} be the pendent vertex of the path attached to v_{i} in $G_{i}(a, m)$ if $a \geq 1$.
We first prove that $D^{\prime}\left(G_{i}(a, m)\right) \leq D^{\prime}(G(a, m))$. If $\left|V\left(T_{1}\right)\right|=1$ or $a=0$, then $G_{i}(a, m)$ is (isomorphic to) $G(a, m)$. Suppose that $\left|V\left(T_{1}\right)\right| \geq 2$ and $a \geq 1$. Suppose that $G_{i}(a, m) \neq G(a, m)$, i.e., $i<\left\lfloor\frac{m}{2}\right\rfloor+1$. Let $G_{1}=G_{i}(a, m)$. Let $G_{2}=G_{1}-\left\{v_{i} v\right\}+\left\{v_{\left\lfloor\frac{m}{2}\right\rfloor+1} v\right\}$, where v is the neighbor of v_{i} outside C_{m} in G_{1}. Obviously, $G_{2}=G(a, m)$. It is easily seen that $V_{1}\left(G_{1}\right)=\left(V_{1}\left(G_{1}\right) \cap V\left(T_{1}\right)\right) \cup\left\{v_{i}, v_{i}^{*}\right\}$ and $V_{1}\left(G_{2}\right)=\left(V_{1}\left(G_{2}\right) \cap V\left(T_{1}\right)\right) \cup\left\{v_{\left\lfloor\frac{m}{2}\right\rfloor+1}, v_{i}^{*}\right\}$. Note that for $x \in V\left(T_{1}\right), D_{G_{2}}(x)-$ $D_{G_{1}}(x)=D_{G_{2}}\left(v_{1}\right)-D_{G_{1}}\left(v_{1}\right)$, and thus

$$
\sum_{x \in V_{1}\left(G_{2}\right) \cap V\left(T_{1}\right)}\left(d_{G_{2}}(x)-2\right) D_{G_{2}}(x)-\sum_{x \in V_{1}\left(G_{1}\right) \cap V\left(T_{1}\right)}\left(d_{G_{1}}(x)-2\right) D_{G_{1}}(x)=0 .
$$

We have

$$
\begin{aligned}
& D^{\prime}(G(a, m))-D^{\prime}\left(G_{i}(a, m)\right) \\
= & 4\left[W\left(G_{2}\right)-W\left(G_{1}\right)\right]+(1-2)\left[D_{G_{2}}\left(v_{i}^{*}\right)-D_{G_{1}}\left(v_{i}^{*}\right)\right] \\
& +(3-2) D_{G_{2}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor+1}\right)-(3-2) D_{G_{1}}\left(v_{i}\right) \\
= & 4\left[W\left(G_{2}\right)-W\left(G_{1}\right)\right]+\left[D_{G_{1}}\left(v_{i}^{*}\right)-D_{G_{1}}\left(v_{i}\right)\right]+\left[D_{G_{2}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor+1}\right)-D_{G_{2}}\left(v_{i}^{*}\right)\right] \\
= & 4\left(\left\lfloor\frac{m}{2}\right\rfloor+1-i\right) a\left(\left|V\left(T_{1}\right)\right|-1\right)+a(n-a-1)-a(n-a-1) \\
= & 4\left(\left\lfloor\frac{m}{2}\right\rfloor+1-i\right) a\left(\left|V\left(T_{1}\right)\right|-1\right)>0,
\end{aligned}
$$

and thus $D^{\prime}(G(a, m))>D^{\prime}\left(G_{i}(a, m)\right)$. It follows that $D^{\prime}\left(G_{i}(a, m)\right) \leq D^{\prime}(G(a, m))$ with equality if and only if $G_{i}(a, m)=G(a, m)$. Thus, the result for $m=4$ and $i=2$ follows.

To prove the result for $m>4$, we need only to show that

$$
D^{\prime}(G(a, m))<\max \left\{D^{\prime}(G(k-3,3)), D^{\prime}(G(k-4,4))\right\}
$$

for $a \geq 0$. Note that $U_{m+a, m}$ is a subgraph of $G(a, m)$.
Suppose that $m \geq 5$. Let $G_{3}=G(a+2, m-2)$. Let $A_{1}=V\left(U_{m+a, m-2}\right) \backslash\left\{v_{1}\right\}$, $A_{2}=V\left(U_{m+a, m}\right) \backslash\left\{v_{1}\right\}$ and $A_{3}=V\left(T_{1}\right) \backslash\left\{v_{1}\right\}$. First suppose that $a \geq 1$. For
$y \in V\left(T_{1}\right), d_{G_{3}}\left(v_{1}, y\right)=d_{G_{2}}\left(v_{1}, y\right)$, and then

$$
\begin{aligned}
& \sum_{x \in A_{1}, y \in A_{3}} d_{G_{3}}(x, y)-\sum_{x \in A_{2}, y \in A_{3}} d_{G_{2}}(x, y) \\
= & \sum_{x \in A_{1}, y \in A_{3}}\left[d_{G_{3}}\left(x, v_{1}\right)+d_{G_{3}}\left(v_{1}, y\right)\right]-\sum_{x \in A_{2}, y \in A_{3}}\left[d_{G_{2}}\left(x, v_{1}\right)+d_{G_{2}}\left(v_{1}, y\right)\right] \\
= & {\left[\sum_{x \in A_{1}, y \in A_{3}} d_{G_{3}}\left(x, v_{1}\right)-\sum_{x \in A_{2}, y \in A_{3}} d_{G_{2}}\left(x, v_{1}\right)\right] } \\
& +\left[\sum_{x \in A_{1}, y \in A_{3}} d_{G_{3}}\left(v_{1}, y\right)-\sum_{x \in A_{2}, y \in A_{3}} d_{G_{2}}\left(v_{1}, y\right)\right] \\
= & \left(\left|V\left(T_{1}\right)\right|-1\right)\left[\sum_{x \in A_{1}} d_{G_{3}}\left(x, v_{1}\right)-\sum_{x \in A_{2}} d_{G_{3}}\left(x, v_{1}\right)\right] \\
& +(m+a-1) \sum_{y \in A_{3}}\left[d_{G_{3}}\left(v_{1}, y\right)-d_{G_{2}}\left(v_{1}, y\right)\right] \\
= & \left(\left|V\left(T_{1}\right)\right|-1\right)\left[D_{U_{m+a, m-2}}\left(v_{1}\right)-D_{U_{m+a, m}}\left(v_{1}\right)\right] .
\end{aligned}
$$

Let $n=a+m+\left|V\left(T_{1}\right)\right|-1$. Using Eqs. (1) and (2),

$$
\begin{aligned}
& W\left(G_{3}\right)-W\left(G_{2}\right) \\
= & {\left[W\left(U_{m+a, m-2}\right)+W\left(T_{1}\right)+\sum_{x \in A_{1}, y \in A_{3}} d_{G_{3}}(x, y)\right] } \\
& -\left[W\left(U_{m+a, m}\right)+W\left(T_{1}\right)+\sum_{x \in A_{2}, y \in A_{3}} d_{G_{2}}(x, y)\right] \\
= & {\left[W\left(U_{m+a, m-2}\right)-W\left(U_{m+a, m}\right)\right]+\left(\left|V\left(T_{1}\right)\right|-1\right)\left[D_{U_{m+a, m-2}}\left(v_{1}\right)-D_{U_{m+a, m}}\left(v_{1}\right)\right] } \\
= & \frac{m^{2}}{2}+\left(a-2\left\lfloor\frac{m}{2}\right\rfloor-n+\frac{1}{2}\right) m+\left\lfloor\frac{m^{2}}{4}\right\rfloor+2\left\lfloor\frac{m}{2}\right\rfloor(n-a)+(a+2)(n-a-2) .
\end{aligned}
$$

Note that $V_{1}\left(G_{3}\right)=\left(V_{1}\left(G_{3}\right) \cap V\left(T_{1}\right)\right) \cup\left\{v_{\left\lfloor\frac{m}{2}\right\rfloor}, v_{\left\lfloor\frac{m}{2}\right\rfloor}^{*}\right\}$. Then

$$
\begin{aligned}
& D^{\prime}(G(a+2, m-2))-D^{\prime}(G(a, m)) \\
= & 4\left[W\left(G_{3}\right)-W\left(G_{2}\right)\right]+(3-2)\left[D_{G_{3}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor}\right)-D_{G_{2}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor+1}\right)\right] \\
& +(1-2)\left[D_{G_{3}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor}^{*}\right)-D_{G_{2}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor+1}^{*}\right)\right] \\
= & 4\left[W\left(G_{3}\right)-W\left(G_{2}\right)\right]+\left[D_{G_{3}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor}\right)-D_{G_{3}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor}^{*}\right)\right] \\
& +\left[D_{G_{2}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor+1}^{*}\right)-D_{G_{2}}\left(v_{\left\lfloor\frac{m}{2}\right\rfloor+1}\right)\right] \\
= & 4\left[W\left(G_{3}\right)-W\left(G_{2}\right)\right]-(a+2)(n-a-3)+a(n-a-1)
\end{aligned}
$$

$$
= \begin{cases}-m^{2}+2 m-4 a^{2}+4(n-3) a+6 n-10 & \text { if } m \text { is even, } \\ -m^{2}+6 m-4 a^{2}+4(n-2) a+2 n-11 & \text { if } m \text { is odd. }\end{cases}
$$

If $a=0$, then by similar calculation, the last expressions for $D^{\prime}(G(a+2, m-2))-$ $D^{\prime}(G(a, m))$ also hold.

Suppose that m is even. Let $f(m)=-m^{2}+2 m-4 a^{2}+4(n-3) a+6 n-10$. Then

$$
\begin{aligned}
f(6) & =(4 a+6) n-4 a^{2}-12 a-34 \\
& \geq(4 a+6)(a+6)-4 a^{2}-12 a-34=18 a+2>0
\end{aligned}
$$

Let r_{1} and r_{2} be the two roots of $f(m)=0$, where $r_{1} \leq r_{2}$. It is easily seen that $r_{1}<6<r_{2}$. Thus, when $6 \leq m \leq r_{2}, f(m) \geq 0$, and when $m>r_{2}, f(m)<0$. Suppose that k is even. Then $m \leq k$. If $r_{2} \geq k$, then $D^{\prime}(G(k-4,4))$ is maximum, while if $r_{2}<k$, then $D^{\prime}(G(k-4,4))$ or $D^{\prime}(G(0, k))$ is maximum. Let $G_{4}=G(k-4,4)$ and $G_{5}=G(0, k)$. By similar calculation of $D^{\prime}(G(a+2, m-2))-D^{\prime}(G(a, m))$, we have

$$
\begin{aligned}
& D^{\prime}(G(k-4,4))-D^{\prime}(G(0, k)) \\
= & 4\left[W\left(G_{4}\right)-W\left(G_{5}\right)\right]+\left[(3-2) D_{G_{4}}\left(v_{3}\right)+(1-2) D_{G_{4}}\left(v_{3}^{*}\right)\right] \\
= & 4\left[-\frac{5}{24} k^{3}+\left(\frac{n}{4}+\frac{3}{2}\right) k^{2}-\left(\frac{3}{2} n+\frac{25}{6}\right) k+2 n+6\right] \\
& -(k-4)(n-k+3) \\
= & n\left(k^{2}-7 k+12\right)-\frac{5}{6} k^{3}+7 k^{2}-\frac{71}{3} k+36 \\
\geq & k\left(k^{2}-7 k+12\right)-\frac{5}{6} k^{3}+7 k^{2}-\frac{71}{3} k+36 \\
= & \frac{k^{3}}{6}-\frac{35}{3} k+36>0,
\end{aligned}
$$

and thus $D^{\prime}(G(k-4,4))>D^{\prime}(G(0, k))$. Suppose that k is odd. Then $m \leq k-1$. Similarly, we have $D^{\prime}(G(k-4,4))$ or $D^{\prime}(G(1, k-1))$ is maximum. By similar calculation, $D^{\prime}(G(k-4,4))>D^{\prime}(G(1, k-1))$. Thus, whether k is even or odd, we have $D^{\prime}(G(a, m))<D^{\prime}(G(k-4,4))$ for $m>4$.

If m is odd, then by similar arguments as above, $D^{\prime}(G(a, m))<D^{\prime}(G(k-3,3))$ for $m>4$. The result follows easily.

Lemma 4. For any unicyclic graph H with $u \in V(H)$, let $H\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be the graph obtained from H by attaching $t \geq 2$ paths $P_{a_{1}}, P_{a_{2}}, \ldots, P_{a_{t}}$ to u, where $a_{1} \geq a_{2} \geq \cdots \geq a_{t} \geq 1$. For fixed $k=a_{1}+a_{2}+\cdots+a_{t}, D^{\prime}\left(H\left(a_{1}, a_{2}, \ldots, a_{t}\right)\right)$ $\leq D^{\prime}(H(k-t+1,1, \ldots, 1))$ with equality if and only if $a_{1}=k-t+1$ and $a_{i}=1$ for $i=2, \ldots, t$.

Proof. Suppose that $G=H\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ is a graph with the maximum degree distance satisfying the given condition. Suppose that there is some i such that $a_{i} \geq 2$ for $2 \leq i \leq t$ in G. For fixed a_{s} with $s \neq i-1, i$, and fixed unicyclic graph H, we
write $G=H\left(a_{i-1}, a_{i}\right)$. Denote by v_{1} and v_{2} the pendent vertices of the path $P_{a_{i-1}}$ and $P_{a_{i}}$, respectively, and v_{3} the neighbor of v_{2} in G. Let $G_{1}=G-\left\{v_{2} v_{3}\right\}+\left\{v_{1} v_{2}\right\}$. Obviously $G_{1}=H\left(a_{i-1}+1, a_{i}-1\right)$. Let $G_{2}=G-\left\{v_{2} v_{3}\right\}+\left\{u v_{2}\right\}$ and $n=|V(G)|$. Then

$$
\begin{aligned}
W\left(G_{1}\right)-W(G) & =\left[D_{G_{1}}\left(v_{2}\right)-D_{G_{2}}\left(v_{2}\right)\right]+\left[D_{G_{2}}\left(v_{2}\right)-D_{G}\left(v_{2}\right)\right] \\
& =a_{i-1}\left(n-a_{i-1}-2\right)-\left(a_{i}-1\right)\left(n-a_{i}-1\right) \\
& =\left(a_{i-1}-a_{i}+1\right)\left(n-a_{i-1}-a_{i}-1\right)
\end{aligned}
$$

Let Q be the (unicyclic) graph obtained from G by deleting the vertices of the paths $P_{a_{i-1}}$ and $P_{a_{i}}$. For $x \in V(Q), D_{G_{1}}(x)-D_{G}(x)=D_{G_{1}}(u)-D_{G}(u)$, we have

$$
\begin{aligned}
& \sum_{x \in V_{1}\left(G_{1}\right) \cap V(Q)}\left(d_{G_{1}}(x)-2\right) D_{G_{1}}(x)-\sum_{x \in V_{1}(G) \cap V(Q)}\left(d_{G}(x)-2\right) D_{G}(x) \\
= & {\left[D_{G_{1}}(u)-D_{G}(u)\right]\left[\sum_{x \in V(Q)}\left(d_{Q}(x)-2\right)+2\right]=2\left[D_{G_{1}}(u)-D_{G}(u)\right] . }
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& D^{\prime}\left(H\left(a_{i-1}+1, a_{i}-1\right)\right)-D^{\prime}(G) \\
= & 4\left[W\left(G_{1}\right)-W(G)\right]+2\left[D_{G_{1}}(u)-D_{G}(u)\right] \\
& +(1-2)\left[D_{G_{1}}\left(v_{2}\right)-D_{G}\left(v_{2}\right)\right]+(1-2) D_{G_{1}}\left(v_{3}\right)-(1-2) D_{G}\left(v_{1}\right) \\
= & 4\left[W\left(G_{1}\right)-W(G)\right]+\left[D_{G_{1}}(u)-D_{G_{1}}\left(v_{2}\right)\right]+\left[D_{G_{1}}(u)-D_{G_{1}}\left(v_{3}\right)\right] \\
& +\left[D_{G}\left(v_{2}\right)-D_{G}(u)\right]+\left[D_{G}\left(v_{1}\right)-D_{G}(u)\right] \\
= & 4\left[W\left(G_{1}\right)-W(G)\right]-\left(a_{i-1}+1\right)\left(n-a_{i-1}-2\right)-\left(a_{i}-1\right)\left(n-a_{i}\right) \\
& +a_{i}\left(n-a_{i}-1\right)+a_{i-1}\left(n-a_{i-1}-1\right) \\
= & 4\left(a_{i-1}-a_{i}+1\right)\left(n-a_{i-1}-a_{i}-1\right)+2\left(a_{i-1}-a_{i}+1\right)>0,
\end{aligned}
$$

and thus $D^{\prime}\left(H\left(a_{i-1}+1, a_{i}-1\right)\right)>D^{\prime}(G)$, a contradiction. Hence $a_{i}=1$ for $i=2, \ldots, t$, and the result follows.

For $a \geq 1, b \geq 0$ and $m=3,4$, let $U_{n, m}(a, b)$ be the graph obtained by attaching $n-a-b-m$ pendent vertices and a path P_{a} to $v_{1} \in V(H)$, where $H=C_{3}\left(-,-, P_{b+1}\right)$ for $m=3, H=C_{4}\left(-,-, P_{b+1},-\right)$ for $m=4$, and v_{3} is an end vertex of P_{b+1}.
Lemma 5. For $a \geq 1, b \geq 0$ and $m=3,4$, let $s=a+b \geq 2$ and $k=n-s-m$. Then for $m=3$, or $m=4$ and $k=0,1$,

$$
D^{\prime}\left(U_{n, m}(a, b)\right) \leq D^{\prime}\left(U_{n, m}(s, 0)\right)
$$

with equality if and only if $U_{n, m}(a, b)=U_{n, m}(s, 0)$, and for $m=4$ and $k \geq 2$,

$$
D^{\prime}\left(U_{n, m}(a, b)\right) \leq D^{\prime}\left(U_{n, m}(1, s-1)\right)
$$

with equality if and only if $U_{n, m}(a, b)=U_{n, m}(1, s-1)$.

Proof. For $U_{n, m}(a, b)$, let u_{1} be the pendent vertex of the path attached to v_{1}, let u_{2} be the pendent vertex of the path attached to v_{3} if $b \geq 1$, and let u be a pendent vertex adjacent to v_{1} if $k \geq 1$. Let $G_{1}=U_{n, m}(a, b)$. For $a \geq 2$, let $G_{2}=$ $G_{1}-\left\{u_{1} w\right\}+\left\{u_{1} u_{2}\right\}, G_{3}=G_{1}-\left\{u_{1} w\right\}+\left\{u_{1} v_{1}\right\}$ and $G_{4}=G_{1}-\left\{u_{1} w\right\}+\left\{u_{1} v_{3}\right\}$, where w is the neighbor of u_{1} in G_{1}. Obviously $G_{2}=U_{n, m}(a-1, b+1)$. Then

$$
\begin{aligned}
& W\left(G_{2}\right)-W\left(G_{1}\right) \\
= & {\left[D_{G_{2}}\left(u_{1}\right)-D_{G_{4}}\left(u_{1}\right)\right]+\left[D_{G_{4}}\left(u_{1}\right)-D_{G_{3}}\left(u_{1}\right)\right]+\left[D_{G_{3}}\left(u_{1}\right)-D_{G_{1}}\left(u_{1}\right)\right] } \\
= & b(a+k+m-2)+\left\lfloor\frac{m}{2}\right\rfloor(k+a-1-b)-(a-1)(k+m-1+b) \\
= & (1-a+b)\left(k+\left\lfloor\frac{m-1}{2}\right\rfloor\right)+k\left\lfloor\frac{m}{2}\right\rfloor .
\end{aligned}
$$

Suppose that $a \geq 2$. Note that $D_{G_{2}}(u)-D_{G_{1}}(u)=D_{G_{2}}\left(v_{1}\right)-D_{G_{1}}\left(v_{1}\right)$. If $b \geq 1$, then

$$
\begin{aligned}
& D^{\prime}\left(U_{n, m}(a-1, b+1)\right)-D^{\prime}\left(U_{n, m}(a, b)\right) \\
= & 4\left[W\left(G_{2}\right)-W\left(G_{1}\right)\right]+(k+3-2)\left[D_{G_{2}}\left(v_{1}\right)-D_{G_{1}}\left(v_{1}\right)\right] \\
& +k \cdot(1-2)\left[D_{G_{2}}(u)-D_{G_{1}}(u)\right]+(1-2)\left[D_{G_{2}}\left(u_{1}\right)-D_{G_{1}}\left(u_{1}\right)\right] \\
& +(3-2)\left[D_{G_{2}}\left(v_{3}\right)-D_{G_{1}}\left(v_{3}\right)\right]+(1-2) D_{G_{2}}(w)-(1-2) D_{G_{1}}\left(u_{2}\right) \\
= & 4\left[W\left(G_{2}\right)-W\left(G_{1}\right)\right]+\left[D_{G_{2}}\left(v_{1}\right)-D_{G_{2}}(w)\right]+\left[D_{G_{2}}\left(v_{3}\right)-D_{G_{2}}\left(u_{1}\right)\right] \\
& +\left[D_{G_{1}}\left(u_{1}\right)-D_{G_{1}}\left(v_{1}\right)\right]+\left[D_{G_{1}}\left(u_{2}\right)-D_{G_{1}}\left(v_{3}\right)\right] \\
= & 4\left[W\left(G_{2}\right)-W\left(G_{1}\right)\right]-(a-1)(n-a)-(b+1)(n-b-2) \\
& +a(n-a-1)+b(n-b-1) \\
= & 4\left[(1-a+b)\left(k+\left\lfloor\frac{m-1}{2}\right]+\frac{1}{2}\right)+k\left\lfloor\frac{m}{2}\right]\right] \\
= & \begin{cases}4\left[(1-a+b)\left(k+\frac{3}{2}\right)+k\right] & \text { if } m=3, \\
4\left[(1-a+b)\left(k+\frac{3}{2}\right)+2 k\right] & \text { if } m=4 .\end{cases}
\end{aligned}
$$

If $b=0$, then by similar calculation, the last expressions for $D^{\prime}\left(U_{n, m}(a-1, b+1)\right)-$ $D^{\prime}\left(U_{n, m}(a, b)\right)$ also hold.

Suppose that $m=3$. Then $D^{\prime}\left(U_{n, 3}(a-1, b+1)\right) \geq D^{\prime}\left(U_{n, 3}(a, b)\right)$ if and only if $a-b \leq \frac{4 k+3}{2 k+3}$, implying that $D^{\prime}\left(U_{n, 3}(s, 0)\right)$ or $D^{\prime}\left(U_{n, 3}(1, s-1)\right)$ is maximum. If $m=4$, then similarly we have $D^{\prime}\left(U_{n, 4}(s, 0)\right)$ or $D^{\prime}\left(U_{n, 4}(1, s-1)\right)$ is maximum. Note that

$$
\begin{aligned}
& D^{\prime}\left(U_{n, m}(1, s-1)\right)-D^{\prime}\left(U_{n, m}(s, 0)\right) \\
= & \sum_{i=2}^{s}\left[D^{\prime}\left(U_{n, m}(i-1, s-i+1)\right)-D^{\prime}\left(U_{n, m}(i, s-i)\right)\right] \\
= & \begin{cases}-6(s-1) & \text { if } m=3, \\
4(s-1)\left(k-\frac{3}{2}\right) & \text { if } m=4 .\end{cases}
\end{aligned}
$$

Then the result follows.

3 The maximum degree distance of unicyclic graphs of given maximum degree

Stevanović [14] determined the unique n-vertex tree of given maximum degree with the maximum Wiener index. By the relation between the Wiener index and the degree distance for trees [2], this tree is also the unique n-vertex tree of given maximum degree with the maximum degree distance. In this section, we determine the maximum degree distance of n-vertex unicyclic graphs of given maximum degree, and the corresponding graphs whose degree distances achieve this value.

A pendent path at a vertex v of a graph G is a path in G connecting vertex v and some pendent vertex such that all internal vertices (if exist) in this path have degree two and the degree of v is at least three.

Suppose that $\Delta \geq 3$. Let $U_{n, \Delta}^{1}=U_{n, 3}(n-\Delta, 0)$ if $\Delta \leq n-1, U_{n, \Delta}^{2}=U_{n, 4}(1, n-$ $\Delta-2$) if $\Delta \leq n-2$, and $U_{n, \Delta}^{3}$ the unicyclic graph obtained by joining a triangle and the center of S_{Δ} by a path of length $n-\Delta-2$ if $\Delta \leq n-3$.

Let $k=n-a-b-m$. It was shown in [22] that

$$
\begin{aligned}
& W\left(U_{n, m}(a, b)\right) \\
= & \left(a+b+\frac{m}{2}\right)\left\lfloor\frac{m^{2}}{4}\right\rfloor+\binom{a+1}{3}+\binom{b+1}{3} \\
& +m\left[\binom{a+1}{2}+\binom{b+1}{2}\right]+\frac{1}{2} a b\left(2\left\lfloor\frac{m}{2}\right\rfloor+a+b+2\right) \\
& +k\left[\left\lfloor\frac{m^{2}}{4}\right\rfloor+m+\frac{1}{2} a(a+3)+\frac{1}{2} b\left(2\left\lfloor\frac{m}{2}\right\rfloor+b+3\right)\right]+k(k-1),
\end{aligned}
$$

from which we have the expressions for $W\left(U_{n, \Delta}^{1}\right)=W\left(U_{n, 3}(n-\Delta, 0)\right), W\left(U_{n, \Delta}^{2}\right)=$ $W\left(U_{n, 4}(1, n-\Delta-2)\right)$ and $W\left(U_{n, \Delta}^{3}\right)=W\left(U_{n, \Delta+1}^{1}\right)+(\Delta-2)(n-\Delta-2)$.

In $U_{n, \Delta}^{1}$, note that v_{1} is the vertex with degree Δ, let u be a pendent vertex adjacent to v_{1} for $\Delta \geq 4$, and u_{1} the pendent vertex of the path attached to v_{1}. Then

$$
\begin{aligned}
D^{\prime}\left(U_{n, \Delta}^{1}\right)= & 4 W\left(U_{n, \Delta}^{1}\right)+(\Delta-2) D_{U_{n, \Delta}^{1}}\left(v_{1}\right)+(\Delta-3) \cdot(1-2) D_{U_{n, \Delta}^{1}}(u) \\
& +(1-2) D_{U_{n, \Delta}^{1}}\left(u_{1}\right) \\
= & 4 W\left(U_{n, \Delta}^{1}\right)+(\Delta-3)\left[D_{U_{n, \Delta}^{1}}\left(v_{1}\right)-D_{U_{n, \Delta}^{1}}(u)\right] \\
& +\left[D_{U_{n, \Delta}^{1}}\left(v_{1}\right)-D_{U_{n, \Delta}^{1}}\left(u_{1}\right)\right] \\
= & 4 W\left(U_{n, \Delta}^{1}\right)-(\Delta-3) \cdot(n-2)-(n-\Delta)(\Delta-1) \\
= & \frac{2}{3} n^{3}-\left(2 \Delta^{2}-4 \Delta+\frac{2}{3}\right) n+\frac{4}{3} \Delta^{3}-\Delta^{2}-\frac{7}{3} \Delta-6 .
\end{aligned}
$$

By similar calculation, we have

$$
D^{\prime}\left(U_{n, \Delta}^{2}\right)=\frac{2}{3} n^{3}-\left(2 \Delta^{2}-4 \Delta+\frac{35}{3}\right) n+\frac{4}{3} \Delta^{3}-\Delta^{2}+\frac{29}{3} \Delta+10
$$

$$
D^{\prime}\left(U_{n, \Delta}^{3}\right)=\frac{2}{3} n^{3}-\left(2 \Delta^{2}-6 \Delta+\frac{32}{3}\right) n+\frac{4}{3} \Delta^{3}-3 \Delta^{2}-\frac{1}{3} \Delta+16
$$

Let $\mathbb{U}(n, \Delta)$ be the set of n-vertex unicyclic graphs with maximum degree Δ, where $2 \leq \Delta \leq n-1$. Obviously, $\mathbb{U}(n, 2)=\left\{C_{n}\right\}$ and $\mathbb{U}(n, n-1)=\left\{U_{n, n-1}^{1}\right\}$.
Theorem 1. Among the graphs in $\mathbb{U}(n, \Delta)$ with $3 \leq \Delta \leq n-2$,
(i) if $\Delta=3,4,5$, then $U_{n, \Delta}^{1}$ is the unique graph with the maximum degree distance,
(ii) if $\Delta=n-2$, then $U_{n, n-2}^{1}$ for $n=5,6,7, U_{n, n-2}^{1}$ and $U_{n, n-2}^{2}$ for $n=8$, and $U_{n, n-2}^{2}$ for $n \geq 9$ are the unique graphs with the maximum degree distance,
(iii) if $6 \leq \Delta \leq n-3$, then $U_{n, \Delta}^{1}$ for $9 \leq n \leq 14$, $U_{n, \Delta}^{1}$ with $\Delta<\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}$ or $\frac{n+1+\sqrt{n^{2}-18 n+45}}{2}<\Delta<\frac{11 n-16}{12}, U_{n, \Delta}^{1}$ and $U_{n, \Delta}^{3}$ with $\Delta=\frac{n+1 \pm \sqrt{n^{2}-18 n+45}}{2}$, $U_{n, \Delta}^{3}$ with $\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}<\Delta<\frac{n+1+\sqrt{n^{2}-18 n+45}}{2}, U_{n, \Delta}^{1}$ and $U_{n, \Delta}^{2}$ with $\Delta=\frac{11 n-16}{12}$, and $U_{n, \Delta}^{2}$ with $\Delta>\frac{11 n-16}{12}$ for $15 \leq n \leq 36, U_{n, \Delta}^{1}$ with $\Delta<\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}, U_{n, \Delta}^{1}$ and $U_{n, \Delta}^{3}$ with $\Delta=\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}, U_{n, \Delta}^{3}$ with $\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}<\Delta<\frac{n-5+\sqrt{n^{2}-8 n+37}}{2}, U_{n, \Delta}^{2}$ and $U_{n, \Delta}^{3}$ with $\Delta=$ $\frac{n-5+\sqrt{n^{2}-8 n+37}}{2}$, and $U_{n, \Delta}^{2}$ with $\Delta>\frac{n-5+\sqrt{n^{2}-8 n+37}}{2}$ for $n \geq 37$ are the unique graphs with the maximum degree distance,
and the expressions for $D^{\prime}\left(U_{n, \Delta}^{1}\right), D^{\prime}\left(U_{n, \Delta}^{2}\right)$ and $D^{\prime}\left(U_{n, \Delta}^{3}\right)$ are given by

$$
\begin{aligned}
D^{\prime}\left(U_{n, \Delta}^{1}\right) & =\frac{2}{3} n^{3}-\left(2 \Delta^{2}-4 \Delta+\frac{2}{3}\right) n+\frac{4}{3} \Delta^{3}-\Delta^{2}-\frac{7}{3} \Delta-6 \\
D^{\prime}\left(U_{n, \Delta}^{2}\right) & =\frac{2}{3} n^{3}-\left(2 \Delta^{2}-4 \Delta+\frac{35}{3}\right) n+\frac{4}{3} \Delta^{3}-\Delta^{2}+\frac{29}{3} \Delta+10 \\
D^{\prime}\left(U_{n, \Delta}^{3}\right) & =\frac{2}{3} n^{3}-\left(2 \Delta^{2}-6 \Delta+\frac{32}{3}\right) n+\frac{4}{3} \Delta^{3}-3 \Delta^{2}-\frac{1}{3} \Delta+16
\end{aligned}
$$

Proof. Let G be a graph with the maximum degree distance in $\mathbb{U}(n, \Delta)$. Let C be the unique cycle, and v a vertex of degree Δ in G. Since $\Delta \geq 3$, we have $G \neq C_{n}$.
Case 1. v lies on C.
By Lemma 1, the vertices outside C are of degree one or two, and the vertices on C different from v are of degree two or three. By Lemma 2, there is at most one vertex on C different from v with degree three. Thus, G is a graph obtained by attaching $\Delta-2$ paths to v and attaching at most one path to a vertex on C different from v. By Lemmas 3 and 4 , we know that the cycle length of C is three or four, and among the pendent paths at v in G, there is at most one path with length at least two. If the cycle length of C is three, then by Lemma 5 , we have $G=U_{n, \Delta}^{1}$. If the cycle length of C is four, then by Lemma 5, we have $G=U_{n, 4}(n-\Delta-1,0)$ with $\Delta=3,4$, and $G=U_{n, \Delta}^{2}$ with $\Delta \geq 5$. Note that

$$
D^{\prime}\left(U_{n, \Delta}^{1}\right)-D^{\prime}\left(U_{n, 4}(n-\Delta-1,0)\right)= \begin{cases}5 n-22>0 & \text { if } \Delta=3 \\ 9 n-52>0 & \text { if } \Delta=4\end{cases}
$$

Thus, $G=U_{n, \Delta}^{1}$ if $\Delta=3,4$, and $G=U_{n, \Delta}^{1}$ or $U_{n, \Delta}^{2}$ if $\Delta \geq 5$.
Case 2. v lies outside C.
In this case $\Delta \leq n-3$. Suppose that u is the vertex on C that is nearest to v. By Lemma 1, the vertices outside C different from v are of degree one or two, and the vertices on C are of degree two or three. By Lemma 2, there is at most one vertex on C different from u with degree three. By Lemma 4, among the pendent paths at v in G, there is at most one path with length at least two.

Denote by G^{*} the graph obtained from G by deleting the vertices of the subtree attached to u. Suppose that $G^{*} \neq C_{3}$. By Lemma 3, G^{*} is either $U_{k, 3}$, or $U_{k, 4}$ for which the two vertices on C_{4} of degree three are non-adjacent, where $4 \leq k \leq n-\Delta$. We write $G=G(k, 3)$ if $G^{*}=U_{k, 3}$, and $G=G(k, 4)$ if $G^{*}=U_{k, 4}$. Denote by u_{1} the vertex on C_{3} with degree three different from u, u_{2} the pendent vertex of the path attached to u_{1}, and u_{3} the neighbor of u outside C_{3} in $G(k, 3)$. Let $G_{1}=G(k, 3)-\left\{u u_{3}\right\}+\left\{u_{2} u_{3}\right\} \in \mathbb{U}(n, \Delta)$. We will show that $D^{\prime}\left(G_{1}\right)>D^{\prime}(G)$, i.e., $D^{\prime}\left(G_{1}\right)>D^{\prime}(G(k, 3))$ and $D^{\prime}\left(G_{1}\right)>D^{\prime}(G(k, 4))$.

First suppose that $G=G(k, 3)$. Let Q be the subtree attached to u. For $x \in V(Q)$, we have $D_{G_{1}}(x)-D_{G}(x)=D_{G_{1}}\left(u_{3}\right)-D_{G}\left(u_{3}\right)$, and thus

$$
\begin{aligned}
& \sum_{x \in V_{1}\left(G_{1}\right) \cap V(Q)}\left(d_{G_{1}}(x)-2\right) D_{G_{1}}(x)-\sum_{x \in V_{1}(G) \cap V(Q)}\left(d_{G}(x)-2\right) D_{G}(x) \\
= & {\left[D_{G_{1}}\left(u_{3}\right)-D_{G}\left(u_{3}\right)\right]\left[\sum_{x \in V(Q)}\left(d_{Q}(x)-2\right)+1\right]=-\left[D_{G_{1}}\left(u_{3}\right)-D_{G}\left(u_{3}\right)\right] . }
\end{aligned}
$$

Let $G_{2}=G(k, 3)-\left\{u u_{3}\right\}+\left\{u_{1} u_{3}\right\}$. Note that

$$
\begin{aligned}
W\left(G_{1}\right)-W(G) & =\left[W\left(G_{1}\right)-W\left(G_{2}\right)\right]+\left[W\left(G_{2}\right)-W(G)\right] \\
& =2(k-3)(n-k)-(k-3)(n-k)=(k-3)(n-k)
\end{aligned}
$$

Then

$$
\begin{aligned}
& D^{\prime}\left(G_{1}\right)-D^{\prime}(G) \\
= & 4\left[W\left(G_{1}\right)-W(G)\right]-\left[D_{G_{1}}\left(u_{3}\right)-D_{G}\left(u_{3}\right)\right]+(3-2)\left[D_{G_{1}}\left(u_{1}\right)-D_{G}\left(u_{1}\right)\right] \\
& -(1-2) D_{G}\left(u_{2}\right)-(3-2) D_{G}(u) \\
= & 4\left[W\left(G_{1}\right)-W(G)\right]+\left[D_{G_{1}}\left(u_{1}\right)-D_{G_{1}}\left(u_{3}\right)\right]+\left[D_{G}\left(u_{3}\right)-D_{G}(u)\right] \\
& +\left[D_{G}\left(u_{2}\right)-D_{G}\left(u_{1}\right)\right] \\
= & 4(k-3)(n-k)+(k-2)(n-k-3)+(2 k-n)+(k-3)(n-k+2) \\
= & 6(k-3)(n-k)>0,
\end{aligned}
$$

and thus $D^{\prime}\left(G_{1}\right)>D^{\prime}(G(k, 3))$.
Now we consider $G=G(k, 4)$. Using Eqs. (1) and (2), and by similar calculation of $D^{\prime}(G(a+2, m-2))-D^{\prime}(G(a, m))$ as in the proof of Lemma 3, we have

$$
D^{\prime}(G(k, 3))-D^{\prime}(G(k, 4))=6 k-n-22,
$$

and thus

$$
\begin{aligned}
D^{\prime}\left(G_{1}\right)-D^{\prime}(G(k, 4)) & =\left[D^{\prime}\left(G_{1}\right)-D^{\prime}(G(k, 3))\right]+\left[D^{\prime}(G(k, 3))-D^{\prime}(G(k, 4))\right] \\
& =6(k-3)(n-k)+6 k-n-22
\end{aligned}
$$

If $k=4$ or $n \leq 6 k-22$, then $D^{\prime}\left(G_{1}\right)>D^{\prime}(G(k, 4))$, and if $k \geq 5$ and $n>6 k-22$, then

$$
\begin{aligned}
D^{\prime}\left(G_{1}\right)-D^{\prime}(G(k, 4)) & =[6(k-3)-1] n-6 k(k-4)-22 \\
& >[6(k-3)-1](6 k-22)-6 k(k-4)-22 \\
& =6(k-3)(5 k-22)>0
\end{aligned}
$$

and thus $D^{\prime}\left(G_{1}\right)>D^{\prime}(G(k, 4))$.
It follows that $D^{\prime}\left(G_{1}\right)>D^{\prime}(G)$, a contradiction. Thus $G^{*}=C_{3}$.
Suppose that $G \neq U_{n, \Delta}^{3}$. Denote by w the pendent vertex of the longest pendent path at v, and w_{1} the neighbor of w. Then $d_{G}(v, w) \geq 2$. Let $t=d_{G}\left(v, w_{1}\right) \geq 1$. Note that $n-\Delta-t \geq 3$. Denote by $x_{1}, x_{2}, \ldots, x_{\Delta-2}$ the pendent neighbors of v. Consider $G_{3}=G-\left\{v x_{1}, \ldots, v x_{\Delta-2}\right\}+\left\{w_{1} x_{1}, \ldots, w_{1} x_{\Delta-2}\right\} \in \mathbb{U}(n, \Delta)$. Note that

$$
\begin{aligned}
D_{G_{3}}\left(w_{1}\right)-D_{G}(v) & =\left[D_{G_{3}}\left(w_{1}\right)-D_{G}\left(w_{1}\right)\right]+\left[D_{G}\left(w_{1}\right)-D_{G}(v)\right] \\
& =-t(\Delta-2)+t(n-t-3)=t(n-\Delta-t-1)
\end{aligned}
$$

Then

$$
\begin{aligned}
& D^{\prime}\left(G_{3}\right)-D^{\prime}(G) \\
= & 4\left[W\left(G_{3}\right)-W(G)\right]+(3-2)\left[D_{G_{3}}(u)-D_{G}(u)\right]+(1-2)\left[D_{G_{3}}(w)-D_{G}(w)\right] \\
& +(\Delta-2) \cdot(1-2)\left[D_{G_{3}}\left(x_{1}\right)-D_{G}\left(x_{1}\right)\right]+(\Delta-2)\left[D_{G_{3}}\left(w_{1}\right)-D_{G}(v)\right] \\
= & 4 \cdot t(\Delta-2)(n-\Delta-t-1)+t(\Delta-2)+t(\Delta-2) \\
& -(\Delta-2) \cdot t(n-\Delta-t-1)+(\Delta-2) \cdot t(n-\Delta-t-1) \\
= & 2 t(\Delta-2)[2(n-\Delta-t-1)+1]>0,
\end{aligned}
$$

and thus $D^{\prime}\left(G_{3}\right)>D^{\prime}(G)$, a contradiction. It follows that $G=U_{n, \Delta}^{3}$ with $\Delta \leq n-3$.
Combining Cases 1 and 2, we have $G=U_{n, \Delta}^{1}$ or $U_{n, \Delta}^{3}$ if $\Delta=3,4, G=U_{n, \Delta}^{1}$ or $U_{n, \Delta}^{2}$ if $\Delta=n-2$, and $G=U_{n, \Delta}^{1}, U_{n, \Delta}^{2}$, or $U_{n, \Delta}^{3}$ if $5 \leq \Delta \leq n-3$. Note that

$$
\begin{aligned}
& D^{\prime}\left(U_{n, \Delta}^{2}\right)-D^{\prime}\left(U_{n, \Delta}^{1}\right)=12\left(\Delta-\frac{11 n-16}{12}\right) \\
& D^{\prime}\left(U_{n, \Delta}^{2}\right)-D^{\prime}\left(U_{n, \Delta}^{3}\right)= 2\left[\Delta^{2}-(n-5) \Delta-\frac{n}{2}-3\right] \\
&= 2\left(\Delta-\frac{n-5-\sqrt{n^{2}-8 n+37}}{2}\right) \\
& \cdot\left(\Delta-\frac{n-5+\sqrt{n^{2}-8 n+37}}{2}\right)
\end{aligned}
$$

$$
D^{\prime}\left(U_{n, \Delta}^{1}\right)-D^{\prime}\left(U_{n, \Delta}^{3}\right)=2\left[\Delta^{2}-(n+1) \Delta+5 n-11\right] .
$$

Now the results for $\Delta=3,4,5, n-2$ follow by direct calculation, proving (i) and (ii). Suppose that $6 \leq \Delta \leq n-3$. For $9 \leq n \leq 14$, we have $D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right)$ because the discriminant of the quadratic equation $\Delta^{2}-(n+1) \Delta+5 n-11=0$ on Δ is $n^{2}-18 n+45<0$, and for $n \geq 15$, we have

$$
\begin{aligned}
D^{\prime}\left(U_{n, \Delta}^{1}\right)-D^{\prime}\left(U_{n, \Delta}^{3}\right)= & 2\left(\Delta-\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}\right) \\
& \cdot\left(\Delta-\frac{n+1+\sqrt{n^{2}-18 n+45}}{2}\right)
\end{aligned}
$$

If $9 \leq n \leq 14$, then $D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right)$,

$$
\begin{aligned}
D^{\prime}\left(U_{n, \Delta}^{2}\right)-D^{\prime}\left(U_{n, \Delta}^{1}\right) & =12\left(\Delta-\frac{11 n-16}{12}\right) \\
& \leq 12\left(n-3-\frac{11 n-16}{12}\right)=n-20<0
\end{aligned}
$$

and thus $D^{\prime}\left(U_{n, \Delta}^{1}\right)>\max \left\{D^{\prime}\left(U_{n, \Delta}^{2}\right), D^{\prime}\left(U_{n, \Delta}^{3}\right)\right\}$. If $15 \leq n \leq 36$, then

$$
\begin{aligned}
& \frac{n-5-\sqrt{n^{2}-8 n+37}}{2}<\frac{n+1-\sqrt{n^{2}-18 n+45}}{2} \\
< & \frac{n+1+\sqrt{n^{2}-18 n+45}}{2}<\frac{n-5+\sqrt{n^{2}-8 n+37}}{2}<\frac{11 n-16}{12},
\end{aligned}
$$

and thus

$$
\begin{array}{cc}
D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \Delta<\frac{n-5-\sqrt{n^{2}-8 n+37}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right)=D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \Delta=\frac{n-5-\sqrt{n^{2}-8 n+37}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right) & \text { if } \frac{n-5-\sqrt{n^{2}-8 n+37}}{2}<\Delta<\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)=D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right) & \text { if } \Delta=\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right) & \text { if } \frac{n+1-\sqrt{n^{2}-18 n+45}}{2}<\Delta<\frac{n+1+\sqrt{n^{2}-18 n+45}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)=D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right) & \text { if } \Delta=\frac{n+1+\sqrt{n^{2}-18 n+45}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right) & \text { if } \frac{n+1+\sqrt{n^{2}-18 n+45}}{2}<\Delta<\frac{n-5+\sqrt{n^{2}-8 n+37}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right)=D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \Delta=\frac{n-5+\sqrt{n^{2}-8 n+37}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \frac{n-5+\sqrt{n^{2}-8 n+37}}{2}<\Delta<\frac{11 n-16}{12}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)=D^{\prime}\left(U_{n, \Delta}^{2}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \Delta=\frac{11 n-16}{12}, \\
D^{\prime}\left(U_{n, \Delta}^{2}\right)>D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \Delta>\frac{11 n-16}{12} .
\end{array}
$$

If $n \geq 37$, then

$$
\begin{aligned}
& \frac{n-5-\sqrt{n^{2}-8 n+37}}{2}<\frac{n+1-\sqrt{n^{2}-18 n+45}}{2} \\
< & \frac{11 n-16}{12}<\frac{n-5+\sqrt{n^{2}-8 n+37}}{2}<\frac{n+1+\sqrt{n^{2}-18 n+45}}{2}
\end{aligned}
$$

and thus

$$
\begin{array}{cc}
D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \Delta<\frac{n-5-\sqrt{n^{2}-8 n+37}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right)=D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \Delta=\frac{n-5-\sqrt{n^{2}-8 n+37}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right) & \text { if } \frac{n-5-\sqrt{n^{2}-8 n+37}}{2}<\Delta<\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{1}\right)=D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right) & \text { if } \Delta=\frac{n+1-\sqrt{n^{2}-18 n+45}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right) & \text { if } \frac{n+1-\sqrt{n^{2}-18 n+45}<\Delta<\frac{11 n-16}{2}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{1}\right)=D^{\prime}\left(U_{n, \Delta}^{2}\right) & \text { if } \Delta=\frac{11 n-16}{12}, \\
D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{2}\right)>D^{\prime}\left(U_{n, \Delta}^{1}\right) & \text { if } \frac{11 n-16}{12}<\Delta<\frac{n-5+\sqrt{n^{2}-8 n+37}}{2} \\
D^{\prime}\left(U_{n, \Delta}^{2}\right)=D^{\prime}\left(U_{n, \Delta}^{3}\right)>D^{\prime}\left(U_{n, \Delta}^{1}\right) & \text { if } \Delta=\frac{n-5+\sqrt{n^{2}-8 n+37}}{2}, \\
D^{\prime}\left(U_{n, \Delta}^{2}\right)>D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \frac{n-5+\sqrt{n^{2}-8 n+37}}{2}<\Delta<\frac{n+1+\sqrt{n^{2}-18 n+45}}{2} \\
D^{\prime}\left(U_{n, \Delta}^{2}\right)>D^{\prime}\left(U_{n, \Delta}^{1}\right)=D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \Delta=\frac{n+1+\sqrt{n^{2}-18 n+45}}{2} \\
D^{\prime}\left(U_{n, \Delta}^{2}\right)>D^{\prime}\left(U_{n, \Delta}^{1}\right)>D^{\prime}\left(U_{n, \Delta}^{3}\right) & \text { if } \Delta>\frac{n+1+\sqrt{n^{2}-18 n+45}}{2}
\end{array}
$$

Now (iii) follows.

4 The first seven maximum degree distances of unicyclic graphs

In this section, we consider the first seven maximum degree distances of n-vertex unicyclic graphs and characterize the graphs whose degree distances achieve these values. First we give some lemmas.

Let T_{n}^{s} be the tree obtained from the path $P_{n-1}=u_{0} u_{1} \ldots u_{n-2}$ by attaching a pendent vertex to u_{s}, where $1 \leq s \leq n-2$.

In the following, if the symbol $G=C_{m}\left(T_{1}, T_{2}, \ldots, T_{m}\right)$ is used, then we require $d_{G}\left(v_{i}\right)=3$ when $T_{i}=P_{r}$ with $r \geq 2$, and $v_{i}=u_{r-2}$ when $T_{i}=T_{r}^{s}$ with $r \geq 3$.

Lemma 6. For fixed trees T_{2}, \ldots, T_{m}, let $G(T)=C_{m}\left(T, T_{2}, \ldots, T_{m}\right)$ with $|V(T)|=$ $k \geq 1$, and $H=C_{m}\left(-, T_{2}, \ldots, T_{m}\right)$. If $k \geq 4$, then $G\left(P_{k}\right), G\left(T_{k}^{1}\right)$ and $G\left(T_{k}^{2}\right)$ are respectively the unique graphs with the first, the second and the third maximum degree distances, and if $k \geq 5$, then $G\left(T_{k}^{k-2}\right)$ is the unique graph with the fourth maximum degree distance for $|V(H)|=3$, while $G\left(T_{k}^{3}\right)$ is the unique graph with the fourth maximum degree distance for $|V(H)| \geq 4$.

Proof. Let $G=G(T)$. If $T \neq P_{k}$, then by Lemma 1, we have $D^{\prime}(G)<D^{\prime}\left(G\left(P_{k}\right)\right)$. Thus, $G\left(P_{k}\right)$ is the unique graph with the maximum degree distance. Suppose that $T \neq P_{k}$. Then either $d_{G}\left(v_{1}\right) \geq 4$, or $d_{G}\left(v_{1}\right)=3$ and some vertex in T different from v_{1} has degree at least three. If $d_{G}\left(v_{1}\right) \geq 4$, then by Lemmas 1 and 4 , $D^{\prime}(G) \leq D^{\prime}\left(G\left(T_{k}^{k-2}\right)\right)$ with equality if and only if $G=G\left(T_{k}^{k-2}\right)$.

Suppose that $d_{G}\left(v_{1}\right)=3$ and some vertex in T different from v_{1} has degree at least three. Let t be the maximum degree of T, and x a maximum degree vertex. Then $t \geq 3$ and $x \neq v_{1}$.

Suppose first that $t \geq 4$, or $t=3$ and there are at least two vertices of T with degree three. Let G_{0} be a graph with the maximum degree distance. If $t \geq 5$, then by Lemma 1 , we may get a graph with $t=4$ with larger degree distance, a contradiction. Thus, $t=3,4$. If $t=3$, then by Lemmas 1 and 4 , $D^{\prime}\left(G_{0}\right)<D^{\prime}\left(G\left(T_{k}^{i_{1}}\right)\right)$ for some i_{1} with $3 \leq i_{1} \leq k-3$. Suppose that $t=4$. By Lemma 1, all vertices of T different from x are of degree one or two. If there is a pendent path at x of length at least two, then by Lemmas 1 and 4, we have $D^{\prime}\left(G_{0}\right)<D^{\prime}\left(G\left(T_{k}^{i_{2}}\right)\right)$ for some i_{2} with $3 \leq i_{2} \leq k-3$. Suppose that all the three pendent paths at x are of length one in G_{0}. Denote by x_{1}, x_{2} and x_{3} the pendent neighbors of x in G_{0}. Let $G_{1}=G_{0}-\left\{x x_{1}\right\}+\left\{x_{1} x_{2}\right\}$. Obviously $G_{1}=G\left(T_{k}^{2}\right)$. For $x \in V(H), D_{G_{1}}(x)-D_{G_{0}}(x)=D_{G_{1}}\left(v_{1}\right)-D_{G_{0}}\left(v_{1}\right)$, and thus

$$
\begin{aligned}
& \sum_{x \in V_{1}\left(G_{1}\right) \cap V(H)}\left(d_{G_{1}}(x)-2\right) D_{G_{1}}(x)-\sum_{x \in V_{1}\left(G_{0}\right) \cap V(H)}\left(d_{G_{0}}(x)-2\right) D_{G_{0}}(x) \\
= & {\left[D_{G_{1}}\left(v_{1}\right)-D_{G_{0}}\left(v_{1}\right)\right]\left[\sum_{x \in V(H)}\left(d_{H}(x)-2\right)+1\right]=D_{G_{1}}\left(v_{1}\right)-D_{G_{0}}\left(v_{1}\right) . }
\end{aligned}
$$

Note that $V_{1}\left(G_{0}\right)=\left(V_{1}\left(G_{0}\right) \cap V(H)\right) \cup\left\{x, x_{1}, x_{2}, x_{3}\right\}, V_{1}\left(G_{1}\right)=\left(V_{1}\left(G_{1}\right) \cap V(H)\right) \cup$ $\left\{x, x_{1}, x_{3}\right\}$, and thus

$$
\begin{aligned}
& D^{\prime}\left(G\left(T_{k}^{2}\right)\right)-D^{\prime}\left(G_{0}\right) \\
= & 4\left[W\left(G_{1}\right)-W\left(G_{0}\right)\right]+\left[D_{G_{1}}\left(v_{1}\right)-D_{G_{0}}\left(v_{1}\right)\right]+(1-2)\left[D_{G_{1}}\left(x_{1}\right)-D_{G_{0}}\left(x_{1}\right)\right] \\
& +(1-2)\left[D_{G_{1}}\left(x_{3}\right)-D_{G_{0}}\left(x_{3}\right)\right]+(3-2) D_{G_{1}}(x) \\
& -(4-2) D_{G_{0}}(x)-(1-2) D_{G_{0}}\left(x_{2}\right) \\
= & 4\left[W\left(G_{1}\right)-W\left(G_{0}\right)\right]+\left[D_{G_{1}}\left(v_{1}\right)-D_{G_{0}}\left(v_{1}\right)\right]-\left[D_{G_{1}}\left(x_{1}\right)-D_{G_{0}}\left(x_{1}\right)\right] \\
& -\left[D_{G_{1}}\left(x_{3}\right)-D_{G_{0}}\left(x_{3}\right)\right]+\left[D_{G_{1}}(x)-D_{G_{0}}(x)\right]+\left[D_{G_{0}}\left(x_{2}\right)-D_{G_{0}}(x)\right] \\
= & 4(n-3)+1-(n-3)-1+1+(n-2)=4 n-10 .
\end{aligned}
$$

On the other hand, by similar calculation of $D^{\prime}\left(G_{3}\right)-D^{\prime}(G)$ as in the proof of Theorem 1, we have $D^{\prime}\left(G\left(T_{k}^{3}\right)\right)-D^{\prime}\left(G\left(T_{k}^{2}\right)\right)=-4 n+26$. Then
$D^{\prime}\left(G\left(T_{k}^{3}\right)\right)-D^{\prime}\left(G_{0}\right)=\left[D^{\prime}\left(G\left(T_{k}^{3}\right)\right)-D^{\prime}\left(G\left(T_{k}^{2}\right)\right)\right]+\left[D^{\prime}\left(G\left(T_{k}^{2}\right)\right)-D^{\prime}\left(G_{0}\right)\right]=16>0$, and thus $D^{\prime}\left(G\left(T_{k}^{3}\right)\right)>D^{\prime}\left(G_{0}\right) \geq D^{\prime}(G)$.

Next suppose that $t=3$ and there is exactly one vertex, say y, with maximum degree three in T. Denote by a and b the lengths of the two pendent paths at y,
where $a \geq b$. If $b \geq 2$, then by Lemma $4, D^{\prime}(G)<D^{\prime}\left(G\left(T_{k}^{i_{3}}\right)\right)$ for some i_{3} with $3 \leq i_{3} \leq k-3$. If $b=1$, then $G=G\left(T_{k}^{i_{4}}\right)$ for some i_{4} with $1 \leq i_{4} \leq k-3$.

Now we have shown that $D^{\prime}(G)<\max \left\{D^{\prime}\left(G\left(T_{k}^{i}\right)\right): 3 \leq i \leq k-2\right\}$ or $G=G\left(T_{k}^{i}\right)$ with $1 \leq i \leq k-2$.

Let $n=|V(H)|+k-1$. By similar calculation of $D^{\prime}\left(G_{3}\right)-D^{\prime}(G)$ as in the proof of Theorem 1, $D^{\prime}\left(G\left(T_{k}^{1}\right)\right)-D^{\prime}\left(G\left(T_{k}^{2}\right)\right)=4 n-18>0$, and for $3 \leq i \leq k-2$,

$$
\begin{aligned}
D^{\prime}\left(G\left(T_{k}^{2}\right)\right)-D^{\prime}\left(G\left(T_{k}^{i}\right)\right) & =4(i-2) n-4 i^{2}-6 i+28 \\
& \geq 4(i-2)(i+4)-4 i^{2}-6 i+28=2(i-2)>0
\end{aligned}
$$

Thus

$$
\max \left\{D^{\prime}\left(G\left(T_{k}^{i}\right)\right): 3 \leq i \leq k-2\right\}<D^{\prime}\left(G\left(T_{k}^{2}\right)\right)<D^{\prime}\left(G\left(T_{k}^{1}\right)\right)
$$

implying that $G\left(T_{k}^{1}\right)$ and $G\left(T_{k}^{2}\right)$ are respectively the unique graphs with the second and the third maximum degree distances, and the fourth maximum degree distance is only possibly achieved by $G\left(T_{k}^{i}\right)$ with $3 \leq i \leq k-2$. Note that $D^{\prime}\left(G\left(T_{k}^{2}\right)\right)-$ $D^{\prime}\left(G\left(T_{k}^{3}\right)\right)=4 n-26$. For $3<i \leq k-3$,

$$
\begin{aligned}
D^{\prime}\left(G\left(T_{k}^{3}\right)\right)-D^{\prime}\left(G\left(T_{k}^{i}\right)\right)= & {\left[D^{\prime}\left(G\left(T_{k}^{2}\right)\right)-D^{\prime}\left(G\left(T_{k}^{i}\right)\right)\right] } \\
& -\left[D^{\prime}\left(G\left(T_{k}^{2}\right)\right)-D^{\prime}\left(G\left(T_{k}^{3}\right)\right)\right] \\
= & 4(i-3) n-4 i^{2}-6 i+54 \\
\geq & 4(i-3)(i+5)-4 i^{2}-6 i+54=2(i-3)>0,
\end{aligned}
$$

and thus $D^{\prime}\left(G\left(T_{k}^{3}\right)\right)>D^{\prime}\left(G\left(T_{k}^{i}\right)\right)$. On the other hand, it is easily seen that

$$
D^{\prime}\left(G\left(T_{k}^{3}\right)\right)-D^{\prime}\left(G\left(T_{k}^{k-2}\right)\right)=2(k-5)(2|V(H)|-7)
$$

which is negative if $|V(H)|=3$ and positive if $|V(H)| \geq 4$. The result follows.
Let $C_{3}(T)=C_{3}(T,-,-), C_{3}\left(T_{1}, T_{2}\right)=C_{3}\left(T_{1}, T_{2},-\right), C_{4}(T)=C_{4}(T,-,-,-)$, $C_{4}^{1}\left(T_{1}, T_{2}\right)=C_{4}\left(T_{1},-, T_{2},-\right)$ and $C_{4}^{2}\left(T_{1}, T_{2}\right)=C_{4}\left(T_{1}, T_{2},-,-\right)$.

Let $\mathbb{U}_{1}(n)$ be the set of n-vertex unicyclic graphs of the form $C_{3}(T)$, and $\mathbb{U}_{2}(n)$ the set of n-vertex unicyclic graphs of the form $C_{3}\left(T_{1}, T_{2}, T_{3}\right)$, where at least two of T_{1}, T_{2}, T_{3} are not P_{1}.

Lemma 7. Among the graphs in $\mathbb{U}_{1}(n)$,
(a) $C_{3}\left(P_{n-2}\right), C_{3}\left(T_{n-2}^{1}\right), C_{3}\left(T_{n-2}^{2}\right)$ for $n \geq 6$, and $C_{3}\left(T_{n-2}^{n-4}\right)$ for $n \geq 7$ are respectively the unique graphs with the first, the second, the third, and the fourth maximum degree distances, which are equal to $\frac{2}{3} n^{3}-\frac{20}{3} n+14, \frac{2}{3} n^{3}-\frac{32}{3} n+24$, $\frac{2}{3} n^{3}-\frac{44}{3} n+42$, and $\frac{2}{3} n^{3}-\frac{50}{3} n+54$, respectively;
(b) $C_{3}\left(T_{n-2}^{3}\right)$ for $n=8,12$ is the unique graph with the fifth maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{56}{3} n+68$.

Proof. (a) follows from Lemma 6. We consider (b). Suppose that $n=8,12$. Let Q_{n} be the graph obtained by attaching two paths P_{2} and P_{n-5} to a vertex of a triangle. Let G be a graph in $\mathbb{U}_{1}(n)$ different from the graphs with the first four maximum
degree distances. Note that $d_{G}\left(v_{1}\right) \geq 3$, and $d_{G}\left(v_{2}\right), d_{G}\left(v_{3}\right)=2$. If $d_{G}\left(v_{1}\right)=3$, then by the arguments in the proof of Lemma $6, D^{\prime}(G) \leq D^{\prime}\left(C_{3}\left(T_{n-2}^{3}\right)\right)$ with equality if and only if $G=C_{3}\left(T_{n-2}^{3}\right)$. If $d_{G}\left(v_{1}\right) \geq 4$, then by Lemma 1 and the inequality $D^{\prime}\left(H\left(a_{i-1}+1, a_{i}-1\right)\right)>D^{\prime}(G)$ in the proof of Lemma $4, D^{\prime}(G) \leq D^{\prime}\left(Q_{n}\right)$. Note that $D^{\prime}\left(C_{3}\left(T_{n-2}^{3}\right)\right)-D^{\prime}\left(Q_{n}\right)=8 n-46>0$. Then (b) follows.

Lemma 8. Among the graphs in $\mathbb{U}_{2}(n)$,
(a) $C_{3}\left(P_{n-3}, P_{2}\right)$ for $n \geq 6$ is the unique graph with the maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{38}{3} n+38$;
(b) $C_{3}\left(P_{2}, P_{2}, P_{2}\right)$ for $n=6$ is the unique graph with the second maximum degree distance, which is equal to $96, C_{3}\left(P_{n-4}, P_{3}\right)$ for $7 \leq n \leq 12$ is the unique graph with the second maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{56}{3} n+74$, $C_{3}\left(P_{n-4}, P_{3}\right)$ and $C_{3}\left(T_{n-3}^{1}, P_{2}\right)$ for $n=13$ are the unique graphs with the second maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{56}{3} n+74=\frac{2}{3} n^{3}-$ $\frac{50}{3} n+48$, and $C_{3}\left(T_{n-3}^{1}, P_{2}\right)$ for $n \geq 14$ is the unique graph with the second maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{50}{3} n+48$;
(c) $C_{3}\left(T_{n-3}^{1}, P_{2}\right)$ for $n=7,8$ is the unique graph with the third maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{50}{3} n+48$.
Proof. Let $G=C_{3}\left(T_{1}, T_{2}, T_{3}\right) \in \mathbb{U}_{2}(n)$ with $\left|V\left(T_{1}\right)\right| \geq\left|V\left(T_{2}\right)\right| \geq\left|V\left(T_{3}\right)\right|$. If $n=6$, then $G=C_{3}\left(P_{2}, P_{2}, P_{2}\right), C_{3}\left(P_{3}, P_{2}\right)$, or $C_{3}\left(T_{3}^{1}, P_{2}\right)$, and thus the result for $n=6$ follows by direct calculation. In the following suppose that $n \geq 7$.

If $\left|V\left(T_{3}\right)\right| \geq 2$, then by Lemmas 1,2 and using the equation on $D^{\prime}\left(U_{n, m}(a-1, b+\right.$ $1))-D^{\prime}\left(U_{n, m}(a, b)\right)$ in the proof of Lemma 5 with $k=0, D^{\prime}(G)<D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)$.

Suppose that $\left|V\left(T_{3}\right)\right|=1$. If $\left|V\left(T_{2}\right)\right|=2$ and $G \neq C_{3}\left(P_{n-3}, P_{2}\right)$, then by Lemma 6,

$$
D^{\prime}(G) \leq D^{\prime}\left(C_{3}\left(T_{n-3}^{1}, P_{2}\right)\right)<D^{\prime}\left(C_{3}\left(P_{n-3}, P_{2}\right)\right)
$$

with equality if and only if $G=C_{3}\left(T_{n-3}^{1}, P_{2}\right)$. If $\left|V\left(T_{2}\right)\right| \geq 3$, then by Lemma 1 and using the equation on $D^{\prime}\left(U_{n, m}(a-1, b+1)\right)-D^{\prime}\left(U_{n, m}(a, b)\right)$ in the proof of Lemma 5 with $k=0, D^{\prime}(G) \leq D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)$ with equality if and only if $G=C_{3}\left(P_{n-4}, P_{3}\right)$.

Using the equation on $D^{\prime}\left(U_{n, m}(a-1, b+1)\right)-D^{\prime}\left(U_{n, m}(a, b)\right)$ in the proof of Lemma 5 with $k=0$, we have $D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)<D^{\prime}\left(C_{3}\left(P_{n-3}, P_{2}\right)\right)$. Thus, $C_{3}\left(P_{n-3}, P_{2}\right)$ is the unique graph with the maximum degree distance, and (a) follows.

Note that the second maximum degree distance is only possibly achieved by $C_{3}\left(T_{n-3}^{1}, P_{2}\right)$ or $C_{3}\left(P_{n-4}, P_{3}\right)$. It is easily seen that

$$
D^{\prime}\left(C_{3}\left(T_{n-3}^{1}, P_{2}\right)\right)-D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)=2(n-13) .
$$

Then (b) follows easily.
Now we consider (c). Suppose that $n=7,8$. Let $G \neq C_{3}\left(P_{n-3}, P_{2}\right), C_{3}\left(P_{n-4}, P_{3}\right)$. By Lemmas 1 and 6 , for $n=7$,

$$
D^{\prime}(G) \leq \max \left\{D^{\prime}\left(C_{3}\left(P_{3}, P_{2}, P_{2}\right)\right), D^{\prime}\left(C_{3}\left(T_{3}^{1}, P_{3}\right)\right), D^{\prime}\left(C_{3}\left(T_{4}^{1}, P_{2}\right)\right)\right\}
$$

$$
=D^{\prime}\left(C_{3}\left(T_{4}^{1}, P_{2}\right)\right)=160
$$

with equality if and only if $G=C_{3}\left(T_{4}^{1}, P_{2}\right)$, and for $n=8$,

$$
\begin{aligned}
D^{\prime}(G) \leq & \max \left\{D^{\prime}\left(C_{3}\left(P_{3}, P_{3}, P_{2}\right)\right), D^{\prime}\left(C_{3}\left(P_{4}, P_{2}, P_{2}\right)\right), D^{\prime}\left(C_{3}\left(T_{3}^{1}, P_{4}\right)\right)\right. \\
& \left.D^{\prime}\left(C_{3}\left(T_{4}^{1}, P_{3}\right)\right), D^{\prime}\left(C_{3}\left(T_{5}^{1}, P_{2}\right)\right)\right\} \\
= & D^{\prime}\left(C_{3}\left(T_{5}^{1}, P_{2}\right)\right)=256
\end{aligned}
$$

with equality if and only if $G=C_{3}\left(T_{5}^{1}, P_{2}\right)$. Then (c) follows.
Let $\mathbb{U}_{3}(n)$ be the set of n-vertex unicyclic graphs of the form $C_{4}(T)$, and $\mathbb{U}_{4}(n)$ the set of n-vertex unicyclic graphs of the form $C_{4}\left(T_{1}, T_{2}, T_{3}, T_{4}\right)$, where at least two of $T_{1}, T_{2}, T_{3}, T_{4}$ are not P_{1}. By Lemma 6, we have Lemma 9 directly.

Lemma 9. Among the graphs in $\mathbb{U}_{3}(n), C_{4}\left(P_{n-3}\right), C_{4}\left(T_{n-3}^{1}\right)$ for $n \geq 6$, and $C_{4}\left(T_{n-3}^{2}\right)$ for $n \geq 7$ are respectively the unique graphs with the maximum, the second, and the third maximum degree distances, which are equal to $\frac{2}{3} n^{3}-\frac{35}{3} n+36$, $\frac{2}{3} n^{3}-\frac{47}{3} n+46$, and $\frac{2}{3} n^{3}-\frac{59}{3} n+64$, respectively.

Lemma 10. Among the graphs in $\mathbb{U}_{4}(n)$,
(a) $C_{4}^{1}\left(P_{n-4}, P_{2}\right)$ for $n \geq 6$ is the unique graph with the maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{53}{3} n+66$;
(b) $C_{4}^{2}\left(P_{n-4}, P_{2}\right)$ for $n=6,7$ or $n \geq 12$ is the unique graph with the second maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{65}{3} n+86, C_{4}^{1}\left(P_{n-5}, P_{3}\right)$ for $8 \leq n \leq 10$ is the unique graph with the second maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{71}{3} n+108$, and $C_{4}^{2}\left(P_{n-4}, P_{2}\right)$ and $C_{4}^{1}\left(P_{n-5}, P_{3}\right)$ for $n=11$ are the unique graphs with the second maximum degree distance, which is equal to $\frac{2}{3} n^{3}-\frac{65}{3} n+86=\frac{2}{3} n^{3}-\frac{71}{3} n+108$.

Proof. Let $G=C_{4}\left(T_{1}, T_{2}, T_{3}, T_{4}\right) \in \mathbb{U}_{4}(n)$. If $n=6$, then $G=C_{4}^{1}\left(P_{2}, P_{2}\right)$ or $C_{4}^{2}\left(P_{2}, P_{2}\right)$. If $n=7$, then $G=C_{4}^{1}\left(P_{3}, P_{2}\right), C_{4}^{2}\left(P_{3}, P_{2}\right), C_{4}^{1}\left(T_{3}^{1}, P_{2}\right), C_{4}^{2}\left(T_{3}^{1}, P_{2}\right)$, or $C_{4}\left(P_{2}, P_{2}, P_{2},-\right)$. Thus, the results for $n=6,7$ follow by direct calculation. In the following suppose that $n \geq 8$.

If there are at least three of $T_{1}, T_{2}, T_{3}, T_{4}$ that are not P_{1}, then by Lemmas 1 , 2,3 and using the equation on $D^{\prime}\left(U_{n, m}(a-1, b+1)\right)-D^{\prime}\left(U_{n, m}(a, b)\right)$ in the proof of Lemma 5 with $k=0$, we have $D^{\prime}(G)<D^{\prime}\left(C_{4}^{1}\left(P_{n-5}, P_{3}\right)\right)$.

Suppose that there are exactly two of $T_{1}, T_{2}, T_{3}, T_{4}$ that are not P_{1}. Suppose without loss of generality that $d_{G}\left(v_{1}\right) \geq 3$. Suppose that $d_{G}\left(v_{2}\right)$ or $d_{G}\left(v_{4}\right) \geq 3$. By symmetry, we may assume that $d_{G}\left(v_{2}\right) \geq 3$ and $\left|V\left(T_{1}\right)\right| \geq\left|V\left(T_{2}\right)\right|$. If $\left|V\left(T_{2}\right)\right|=2$, then by Lemma 1, we have $D^{\prime}(G) \leq D^{\prime}\left(C_{4}^{2}\left(P_{n-4}, P_{2}\right)\right)$ with equality if and only if $G=C_{4}^{2}\left(P_{n-4}, P_{2}\right)$. If $\left|V\left(T_{2}\right)\right| \geq 3$, then by Lemmas 1,3 and using the equation on $D^{\prime}\left(U_{n, m}(a-1, b+1)\right)-D^{\prime}\left(U_{n, m}(a, b)\right)$ in the proof of Lemma 5 with $k=0$, we have $D^{\prime}(G)<D^{\prime}\left(C_{4}^{1}\left(P_{n-5}, P_{3}\right)\right)$. Suppose that $d_{G}\left(v_{3}\right) \geq 3$. Assume that $\left|V\left(T_{1}\right)\right| \geq\left|V\left(T_{3}\right)\right|$. If $\left|V\left(T_{3}\right)\right|=2$ and $G \neq C_{4}^{1}\left(P_{n-4}, P_{2}\right)$, then by Lemma 6 ,

$$
D^{\prime}(G) \leq D^{\prime}\left(C_{4}^{1}\left(T_{n-4}^{1}, P_{2}\right)\right)<D^{\prime}\left(C_{4}^{1}\left(P_{n-4}, P_{2}\right)\right)
$$

If $\left|V\left(T_{3}\right)\right| \geq 3$, then by Lemma 1 and using the equation on $D^{\prime}\left(U_{n, m}(a-1, b+\right.$ 1)) $-D^{\prime}\left(U_{n, m}(a, b)\right)$ in the proof of Lemma 5 with $k=0$, we have $D^{\prime}(G) \leq$ $D^{\prime}\left(C_{4}^{1}\left(P_{n-5}, P_{3}\right)\right)$ with equality if and only if $G=C_{4}^{1}\left(P_{n-5}, P_{3}\right)$.

By the equation on $D^{\prime}\left(U_{n, m}(a-1, b+1)\right)-D^{\prime}\left(U_{n, m}(a, b)\right)$ with $k=0$ in the proof of Lemma $5, D^{\prime}\left(C_{4}^{1}\left(P_{n-5}, P_{3}\right)\right)<D^{\prime}\left(C_{4}^{1}\left(P_{n-4}, P_{2}\right)\right)$, and by Lemma 3 , $D^{\prime}\left(C_{4}^{2}\left(P_{n-4}, P_{2}\right)\right)<D^{\prime}\left(C_{4}^{1}\left(P_{n-4}, P_{2}\right)\right)$, implying that $C_{4}^{1}\left(P_{n-4}, P_{2}\right)$ is the unique graph with the maximum degree distance, and then (a) follows.

Note that $D^{\prime}\left(C_{4}^{2}\left(P_{n-4}, P_{2}\right)\right)-D^{\prime}\left(C_{4}^{1}\left(T_{n-4}^{1}, P_{2}\right)\right)=10>0$. Thus the second maximum degree distance is only possibly achieved by $C_{4}^{2}\left(P_{n-4}, P_{2}\right)$ or $C_{4}^{1}\left(P_{n-5}, P_{3}\right)$. It is easily seen that

$$
D^{\prime}\left(C_{4}^{2}\left(P_{n-4}, P_{2}\right)\right)-D^{\prime}\left(C_{4}^{1}\left(P_{n-5}, P_{3}\right)\right)=2(n-11)
$$

Then (b) follows easily.
Let $H_{n}=C_{n-1}\left(P_{2},-, \ldots,-\right)$ for $n \geq 4$.
Lemma 11. Suppose that G is an n-vertex unicyclic graph with cycle length $r \geq 5$ and $n \geq 7$. Then $D^{\prime}(G)<D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)$.
Proof. If $r=n-1$, then $G=H_{n}$, and if $r=n$, then $G=C_{n}$. It is easily checked that $D^{\prime}\left(C_{n}\right)=2 n\left\lfloor\frac{n^{2}}{4}\right\rfloor$ and $D^{\prime}\left(H_{n}\right)=2(n+1)\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+3 n-2$, and thus $\max \left\{D^{\prime}\left(C_{n}\right), D^{\prime}\left(H_{n}\right)\right\}<D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)$.

Suppose that $r \leq n-2$. Let G be a graph with the maximum degree distance satisfying the given condition, and C_{r} its unique cycle. By Lemmas 1 and $2, G=$ $U_{n, r}=C_{r}\left(P_{n-r+1},-, \ldots,-\right)$. Setting $a=0, m=r$, and $T_{1}=P_{n-r+1}$ in Lemma 3, we have $D^{\prime}(G)<\max \left\{D^{\prime}\left(C_{3}\left(P_{n-r+1}, P_{r-2}\right)\right), D^{\prime}\left(C_{4}^{1}\left(P_{n-r+1}, P_{r-3}\right)\right)\right\}$. By the equation on $D^{\prime}\left(U_{n, m}(a-1, b+1)\right)-D^{\prime}\left(U_{n, m}(a, b)\right)$ with $k=0$ in the proof of Lemma 5, $D^{\prime}\left(C_{3}\left(P_{n-r+1}, P_{r-2}\right)\right) \leq D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)$ and $D^{\prime}\left(C_{4}^{1}\left(P_{n-r+1}, P_{r-3}\right)\right) \leq$ $D^{\prime}\left(C_{4}^{1}\left(P_{n-5}, P_{3}\right)\right)$. Now by the equation $D^{\prime}(G(k, 3))-D^{\prime}(G(k, 4))=6 k-n-22$ in the proof of Theorem 1 with $k=n-2, D^{\prime}\left(C_{4}^{1}\left(P_{n-5}, P_{3}\right)\right)<D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)$. Then $D^{\prime}(G)<D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)$, as desired.

There are five 5 -vertex unicyclic graphs, for which by direct checking, the degree distances are ordered as:

$$
D^{\prime}\left(C_{3}\left(T_{3}^{1}\right)\right)<D^{\prime}\left(C_{3}\left(P_{2}, P_{2}\right)\right)<D^{\prime}\left(C_{5}\right)<D^{\prime}\left(H_{5}\right)<D^{\prime}\left(C_{3}\left(P_{3}\right)\right) .
$$

Theorem 2. The degree distances of n-vertex unicyclic graphs with $n \geq 6$ may be ordered by the following inequalities, where G is an n-vertex unicyclic graph different from any other graph in the inequalities:
(i) for $n=6$,

$$
\begin{aligned}
D^{\prime}(G) & <D^{\prime}\left(C_{3}\left(T_{4}^{2}\right)\right)=98 \\
& <D^{\prime}\left(C_{4}^{2}\left(P_{2}, P_{2}\right)\right)=D^{\prime}\left(H_{6}\right)=100 \\
& <D^{\prime}\left(C_{3}\left(T_{4}^{1}\right)\right)=D^{\prime}\left(C_{4}^{1}\left(P_{2}, P_{2}\right)\right)=104 \\
& <D^{\prime}\left(C_{3}\left(P_{3}, P_{2}\right)\right)=106<D^{\prime}\left(C_{6}\right)=108
\end{aligned}
$$

$$
<D^{\prime}\left(C_{4}\left(P_{3}\right)\right)=110<D^{\prime}\left(C_{3}\left(P_{4}\right)\right)=118
$$

(ii) for $n=7$,

$$
\begin{aligned}
D^{\prime}(G) & <D^{\prime}\left(C_{3}\left(T_{5}^{3}\right)\right)=166 \\
& <D^{\prime}\left(C_{7}\right)=D^{\prime}\left(C_{3}\left(T_{5}^{2}\right)\right)=168 \\
& <D^{\prime}\left(C_{4}^{1}\left(P_{3}, P_{2}\right)\right)=171<D^{\prime}\left(C_{3}\left(P_{3}, P_{3}\right)\right)=172 \\
& <D^{\prime}\left(C_{3}\left(P_{4}, P_{2}\right)\right)=D^{\prime}\left(C_{3}\left(T_{5}^{1}\right)\right)=178 \\
& <D^{\prime}\left(C_{4}\left(P_{4}\right)\right)=183<D^{\prime}\left(C_{3}\left(P_{5}\right)\right)=196
\end{aligned}
$$

(iii) for $n=8$,

$$
\begin{aligned}
D^{\prime}(G) & <D^{\prime}\left(C_{4}^{1}\left(P_{3}, P_{3}\right)\right)=D^{\prime}\left(C_{3}\left(T_{6}^{3}\right)\right)=260 \\
& <D^{\prime}\left(C_{3}\left(T_{6}^{4}\right)\right)=D^{\prime}\left(C_{4}\left(T_{5}^{1}\right)\right)=262 \\
& <D^{\prime}\left(C_{3}\left(P_{4}, P_{3}\right)\right)=D^{\prime}\left(C_{3}\left(T_{6}^{2}\right)\right) \\
& =D^{\prime}\left(C_{4}^{1}\left(P_{4}, P_{2}\right)\right)=266 \\
& <D^{\prime}\left(C_{3}\left(P_{5}, P_{2}\right)\right)=278<D^{\prime}\left(C_{3}\left(T_{6}^{1}\right)\right)=280 \\
& <D^{\prime}\left(C_{4}\left(P_{5}\right)\right)=284<D^{\prime}\left(C_{3}\left(P_{6}\right)\right)=302
\end{aligned}
$$

(iv) for $n=9$,

$$
\begin{aligned}
D^{\prime}(G) & <D^{\prime}\left(C_{3}\left(P_{5}, P_{3}\right)\right)=392<D^{\prime}\left(C_{4}^{1}\left(P_{5}, P_{2}\right)\right)=393 \\
& <D^{\prime}\left(C_{3}\left(T_{7}^{2}\right)\right)=396<D^{\prime}\left(C_{3}\left(P_{6}, P_{2}\right)\right)=410 \\
& <D^{\prime}\left(C_{3}\left(T_{7}^{1}\right)\right)=414<D^{\prime}\left(C_{4}\left(P_{6}\right)\right)=417 \\
& <D^{\prime}\left(C_{3}\left(P_{7}\right)\right)=440
\end{aligned}
$$

(v) for $n=10$,

$$
\begin{aligned}
D^{\prime}(G) & <D^{\prime}\left(C_{3}\left(T_{8}^{6}\right)\right)=D^{\prime}\left(C_{3}\left(P_{6}, P_{3}\right)\right)=554 \\
& <D^{\prime}\left(C_{4}\left(T_{7}^{1}\right)\right)=D^{\prime}\left(C_{4}^{1}\left(P_{6}, P_{2}\right)\right)=556 \\
& <D^{\prime}\left(C_{3}\left(T_{8}^{2}\right)\right)=562<D^{\prime}\left(C_{3}\left(P_{7}, P_{2}\right)\right)=578 \\
& <D^{\prime}\left(C_{3}\left(T_{8}^{1}\right)\right)=584<D^{\prime}\left(C_{4}\left(P_{7}\right)\right)=586 \\
& <D^{\prime}\left(C_{3}\left(P_{8}\right)\right)=614 ;
\end{aligned}
$$

(vi) for $n=11$,

$$
\begin{aligned}
D^{\prime}(G) & <D^{\prime}\left(C_{4}^{1}\left(P_{7}, P_{2}\right)\right)=759<D^{\prime}\left(C_{4}\left(T_{8}^{1}\right)\right)=761 \\
& <D^{\prime}\left(C_{3}\left(T_{9}^{2}\right)\right)=768<D^{\prime}\left(C_{3}\left(P_{8}, P_{2}\right)\right)=786 \\
& <D^{\prime}\left(C_{3}\left(T_{9}^{1}\right)\right)=794<D^{\prime}\left(C_{4}\left(P_{8}\right)\right)=795 \\
& <D^{\prime}\left(C_{3}\left(P_{9}\right)\right)=828
\end{aligned}
$$

(vii) for $n=12$,

$$
D^{\prime}(G)<D^{\prime}\left(C_{3}\left(P_{8}, P_{3}\right)\right)=1002
$$

$$
\begin{aligned}
& <D^{\prime}\left(C_{3}\left(T_{10}^{8}\right)\right)=D^{\prime}\left(C_{4}^{1}\left(P_{8}, P_{2}\right)\right)=1006 \\
& <D^{\prime}\left(C_{4}\left(T_{9}^{1}\right)\right)=1010<D^{\prime}\left(C_{3}\left(T_{10}^{2}\right)\right)=1018 \\
& <D^{\prime}\left(C_{3}\left(P_{9}, P_{2}\right)\right)=1038 \\
& <D^{\prime}\left(C_{3}\left(T_{10}^{1}\right)\right)=D^{\prime}\left(C_{4}\left(P_{9}\right)\right)=1048 \\
& <D^{\prime}\left(C_{3}\left(P_{10}\right)\right)=1086
\end{aligned}
$$

(viii) for $n \geq 13$,

$$
\begin{aligned}
D^{\prime}(G) & <D^{\prime}\left(C_{3}\left(T_{n-2}^{n-4}\right)\right)=\frac{2}{3} n^{3}-\frac{50}{3} n+54 \\
& <D^{\prime}\left(C_{4}\left(T_{n-3}^{1}\right)\right)=\frac{2}{3} n^{3}-\frac{47}{3} n+46 \\
& <D^{\prime}\left(C_{3}\left(T_{n-2}^{2}\right)\right)=\frac{2}{3} n^{3}-\frac{44}{3} n+42 \\
& <D^{\prime}\left(C_{3}\left(P_{n-3}, P_{2}\right)\right)=\frac{2}{3} n^{3}-\frac{38}{3} n+38 \\
& <D^{\prime}\left(C_{4}\left(P_{n-3}\right)\right)=\frac{2}{3} n^{3}-\frac{35}{3} n+36 \\
& <D^{\prime}\left(C_{3}\left(T_{n-2}^{1}\right)\right)=\frac{2}{3} n^{3}-\frac{32}{3} n+24 \\
& <D^{\prime}\left(C_{3}\left(P_{n-2}\right)\right)=\frac{2}{3} n^{3}-\frac{20}{3} n+14 .
\end{aligned}
$$

Proof. Let G be an n-vertex unicyclic graph, where $n \geq 6$. If the cycle length of G is three, then $G \in \mathbb{U}_{1}(n) \cup \mathbb{U}_{2}(n)$, and if the cycle length of G is four, then $G \in \mathbb{U}_{3}(n) \cup \mathbb{U}_{4}(n)$. The graphs with cycle length three or four with the first several large degree distances are determined in Lemmas $7-10$, which (especially for $n=6,7, \ldots, 12)$ are shown in Table 1.

Suppose that $n=6$. Note that $D^{\prime}\left(C_{6}\right)=108$ and $D^{\prime}\left(H_{6}\right)=100$. If $G \neq C_{6}$, H_{6}, then $G \in \bigcup_{i=1}^{4} \mathbb{U}_{i}(6)$. Note that $\mathbb{U}_{4}(6)=\left\{C_{4}^{1}\left(P_{2}, P_{2}\right), C_{4}^{2}\left(P_{2}, P_{2}\right)\right\}$. From Table 1 , the first four maximum degree distances of graphs in $\mathbb{U}_{1}(6) \cup \mathbb{U}_{2}(6)$ are 118,106 , 104,98 , while the first four maximum degree distances of graphs in $\mathbb{U}_{3}(6) \cup \mathbb{U}_{4}(6)$ are $110,104,100,96$. Then (i) follows from Table 1.

Suppose that $n=7$. Note that $D^{\prime}\left(C_{7}\right)=168$. If the cycle length of G is at least five and $G \neq C_{7}$, then by Lemmas 1,2 and direct calculation, $D^{\prime}(G)<166$. From Table 1, the first five maximum degree distances of graphs in $\mathbb{U}_{1}(7) \cup \mathbb{U}_{2}(7)$ are $196,178,172,168,166$, while the first four maximum degree distances of graphs in $\mathbb{U}_{3}(7) \cup \mathbb{U}_{4}(7)$ are $183,171,165,163$. Then (ii) follows from Table 1.

Suppose that $n=8$. If the cycle length of G is at least five, then by Lemmas 1, 2 and direct calculation, $D^{\prime}(G)<260$. From Table 1, the first six maximum degree distances of graphs in $\mathbb{U}_{1}(8) \cup \mathbb{U}_{2}(8)$ are $302,280,278,266,262,260$, while the first four maximum degree distances of graphs in $\mathbb{U}_{3}(8) \cup \mathbb{U}_{4}(8)$ are $284,266,262,260$. Then (iii) follows from Table 1.

Suppose in the following that $n \geq 9$. If the cycle length of G is at least five, then by Lemma 11, $D^{\prime}(G)<D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)$. To prove the results for $n \geq 9$,

Table 1: Graphs and their degree distances in Lemmas 7-10.

graph	degree distances							
	n	6	7	8	9	10	11	12
$C_{3}\left(P_{n-2}\right)$	$\frac{2}{3} n^{3}-\frac{20}{3} n+14$	118	196	302	440	614	828	1086
$C_{3}\left(T_{n-2}^{1}\right)$	$\frac{2}{3} n^{3}-\frac{32}{3} n+24$	104	178	280	414	584	794	1048
$C_{3}\left(T_{n-2}^{2}\right)$	$\frac{2}{3} n^{3}-\frac{44}{3} n+42$	98	168	266	396	562	768	1018
$C_{3}\left(T_{n-2}^{n-4}\right)$	$\frac{2}{3} n^{3}-\frac{50}{3} n+54$		166	262	390	554	758	1006
$C_{3}\left(T_{n-2}^{3}\right)$	$\frac{2}{3} n^{3}-\frac{56}{3} n+68$			260				996
$C_{3}\left(P_{n-3}, P_{2}\right)$	$\frac{2}{3} n^{3}-\frac{38}{3} n+38$	106	178	278	410	578	786	1038
$C_{3}\left(P_{2}, P_{2}, P_{2}\right)$		96						
$C_{3}\left(P_{n-4}, P_{3}\right)$	$\frac{2}{3} n^{3}-\frac{56}{3} n+74$		172	266	392	554	756	1002
$C_{3}\left(T_{n-3}^{1}, P_{2}\right)$	$\frac{2}{3} n^{3}-\frac{50}{3} n+48$		160	256				
$C_{4}\left(P_{n-3}\right)$	$\frac{2}{3} n^{3}-\frac{35}{3} n+36$	110	183	284	417	586	795	1048
$C_{4}\left(T_{n-3}^{1}\right)$	$\frac{2}{3} n^{3}-\frac{47}{3} n+46$	96	165	262	391	556	761	1010
$C_{4}\left(T_{n-3}^{2}\right)$	$\frac{2}{3} n^{3}-\frac{59}{3} n+64$		155	248	373	534	735	980
$C_{4}^{1}\left(P_{n-4}, P_{2}\right)$	$\frac{2}{3} n^{3}-\frac{53}{3} n+66$	104	171	266	393	556	759	1006
$C_{4}^{1}\left(P_{n-5}, P_{3}\right)$	$\frac{2}{3} n^{3}-\frac{71}{3} n+108$			260	381	538	735	
$C_{4}^{2}\left(P_{n-4}, P_{2}\right)$	$\frac{2}{3} n^{3}-\frac{65}{3} n+86$	100	163				735	978

we need only to consider the graphs in $\bigcup_{i=1}^{4} \mathbb{U}_{i}(n)$ with the degree distances at least $D^{\prime}\left(C_{3}\left(P_{n-4}, P_{3}\right)\right)$.

Suppose that $n=9$. From Table 1, the first five maximum degree distances of graphs in $\mathbb{U}_{1}(9) \cup \mathbb{U}_{2}(9)$ are $440,414,410,396,392$, while the first four maximum degree distances of graphs in $\mathbb{U}_{3}(9) \cup \mathbb{U}_{4}(9)$ are $417,393,391,381$. Then (iv) follows from Table 1.

Suppose that $n=10$. From Table 1, the first five maximum degree distances of graphs in $\mathbb{U}_{1}(10) \cup \mathbb{U}_{2}(10)$ are $614,584,578,562,554$, while the first three maximum degree distances of graphs in $\mathbb{U}_{3}(10) \cup \mathbb{U}_{4}(10)$ are $586,556,538$. Then (v) follows from Table 1.

Suppose that $n=11$. From Table 1, the first five maximum degree distances of graphs in $\mathbb{U}_{1}(11) \cup \mathbb{U}_{2}(11)$ are $828,794,786,768,758$, while the first three maximum degree distances of graphs in $\mathbb{U}_{3}(11) \cup \mathbb{U}_{4}(11)$ are $795,761,759$. Then (vi) follows from Table 1.

Suppose that $n=12$. From Table 1, the first six maximum degree distances of
graphs in $\mathbb{U}_{1}(12) \cup \mathbb{U}_{2}(12)$ are $1086,1048,1038,1018,1006,1002$, while the first four maximum degree distances of graphs in $\mathbb{U}_{3}(12) \cup \mathbb{U}_{4}(12)$ are 1048, 1010, 1006, 980. Then (vii) follows from Table 1.

Suppose that $n \geq 13$. By Lemmas 7 and $8, C_{3}\left(P_{n-2}\right), C_{3}\left(T_{n-2}^{1}\right), C_{3}\left(P_{n-3}, P_{2}\right)$, $C_{3}\left(T_{n-2}^{2}\right)$ and $C_{3}\left(T_{n-2}^{n-4}\right)$ are respectively the graphs in $\mathbb{U}_{1}(n) \cup \mathbb{U}_{2}(n)$ with the first five maximum degree distances, which are equal to $\frac{2}{3} n^{3}-\frac{20}{3} n+14, \frac{2}{3} n^{3}-\frac{32}{3} n+24$, $\frac{2}{3} n^{3}-\frac{38}{3} n+38, \frac{2}{3} n^{3}-\frac{44}{3} n+42$ and $\frac{2}{3} n^{3}-\frac{50}{3} n+54$, respectively. By Lemmas 9 and 10 , $C_{4}\left(P_{n-3}\right), C_{4}\left(T_{n-3}^{1}\right)$ and $C_{4}^{1}\left(P_{n-4}, P_{2}\right)$ are respectively the graphs in $\mathbb{U}_{3}(n) \cup \mathbb{U}_{4}(n)$ with the first three maximum degree distances, which are equal to $\frac{2}{3} n^{3}-\frac{35}{3} n+36$, $\frac{2}{3} n^{3}-\frac{47}{3} n+46$ and $\frac{2}{3} n^{3}-\frac{53}{3} n+66$, respectively. Note that

$$
\begin{aligned}
& \frac{2}{3} n^{3}-\frac{20}{3} n+14> \\
&> \frac{2}{3} n^{3}-\frac{32}{3} n+24 \\
&> \frac{2}{3} n^{3}-\frac{35}{3} n+36> \\
&> \frac{2}{3} n^{3}-\frac{38}{3} n+38>\frac{2}{3} n^{3}-\frac{44}{3} n+42 \\
& \frac{2}{3} n^{3}-\frac{47}{3} n+46>\frac{2}{3} n^{3}-\frac{50}{3} n+54>\frac{2}{3} n^{3}-\frac{53}{3} n+66 .
\end{aligned}
$$

Then (viii) follows.

Acknowledgement. This work was supported by the Guangdong Provincial Natural Science Foundation of China (no. 8151063101000026).

References

[1] A.A. Dobrynin, A.A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994), 1082-1086.
[2] I. Gutman, Selected properties of the Schultz molecular topogical index, J. Chem. Inf. Comput. Sci. 34 (1994), 1087-1089.
[3] H.P. Schultz, Topological organic chemistry. 1. Graph theory and topological indices of alkanes, J. Chem. Inf. Comput. Sci. 29 (1989), 227-228.
[4] W.R. Müller, K. Szymanski, J.V. Knop, N. Trinajstić, Molecular topological index, J. Chem. Inf. Comput. Sci. 30 (1990), 160-163.
[5] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. III. Total π electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535538.
[6] I. Gutman, B. Ruščić, N. Trinajstić, C.F. Wilcox Jr., Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405.
[7] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
[8] Z. Mihalić, S. Nikolić, N. Trinajstić, Comparative study of molecular descriptors derived from the distance matrix, J. Chem. Inf. Comput. Sci. 32 (1992), 28-37.
[9] S. Klavžar, I. Gutman, A comparison of the Schultz molecular topological index with the Wiener index, J. Chem. Inf. Comput. Sci. 36 (1996), 1001-1003.
[10] B. Zhou, Bounds for Schultz molecular topological index, MATCH Commun. Math. Comput. Chem. 56 (2006), 189-194.
[11] B. Zhou, N. Trinajstić, On reverse degree distance, J. Math. Chem. 47 (2010), 268-275.
[12] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001), 211-249.
[13] A.A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247-294.
[14] D. Stevanović, Maximizing Wiener index of graphs with fixed maximum degree, MATCH Commun. Math. Comput. Chem. 60 (2008), 71-83.
[15] I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math. 98 (1999), 159-163.
[16] A.I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discrete Appl. Math. 156 (2008), 125-130.
[17] I. Tomescu, Properties of connected graphs having minimum degree distance, Discrete Math. 309 (2008), 2745-2748.
[18] O. Bucicovschi, S.M. Cioabǎ, The minimum degree distance of graphs of given order and size, Discrete Appl. Math. 156 (2008), 3518-3521.
[19] Y. Hou, A. Chang, The unicyclic graph with maximum degree distance, J. Math. Study 39 (2006), 18-24.
[20] Z. Du, B. Zhou, Maximum degree distance of graphs with exactly two cycles, Bull. Math. Soc. Sci. Math. Roumanie, in press.
[21] P. Dankelmann, I. Gutman, S. Mukwembi, H.C. Swart, On the degree distance of a graph, Discrete Appl. Math. 157 (2009), 2773-2777.
[22] Z. Du, B. Zhou, On the reverse Wiener indices of unicyclic graphs, Acta Appl. Math. 106 (2009), 293-306.

Department of Mathematics, South China Normal University, Guangzhou 510631, China
E-mails: zhibindu@126.com (Z. Du), zhoubo@scnu.edu.cn (B. Zhou)

[^0]: * Corresponding author

 2000 Mathematics Subject Classifications. 05C07, 05C12, 05C35, 05C90.
 Key words and Phrases. degree, distance, degree distance, Wiener index, unicyclic graph, maximum degree.

 Received: May 1, 2010
 Communicated by Dragan Stevanović

