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Abstract. Recently, Fabrikant, Koutsoupias and Papadimitriou [7] introduced
a natural and beautifully simple model of network growth involving a trade-off
between geometric and network objectives, with relative strength character-
ized by a single parameter which scales as a power of the number of nodes. In
addition to giving experimental results, they proved a power-law lower bound
on part of the degree sequence, for a wide range of scalings of the parameter.
Here we prove that, despite the FKP results, the overall degree distribution is
very far from satisfying a power law.

First, we establish that for almost all scalings of the parameter, either all but
a vanishingly small fraction of the nodes have degree 1, or there is exponential
decay of node degrees. In the former case, a power law can hold for only a
vanishingly small fraction of the nodes. Furthermore, we show that in this case
there is a large number of nodes with almost maximum degree. So a power law
fails to hold even approximately at either end of the degree sequence range.
Thus the power laws found in [7] are very different from those given by other
internet models or found experimentally [8].

1 Introduction

In the last few years there has been an explosion of interest in “scale-free” random
networks, based on measurements indicating that many large real-world networks
have certain scale-free properties, for example power-law distributions of degrees and
other parameters. The original observations of Faloutsos, Faloutsos and Faloutsos [8]
and later many others have led to a host of proposals of random graph models to
explain these power laws, and to better understand the mechanisms at work in the
growth of real-world networks such as the internet or web graphs; see [2, 3, 9] for a few
examples. For extensive surveys of the huge amount of work in this area, see Albert
and Barabási [1] and Dorogovtsev and Mendes [6]; for a survey of the rather smaller
quantity of mathematical work see [4].

Most of the models introduced use a small number of basic mechanisms, mainly
preferential attachment or copying, to produce power laws, and do not involve any



reference to underlying geometry. Thus, while they may be appropriate for the web
graph, for example, they do not seem to be suitable for the internet graph itself.

In [7], Fabrikant, Koutsoupias and Papadimitriou (FKP) proposed a new paradigm
for power law behaviour, which they called “heuristically optimized trade-offs”: power
laws may result from “complicated optimization problems with multiple and conflict-
ing objectives.” Their paradigm generalizes previous work of Carlson and Doyle [5]
on “highly optimized tolerance,” in which reliable design is one of the objectives.

In order to illustrate this paradigm, FKP introduced a simple, natural network
model with such a mechanism. As in many models, a network is grown one node at a
time, and each node chooses a previous node to which it connects. However, in contrast
to other network models, a key feature of the FKP model is the underlying geometry;
the nodes are points chosen uniformly at random from some region, for example a
unit square in the plane. The trade-off is between the geometric consideration that it
is desirable to connect to a nearby point, and a networking consideration, that it is
desirable to connect to a node which is “central” in the network as a graph. Centrality
may be measured by using, for example, the graph distance to the initial node.

Several variants of the basic model are considered by Fabrikant, Koutsoupias and
Papadimitriou in [7]. The precise version we shall consider here is the principal version
studied in [7]: fix a region D of area one in the plane, for example a disc or a unit
square. The model is then determined by the number of nodes, n+1, and a parameter,
α. We start with a point x0 of D chosen uniformly at random, and set W (x0) = 0.
For i = 1, 2, . . . , n we choose a new point xi of D uniformly at random, and connect
xi to an earlier point xj chosen to minimize

W (xj) + αd(xi, xj)

over 0 ≤ j < i. Here d(., .) is the usual Euclidean distance. Having chosen xj , we set
W (xi) = W (xj) + 1. At the end we have a random tree T = T (n, α) on n+ 1 nodes
x0, . . . , xn, where each node has a weight W (xi) which is just its graph distance in
the tree from x0.

As in [7], we consider n→∞ with α some function of n, typically a power.
One might think from the title or a first reading of [7] that the form of the degree

sequence of this model has been essentially established. In fact, as we shall describe
in the next section, this is not the case. Indeed, two of our results, while of course
consistent with the actual results of [7], go against the impression given there that
the entire degree sequence follows a power law.

2 Results

As in [7] we consider α in two ranges. Roughly speaking, large α will mean α > n1/2,
and small α will mean α < n1/2. In fact, to keep things simple we will allow ourselves
a logarithmic gap.

Most of the time we will work in terms of the tail of the distribution. Let α = α(n)
be given. For each k = 1, 2, . . ., let qk(α, n) be the expected number of nodes of T (n, α)
with degree at least k, and let ρk(α) = limn→∞ qk(α, n)/n be the limiting proportion
of nodes with degree at least k.



2.1 Small α

The impression given on first reading [7] is that for small α the whole degree distri-
bution follows a power law. However, the experimental results of [7] strongly suggest
that there is a new kind of power law, holding over a large range of degrees, from 2
up to a little below the maximum degree, but involving only a very small proportion
of the vertices.

On a second look the situation is more confusing; quoting the relevant part of the
theorem (changing D to k for consistency with our notation):

If α ≥ 4 and α = o(
√
n), then the degree distribution of T is a power law;

specifically, the expected number of nodes with degree at least k is greater
than c · (k/n)−β for some constants c and β (that may depend on α): E[|{i :
degree of i ≥ k}|] > c(k/n)−β . Specifically, for α = o( 3

√
n1−ε) the constants

are: β ≥ 1/6 and c = O(α−1/2).

The usual form of a power law would be that a proportion k−β of vertices have
degree at least k, which is not what is claimed above. There are other problems: the
constant c depends on α which depends on n, so c is not a constant. Allowing c to be
variable, the claim may then become meaningless if c is very small.

Turning to the proof in [7], a nice geometric argument is given to show that, for α =
o(n(1−ε)/3) and k ≤ n1−ε/(Cα3), which is far below the maximum degree, the expected
number qk(α, n) of vertices with degree at least k is at least cn−5/6α−1/2k−1/6, where
c and C are absolute constants. This supports the experimental results, showing that
this interesting new model does indeed give power laws over a wide range; however,
it tells us nothing about the vast majority of the vertices, namely all but O(n1/6).

Now, in many examples of real-world networks, and in the preferential attachment
and copying models of [2, 9] and others, the power-law degree distribution involves
almost all vertices, and, less clearly, holds very nearly up to the maximum degree. (In
the latter case, the power law is often called a Zipf law, though in fact Zipf’s law is a
power law with a particular power.) Thus it is interesting to see whether this is the
case for the FKP model.

Theorem 1. Let α = o(n1/2/(log n)2). Then, whp the tree T (n, α) has at least n−
O(α1/2n3/4 log n) = n− o(n) leaves.

In other words, almost all vertices of T (n, α) have degree 1; in particular, when
α = na for a < 1/2, the number of vertices with degree more than 1 is at most nb for
some b < 1. This contrasts strongly with the usual sense of power-law scaling, namely
that the density of vertices of degree k converges to a function f(k) which in turn
decays like a power of k. This notion is implicit in [8] and [1], for example.

Our final result concerns the high degree vertices, showing that a ‘Zipf-like’ law
does not hold. As usual we write O∗(·) for O((logn)C ·), suppressing constant powers
of log n, and similarly for Θ∗(·). We write whp to mean with high probability, i.e.,
with probability 1− o(1) as n→∞.

Theorem 2. Suppose that (log n)4 ≤ α ≤ n1/2/(log n)4. Then there are constants
c, C > 0 such that whp the maximum degree of T (n, α) is at most Cn/α2, while
T (n, α) has Θ∗(α2) nodes of degree at least cn/α2.



Taking α = na for 0 < a < 1/2, for example, this says that there are many (a
power of n) vertices with degree close to (within a constant factor of) the maximum
degree. This contrasts sharply with a so-called Zipf distribution, where there would
be a constant number of such vertices. In fact, our method will even show that there
are many vertices with degree (1− o(1)) times the maximum.

2.2 Large α

We now turn to the simpler case of large α. This case is interesting for three reasons:
one is simply completeness. The second is that the case α = ∞, while involving no
trade-offs, is a very nice geometric model in its own right. Finally, the large α results
will turn out to be useful in studying the small α case.

Theorem 3. Suppose that α = α(n) satisfies α/(
√
n log n) → ∞. Then there are

positive constants A,A′, C, C ′ such that

A′e−C
′k ≤ ρk(α) ≤ Ae−Ck

holds for every k ≥ 1.

In other words, for large α the tail of the degree distribution decays exponentially,
as for classical random graphs with constant average degree.

Our theorem strengthens the upper bound in [7], which says that qk(α, n) ≤
O(n2)e−Ck, or, loosely speaking, that ρk(α) ≤ O(n)e−Ck. Note that the upper bound
of [7] gives information only for k larger than a constant times log n, i.e., a vanishing
fraction of the nodes. Furthermore, we complement our stronger upper bound with a
matching lower bound.

We remark again that our results contain logarithmic factors that are presumably
unnecessary; these help keep the proofs relatively simple.

3 The pure geometric model

In this section we consider the case α =∞. In this case, each node xi simply connects
to the closest node among x0, . . . , xi−1. Although this model is not our main focus,
it is of interest in its own right, and it is somewhat surprising that it does not seem
to have been extensively studied, unlike related objects such as the minimal spanning
tree, for example (see [11, 12]). We study this case for two reasons. First, for large α,
T (n, α) approximates T (n,∞). Second, certain results about T (n,∞) will be useful
to study T (n, α) even for very small α. We start with a simple but surprising exact
result.

Lemma 1. In the random tree T (n,∞), for 1 ≤ t ≤ n the probability that xt is at
graph distance r from x0, i.e., has weight r, is exactly∑

1≤i1<i2<...<ir−1<t

1
i1i2 . . . ir−1t



Proof. We write i→j if j < i and xi is adjacent (joined directly) to xj . The key
observation is as follows: suppose we fix the points xs, xs+1, . . . , xn, and also the set
of points Ss−1 = {x0, x1, . . . xs−1}, leaving undetermined the order of the points in
Ss−1. Then xs is joined to the closest point in Ss−1, which is a certain point x. When
we choose the ordering of the points in Ss−1, the point x is equally likely to be x0,
x1, or any other xj , j < s. Taking s = t, it follows that the probability that t→j is
exactly 1/t. Using the same observation for s = j we see that, given t→j, the prob-
ability that j→k is 1/j. Continuing, the probability that t→ir−1→ir−2→· · ·→i1→0
is 1/(tir−1ir−2 · · · i1). As these events are disjoint for different sequences, the lemma
follows.

Another way of stating the lemma is that for any fixed t, the distribution of the
graph distance from t to 0 is the same as in a uniform random recursive tree. These
are trees grown one node at a time, in which each new node is joined to an earlier
node chosen uniformly at random. Such objects have been studied for some time; see,
for example, the survey [10]. The radius (here, maximum node weight) of such a tree
was shown by Pittel [13] to be (c+o(1)) log n for a certain constant c = 1.79.. given by
a root of an equation. This result does not apply to T (n, α) because the dependence
between nodes is different. We shall just give an upper bound.

Lemma 2. Let α = α(n) be arbitrary. Then as n→∞, whp every point in T (n, α)
has weight at most 3 logn.

Proof. For α = ∞ this follows from Lemma 1 by straightforward calculation: the
expected number of points with weight r is∑

1≤i1<i2<...<ir−1<t≤n

1
i1i2 . . . ir−1t

≤ (1 + log n)r

r!
≤ (e(1 + log n)/r)r .

Set r = b3 lognc. Then the expectation above tends to zero, so whp there are no
points with weight r, and the radius, or maximum weight, is at most r − 1.

We can compare finite α with α = ∞. Consider the sequence of points as fixed,
let W (xi) be the weights for some finite α = α(n), and let W∞(xi) be the weights
obtained with α =∞. For any α, the weight of a point xi is always at most one more
than the weight of the nearest earlier point xj : if we connect to a more distant point
xk it must have smaller weight than xj . Since we have equality for α =∞, it follows
that for any α we have W (xi) ≤ W∞(xi). As shown at the start of the proof, whp
we have W∞(xi) ≤ 3 logn for every i, so we are done.

The lemma has a simple heuristic explanation: for α =∞ the closest earlier xj to
xi will typically have index j around i/2, so it will take order log n steps to reach the
origin. For finite α, any bias is towards earlier points. One might expect monotonicity
of the weights as α decreases from one finite value to another, but this does not hold
in general.

3.1 Degrees for α =∞

Here we are interested in the quantities ρk(∞) defined in section 2; our aim is to prove
the α =∞ case of Theorem 3.



This result easy to see intuitively. As noted above, for i < t ≤ n the probability
that t→i is exactly 1/t. Thus the expected degree of node i in T (n,∞) is exactly

1
i+ 1

+
1

i+ 2
+ · · ·+ 1

n
= log(n/i) +O(i−1).

If every degree were close to its expectation, this would give the result. In fact, it
turns out that the probability of the degree of node i exceeding its expectation by
some amount x decreases exponentially with x. To see this heuristically we use the
notion of Voronoi cells: given a region D and a set of points X in D, the region D is
tiled by Voronoi cells Vx, one for each x ∈ X, defined as the set of points of D closer
to x than to any other y ∈ X.

Here we consider Vi,t, the Voronoi cell of xi with respect to x0, x1, . . . , xt. Note that
t→i if and only if xt is in Vi,t−1. Keeping i fixed, as t increases Vi,t shrinks whenever
xt lands close enough to xi. In particular, Vi,t gets smaller whenever xt lands in Vi,t−1

itself; the key point is that in this case the area of Vi,t is on average less than that of
Vi,t−1 by a factor f strictly less than 1. On average, Vi,i has area 1/(i+ 1), and Vi,n
area 1/(n+ 1). Hence it is very unlikely that i has degree much bigger than log(n/i);
otherwise the area of Vi,t would decrease by too much as t increases from i to n.

Proof (of Theorem 3 for α = ∞). We make the argument outlined above rigorous.
The key observation is as follows: let V be a convex region and C a point of V . Let
X be a point of V chosen uniformly at random, and let V ′ be the set of points of V
closer to C than to X. Then the expected area of V ′ is at most 15/16 times the area
of V . To see this, taking C as the origin divide V into four parts Q1, Q2, Q3, Q4, the
intersections of V with the four quadrants of R2. Suppose X falls in a certain Qi. If
Y is any other point of Qi then (X + Y )/2 is closer to X then to C. This is easy to
see geometrically: the vector (X +Y )/2−X = (Y −X)/2 is shorter than (Y +X)/2,
as the angle between X and Y is less than 90 degrees. Hence V \V ′ contains a copy of
Qi shrunk by a factor two in each direction, so in this case area(V \V ′) ≥ area(Qi)/4.
Averaging, noting that the probability that X lies in Qi is proportional to area(Qi),

E(area(V \ V ′)) ≥
4∑
i=1

area(Qi)2

4 area(V )
≥ area(V )

16
,

where the last step follows by convexity. Thus E(area(V ′)) ≤ 15
16 area(V ). Hence, fixing

x0, . . . , xt−1, conditional on t→i, i.e., on xt ∈ Vi,t−1, the expected area of Vi,t is at
most 15

16 times the area of Vi,t−1.
Fix 0 ≤ i ≤ n. Continuing the construction of T (n,∞) indefinitely, let t1 < t2 <

t3 < · · · be the points that send edges to i. LetW0 = Vi,i andWj = Vi,tj be the Voronoi
cells of i looked at at time i, and at each time when a new node joins to i. Note that
E(area(W0)) = 1/(i+ 1) as this is the cell corresponding to one of i+ 1 points chosen
independently. It may be that the Voronoi cell containing i shrinks at intermediate
times as well, but certainly given Wj , we have E(area(Wj+1)) ≤ 15

16 area(Wj). Hence

E(area(Wk)) ≤ 1
i+ 1

(15/16)k. (1)

We now consider time n: fix xi and consider the n remaining points of x0, . . . , xn
as random. Ignoring effects from the boundary of the region, if no other point lies



within distance d of xi, then the Voronoi cell Vi,n contains a circle of radius d/2. In
other words, for area(Vi,n) to be smaller than π(d/2)2, one of the n points must lie
in a disc of radius d, with area πd2, an event with probability at most nπd2. It turns
out that boundary effects go the right way, so

Pr(area(Vi,n) ≤ x) ≤ 4nx. (2)

Finally, if i has degree at least k+1 in T (n,∞) then at least k of the first n points
join to i, so tk ≤ n, and area(Vi,n) ≤ area(Wk). For any x, the probability of this is
at most

Pr(area(Wk) ≥ x) + Pr(area(Vi,n) ≤ x),

which is at most
1
x

1
i+ 1

(15/16)k + 4nx,

from (1), Markov’s inequality and (2). The optimum choice

x = (15/16)k/2/
√

4n(i+ 1)

yields

Pr(deg(i) ≥ k + 1) ≤ 4
√

n

i+ 1
(15/16)k/2. (3)

Summing over i by comparison with an integral, the expected number of nodes with
degree at least k+ 1 is at most (8 + o(1))n(15/16)k/2, so ρk+1 ≤ 8(15/16)k/2, proving
the upper bound.

The lower bound also follows easily; the bound (3) shows that an individual degree
is very unlikely to be much larger than its expectation. It follows that deg(i) has a
significant (at least 1%, say) chance of being at least half its expectation, and the
lower bound follows.

4 Observation

In the remaining proofs we will use again and again the following simple observation.
At time t the points currently placed approximate a Poisson process with density 1/t,
so the closest earlier point xj to xt is ‘typically’ at distance Θ(1/

√
t). In particular,

for a fixed t, if ω →∞ then whp ω−1t−1/2 ≤ d(xt, xj) ≤ ωt−1/2.
Furthermore, for any positive constant c, whp at time t every disk of radius

c log nt−1/2 contains a point already placed. (This is easy to check, and also follows
from a more general and more precise result of Penrose [11].)

5 Large α

Proof (of Theorem 3). The case α =∞ was proved in section 3; to extend this result
to α large requires only a little further work.

Suppose that α/(
√
n log n)→∞. Fix δ > 0, and consider a point xi with i ≥ δn,

and the nearest earlier point xj . Since all weights are within 3 log n of one another,
for xi to join to some other point xk we must have

d(xi, xk) ≤ d(xi, xj) + 3 logn/α = d(xi, xj) + o(n−1/2). (4)



As noted above, whp we have d(xi, xj) ≤ ωi−1/2. Considering xi and xj as fixed, the
other xk, k < i, are distributed uniformly outside the circle centered at xi with radius
d(xi, xj), and for a particular xk to satisfy (4) it must lie in an annulus around this
circle with thickness o(n−1/2). This annulus has area o(d(xi, xj)n−1/2) = o((in)−1/2)
(taking ω →∞ slowly enough). Since there are i−1 points to consider, the probability
that xi does not join to the closest point xj is at most o(

√
i/n) = o(1). Thus, whp,

almost all points join to the nearest earlier point. In particular, the final tree T (n, α)
differs in only o(n) edges from T (n,∞), and hence the numbers ρk are the same as
for α =∞.

The conclusion that ρk(α) = ρk(∞) should hold provided only that α/
√
n → ∞;

this is likely to be harder to show.

6 Critical α

If α = Θ(
√
n) then we expect the behaviour of the tree to be similar to that for

α =∞. In particular, for α = cn1/2, c > 0, we expect limiting proportions ρk = ρk(c)
with ρk(c) → ρk(∞) as c → ∞ but ρk(c) not in general equal to ρk(∞). Also, the
radius, or maximum weight, should be A(c) logn. We have not stated a result for this
case, which is likely to be harder to analyze precisely.

Note that one might hope for a complete power law in the critical case, but this
does not happen, as shown by, for example, the weak exponential upper bound in [7].

7 Small α

This case is the heart of our paper. Here small would ideally mean o(n1/2); in fact,
for simplicity we shall work with extra logarithmic factors. Throughout this section
it will be convenient to re-scale by a factor of α: rather than choosing points in the
unit square or disc, we choose points in a square D of side α; correspondingly, we join
xi to the earlier point xj minimizing W (xj) + d(xi, xj). Note that the final density
n/α2 of points is high (compared to 1). The reason to consider this scaling is that
differences in re-scaled distances of order 1 are what is relevant; in particular, as all
weights are within 3 logn of each other, no point ever connects to a point more than
3 logn further away than its nearest point.

Considering the process defining T (n, α) as points arrive one by one, there is a
transition in the behaviour around time t = α2. This is because in the re-scaled
process, the density of points at time t is t/α2. At times much smaller than α2, this
density is very small, so distances and their differences are typically large, and the
process looks very much like the α =∞ case of connecting to the nearest point.

On the other hand, at times much later than α2, the density of points is already
very high. We expect that certain ‘attractive’ early points will have established ‘re-
gions of attraction’ of order unit size; almost all later points then just join to the
nearest attractive point by a short edge. In particular, almost all later points will
themselves never be joined to.



7.1 Small degrees

We now prove Theorem 1 from section 2, a precise version of the final observation from
the paragraph above, that almost all points are leaves in T (n, α), i.e., have degree 1.
In the proof we shall use the following simple geometric lemma.

Lemma 3. Let D be a convex set in the plane, and let X = {x1, . . . , xk} be a set of
points in D. For r > 0 let X(r) be the set of points in D at distance at most r from
some xi. For 0 < r1 < r2 we have

area(X(r2)) ≤ r2
2

r2
1

area(X(r1)).

Proof. A point x ∈ D lies in X(r) if and only if d(x, xi) ≤ r for xi the clos-
est point of X to x. Let us partition D into the Voronoi cells Vi = {x ∈ D :
d(x, xi) = minj d(x, xj)}. (We may ignore the boundaries.) Then, for any r, we have
area(X(r)) =

∑
i area(X(r) ∩ Vi). But Vi is convex; thus if X(r2) ∩ Vi is a certain

region A, then X(r1)∩ Vi certainly contains the region obtained by shrinking A by a
factor r2/r1 around the point xi. Hence, area(X(r1) ∩ Vi) ≥ r2

1/r
2
2 area(X(r2) ∩ Vi),

and the lemma follows.

Of course, a corresponding result holds in any dimension, with exactly the same
proof. Also, the result holds for an arbitrary set X.

Proof (of Theorem 1). If xi is joined to the earlier point xj , we call xixj the edge
from xi. We consider edges with lengths in three ranges: writing γ for α1/2n−1/4 =
o(1/ log n), we call an edge of length l short if l < 1, long if l > 1 + γ, and medium if
1 ≤ l ≤ 1 + γ.

The key observation is that if the edge xixj from xi is short, then xi has degree 1
in the final graph T (n, α). To see this, note that no later point xk can possibly join to
xi, since W (xi) = W (xj) + 1, while d(xk, xj) < d(xk, xi) + 1, so xk would join to xj
in preference to xi. To complete the proof we shall show that the number of medium
and long edges is small.

Suppose that the edge xixj from xi is medium. Writing w for W (xj), at time
i − 1 there is no point with weight w within distance 1 of xi, but there is such a
point within distance 1 + γ. Turning this around, let X = {xj : W (xj) = w, 1 ≤
j ≤ i − 1}. Then xi lies in X(1 + γ), but not in the interior of X(1). By Lemma 3,
area(X(1 + γ)) ≤ (1 + γ)2 area(X(1)). Hence, given x0, . . . xi−1, the probability that
xi lies in X(1 + γ) \ X(1) is at most (1+γ)2−1

(1+γ)2 ≤ 2γ. It follows Lemma 2 that there
are at most log n values of w to consider, so the probability that for a given i the
edge xixj is medium is at most 2γ log n = o(1). It follows that whp there are at most
2γn log n = 2α1/2n3/4 log n = o(n) medium edges in the final tree.

We now consider long edges, i.e., edges of length at least 1+γ. The key observation
is that when the edge from xi is long, this edge provides a useful shortcut in future:
new points near xi have a better connection route than if xi were deleted. To formalize
this, given the final set of points x0, . . . , xn and their weights, for 1 ≤ i ≤ n let us
define a function ci : D → R by ci(x) = minj<i{W (xj) + d(x, xj)}. Note that ci only
depends on the locations of x0, . . . , xi−1, and that ci(x) is the ‘cost’ of connecting a
potential new point at x to the existing tree on x0, . . . , xi−1. In particular, xi joins to



the xj attaining the minimum defining ci(xi), and receives weight W (xj)+1. Suppose
that xixj is long, i.e., has length at least 1 + γ, and let w = W (xj). Then we have
ci(xi) = w + d(xi, xj) ≥ w + 1 + γ, but ci+1(xi) = w + 1. Hence

ci+1(xi) ≤ ci(xi)− γ.

Our strategy is to consider the quantities Ii =
∫
D ci(x), 1 ≤ i ≤ n. We shall show

that Ii is positive, and decreases with i. Also, we shall show that whp Ii0 is not too
large for some i0 = o(n), and that if the edge from i is long, then Ii − Ii+1 is not too
small; together these observations will give a bound on the number of long edges.

It is immediate from the definition that ci(x) and hence Ii are positive. Also, it
is immediate that ci+1(x) ≤ ci(x)—the minimum is taken over a larger set. Hence
Ii+1 ≤ Ii for each i.

Set i0 = b(α log n)2c = o(n). At time i0 the overall density of points is at least
(log n)2. Hence, whp, for every x ∈ D there is a j < i0 with d(x, xj) < 1. Since
W (xj) ≤ 3 logn from section 5, we have ci0(x) ≤ 1 + 3 log n. Thus, whp,

Ii0 ≤ (1 + 3 logn)area(D) = O(α2 log n).

Finally, suppose that the edge from xi is long. As shown above, we then have
ci+1(xi) ≤ ci(xi)− γ. Now each ck(x) is the minimum of a set of Lipschitz functions
with constant 1, and is hence Lipschitz with constant 1. Thus for y at distance ` ≤ γ/2
from xi we have ci+1(y) ≤ ci(y)− γ + 2`. Integrating, we see that

Ii+1 ≤ Ii −
1
4

∫ γ/2

`=0

(γ − 2`)2π`d` = Ii −
π
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(The initial factor of 1/4 allows for the fact that the little disc we are integrating over
may not lie entirely within D.)

Since Ii is decreasing and positive, from the two equations above we see that whp
the number of xi, i ≥ i0, from which we have long edges is at most O(α2 log n/γ3).
Thus, whp we have i0 +O(α2 log n/γ3) = O(α1/2n3/4 log n) long edges.

Combining the cases above completes the proof: we have shown that there are
O(α1/2n3/4 log n) = o(n) medium and long edges, and hence n − o(n) short edges.
But every short edge gives rise to a leaf in T , so almost all nodes are leaves.

The above result shows that for small α the degree sequence of T (n, α) is not a
power law in the usual sense, which is that for fixed k there is a limiting proportion pk
of nodes with degree k, which falls off as some power of k. In particular, here p1 = 1,
while pk = 0 for all k 6= 1.

7.2 Large degrees

We now turn to the opposite end of the degree sequence, showing that there is a
bunching of degrees near the maximum, in the sense that for α = na, 0 < a < 1/2,
a positive power of n nodes have degree within a constant factor of the maximum.
This is easy to see heuristically: up to time α2 the process looks like the α =∞ case,
and all degrees are at most O(log n). Beyond this time, Θ(α2) attractive points will
have become established, each of which will attract the Θ(n/α2) later points that fall



in its zone of attraction, which will have re-scaled area O(1), out of a total re-scaled
area of α2. Since no point can maintain a region of attraction much bigger than this
for long, the maximum degree will also be of order Θ(n/α2).

As before, for simplicity we have allowed ourselves extra logarithmic factors when
making this precise. In Theorem 2, which we now prove, the main case of interest is
α = na for some constant a between 0 and 1/2.

Proof (of Theorem 2). We start with the maximum degree. Let t0 = α2/(log n)2.
Arguing as in section 5 we see that whp at time t0 the tree is essentially T (t0,∞),
and that all degrees are O(log n).

Fix a point xi. To bound the final degree of i we need only consider which xj ,
j > t0, join to xi. Now at time t0 the typical distance between points is log n, and
allowing for deviations no disk of radius (log n)2 is empty. (This is a rescaling of the
final observation from section 4.) It follows that all later edges have length at most
2(log n)2. Hence we need only consider a region R around xi with radius O((logn)2).
We divide this into a ‘good region’, a disk of radius 1.1 around xi, and a ‘bad region’,
the rest of R. Note that O(n/α2) points will fall into the good region, so we need only
control the bad region. This is easy: the bad region can be covered by O((log n)4)
disks of radius 0.01. Within any such disk at most one point xj , j > i, can join to i; a
second point xj′ landing in the same disk would rather join to xj at distance < 0.01
than to xi at distance at least 1.1, since the weight of xj is only one larger than that
of xi. Hence the expected degree of xi is at most

O(log n) +O(n/α2) +O((log n)4) = O(n/α2).

Since the main term is at least Θ((logn)2) it is easy to check that large deviations
are very unlikely, and hence that the maximum degree is O(n/α2), as claimed.

Establishing the existence of ‘attractive’ points which remain attractive is not quite
so easy, as the situation is not really as simple as the heuristic description suggests.
However, with the flexibility allowed by logarithmic factors we can proceed as follows.
Let us consider time t1 = α2. Note that at this time typical distances between nearest
points are 1, so whp all later edges have length at most log n.

Let us say that a point xi, i ≤ t1, of weight w is good if no other point xj , j ≤ t1,
with smaller weight lies within distance 3(log n)2 of xi. Good points are useful for
the following reason: suppose some later point xk, k > t1, lies within distance 1 of
xi. Then xk will join to xi; we have xk = xa0→xa1→xa2→· · ·→xal−1→xal for some
sequence k = a0 > a1 · · · > al−1 > al, with al−1 > t1, al ≤ t1. If we do not have
xk→xi, then al 6= j. But then xk is connected by a sequence of at most 3 log n edges of
length at most log n to a point xj with j ≤ t1 of smaller weight than xi, contradicting
that xi is good. Thus a good point attracts all points after t1 within distance 1, and
will have final degree at least cn/α2 whp. In fact, using only the Chernoff bounds,
the deviation probability for one point is o(n−1), so whp every good point has final
degree at least cn/α2.

It remains to show that at time t1 = α2 there are many good points. We do this
using a little trick.

Let rw = 3(log n)2(1 + 3 log n − w), so r0 = O∗(1), r3 logn ≥ log n, and rw =
rw−1−3(log n)2. For 0 ≤ w ≤ 3 logn let Tw be the set of all points in D within distance
rw of some xi, i ≤ t1, with weight at most w. Note that T0 has area O((log n)6), which



is much less than α2. On the other hand, T3 logn is, whp, all of D, as at time t1 every
point of D is within distance logn of some xi, which has weight at most 3 log n
by Lemma 2. Thus there is some w for which Tw \ Tw−1 covers at least a fraction
1/(4 log n) of the area of D. Fix such a w, and suppose y ∈ Tw \ Tw−1. Then there is
some xi with W (xi) ≤ w and d(y, xi) ≤ rw. On the other hand, there is no xj with
W (xj) ≤ w− 1 within distance rw−1 = rw + 3(log n)2 of y. It follows that xi is good,
so y is within distance rw of a good xi. As each such good xi can only account for an
area πr2

w = O∗(1) of Tw \ Tw−1, which has area Θ∗(α2), it follows that there are at
least Θ∗(α2) good points, and the proof is complete.

In fact, being a little more careful with the constants, we can show that both the
maximum degree and the degrees of almost all good points (those not too near the
boundary of D) are (1 + o(1))πn/α2. Thus there is a strong bunching of degrees near
the maximum.
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