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Abstract

A subsetD ⊆ V (G) is called an equitable dominating set of a graphG if every vertex v ∈ V (G)\D
has a neighbor u ∈ D such that |dG(u) − dG(v)| ≤ 1. An equitable dominating set D is a degree
equitable restrained double dominating set (DERD-dominating set) of G if every vertex of G is
dominated by at least two vertices of D, and 〈V (G) \ D〉 has no isolated vertices. The DERD-
domination number of G, denoted by γecl(G), is the minimum cardinality of a DERD-dominating
set of G. We initiate the study of DERD-domination in graphs and we obtain some sharp bounds.
Finally, we show that the decision problem for determining γecl(G) is NP-complete.
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1. Introduction

Let G = (V,E) be a graph. The number of vertices of G we denote by n and the number
of edges we denote by m, thus |V (G)| = n and |E(G)| = m. The complement of G, denoted
by Ḡ, is a graph which has the same vertices as G, and in which two vertices are adjacent if and
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only if they are not adjacent in G. By the open neighborhood of a vertex v of G we mean the set
NG(v) = {u ∈ V (G) : uv ∈ E(G)}. By the closed neighborhood of a vertex v of G we mean the
set NG[v] = NG(v) ∪ {v}. The degree of a vertex v, denoted by dG(v), is the cardinality of its
open neighborhood. A vertex is called isolated if it has no neighbors, while it is called universal
if it is adjacent to all other vertices. Let S be a subset of the set of vertices of G, and let u ∈ S.
A vertex v is a private neighbor of u with respect to S if NG[v] ∩ S = {u}. The set of private
neighbors of u with respect to S is the set pn[u, S] = {v : NG[v] ∩ S = {u}}. If u ∈ pn[u, S] and
u is an isolated vertex in 〈S〉, then u is called its own private neighbor. By a leaf we mean a vertex
of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex
is weak if it is adjacent to exactly one leaf. We say that a vertex is isolated if it has no neighbor.
Let ∆(G) mean the maximum degree among all vertices of G. The path (cycle, respectively) on n
vertices we denote by Pn (Cn, respectively). A wheel Wn, where n ≥ 4, is a graph with n vertices,
formed by connecting a vertex to all vertices of a cycle Cn−1. The distance between two vertices
of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex
is the greatest distance between it and any other vertex. The diameter of a graph G, denoted by
diam(G), is the maximum eccentricity among all vertices of G. By Kp,q we denote a complete
bipartite graph with partite sets of cardinalities p and q. By a star we mean the graph K1,q. By
a double star we mean a graph obtained from a star by joining a positive number of vertices to
one of its leaves. Generally, let Kt1,t2,...,tk denote the complete multipartite graph with vertex set
S1 ∪ S2 ∪ . . . ∪ Sk, where |Si| = ti for positive integers i ≤ t.

A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \D has a neighbor in D.
The domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set of
G. For a comprehensive survey of domination in graphs, see [4, 5].

A subset D ⊆ V (G) is a restrained dominating set of G if every vertex of V (G) \ D has
a neighbor in D as well as a neighbor in V (G) \ D. The restrained domination number of G,
denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A restrained
dominating set of G of minimum cardinality is called a γr(G)-set.

A dominating set D of a graph G is said to be a cototal dominating set of G if the induced
subgraph 〈V (G) \ D〉 has no isolated vertices. The cototal domination number of G, denoted by
γcl(G), is the minimum cardinality of a cototal dominating set of G. Restrained domination in
graphs was introduced by Domke et. al [1]. Independently, Kulli et. al [9] initiated the study of
cototal domination in graphs. The concepts of restrained domination and cototal domination are
equivalent.

A subset D ⊆ V (G) is a double dominating set of G if every vertex of G is dominated by at
least two vertices of D. The double domination number of G, denoted by γd(G), is the minimum
cardinality of a double dominating set ofG. The study of double domination in graphs was initiated
by Harary and Haynes [3].

A subset D ⊆ V (G) is a restrained double dominating set of G if every vertex of G is domi-
nated by at least two vertices of D, and no vertex of 〈V (G) \D〉 is isolated. The restrained double
domination number of G, denoted by γdcl(G), is the minimum cardinality of a restrained double
dominating set of G. The study of restrained double domination in graphs was initiated by in [8].
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A subset D ⊆ V (G) is called an equitable dominating set of G if every vertex v ∈ V (G) \D
has a neighbor u ∈ D such that |dG(u) − dG(v)| ≤ 1. The equitable domination number of G,
denoted by γe(G), is the minimum cardinality of an equitable dominating set of G. The concept
of equitable domination in graphs was introduced by V. Swaminathan and K. Dharmalingam [11]
by considering the following real world situation. In a network, nodes with nearly equal capacity
may interact with each other in a better way. In societies, persons with nearly equal statuses tend
to be friendly. For more details on the domination refer [6, 7, 10, 12].

We introduce a new variant of equitable domination, namely the degree equitable restrained
double domination (DERD-domination), and we initiate the study of this parameter. An equitable
dominating set D of a graph G is said to be a DERD-dominating set of G if every vertex of G is
dominated by at least two vertices of D, and 〈V (G) \ D〉 has no isolated vertices. The DERD-
domination number of G, denoted by γecl(G), is the minimum cardinality of a DERD-dominating
set of G.

2. Results

Since the one-vertex graph, as well as all graphs with an isolated vertex, does not have a
DERD-dominating set, in this paper we consider only graphs without isolated vertices.

We begin with the following straightforward observations.

Observation 1. Let G be a graph without isolated vertices. Then every DERD-dominating set of
G contains all leaves and support vertices of G.

Observation 2. There is no graph G such that γecl(G) = n− 1.

Observation 3. For every positive integer n we have

γecl(Kn) =

{
3, if n = 3;
2, otherwise.

Observation 4. For every integer n ≥ 2 we have γecl(Pn) = n.

Observation 5. If n ≥ 3 is an integer, then γecl(Cn) = n.

Observation 6. For every integer n ≥ 4 we have γecl(Wn) = bn/2c.

Observation 7. If m and n are positive integers, then

γecl(Km,n) =

{
4, if |m− n| ≤ 1 and 3 ≤ m ≤ n;
m+ n, otherwise.

We have the following property of regular and (k, k + 1)-biregular graphs.

Theorem 8. If a graphG is regular or (k, k+1)-biregular, for any integer k, then γecl(G) = γdcl(G).
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Proof. Let D be a minimum restrained double dominating set of G. Let u ∈ V (G) \ D. Thus
there exist vertices w, v ∈ D such that uw, uv ∈ E(G). We have |dG(u) − dG(v)| ≤ 1 and
|dG(u) − dG(w)| ≤ 1. Therefore D is a DERD-dominating set of G. Consequently, γecl(G) ≤
|D| = γdcl(G). Obviously, γdcl(G) ≤ γecl(G). This implies that γecl(G) = γdcl(G).

Theorem 9. For every graph G we have 2 ≤ γecl(G) ≤ n. Further, the lower bound is attained if
and only if G = K2 or G = Kn − {x} where x is any vertex in Kn; n ≥ 5 and the upper bound
is attained if and only if G does not contain an edge uv ∈ E(G) which satisfies the following
conditions:

(i) there are vertices w ∈ NG(u) and z ∈ NG(v) such that |NG(u)| ≥ 3 and |NG(v)| ≥ 3;

(ii) there are vertices w ∈ NG(u) and z ∈ NG(v) such that |dG(u)− dG(w)| ≤ 1 and |dG(v)−
dG(z)| ≤ 1.

Proof. Lower bound follows from the definition of DERD-set. Now consider the equality of lower
bound. Suppose γecl(G) = 2 and G 6= Kn or Kn − {x}. Then G contains at least two vertices
u, v ∈ V (G) such that 〈{u, v}〉 contains no edge. LetD be DERD-set ofG such that u, v /∈ D. Let
w, x ∈ D. Since u and v are independent vertices in G, therefore w and x must be adjacent to both
u and v also by the definition of DERD-set 〈V −D〉 contains no isolated vertices. Therefore, we
need at least one more vertex to compliance the necessary conditions required to define DERD-set
in G. Hence |D| ≥ 3, a contradiction.

Conversely, supposeG = Kn, then by Observation 3, γecl(G) = 2 and ifG = Kn−{x}; n ≥ 5,
then any two adjacent vertices will form a DERD-set for G. Hence γecl(G) = 2.
Now consider the upper bound. Suppose γecl(G) = n and G contains an edge which satisfied the
conditions in the hypothesis of the theorem, then V − {w, z} will form a DERD-set for G. Hence
γecl(G) = |V − {w, z}| = n− 2. Hence G must not contain an edge as stated in the hypothesis of
the theorem.

We now characterize the trees T such that γecl(T ) = n.

Theorem 10. Let T be a tree. We have γecl(T ) = n if and only if T does not contain an edge
uv ∈ E(T ) which is incident to exactly four weak support vertices x, y, z, w such that N(x) ∩
N(y) = {u} and N(z) ∩N(w) = {v}.

Proof. Let T be a tree and γecl(T ) = n. Suppose T does not satisfies the hypothesis of the theorem,
then there exist at least an edge uv ∈ E(T ) incident to exactly four support vertices x, y, z, w such
that N(x)∩N(y) = {u} and N(z)∩N(w) = {v} which implies that V −{u, v} is isomorphic to
K2. Therefore |D| = n− 2. Hence γecl(T ) = |D| = n− 2, a contradiction.

Conversely, suppose G does not contain an edge uv ∈ E(T ) as stated in the hypothesis of the
theorem, then 〈V −D〉 = π, which implies that |D| = n. Hence γecl(T ) = |D| = n.

By Observation 2, there exists no graph with γecl(T ) = n− 1.

We now consider trees T such that γecl(T ) ≤ n− 2.
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Let S(n, k)-star (where n ≥ 2 and k ≥ 1) be a tree obtained from a path Pn making each
vertex vi ∈ V (Pn) (2 ≤ i ≤ n) adjacent to least k new leaves. We have |V (S(n, k))| = n+ k and
|E(S(n, k))| = n+ k − 1.

Operation O: Let v be a support vertex of a tree T . Attach |dG(v)− 1| or |dG(v)− 2| leaves to
at least one leaf adjacent to v, and attach exactly one leaf to other leaves adjacent to v.

Let T be the family of trees such that
T = {T : T is obtained from a star by a finite sequence of operations O}.

We now characterize the trees with γecl(T ) = n− 2.

Theorem 11. If T is a tree with at least six vertices, then γecl(T ) = n− 2 if and only if T ∈ T and
T is obtained from a S(2, k)-star (k ≥ 2) by a finite sequence of operations O.

Similarly, we can characterize the trees with γecl(T ) = k (k ≥ 3) by S(n, n − k)-star by finite
sequence of operations O.

We need the following theorem to prove our further results.

Theorem 12 ([4]). Let G be a graph without isolated vertices. Then γ(G) = n/2 if and only if
each component of G is a cycle C4 or G = H ◦K1, for any connected graph H .

Next we characterize the class of graphs with γecl(G) = 2γ(G).

Theorem 13. Let G be a graph without isolated vertices, and which is not a tree. Then γecl(G) =
2γ(G) if and only if each component of G is a cycle C4 or G = H ◦K1, for any connected graph
H .

Proof. Let G be a graph without isolated vertices. Let D be a DERD-dominating set of G. If each
component of G is a cycle C4, then by Theorem 12, γ(G) = n

2
and by Observation 4, we have

γecl(G) = n. If G = H ◦ K1, then γecl(G) = n as every vertex of H ◦ K1 is a leaf or a support
vertex. By Theorem 12 we have γ(G) = n/2. Hence γecl(G) = n = n/2 + n/2 = γ(G) + γ(G) =
2γ(G).

3. Complexity issues for γe
cl(G)

To show that the DERD-domination decision problem for arbitrary graphs is NP-complete, we
shall use a well known NP-completeness result called Exact Three Cover (X3C), which is defined
as follows.

EXACT COVER BY 3-SETS (X3C).
Instance: A finite set X with |X| = 3m and a collection C of 3-element subsets of X .
Question: Does C contain an exact cover for X , that is, a subcollection C ′ ⊆ C such that

every element of X occurs in exactly one member of C ′? Note that if C ′ exists, then its cardinality
is precisely m.

Theorem 14 ([2]). X3C is NP-complete.
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DEGREE EQUITABLE RESTRAINED DOUBLE DOMINATING SET (DERD-
dominating set).

Instance: A graph G = (V,E) and a positive integer k ≤ |V |.
Question: Is there a DERD-dominating set of cardinality at most k?

Theorem 15. DERD-dominating set problem is NP-complete, even for bipartite graphs.

Proof. It is clear that the DERD-dominating set problem is NP. To show that it is NP-complete,
we establish a polynomial transformation from X3C. Let X = {x1, x2, . . . , x3m} and C =
{c1, c2, . . . , cm} be an arbitrary instance of X3C. We construct a bipartite graph G and a posi-
tive integer k such that this instance of X3C will have an exact 3-cover if and only if G has a
DERD-dominating set of cardinality at most k. With each edge xi ∈ X , associate a path P4 with
vertices xi, yi, zi, ti, with each cj associate a path P3 with vertices cj, dj, sj . Then add new vertices
u1, u2, . . . , u2m, and make them adjacent to all x′js. The construction of a bipartite graph G is
completed by joining xi and cj if and only if xi ∈ cj . Finally, set k = 2m+ 9m.

Assume that C has an exact 3-cover, say c′. Then⋃
1≤i≤3m

{zi, ti} ∪
⋃

1≤j≤m

{dj, sj} ∪ {cj; cj ∈ c′} ∪
⋃

1≤j≤2m

uj

is a DERD-dominating set of G of cardinality 2m + 9m. This construction can clearly be deter-
mined in polynomial time.

Now assume that D is a DERD-dominating set of cardinality at most 2m + 9m. Then the
vertices in the set L, defined by ⋃

1≤i≤3m

{zi, ti} ∪
⋃

1≤j≤m

{dj, sj}

are all leaves, and their neighbors have to be in D. Hence |D|− |L| ≤ (2m+ 9m)− (2m+ 6m) =
3m. Let I = {i ∈ (1, 2, . . . , 3m) : xi ∈ D or yi ∈ D} and let J = {j ∈ (1, 2, . . . , 2m) : cj ∈ D
or uj ∈ D}. Then since D is a double dominating set of G, we have⋃

i∈I

{xi, yi} ∪
⋃
j∈J

NG[cj] ∪
⋃
j∈J

{uj} ⊇ {x1, x2, . . . , x3m}.

We conclude that |I|+3|J | ≥ 9m. Also |I|+|J | ≤ |D|−|L| ≤ 3m. Hence |3I|+3|J | ≤ |I|+3|J |,
thus I = ∅. We conclude that xi, yi /∈ D for i = 1, 2, . . . , 3m. Since xi (i = 1, 2, . . . , 3m) is
dominated by D, we conclude that |J | = 3m and c′ = {cj : j ∈ J} is an exact cover for X .
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