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Abstract. In this paper, we study the security of NFSR-based cryp-
tosystems from the algebraic degree point of view. We first present a
general framework of iterative estimation of algebraic degree for NFSR-
based cryptosystems, by exploiting a new technique, called numeric map-
ping . Then based on this general framework we propose a concrete and
efficient algorithm to find an upper bound on the algebraic degree for
Trivium-like ciphers. Our algorithm has linear time complexity and needs
a negligible amount of memory. As illustrations, we apply it to Trivium,
Kreyvium and TriviA-SC, and reveal various upper bounds on the
algebraic degree of these ciphers by setting different input variables. By
this algorithm, we can make use of a cube with any size in cube testers,
which is generally believed to be infeasible for an NFSR-based cryptosys-
tem before. Due to the high efficiency of our algorithm, we can exhaust a
large set of the cubes with large size. As such, we obtain the best known
distinguishing attacks on reduced Trivium and TriviA-SC as well as
the first cryptanalysis of Kreyvium. Our experiments on Trivium show
that our algorithm is not only efficient in computation but also accu-
rate in estimation of attacked rounds. The best cubes we have found for
Kreyvium and TriviA-SC are both of size larger than 60. To the best
of our knowledge, our tool is the first formalized and systematic one for
finding an upper bound on the algebraic degree of an NFSR-based cryp-
tosystem, and this is the first time that a cube of size beyond practical
computations can be used in cryptanalysis of an NFSR-based cryptosys-
tem. It is also potentially useful in the future applications to key recovery
attacks and more cryptographic primitives.

Keywords: Nonlinear feedback shift register · Stream cipher · Distin-
guishing attack · Cube tester · Trivium · Kreyvium · TriviA-SC

1 Introduction

A nonlinear feedback shift register (NFSR) is a common component in mod-
ern cryptographic primitives, especially in radio-frequency identification devices
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(RFID) and wireless sensor networks applications. NFSRs are known to be more
resistant to cryptanalytic attacks than linear feedback shift registers (LFSRs).
Built on NFSRs are many well known lightweight cryptographic algorithms,
including the stream ciphers Trivium [8,10] and Grain [1,27,28] that have been
selected in the final eSTREAM portfolio of hardware-oriented stream ciphers,
the authenticated cipher ACORN [44] that has been selected as one of the
third-round candidates in the CAESAR competition, the block cipher family
KATAN/KTANTAN [9], and the hash function Quark [4,5]. Among them,
Trivium has attracted the most attention for its simplicity and performance,
while it shows remarkable resistance to cryptanalysis. Inspired by the design of
Trivium, a number of various cryptographic algorithms have been successively
developed, for instance the block cipher family KATAN/KTANTAN, the authen-
ticated cipher ACORN and the stream ciphers Kreyvium [11] and TriviA-
SC [13].

Most cryptographic primitives, including NFSR-based cryptosystems, can be
described by tweakable Boolean functions, which contain both secret variables
(e.g., key bits) and public variables (e.g., plaintext bits or IV bits). The algebraic
degree of these Boolean functions plays an important role in the security of the
corresponding primitives. In fact, a cryptographic primitive with low algebraic
degree is vulnerable to many known attacks, such as higher order differential
attacks [30,32,35], algebraic attacks [15–18], cube attacks [19–22], and integral
attacks [31].

For NFSR-based cryptosystems, cube attacks and higher order differential
attacks are the most powerful cryptanalytic tools among the known attacks. The
best known key recovery attacks faster than an exhaustive search on Trivium
are cube attacks on its variant when the initialization is reduced to 799 rounds
out of 1152 [21,26], and the best known distinguishing attacks on Trivium
are reduced to 839 rounds derived by cube testers [3,33]. Note that here are
not included the possible key recovery attacks with unknown probability, such
as [41], or the attacks for a small percentage of weak keys, such as [29]. The
weaknesses in the cipher Grain-128 against cube testers [2,39] partially leads to
the design of Grain-128a [1]. Actually, the full Grain-128 was broken in theory
by dynamic cube attacks [19,22]. All of these attacks exploit low-degree relations
of the tweakable Boolean functions formed by the cryptosystems, that is, low-
degree relations between the IV bits and keystream bits.

It is difficult to compute the exact value of the algebraic degree for modern
cryptographic primitives. After the development of cryptanalysis in the past
three decades, several theoretical tools have been developed to estimate the
upper bound on the algebraic degree of iterated permutations, and concurrently
exploited to attack iterated ciphers [6,7,12,40].

Yet for NFSR, there are few tools for estimating its algebraic degree, besides
symbolic computation and statistical analysis. The known techniques highly
depends on computational capabilities, and the cryptanalytic results are lim-
ited by existing computational resources. For instance, thus far the cubes with
size larger than 54 have never been utilized in cryptanalysis of an NFSR-based
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cryptosystem, in either cube attacks or cube testers. To gain better attacks, the
cryptanalysts have to utilize extremely the computational resources, e.g., using
dedicated reconfigurable hardware [19]. This usually requires high financial cost
or high energy consumption. While dynamic cube attacks [19,22] can reach much
higher attack complexity, they are still limited by the size of the cubes.

1.1 Our Contributions

In this paper, we devote our attention to evaluating the algebraic degree of
NFSR-based cryptosystems. For the conquest of the existing limitation as men-
tioned above, we exploit a new technique, called numeric mapping , to iteratively
estimate the upper bound on the algebraic degree of the internal states of an
NFSR. Based on this new tool, we develop an algorithm for estimating the alge-
braic degree of NFSR-based cryptosystems.

As an illustration, we refine and apply our algorithm to Trivium-like ciphers,
including Trivium, Kreyvium and TriviA-SC. Trivium uses an 80-bit key
and an 80-bit IV, while Kreyvium and TriviA-SC both use a 128-bit key
and a 128-bit IV. These three ciphers all have 1152 rounds of initialization. Our
refined algorithm gives an upper bound on the algebraic degree of a Trivium-like
cipher over a given set of input variables with any size, e.g., all the key and IV
bits, all or part of the IV bits. It has linear time complexity in the number of
initialization rounds, and needs a negligible amount of memory. In other words,
it is almost as fast as the cipher (up to at most a factor of some constant).
Further, by this algorithm we perform several experiments on round-reduced
Trivium, Kreyvium and TriviA-SC, and obtain various upper bounds on
the algebraic degree by setting different input variables. As a result, we confirm
that the maximum numbers of initialization rounds of Trivium, Kreyvium and
TriviA-SC such that the generated keystream bit does not achieve maximum
algebraic degree are at least 907, 982 and 1121 (out of the full 1152 rounds)
respectively when taking all the key and IV bits as input variables; these numbers
of rounds turn out to be 793, 862 and 987 while taking all the IV bits as input
variables.

We further apply our algorithm to take advantage of the cubes with large
size in cube testers, which is considered to be impossible for an NFSR-based
cryptosystem in the literatures. In the experiments, we set the key bits as sym-
bolic constants, i.e., the algebraic degree of any key bit is considered to be 0
on the cube variables. This is consistent with a distinguisher in the setting of
unknown key. Since our algorithm is very fast, we can exhaust all the cubes
of size 37 ≤ n ≤ 40 that contain no adjacent indexes for Trivium in a dozen
minutes on a common PC. The total amount of such cubes is about 225. Before
this paper, it needs around c262 cipher operations to test all those cubes, and
the confidence of the test depends on c; while our algorithm is deterministic.
We then find a cube of size 37 over which the algebraic degree of the keystream
bit of 837-round Trivium is strictly less than 37. We also verify this result by
performing experiments on 100 random keys. The minimum number of rounds
that the sum over this cube, called superpoly in cube attacks and cube testers,
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is not zero-constant is detected to be 839 in our experiments, which implies that
our algorithm is not only efficient in computation but also accurate in estimation
of attacked rounds. Our experiments show that this cube can also be used to
distinguish 842-round Trivium. All the cubes of size 61 ≤ n ≤ 64 that con-
tain no adjacent indexes for Kreyvium and TriviA-SC are exhausted in a few
hours. The total amount of such cubes is about 230. By the conventional meth-
ods, it needs around c291 cipher operations. The best cube we have found for
Kreyvium is of size 61, which can be used to distinguish 872-round Kreyvium.
The best cubes we have found for TriviA-SC and its successor are respectively
of size 63 and size 61, for distinguishing 1035 rounds and 1047 rounds respec-
tively. To the best of our knowledge, this is the first time1 that a cube of size
larger than 60 can be used in the attack on an NFSR-based cryptosystem.

As such, we obtain the best distinguishing attacks for the stream ciphers
Trivium and TriviA-SC so far and the first outside cryptanalysis of
Kreyvium. Our results are summarized in Table 1 with the comparisons of the
previous attacks. Note here that this table does not include the distinguishers
worse than an exhaustive search or for a small percentage of weak keys. We
detail the discussions of related work in the following.

Table 1. Distinguishing attacks on Trivium, Kreyvium and TriviA-SC

Cipher #Rounds Complexity Ref.

Trivium 790 230 [3]

798 225 [29]

806 244 [39]

829 253 [38]

830 239 [43]

839 237 [33]

842 239 Sect. 4

Kreyvium 872 261 Sect. 4

TriviA-SC (v1) 930 236 [38]

1035 263 Sect. 4

TriviA-SC (v2) 950 236 [38]

1047 261 Sect. 5

Simplified TriviA-SC 1152 2120 [45]

1152 263 Sect. 4

1 In parallel and independently with our work, large cubes have also been exploited
by Todo et al. [41] in the attacks on NFSR-based cryptosystems, such as Trivium,
Grain-128a and ACORN.
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1.2 Related Work

Upper Bound on Algebraic Degree. At EUROCRYPT 2002, Canteaut and
Videau [12] developed a theory to find an upper bound on the algebraic degree of
a composite function using the Walsh spectrum, and applied it to higher order
differential cryptanalysis on Feistel block ciphers and especially on a general-
ization of MISTY1. This theory was further improved by Boura et al. [6,7] in
recent years with applications to cryptanalysis of several block ciphers and hash
functions, including Rijndael-256 and Keccak. These theories of estimating
algebraic degree are suitable for iterated ciphers. Similarly, our work is started
by an upper bound on the algebraic degree of a composite function, but without
using the Walsh spectrum and based on a simple fact.

More recently, at EUROCRYPT 2015, Todo [40] discovered a new tool for
searching upper bound on the algebraic degree of SPN and Feistel ciphers by
introducing the division property with applications to integral cryptanalysis of
various iterated cryptographic primitives. The bit-based division property pro-
posed by Todo and Morii in [42] is more relevant to our work. In parallel with
our work, this tool has been exploited by Todo et al. [41] for estimating the
algebraic degree of NFSR-based cryptosystems, including Trivium, Grain-128a
and ACORN, and applied to cube attacks on these ciphers. Nevertheless, our
idea is still essentially different with that of division property. In some ways, the
tool based on division property is limited by the number of rounds and the size
of input variables, due to its high time complexity. The bound found by division
property is possibly more precise, while our tool is much faster and has no such
limitations.

Attacks on Trivium-Like Ciphers. It is worth noticing that all but
the attacks of [45] listed in Table 1 are cube tester, which is a variant of
higher order differential attacks and was first introduced by Aumasson et al.
in [3]. Cube testers are useful not only in distinguishing attacks but also in
key recovery attacks, e.g., dynamic cube attacks [19,22] and cube-attack-like
cryptanalysis [20].

Before the work of Aumasson et al., Trivium (designed by Cannière and Pre-
neel [8,10] in 2006) had already attracted a lot of similar cryptanalysis, especially
for chosen IV statistical attacks, e.g., [23,24,37]. After the effort of cryptanalysts
in the past ten years, the cryptanalysis of Trivium seems to be approaching a
bottleneck, if not the summit. Several cube distinguishers under different statis-
tical models reach around 830 rounds, e.g., [33,38,43]. Though our distinguisher
for Trivium does not improve the previous ones much, our technique for find-
ing cubes is novel and gives a new and global view on cube cryptanalysis of
Trivium.

In addition, Knellwolf et al. [29] showed distinguishers on 868-round and 961-
round Trivium respectively for 231 and 226 weak keys both with complexity of
225. The key recovery attacks are also well studied for Trivium. In [21], Dinur
and Shamir described a practical full key recovery on Trivium reduced to 767
rounds, using cube attacks. Afterwards, Fouque and Vannet [26] improved the
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cube attacks on Trivium, and provided a practical full key recovery after 784
rounds and a full key recovery after 799 rounds with complexity of 262. Recently,
Todo et al. [41] proposed a possible key recovery after 832 rounds, in which one
bit information of the key can be retrieved with unknown probability in around
277. Besides, Maximov and Biryukov [34] presented a state recovery attack on
the full cipher with time complexity around c283.5, where c is the complexity of
solving a system of linear equations with 192 variables.

TriviA-SC [13] is a stream cipher designed by Chakraborti et al. at CHES
2015 for using in the authenticated encryption scheme TriviA, which was selected
as a second-round candidate in the CAESAR competition but was not retained
for the third round. Its successor, TriviA-SC (v2) [14], retains the same design
and only differs in flipping all but three bits of the constants loaded to the initial
internal state. Sarkar et al. [38] showed cube distinguishers with complexity
of 236 on both versions of TriviA-SC reduced to 930 rounds and 950 rounds
respectively. We improve these distinguishers to 1035 rounds and 1047 rounds
respectively. The work of [45] by Xu et al. shows a linear distinguisher with
complexity of 2120 for the full 1152 rounds of a simplified variant of TriviA-SC
in which the unique nonlinear term of the output function is removed. As shown
in Table 1, we cut down their complexity from 2120 to 263 for this simplified
TriviA-SC.

Kreyvium is a variant of Trivium with 128-bit security, designed by
Canteaut et al. at FSE 2016 for efficient homomorphic-ciphertext compression
[11]. As far as we know, this paper proposes the first cryptanalysis of Kreyvium.

1.3 Organization

The rest of this paper is structured as follows. In Sect. 2, the basic definitions and
notations are provided. Section 3 shows the general framework of our algorithm
for estimating algebraic degree of NFSR-based cryptosystems. We propose in
Sect. 4 a concrete algorithm for finding an upper bound on the algebraic degree
of Trivium-like ciphers with applications to Trivium, Kreyvium and TriviA-
SC, while Sect. 5 further presents an improved algorithm with applications to
TriviA-SC. Section 6 concludes the paper.

2 Preliminaries

Boolean Functions and Algebraic Degree. Let F2 denote the binary field
and F

n
2 the n-dimensional vector space over F2. An n-variable Boolean function

is a mapping from F
n
2 into F2. Denote by Bn the set of all n-variable Boolean

functions. An n-variable Boolean function f can be uniquely represented as a
multivariate polynomial over F2,

f(x1, x2, · · · , xn) =
⊕

c=(c1,··· ,cn)∈F
n
2

ac

n∏

i=1

xci
i , ac ∈ F2,
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called the algebraic normal form (ANF). The algebraic degree of f , denoted
by deg(f), is defined as max{wt(c) | ac �= 0}, where wt(c) is the Hamming
weight of c. Let gi (1 ≤ i ≤ m) be Boolean functions on n variables. We denote
deg(G) = (deg(g1),deg(g2), · · · ,deg(gm)), for G = (g1, g2, · · · , gm).

Cube Testers. Given a Boolean function f and a term tI containing variables
from an index subset I that are multiplied together, the function can be written
as the sum of terms which are supersets of I and terms that miss at least one
variable from I,

f(x1, x2, · · · , xn) = fS(I) · tI ⊕ q(x1, x2, · · · , xn),

where fS(I) is called the superpoly of I in f . The basic idea of cube testers is
that the symbolic sum of all the derived polynomials obtained from the function
f by assigning all the possible values to the subset of variables in the term tI is
exactly fS(I). Cube testers work by evaluating superpolys of carefully selected
terms tI which are products of public variables (e.g., IV bits), and trying to
distinguish them from a random function. Especially, the superpoly fS(I) is
equal to a zero constant, if the algebraic degree of f in the variables from I is
less than the size of I. In this paper, we mainly focus on this case. For more
details of cube testers, we refer to [3].

Nonlinear Feedback Shift Registers. Nonlinear feedback shift registers
(NFSRs) are the basic components of cryptographic primitives, especially of
stream ciphers. Each time the system is clocked, the internal state is shifted
right, and the new left bit is computed from the previous state by a nonlinear
function f . The feedback bit is computed as

st+1 = f(st, · · · , st−n+1),

where f can be any function in n variables. According to implementation pur-
poses, the most useful case is the binary case, in which each cell contains a bit,
and f is a Boolean function. In this paper, we focus on this binary case. For
more details of NFSRs, we refer to [25].

3 An Iterative Method for Estimating Algebraic Degree
of NFSR-Based Cryptosystems

Compared with other types of cryptographic primitives, such as Feistel and
SPN ciphers, an NFSR-Based Cryptosystem usually updates less bits each round
and needs more rounds to ensure its security, and its algebraic degree is more
irregular. Maybe due to this reason, besides experimental analysis there are few
theoretical tools to estimate algebraic degree of NFSR-Based cryptosystems.

We will show in this section a general idea for iteratively estimating algebraic
degree of NFSR-based cryptosystems. We first present a basic fact on the degree
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of a composite function, and then exploit it to estimate degrees of the internal
states and outputs of NFSR-based cryptosystems.

Let f(x1, x2, · · · , xm) =
⊕

c=(c1,··· ,cm)∈F
m
2

ac

∏m
i=1 xci

i be a Boolean function
on m variables. We define the following mapping, called numeric mapping and
denoted by DEG,

DEG : Bm × Z
m → Z,

(f,D) �→ max
ac �=0

{
m∑

i=1

cidi},

where D = (d1, d2, · · · , dm) and ac’s are coefficients of algebraic normal form of
f as defined previously.

Let g1, g2, · · · , gm be Boolean functions on n variables, G = (g1, g2, · · · , gm)
and deg(G) = (deg(g1),deg(g2), · · · ,deg(gm)). The numeric degree of the com-
posite function h = f ◦ G is defined as DEG(f,deg(G)), denoted by DEG(h) for
short. We call DEG(f,D) a super numeric degree of h if di ≥ deg(gi) for all
1 ≤ i ≤ m, where D = (d1, d2, · · · , dm). We can check that the algebraic degree
of h is always less than or equal to the numeric degree of h, i.e.,

deg(h) = deg(f(g1, g2, · · · , gm)) ≤ DEG(h) = max
ac �=0

{
m∑

i=1

ci deg(gi)}.

Proposition 1. The algebraic degree of a composite function is less than or
equal to its numeric degree.

An NFSR-based cryptosystem usually consists of an update function g and an
output function f . The internal state is updated by the update function g, while
the output bit is generated by the output function f after an initialization of a
sufficient number of rounds. To make the implementation efficient, the update
function and output function usually have extremely sparse terms, e.g., Trivium
[8,10] and Grain [1,27,28]. Even though these functions are simple, there are few
tools to exactly compute their algebraic degrees after updating the internal state
by a sufficient number of rounds. A straightforward way to achieve this is to
calculate the algebraic normal form, but it easily becomes out of memory as the
number of rounds increases. A more efficient method is to test the coefficients
of the algebraic normal form by statistical analysis, but it highly depends on
the computational power and is limited by computational time. To overcome
these limitations of computational resources, we exploit the numeric mapping to
estimate the algebraic degree.

Corollary 2. Denote by s(t) the internal state of an NFSR-based cryptosys-
tem at t-th round, and let g and f be the update function and output function
respectively. Then the algebraic degrees of the updated bit and output bit are
respectively less than or equal to their numeric degrees, i.e., DEG(g,deg(s(t)))
and DEG(f,deg(s(t))).
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Example 1. Let xt = xt−2xt−7 + xt−4xt−5 + xt−8 be the update function of an
NFSR with size 8. For t = 16, we have

x16 = x14x9 + x12x11 + x8.

We can iteratively compute

x9 = x2x7 + x4x5 + x1,

x11 = x2x4x7 + x1x4 + x4x5 + x6x7 + x3,

x12 = x3x5x8 + x2x5 + x5x6 + x7x8 + x4,

x14 = x2x3x7x8 + x2x5x6x7 + x3x4x5x8 + x3x5x7x8

+ x1x3x8 + x1x5x6 + x2x4x5 + x2x5x7 + x4x5x6

+ x5x6x7 + x1x2 + x2x7 + x4x7 + x7x8 + x6.

Then by numeric mapping, we have

DEG(x16) = max{deg(x14) + deg(x9),deg(x12) + deg(x11),deg(x8)}
= max{4 + 2, 3 + 3, 1}
= 6.

We can verify that deg(x16) = 6 by calculating the algebraic normal form of x16.
As a matter of fact, we can also check that DEG(xt) = deg(xt) for all t < 16.
This fact implies that we can get an accurate estimation of the algebraic degree
of x16 by iteratively using numeric mapping starting at the beginning, without
computations of the algebraic normal forms of internal bits.

The case that the numeric degree equals the algebraic degree usually hap-
pens when the intermediate variables appearing in the same nonlinear terms are
independent. This scenario is reasonable for an ideal cryptosystem. For a con-
crete cipher, the numeric degree might be equal or close to the algebraic degree
if we eliminate or reduce the dependent relationship between the intermediate
variables.

Algorithm 1. Estimation of Degree of NFSR-Based Cryptosystems
Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the set of variables X.

1: Set D(0) and E(0) to deg(s(0), X);
2: For t from 1 to N do:
3: Compute D(t) = DegEst(G, E(t−1));
4: Set E(t) to (D(0), D(1), · · · , D(t));
5: Return DegEst(f, E(N)).

The algebraic degrees of output bits and the internal states can be
estimated iteratively for NFSR-based cryptosystems. We describe this esti-
mation in Algorithm 1. In the algorithm, s(0) = (s(0)1 , s

(0)
2 , · · · , s

(0)
n )
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denotes the internal state at time 0 with size n, and deg(s(0),X) =
(deg(s(0)1 ,X),deg(s(0)2 ,X), · · · ,deg(s(0)n ,X)), where the notation deg(s(0)i ,X)
denotes the algebraic degree of s

(0)
i with X as variables. Especially, deg(0,X) =

−∞, and deg(c,X) = 0 for any nonzero c containing no variable in X. The
update function G is written as vectorial Boolean functions from F

n
2 to F

n
2 , where

a few bits of input are updated and the rest of the bits are shifted. DegEst is a
procedure for estimating algebraic degree. The output of this algorithm gives an
upper bound on algebraic degree of the output of a given NFSR-based cryptosys-
tem when setting DegEst(·, E(t)) to DEG(·,D(t)). This is based on the fact that
deg(g(s(t))) ≤ DEG(g,deg(s(t))) ≤ DEG(g, DEG(s(t))) according to Corollary 2.

Now we have given a general framework of iterative estimation of algebraic
degree of NFSR-Based Cryptosystems. To reach a sharper upper bound, we use
a more delicate DegEst rather than DEG in Algorithm 1. We will show later the
applications to Trivium-like ciphers, and the experimental results show that our
estimated degree is very close to the real value of algebraic degree.

4 Applications to Trivium-Like Ciphers

In this section, we first briefly describe a generic view of a Trivium-like cipher
to capture various cryptographic algorithms such as Trivium, TriviA-SC and
Kreyvium. Then, based on our observations on the update functions of this
kind of ciphers, we formalize and develop a linear-time algorithm for finding an
upper bound on the algebraic degree of a Trivium-like cipher. Finally, we apply
our algorithm to analyze the security of the ciphers Trivium, TriviA-SC and
Kreyvium.

4.1 A Brief Description of Trivium-Like Ciphers

Let A, B and C be three registers with sizes of nA, nB and nC , denoted by At,
Bt and Ct their corresponding states at clock t,

At = (xt, xt−1, · · · , xt−nA+1), (1)
Bt = (yt, yt−1, · · · , yt−nB+1), (2)
Ct = (zt, zt−1, · · · , zt−nC+1), (3)

and respectively updated by the following three quadratic functions,

xt = zt−rC
· zt−rC+1 + �A(s(t−1)), (4)

yt = xt−rA
· xt−rA+1 + �B(s(t−1)), (5)

zt = yt−rB
· yt−rB+1 + �C(s(t−1)), (6)

where 1 ≤ rλ < nλ for λ ∈ {A,B,C} and �A, �B and �C are linear functions. We
denote At[i] = xi, Bt[i] = yi and Ct[i] = zi, and define g

(t)
A = zt−rC

· zt−rC+1,
g
(t)
B = xt−rA

·xt−rA+1 and g
(t)
C = yt−rB

· yt−rB+1. The internal state, denoted by
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s(t) at clock t, consists of the three registers A,B,C, that is, s(t) = (At, Bt, Ct).
Let f be the output function. After an initialization of N rounds, in which the
internal state is updated for N times, the cipher generates a keystream bit by
f(s(t)) for each t ≥ N .

Trivium and TriviA-SC exactly fall into this kind of ciphers. As men-
tioned earlier, TriviA-SC and its successor TriviA-SC (v2) only differ in the
constants loaded to the initial internal state. Hereinafter, TriviA-SC means its
both versions, if not specified. Kreyvium is a variant of Trivium with 128-bit
security. Compared with Trivium, Kreyvium uses two extra registers (K∗, V ∗)
without updating but shifting, i.e., s(t) = (At, Bt, Ct,K

∗, V ∗), and add a single
bit of (K∗, V ∗) to each of �A and �B , where K∗ and V ∗ only involve the key
bits and IV bits respectively. We can easily adapt our techniques to Kreyvium
from Trivium. Trivium uses an 80-bit key and an 80-bit IV, while Kreyvium
and TriviA-SC both use a 128-bit key and a 128-bit IV. All these ciphers have
1152 rounds. For more details of the specifications of these ciphers, we refer to
[10,11,13,14].

4.2 The Algorithm for Estimation of Degree of Trivium-Like
Ciphers

We present here an algorithm for giving an upper bound on the algebraic degree
of the output of f after N rounds for a Trivium-like cipher, as depicted in
Algorithm 2. We first initialize the degree of the initial internal state, denoted by
D(0), then iteratively compute D(t) for t = 1, 2, · · · , N , and finally apply numeric
mapping to calculate an estimated degree for the first bit of the keystream. In
Algorithm 2, we also use three sequences, denoted by dA, dB and dC , to record
the estimated degrees of the three registers A,B,C. In each step of a Trivium-
like cipher, three bits are updated as (4), (5) and (6). Accordingly, we compute
estimated degrees for these three bits in each step t, denoted by d

(t)
A , d

(t)
B and d

(t)
C .

Then update D(t) from D(t−1). For estimating the algebraic degrees of xt, yt, zt,
we exploit two procedures DegMul and DEG for dealing with their “quadratic”
and “linear” parts separately. An instance of DegMul is described in Algorithm 3.
The other two cases are similar, and the full procedure of DegMul is given in
Algorithm 5 in Appendix. Algorithm 3 is used to compute an upper bound on
the algebraic degree of g

(t)
A = zt−rC

· zt−rC+1, and its correctness is shown in
Lemma 4. We will demonstrate that for all t with 1 ≤ t ≤ N the estimated
degrees d

(t)
A , d

(t)
B , d

(t)
C for xt, yt, zt are greater than or equal to their correspond-

ing algebraic degrees, and therefore the output DEG(f,D(N)) of Algorithm 2
is a super numeric degree of the first bit of the keystream. In other words,
Algorithm 2 gives an upper bound on algebraic degree of the N -round output
bit of a Trivium-like cipher.

Theorem 3. Algorithm 2 outputs a super numeric degree of the first keystream
bit of an N -round Trivium-like cipher with X as variables.

As mentioned previously, to prove Theorem 3, it is sufficient to show the
following lemma.
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Algorithm 2. Estimation of Degree of Trivium-Like Ciphers
Require: Given the ANFs of the initial internal state (A0, B0, C0), and the set
of variables X.
1: For λ in {A, B, C} do:
2: For t from 1 − nλ to 0 do:
3: d

(t)
λ ← deg(λ0[t], X), where A0[t] = xt, B0[t] = yt, C0[t] = zt;

4: D(0) ← (d
(1−nA)
A , · · · , d

(0)
A , d

(1−nB)
B , · · · , d

(0)
B , d

(1−nC)
C , · · · , d

(0)
C );

5: For t from 1 to N do:
6: For λ in {A, B, C} do:

7: d
(t)
λ ← max{DegMul(g(t)

λ ), DEG(�λ, D(t−1))};

8: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C );

9: Return DEG(f, D(N)).

Algorithm 3. DegMul(g(t)λ ) for λ = A

1: t1 ← t − rC ;
2: If t1 ≤ 0 then:

Return d
(t1)
C + d

(t1+1)
C .

3: t2 ← t1 − rB ;
4: d1 ← min{d

(t2)
B + d

(t1+1)
C , d

(t2+2)
B + d

(t1)
C , d

(t2)
B + d

(t2+1)
B + d

(t2+2)
B };

5: d2 ← DEG(�C , D(t1)) + d
(t1)
C ;

6: d3 ← DEG(�C , D(t1−1)) + d
(t1+1)
C ;

7: d ← max{d1, d2, d3};
8: Return d.

Lemma 4. In Algorithm 2, we have d
(t)
A ≥ deg(xt,X), d

(t)
B ≥ deg(yt,X) and

d
(t)
C ≥ deg(zt,X) for t ≤ N .

Proof. It is trivial for t ≤ 0. Next we simply write deg(·,X) as deg(·). By Eqs. (4),
(5) and (6), it is sufficient to prove for 1 ≤ t ≤ N that

d
(t)
A ≥ max{deg(zt−rC

· zt−rC+1),deg(�A(s(t−1)))}, (7)

d
(t)
B ≥ max{deg(xt−rA

· xt−rA+1),deg(�B(s(t−1)))}, (8)

and
d
(t)
C ≥ max{deg(yt−rB

· yt−rB+1),deg(�C(s(t−1)))}. (9)

We prove them by induction. Here we provide only the details of the proof for
the first inequality due to the similarity. It is clear that (7) is true for 1 ≤ t ≤ rC .
Assume that (7), (8) and (9) are true for all i ≤ t − 1. Now we prove that (7) is
true for t with rC < t ≤ N .

From Algorithm 2, we have d
(t)
A ≥ DEG(�A,D(t−1)) ≥ deg(�A(s(t−1))). Next

we prove d
(t)
A ≥ deg(zt−rC

· zt−rC+1). By (6), we obtain that for t − rC ≥ 1,

zt−rC
= yt−rC−rB

· yt−rC−rB+1 + �C(s(t−rC−1)),

zt−rC+1 = yt−rC−rB+1 · yt−rC−rB+2 + �C(s(t−rC)),
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and thus

zt−rC
· zt−rC+1

=(yt−rC−rB
· yt−rC−rB+1 + �C(s(t−rC−1))) · zt−rC+1

=yt−rC−rB
· yt−rC−rB+1 · zt−rC+1 + �C(s(t−rC−1)) · zt−rC+1

=yt−rC−rB
· yt−rC−rB+1 · (yt−rC−rB+1 · yt−rC−rB+2 + �C(s(t−rC)))

+ �C(s(t−rC−1)) · zt−rC+1

=yt−rC−rB
· yt−rC−rB+1 · yt−rC−rB+2 + yt−rC−rB

· yt−rC−rB+1 · �C(s(t−rC))

+ �C(s(t−rC−1)) · zt−rC+1.

Denote by Y1, Y2 and Y3 respectively the three summands in the above equality.
By the previous assumption, we have

d
(t−rC)
C ≥ deg(yt−rC−rB

· yt−rC−rB+1),

d
(t−rC+1)
C ≥ deg(yt−rC−rB+1 · yt−rC−rB+2),

and thus

deg(Y1) ≤ min{deg(yt−rC−rB
) + deg(yt−rC−rB+1 · yt−rC−rB+2),

deg(yt−rC−rB+2) + deg(yt−rC−rB
· yt−rC−rB+1),

deg(yt−rC−rB
) + deg(yt−rC−rB+1) + deg(yt−rC−rB+2)}

≤ min{deg(yt−rC−rB
) + d

(t−rC+1)
C ,

deg(yt−rC−rB+2) + d
(t−rC)
C ,

deg(yt−rC−rB
) + deg(yt−rC−rB+1) + deg(yt−rC−rB+2)}

≤ min{d
(t−rC−rB)
B + d

(t−rC+1)
C ,

d
(t−rC−rB+2)
B + d

(t−rC)
C ,

d
(t−rC−rB)
B + d

(t−rC−rB+1)
B + d

(t−rC−rB+2)
B } = d1.

From the assumption we also have

deg(Y2) ≤ DEG(�C ,D(t−rC)) + d
(t−rC)
C = d2,

deg(Y3) ≤ DEG(�C ,D(t−rC−1)) + d
(t−rC+1)
C = d3.

Since deg(zt−rC
· zt−rC+1) ≤ max{deg(Y1),deg(Y2),deg(Y3)} ≤ max{d1, d2, d3},

by Algorithms 2 and 3 we know deg(zt−rC
· zt−rC+1) ≤ d

(t)
A . 
�

Complexity of the Algorithm. The size of the ANF of �λ is constant and thus
DEG(�λ) and DegMul(g(t)λ ) can be calculated in constant time, for λ ∈ {A,B,C}.
Therefore Algorithm 2 has time complexity of O(N). It requires a memory of
O(N).
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4.3 Experimental Results

In this section, we implement the algorithm on Trivium, Kreyvium and
TriviA-SC, and reveal various upper bounds on the algebraic degrees of these
ciphers. For Kreyvium, we use a modified D(t) in the algorithm which includes
the degrees of the two extra registers (key and IV).

When Will the Key and IV Be Sufficiently Mixed? We take all the key
and IV bits as input variables X, and do experiments on Trivium, Kreyvium
and TriviA-SC using Algorithm 2. We list the results in Table 2. As shown in the
table, Trivium does not achieve the maximum degree 160 after an initialization
of 907 rounds, while Kreyvium and TriviA-SC do not achieve the maximum
degree 256 after 982 rounds and 1108 rounds respectively. Though it is not an
attack, this implies that Trivium behaves best among the three ciphers while
TriviA-SC has a small margin towards this test of maximum algebraic degree.

Table 2. Lower bound on the maximum number of rounds of not achieving maxi-
mum degree for Trivium, Kreyvium and TriviA-SC with all the key and IV bits as
variables (X = (key, IV ))

Cipher Trivium Kreyvium TriviA-SC

#Key+#IV 160 256 256

#Rounds 907 982 1108

When Will the IV Be Sufficiently Mixed? Taking a subset of the IV
as input variables and the key as parameter, the algorithm gives a chosen IV
distinguisher on the cipher. Such kind of distinguishers, including cube testers,
have been widely investigated on stream ciphers, e.g., [3,23,24,37].

We first apply the algorithm to Trivium, Kreyvium and TriviA-SC with
all the IV bits as input variables, i.e., X = IV . In our experiments, the key is
taken as parameter, that is, deg(ki,X) = 0 for any bit ki of the key. This is con-
sistent with a distinguisher in the setting of unknown key. Our experiments show
that Trivium does not achieve the maximum degree 80 after an initialization
of 793 rounds, while Kreyvium and TriviA-SC do not achieve the maximum
degree 128 after 862 rounds and 987 rounds respectively. We summarize our
results in Table 3.

We next consider an exhaustive search on the sets of input variables X which
have size of around half length of the IV and contain no adjacent indexes. This
is not the first time to make use of a cube that contain no adjacent indexes.
Actually, the results of Aumasson et al. [3] and Liu et al. [33] have shown
that we can profit from such kind of cubes in cube testers due to the non-
linear structure of the update functions of Trivium. In our experiments, we
set the key as parameter, and set the non-variable IV bits to be zeros. Using
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Table 3. Lower bound on the maximum number of rounds of NOT achieving maxi-
mum degree for Trivium, Kreyvium and TriviA-SC with all the IV bits as variables
(X = IV )

Cipher Trivium Kreyvium TriviA-SC

#IV 80 128 128

#Rounds 793 862 987

Algorithm 2, we can exhaust all the cubes of size 37 ≤ n ≤ 40 for Triv-
ium, which contain no adjacent indexes, in a dozen minutes on a common PC.
The amount of such cubes is

∑40
n=37

(
81−n

n

) ≈ 225. Before this paper, it needs
c
∑40

n=37 2n
(
81−n

n

) ≈ c262 cipher operations to test all those cubes, and the con-
fidence of the test depends on c. All the cubes containing no adjacent indexes of
size 61 ≤ n ≤ 64 for Kreyvium and TriviA-SC are exhausted in a few hours.
The amount of such cubes is

∑64
n=61

(
129−n

n

) ≈ 230. By the existing methods, it
needs c

∑64
n=61 2n

(
129−n

n

) ≈ c291 cipher operations to test all those cubes. The
results are summarized in Table 4. The corresponding cubes are listed in Table 7
in Appendix.

As shown in Table 4, the output of 837-round Trivium has degree strictly
less than 37 over a subset of IV bits with size 37, and thus the outputs of
837-round Trivium over this cube always sum to 0. Since 237 is practical, we
verify this by carrying out a test for random 100 keys. The minimum number
of rounds such that the sum over this cube, i.e., the superpoly of the cube, is
not zero-constant is detected to be 839, which means the output of 839-round
Trivium achieves the maximum degree 37 over this subset of IV bits. This shows
that our lower bound on the number of attacked rounds is very sharp, and our
estimation of degree is, in some ways, very close to its real value. The test also
implies a distinguisher for 842-round Trivium with time complexity of around
239, since we detect a bias of 0.46 from the 842-round output bit. We summarize

Table 4. Cube testers on round-reduced Trivium, Kreyvium and TriviA-SC with
around half of the IV bits as variables

Cipher Trivium Kreyvium TriviA-SC
(v1)

TriviA-SC
(v2)

Simplified
TriviA-SC

Size of cube 37 61 63 62 63

#Rounds 837 872 1035 1046 1152

Table 5. Superpoly of round-reduced Trivium over a cube of size 37

#Rounds 837 838 839 840 841 842

rate(superpoly=1) 0 0 0.09 0.07 0.29 0.27
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in Table 5 the results of the test, where the rate that the superpoly of this cube
equals non-zero is given for starting from 837 rounds to 842 rounds.

As shown in Table 4, the output of 872-round Kreyvium has algebraic degree
strictly less than 61 over a subset of IV bits with size 61, which implies a distin-
guisher on this reduced version of Kreyvium with complexity of 261.

Our experiments also show that the output of 1035-round TriviA-SC (v1)
and 1046-round TriviA-SC (v2) do not achieve maximum algebraic degree on
a subset of IV bits with size 63 and size 62 respectively, which implies that we
can distinguish them from random functions in 263 and 262 respectively. In fact,
these two cubes are found much earlier before the completion of our experiments.
The former is found in a second, and the latter in three minutes. By using the
cube of size 63, we can also obtain a distinguisher with complexity of 263 on the
full rounds of a simplified variant of TriviA-SC (for both versions), in which
the unique nonlinear term of the output function is removed.

We have also tried to search for the cubes of large size under other strategies.
We exhaust all the cubes with size close to the length of the IV. Besides, we use
our algorithm together with the greedy algorithm, as done in [39], to search for
the best cubes of any size. Nevertheless, no better results are found.

To further evaluate the accuracy of our algorithm, we perform more experi-
ments specially on Trivium. We compute the exact value of the algebraic degree
of the output bit of reduced Trivium from 66 rounds to 426 rounds, as well as
estimate the degree by our algorithm. Our experiments show that

– our estimated bound is equal to its real value for most of cases (greater than
70%), and even for the other cases their gap is only one, when taking all the
key and IV bits or all the IV bits as input variables.

– our estimated bound is always equal to its real value, when taking the best
cube of size 37 as input variables.

They are strong evidence of high accuracy of our algorithm. We depict in
Fig. 1 our full estimation of the upper bound on the algebraic degree of reduced
Trivium for the mentioned three cases. From this figure, we can see that the
algebraic degree on the IV bits is almost the same as that on all the key and
IV bits, and it increases much faster than that of the best cube. The former is
possible due to that the key and IV bits are loaded into different registers of
Trivium, and the latter due to that two adjacent variable bits accelerate the
growth of the algebraic degree.

Remarks. The algorithm is possibly improved by further refining the estimation
of the degree of yi ·yi+1 ·yi+2. However, probably because in most of cases yi ·yi+1 ·
yi+2 is not dominant on the algebraic degree of zi+rB

· zi+rB+1, no improvement
is found by this way in our experiments. Another possible improvement is to
store the estimated degree of yi · yi+1 and replace some d

(i+rB)
C with it in the

procedure DegMul. Again, it gives no better result, at least in our experiments,
probably due to that the algebraic degree of zi+rB

is usually equal to that of
yi · yi+1. Even though these methods show no advantages in our experiments,
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Fig. 1. Upper bound on the algebraic degree of reduced Trivium

they may be useful in some cases. In the following, for an instance, we will show
an improved algorithm by computing the exact degrees of the internal states of
the first rounds, together with the second method.

5 Improved Estimation of Degree of Trivium-Like
Ciphers

In this section, we present an improved algorithm for estimating algebraic degree
of the output of f after N rounds for a Trivium-like cipher, as described in
Algorithm 4.

It is similar to Algorithm 2. In the improved algorithm, we compute the exact
algebraic degrees of the internal states for the first N0 rounds, where the degrees
of g

(t)
A , g

(t)
B and g

(t)
C are also recorded, and use a modified DegMul∗ to replace

DegMul, as depicted in Algorithm 6 in Appendix. The rest of this algorithm
is the same as Algorithm 2. The output of Algorithm 4 also gives an upper
bound on algebraic degree of an N -round Trivium-like cipher with X as input
variables. The replacing DegMul with DegMul∗ does not give the improvement
but guarantees the validity of the algorithm. The proof is similar to that of
Algorithm 2 and thus omitted in this paper.

It is hard to assess the complexity of Algorithm 4, which depends on N0 and
the complexities of the ANFs of the internal states (At, Bt, Ct) with t ≤ N0. It
becomes much slower than Algorithm 2, as N0 increases.

We apply the algorithm to Trivium, Kreyvium and TriviA-SC. It slightly
improves the results in Sect. 4 for TriviA-SC, as shown in Table 6, while this is
not the case for Trivium and Kreyvium. For both versions of TriviA-SC in
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Algorithm 4. Improved Estimation of Degree of Trivium-Like Ciphers
Require: Given the ANFs of all internal states (At, Bt, Ct) with t ≤ N0, and
the set of variables X.
1: For λ in {A, B, C} do:
2: For t from 1 − nλ to 0 do:
3: d

(t)
λ ← deg(λ0[t], X);

4: D(0) ← (d
(1−nA)
A , · · · , d

(0)
A , d

(1−nB)
B , · · · , d

(0)
B , d

(1−nC)
C , · · · , d

(0)
C );

5: For t from 1 to N0 do:
6: For λ in {A, B, C} do:

7: dm
(t)
λ ← deg(g

(t)
λ , X);

8: d
(t)
λ ← deg(λt[t], X);

9: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C );

10: For t from N0 + 1 to N do:
11: For λ in {A, B, C} do:

12: dm
(t)
λ ← DegMul∗(g(t)

λ );

13: d
(t)
λ ← max{dm

(t)
λ , DEG(�λ, D(t−1))};

14: D(t) ← (d
(t−nA+1)
A , · · · , d

(t)
A , d

(t−nB+1)
B , · · · , d

(t)
B , d

(t−nC+1)
C , · · · , d

(t)
C );

15: Return DEG(f, D(N)).

the case X = (key, IV ), the number of rounds such that the output has degree
less than 256 is improved from 1108 to 1121, by taking N0 = 340. For TriviA-
SC (v2) with X being a subset of IV with size of 61, the number of rounds is
improved from 1032 to 1047, by taking N0 = 440. This cube is listed in Table 7
in Appendix.

Table 6. Lower bounds on the number of rounds of NOT achieving maximum degree
for TriviA-SC

Cipher TriviA-SC TriviA-SC (v2)

X (key, IV ) Subset of IV

#X 256 61

#Rounds (Algorithm 2) 1108 1032

#Rounds (Algorithm 4) 1121 1047

6 Conclusions

In this paper, we have shown a general framework of algebraic degree evaluation
for NFSR-based cryptosystems. It is based on a new tool, named numeric map-
ping. We have also detailed the technique for efficiently finding an upper bound
on the algebraic degree of Trivium-like ciphers. As illustrations, we applied it
to Trivium, Kreyvium and TriviA-SC, and gained the best distinguishing
attacks for all these ciphers, by an exhaustive search on a subset of the cubes
that have size of around half length of the IV. To the best of our knowledge, our
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tool is the first theoretical one for finding an upper bound on the algebraic degree
of an NFSR-based cryptosystem, and this is the first time that a cube of size
beyond practical computations can be used in cryptanalysis of an NFSR-based
cryptosystem. Note that cube testers are useful not only in distinguishing attacks
but also in key recovery attacks. We believe that this tool is useful in both crypt-
analysis and design of NFSR-based cryptosystems. In the future, it is worthy of
working on its applications to key recovery attacks and to more cryptographic
primitives. It is also worth a further generalization to other cryptosystems that
are not built on NFSR.

Acknowledgement. We are grateful to Jian Guo, Wenhao Wang, and anonymous
reviewers of CRYPTO 2017 for their fruitful discussions and helpful comments.

A The Full Procedures of DegMul and DegMul∗

Algorithms 5 and 6 respectively describe the full procedures of DegMul(g(t)λ ) and
DegMul∗(g(t)λ ) for λ ∈ {A,B,C}, where ρ(A) = C, ρ(C) = B, ρ(B) = A.

Algorithm 5. DegMul(g(t)λ ) for λ ∈ {A,B,C}
1: t1 ← t − rρ(λ);
2: If t1 ≤ 0 then:

Return d
(t1)
ρ(λ) + d

(t1+1)

ρ(λ) .
3: t2 ← t1 − rρ2(λ);

4: d1 ← min{d
(t2)

ρ2(λ)
+ d

(t1+1)

ρ(λ) , d
(t2+2)

ρ2(λ)
+ d

(t1)
ρ(λ), d

(t2)

ρ2(λ)
+ d

(t2+1)

ρ2(λ)
+ d

(t2+2)

ρ2(λ)
};

5: d2 ← DEG(�ρ(λ), D
(t1)) + d

(t1)
ρ(λ);

6: d3 ← DEG(�ρ(λ), D
(t1−1)) + d

(t1+1)

ρ(λ) ;

7: d ← max{d1, d2, d3};
8: Return d.

Algorithm 6. DegMul∗(g(t)λ ) for λ ∈ {A,B,C}
1: t1 ← t − rρ(λ);
2: If t1 ≤ 0 then:

Return d
(t1)
ρ(λ) + d

(t1+1)

ρ(λ) .
3: t2 ← t1 − rρ2(λ);

4: d1 ← min{d
(t2)

ρ2(λ)
+ dm

(t1+1)

ρ(λ) , d
(t2+2)

ρ2(λ)
+ dm

(t1)
ρ(λ), d

(t2)

ρ2(λ)
+ d

(t2+1)

ρ2(λ)
+ d

(t2+2)

ρ2(λ)
};

5: d2 ← DEG(�ρ(λ), D
(t1)) + dm

(t1)
ρ(λ);

6: d3 ← DEG(�ρ(λ), D
(t1−1)) + d

(t1+1)

ρ(λ) ;

7: d ← max{d1, d2, d3};
8: Return d.
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B The Best Cube Testers

Table 7. The cubes in cube testers on round-reduced Trivium, Kreyvium and
TriviA-SC with around half of the IV bits as variables

Cipher Cube size Cube

Trivium 37 {0, 2, 4, 6, 8, 10, 12, 15, 17, 19, 21, 23, 25, 27, 30, 32, 34,
36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 60, 62, 64, 66, 68,
70, 72, 75, 79}

Kreyvium 61 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 29, 31, 33,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 57, 59, 61, 63, 65, 67,
69, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100,
102, 104, 107, 109, 111, 113, 115, 117, 119, 122, 124, 126}

TriviA-SC 61 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99,
101, 103, 105, 107, 109, 111, 113, 115, 121, 123, 125, 127}

62 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70, 72, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99,
101, 103, 105, 107, 109, 111, 113, 115, 117, 121, 123, 125,
127}

63 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70, 72, 74, 76, 78, 81, 83, 85, 87, 89, 91, 93, 95, 97,
99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 121, 123,
125, 127}
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August 2006, SECRYPT is part of ICETE - The International Joint Conference
on e-Business and Telecommunications, pp. 260–266. INSTICC Press (2006)

38. Sarkar, S., Maitra, S., Baksi, A.: Observing biases in the state: case studies with
Trivium and trivia-sc. Des. Codes Crypt. 82(1–2), 351–375 (2017)

39. Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17401-8 16

40. Todo, Y.: Structural evaluation by generalized integral property, pp. 287–314. [36]
41. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials

based on division property. In: Proceedings of 37th Annual International Cryptol-
ogy Conference on Advances in Cryptology (CRYPTO 2017), Santa Barbara, CA,
USA, 20–24 August 2017 (2017)

42. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-52993-5 18

43. Vardasbi, A., Salmasizadeh, M., Mohajeri, J.: Superpoly algebraic normal form
monomial test on Trivium. IET Inform. Secur. 7(3), 230–238 (2013)

44. Wu, H.: ACORN: a lightweight authenticated cipher (v3). CAESAR Submission,
(2016). http://competitions.cr.yp.to/round3/acornv3.pdf

45. Xu, C., Zhang, B., Feng, D.: Linear cryptanalysis of FASER128/256 and TriviA-ck.
In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp.
237–254. Springer, Cham (2014). doi:10.1007/978-3-319-13039-2 14

http://dx.doi.org/10.1007/978-3-642-17401-8_16
http://dx.doi.org/10.1007/978-3-662-52993-5_18
http://competitions.cr.yp.to/round3/acornv3.pdf
http://dx.doi.org/10.1007/978-3-319-13039-2_14

	Degree Evaluation of NFSR-Based Cryptosystems
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 An Iterative Method for Estimating Algebraic Degree of NFSR-Based Cryptosystems
	4 Applications to Trivium-Like Ciphers
	4.1 A Brief Description of Trivium-Like Ciphers
	4.2 The Algorithm for Estimation of Degree of Trivium-Like Ciphers
	4.3 Experimental Results

	5 Improved Estimation of Degree of Trivium-Like Ciphers
	6 Conclusions
	A The Full Procedures of DegMul and DegMul
	B The Best Cube Testers
	References


